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ABSTRACT

Personalized federated learning (pFL) is to collaboratively train non-identical ma-
chine learning models for different clients to adapt to their heterogeneously dis-
tributed datasets. State-of-the-art pFL approaches pay much attention on exploit-
ing clients’ inter-similarities to facilitate the collaborative learning process, mean-
while, can barely escape from the irrelevant knowledge pooling that is inevitable
during the aggregation phase (e.g., inconsistent classes among clients), and thus
hindering the optimization convergence and degrading the personalization per-
formance. To tackle such conflicts between facilitating collaboration and pro-
moting personalization, we propose a novel pFL framework, dubbed pFedC, to
disentangle the global aggregated knowledge into several compositional branches
and only aggregate relevant branches for supporting conflicts-aware collaboration
among contradictory clients. Specifically, by reconstructing each local model into
a shared feature extractor and multiple disentangled task-specific classifiers, the
training on each client transforms into a mutually reinforced and relatively inde-
pendent multi-task learning process, which provides a new perspective for pFL.
Besides, we conduct a personalized aggregation mechanism on disentangled clas-
sifiers via quantifying the combination weights for each client to capture clients’
common prior, as well as mitigate potential conflicts from the divergent knowl-
edge caused by the heterogeneous data. Extensive empirical experiments are con-
ducted over various models and datasets to verify the effectiveness and superior
performance of the proposed algorithm.

1 INTRODUCTION

Recently, Federated Learning (FL) has gained growing attention for its capability of collaboratively
training machine learning models among distributed clients without accumulating their private data
in a central repository McMahan et al. (2017b); Yang et al. (2020). FL has successfully contributed
to a wide range of smart applications, such as the next-word prediction Hard et al. (2018), voice
recognition Sattler et al. (2020), and health care applications Xu et al. (2021). However, there
exists a fundamental challenge that prevents its further application to users with data that having
statistical defects, i.e., the data could be non-independent and identically distributed (non-IID). In
such circumstance, the knowledge learnt from local training may have conflicts in the aggregation
process, and thus sharing a global model for all clients may significantly slow down the training
convergence process and seriously degrade the inference performance Jiang et al. (2019).

To deal with such data heterogeneity issue, personalized federated learning (pFL) has emerged that
allows FL clients to train personalized models rather than an identical sharing model with others
Hanzely et al. (2020); Tan et al. (2021); Huang et al. (2021). The principle is to explore the inter-
user similarities from the joint training process meanwhile producing unique models that can adapt
to their diverse data distributions Li et al. (2021a); T Dinh et al. (2020); Fallah et al. (2020); Collins
et al. (2021); Liang et al. (2020); Li et al. (2021b); Zhang et al. (2021b); Huang et al. (2021); Zhang
et al. (2021a). Among the statue quo pFL methods, two of the best popular solutions are similarity-
based multiple-model scheme Zhang et al. (2021b); Huang et al. (2021); Zhang et al. (2021a) and
parameter decomposition way Collins et al. (2021); Liang et al. (2020); Li et al. (2021b). The former
one is to produce a personalized model for each client by dissecting the similarity among different
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Figure 1: Motivation example: we consider 2 client to collaboratively learn their personalized mod-
els for a 3-class classification task. In a general federated training framework (a), the local model can
be presented as a concatenation of a feature extractor (i.e., θ) and a classifier (i.e., ω). (b) comparison
on different classifier aggregation mechanisms, blue: shared classifier, i.e., FedAvg McMahan et al.
(2017b); orange: local classifier, i.e., FedRep Collins et al. (2021); purple: personalized classifier,
i.e., FedFomo Zhang et al. (2021b); green: our proposed disentangled classifier, in which the origi-
nal classifier is reconstructed into multiple class-specific branches, so as to avoid the knowledge of
class 2 being transferred to client 2.

clients, while the latter one focuses on decoupling the whole model into two parts, top layers (e.g.,
feature extractor) and bottom layers (e.g., classifier), and only aggregating specific parameters (e.g.,
feature extractor) in the server.

Existing pFL methods have demonstrated improvements on FL performance via facilitating the col-
laboration among clients with similar data distributions, while very few literature have paid attention
to the contradictory knowledge from users with irrelevant data (i.e., users have different classes or
tasks), which may potentially degrade the aggregation efficiency if their cooperation is reinforced
during the pFL process. For example, considering the aggregation phase on two clients with hetero-
geneous data distributions (i.e., Figure 1), the knowledge transferred from client 1 to 2 can be simply
divided into two types: relevant knowledge (i.e., information on class 0) and irrelevant knowledge
(i.e., information on class 2, 3). Traditional client-level aggregation mechanisms in pFL take knowl-
edge from all other clients as a whole, and apply a unified combination weight for both the relevant
and irrelevant parts. Worse still, the intertwined irrelevant knowledge transfer obtained from other
clients would be aggravated among users with higher data similarity. Namely, facilitating person-
alized collaboration cannot avoid irrelevant knowledge pooling. As shown in Figure 1, by using
different classifier aggregation mechanisms, the average model accuracy on customized classifiers
outperforms that of a shared classifier, while the disentangled classifier has the best performance.
This inspires us to investigate a more efficient approach to disentangle the coupled relationship be-
tween relevant and irrelevant knowledge transfer during the pFL aggregation process.

Motivated by the multi-task learning (MTL) paradigm, commonalities and differences across multi-
ple related tasks can be exploited simultaneously and further reused to improve the learning perfor-
mance for task-specific models Hashimoto et al. (2016); Ruder (2017); Sener & Koltun (2018). We
seek to develop a novel pFL training framework that can circumvent the aggregation conflicts of the
irrelevant knowledge derived from the distributed non-IID data during pFL training. To this end, we
formulate the learning phase in pFL to an MTL-based conflicts-aware knowledge transfer training
algorithm, dubbed pFedC, whose main idea is to disentangle the global aggregated knowledge into
several compositional branches that can be trained in a mutually reinforced or relatively indepen-
dent way according to their knowledge conflicts. Specifically, we disentangle the original model in a
brand-new perspective and reconstruct the parameters into two types, i.e., the global representation
parameters shared by all clients and multiple task-specific parameters owned by each client. The
shared representation is to capture the generic knowledge across all clients, while the task-specific
parameters are to optimize the personalization.

Different from previous pFL methods, e.g., FedFomo Zhang et al. (2021b) and FedRep Collins
et al. (2021), pFedC disentangles the classifier at the semantic dimension to further improve the FL
personalization. We demonstrate that pFedC can let clients selectively acquire relevant knowledge
from others while excluding irrelevant knowledge transfer to avoid potential conflicts. The pro-
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posed pFedC can even deal with the extreme case of user heterogeneity, e.g., each client needs to
solve different classification tasks. Extensive experiments are conducted and we show that pFedC
can outperform the state-of-the-art baselines over widely used models and datasets, i.e., EMNIST,
FashionMNIST, CIFAR10 and CIFAR100.

The contributions of the paper are summarized as follows:

• To the best of our knowledge, we are the first to consider the conflicts between collaboration
and personalization among different clients during the pFL training, and explicitly reveal
the benefits of classifier disentanglement in pFL with non-IID data distributions.

• A flexible classifier disengagement mechanism based on semantic knowledge from differ-
ent classes is proposed to avoid conflicts in knowledge transfer for each client.

• We further design a conflict-aware training framework, pFedC, that can efficiently exploit
the inter-similarities among all clients while producing accurate personalized models for
each client.

• We conduct extensive experiments on four typical image classification tasks and two non-
IID data settings. The empirical evaluation shows the superior performance of pFedC over
the state-of-the-art approaches.

2 RELATED WORK

Personalized Federated Learning. Existing works on pFL can be categorized into data-based
and model-based methods. The former ones focus on reducing the statistical heterogeneity among
clients’ datasets to boost the model convergence, i.e., data-sharing Zhao et al. (2018), data-
augmentation Jeong et al. (2018); Duan et al. (2020). Model-based methods emphasize on producing
customized model structures or parameters for different clients, which can also be divided into two
types: single-model and multiple-model methods. Single-model based methods extended from the
conventional FL algorithms like FedAvg McMahan et al. (2017a) combine the optimization of the
local models and global model, including local fine-tuning Wang et al. (2019); Schneider & Vlachos
(2019); Arivazhagan et al. (2019), regularization T Dinh et al. (2020); Hanzely & Richtárik (2020);
Hanzely et al. (2020), model mixture Mansour et al. (2020); Deng et al. (2020), meta-learning Fallah
et al. (2020); Jiang et al. (2019) and parameter decomposition Bui et al. (2019); Collins et al. (2021);
Arivazhagan et al. (2019); Oh et al. (2022). Considering the diversity and inherent relationship of
local data, a multi-model-based approach is applied to train multiple global models for heteroge-
neous clients Huang et al. (2021); Smith et al. (2017a); Ghosh et al. (2020); Mansour et al. (2020);
Huang et al. (2021); Zhang et al. (2021b). The main idea is to facilitate the collaboration among
different clients with similar data distributions.

Existing pFL researches focus on designing efficient methods to facilitate collaboration among
clients by measuring inter-similarities, yet none of them have considered the conflict problem caused
by irrelevant knowledge aggregated from other clients, especially for those who have higher simi-
larities among their local data distributions. To this end, we need to explore a novel pFL method to
efficiently and selectively capture the relevant knowledge and circumvent the irrelevant knowledge
transfer from other clients.

Multi-task Learning. Multi-task learning (MTL) refers to learning a single model that can solve
multiple different tasks Hashimoto et al. (2016); Ruder (2017); Sener & Koltun (2018). By sharing
parameters between all tasks, MTL can learn more efficiently with an overall model with a smaller
size compared with traditional separate model learning methods Zhang & Yang (2021); Vanden-
hende et al. (2021); Chen et al. (2018); Liu et al. (2019); Kendall et al. (2018). Multi-class learning
can be seen as a special case of MTL, in which the classification on each class can be considered as
one task Li et al. (2020); Huang et al. (2020). Smith et al. Smith et al. (2017a) are the first to apply
multi-task learning to the FL settings. Unfortunately, the proposed MOCHA algorithm can only
train linear models. FedEM Marfoq et al. (2021) learns personalized models by implicitly clustering
all clients into M groups. However, all above federated MTL approaches treat each client as a single
task, neglecting the inherent MTL attribute (i.e., multiple classes) of each client.

Summary. Aiming to eliminate the conflict between collaboration and personalization during pFL
training, we are motivated to reformulate the original pFL task on each client into an MTL problem
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to improve the learning efficiency meanwhile mitigating the aggregation conflicts from heteroge-
neous clients. By such means, the global aggregated knowledge can be disentangled into multiple
complementary branches, so as to help optimize both the local training and global aggregation.

3 PROBLEM FORMULATION

3.1 NOTATIONS AND PRELIMINARY

In pFL, the goal is to collaboratively train personalized models among multiple clients to adapt to the
distributed heterogeneous data. Considering N clients with non-IID datasets, let Di = {xi

j , y
i
j}

Di
i=1

(1 ≤ i ≤ N ) be the dataset on the i-th client, where xj ∈ X is the j-th input data sample, yj ∈ Y
is the corresponding label. X ∈ Rd and Y = {1, 2, . . . , C} ∈ R represent the input and output
space, respectively. We define Πi = [π1

i , π
2
i , . . . , π

C
i ] as the label distribution on i-th client, in

which each element πc
i is a binary indicator that represents whether label c exits in i-th client (i.e.,

πc
i = 1) or not (i.e., πc

i = 0). Let Π = {Π1,Π2, . . . ,ΠN} denotes the whole label distributions
on all clients. The size of the datasets on the i-th client is denoted by Di. The size of all clients’
datasets is D =

∑N
i=1 Di. The model on i-th client is denoted by qi: X → Y , which maps input to

predicted labels, and is parameterized by θi. The objective of pFL can be formulated as

min
Θ

N∑
i=1

Di

D
Li(θi), (1)

where Li(θi) =
1
Di

∑Di

j=1 ℓ(θi;x
i
j , y

i
j) and Θ = {θi, . . . , θN} is the set of personalized parameters

for all clients. Li is loss function of i-th client associated with dataset Di. The difference between
the predicted value and the true label of data samples is measured by ℓ, e.g., cross-entropy loss.

3.2 TASKWISE MODEL DISENTANGLEMENT

We reformulate the original pFL problem into an MTL process to avoid potential aggregation con-
flicts. Inspired by recent works on disentangled representations Luo et al. (2022); Sarhan et al.
(2020), we first re-construct the model parameters into two different types of parameters: shared
representation (ϕ) which denote the global and common knowledge for all tasks, and disentangled
task-specific parameters (ω) that capture the local conflicts-aware knowledge for each client. The
latter one can be further disentangled into T parts: ω ≜ {ω1, . . . , ωT }. Note that the number of
virtual tasks T can be set flexibly, i.e., T ≤ C. When T < C, it means a C-class classification task
is grouped into T virtual sub-tasks, in which each virtual task becomes a new classification task.
For simplicity, in the formulation part, we disentangle the task-specific parameters according to the
number of classes, which is reasonable in practical applications. In other words, we disentangle the
original task into C (i.e., T = C) binary classification tasks, in which the output space for task c
covert to Yc = {0, 1}. Then the whole local model at i-th client can be represented as

θi =
{
ϕi ◦ ωi|ωi ≜ {ω1

i , . . . , ω
c
i , . . . , ω

C
i }

}
. (2)

Given the MTL-based version of original model, we then reformulate the whole optimization prob-
lem. Referring to existing hypothesis and loss functions definitions in existing MTL literatureSener
& Koltun (2018), we apply the typical minimization formulation at each client i as follows:

Li(θi) =

C∑
c=1

λcLc(ϕi, ω
c
i ), (3)

where Lc(ϕi, ω
c
i ) = 1

Dc
i

∑Dc
i

j=1 ℓ(ϕi, ω
c
i ;x

i
j , ŷ

c
j). λc is the weight for task c, which can be static

or dynamically computed during the training process. Dc
i denotes the number of data samples

belonging to the class c. Since we reformulate the local objective in an MTL version, the j-th data
sample on i-th client {xi

j , y
i
j} can be re-represented as {xi

j , ŷ
i,1
j , . . . , ŷi,Cj }. We omit the symbol i

in ŷi,cj in the later content for simplicity.

For each client i, the local training becomes a multi-task learning process. To achieve conflicts-
aware pFL, we should design an efficient MTL-based training and aggregation mechanism that
can facilitate collaboration among clients with similar data distribution meanwhile reducing the
negative/irrelevant knowledge transfer from other clients.
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Algorithm 1 pFedC Algorithm

Require: {D1,D2, . . . ,DN}, η, E, {Πi}Ni=1, T .
Ensure: Trained personalized models {θ1, θ2, . . . , θN}.
1: Initialize the clients’ model parameters
2: procedure SERVER EXECUTES
3: for each communication round t ∈ {1, . . . , T} do
4: Receive {θi}Ni=1 from all the clients
5: Calculate ϕ via Eq. (6)
6: for each client i in parallel do
7: Calculate ωi via Eq. (7)
8: Distributed ϕ and {ωi}Ni=1 accordingly
9: for each client i in parallel do

10: θi ← ϕ ◦ ωi

11: θi ← CLIENTUPDATE(θi)
return Trained personalized models {θ1, . . . , θN}

12: procedure CLIENTUPDATE(θi)
13: Client i receives θi from the server.
14: for each local epoch e ∈ {1, . . . , E} do
15: for mini-batch ξt ⊆ Di do
16: Update model parameters θi via Eq. (5)
17: return θi

4 PFEDC ALGORITHM

To conduct efficient pFL via the MTL training, we update the shared representation and task-specific
parameters at the server side. We apply a conflict-aware personalized federated learning framework
to select only the relevant knowledge from other clients during the aggregation phase.

4.1 CONFLICTS-AWARE PERSONALIZED FEDERATED LEARNING

In this section, we elaborate the conflicts-aware model training and aggregation mechanism in pFedC
step by step. Since the shared representation should capture the generic and common knowledge
from all data samples, we let each client to maintain a global version of shared representation at the
server side, and download it to local side to form a new local model before each communication
round, i.e., ϕ←

∑N
i=1

Di

D ϕi. As for task-specific parameters, we introduce a mask vector mi at the
server side to guide the aggregation phase of i-th client:

mi =
[
m1

i ,m
2
i , . . . ,m

C
i

]
=


m1

i,1 m2
i,1 · · · mC

i,1

m1
i,2 m2

i,2 · · · mC
i,2

...
...

. . .
...

m1
i,N m2

i,N · · · mC
i,N

 , (4)

where mc
i represents the aggregation weight vector of c-th task in i-th client, while each element

mc
i,n denotes the aggregation decision of task c on n-th client for i-th client, i.e., mc

i,n = 1 if and
only if client i and n both have class c; otherwise mc

i,n = 0. Therefore, the value of mc
i,n can be

easily calculated by mc
i,n = πc

i · πc
n (1 ≤ i, n ≤ N ).

In aggregation phase, each client i calculates the personalized task-specific parameters ωi by an
element-wise multiplication of mi and all local {ωn}Nn=1. Then, the server can update the personal-
ized model consisting of the shared representation and the task-specific parameters for each client.

4.2 WORKFLOW

As discussed earlier, pFedC enables each client to perform an MTL locally, and the server aggregates
the local model parameters in a conflict-aware manner. To do so, pFedC alternates between client
updates and a server update during each communication round. The overall learning scheme is
summarized in Algorithm 1.

Client Update. In each communication round, the clients download the shared representation ϕ and
personalized task-specific parameters ωi from the server. In the client update phase, each of them
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makes several local gradient-based updates (e.g., E epochs) to optimize the objective in Eq. (3) by
adapting the MGDA-UB algorithm Sener & Koltun (2018) from MTL. Namely, for each iteration,
client i updates its model as follows,

θi ← θi − η∇θiLi(θi), (5)

where θi = {ϕ ◦ ωi}, and η denotes the learning rate. ∇θiLi(θi) is the gradient of local objective
function Li(θi) with respect to θi.

Server Update. After training the local models at the client-side, corresponding models will be sent
to the server for further aggregation. Specifically, the server first aggregates the shared representation
by taking a weighted averaged of them:

ϕ =

N∑
i=1

Di

D
ϕi. (6)

The personalized task-specific parameters for each task c of client i can be aggregated by using mask
vector mi, i.e.,

ωc
i =


1∑N

n=1 m
c
i,n

N∑
n=1

ωc
n ·mc

i,n, if πc
i = 1,

ωc
i , otherwise.

(7)

Updated shared representation and personalized task-specific parameters are then distributed to the
local clients for next round of training.

4.3 ANALYSIS ON PFEDC

Convergence Analysis. We prove that pFedC can assist clients converge to their respective local op-
timums under the following assumptions: 1) L1, · · · ,LN are all µ-strongly-convex, 2) L1, · · · ,LN

are all L-smooth, 3) the variance of stochastic gradients in each user is bounded by σ2
i and 4) the

expected squared norm of stochastic gradients is uniformly bounded by G2.
Theorem 1. Let all above assumptions hold and µ,L, σi, G are defined therein. Choose κ = L

µ ,γ =

max{8κ,E} and the learning rate ηt =
2

µ(γ+t) . Suppose task c exists in client i (i.e., πc
i = 1), then

client i in pFedC satisfies

E[Li(θi)]− L∗
i ≤

κ

γ + T − 1

(
2B

µ
+

µγ

2
E∥θi,0 − θ∗i ∥2

)
(8)

where

B =

N∑
n=1

pn
2πc

n
2

ϵc2
σ2
n + 6LΓ + 8(E − 1)2G2,Γ = L∗

i −
N∑

n=1

pnπ
c
n

ϵc
L∗
n ≥ 0 (9)

The full convergence analysis proof is elaborated in Appendix 7.3. From Theorem 1, we show that
pFedC converges to the respective local optimums at a rate ofO( 1

T ) for strongly convex and smooth
functions.

Privacy Preserving. In pFedC, the server requires to access {Πi}Ni=1 from local clients, which
may lead to privacy concerns on user data profiles. However, there are already some literature Tan
et al. (2022); Zhu et al. (2021) show that transmitting local category-level information is considered
reasonable and will not cause privacy leakage in image classification tasks, where different clients
have different subsets of the whole classes. Thus, it is feasible to upload data distribution information
to boost personalization performance in a federated framework. Moreover, pFedC can be integrated
with various privacy-preserving techniques, such as Homomorphic Encryption (HE) Phong et al.
(2018), differential privacy Wei et al. (2020) and even trusted execution environment Mondal et al.
(2021) to enhance the reliability of the training framework. Taking Homomorphic Encryption as
an example, we design a privacy-preserved version of pFedC. As space is limited, we omit it in the
main content and explain the details in Appendix 7.4.

Communication Efficiency. Compared with conventional pFL methods that only transmit local
model parameters or partial parameters, e.g., top layers in FedRep Collins et al. (2021), our proposed
pFedC requires the exchange of multi-branches model parameters, which may lead to additional
communication overhead. However, we clarify that the additional communication cost on pFedC
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Table 1: Task Accuracy over 20 clients on the MNIST, EMNIST and CIFAR10, CIFAR100
datasets(Pathological non-IID setting, T denotes the number of disentangled tasks).

MNIST (%) EMNIST (%) CIFAR10 (%) CIFAR100 (%)

(# Tasks, # Local Epochs) (10, 5) (10, 5) (10, 10) (20, 10)

FedAvg McMahan et al. (2017b) 91.94±0.76 85.32±0.38 53.70±0.98 46.29±0.26
Per-FedAvg Fallah et al. (2020) 92.95±0.28 81.81±1.14 60.33±1.83 54.49±1.55
pFedMe T Dinh et al. (2020) 93.30±0.44 86.56±0.50 57.20±0.86 51.70±0.38
FedBN Li et al. (2021b) 97.73±0.34 93.53±0.42 61.43±0.37 61.35±0.09
FedRep Collins et al. (2021) 97.85±0.15 93.94±0.12 60.93±0.26 63.20±0.57
FedFomo Zhang et al. (2021b) 98.61±0.29 92.31±0.17 58.65±0.34 58.50±0.12

pFedC (Ours) 99.44±0.41 97.94±1.35 90.37±0.29 93.49±0.66

can be negligible, which only has about 0.011% increments. We will conduct detailed explanations
on communication efficiency of pFedC in the experimental part.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate the pFedC framework over four datasets, EMNIST, FashionMNIST, CI-
FAR10 and CIFAR100. We consider two non-IID scenarios: 1) pathological non-IID setting —
each client is randomly assigned two classes with the same amount of data on each class McMahan
et al. (2017b); 2) real-world non-IID setting — each client contains all classes, while the data on
each class is not uniformly distributed, i.e., using a Dirichlet distribution Dir(α) Hsu et al. (2019);
Lin et al. (2020), where α indicates the non-IID level, and a smaller value of α indicates higher data
heterogeneity. All data are divided into 75% training set, and 25% test set. The test set and the
training set have the same data distribution for all clients.

Baselines. We compared the performance of pFedC with the state-of-the-art methods. In addition to
FedAvg McMahan et al. (2017b), we also include Per-Fedavg Fallah et al. (2020), a pFL algorithm
based on meta-learning; pFedMe T Dinh et al. (2020), a pFL algorithm with regularization term
added in the objective function; FedBN Li et al. (2021b), keeps each client’s BN layer updating
locally, while other layers are aggregated according to the FedAvg algorithm; FedRep Collins et al.
(2021), a pFL algorithm that keeps each client’s classifier updating locally, while the other parts
are aggregated at the server; FedFomo Zhang et al. (2021b), a pFL algorithm that uses distance to
calculate the aggregation weights based on the model and loss differences.

Training Details. For MNIST and EMNIST dataset, we use a CNN architecture based on LeNet
LeCun et al. (1998). We treat all layers except the last as the shared representation function and put
ten fully-connected layers as task-specific functions. For CIFAR10 and CIFAR100 dataset, we use
an architecture based on ResNet-18 He et al. (2016) and make similar modifications to it as LeNet.
The detailed architectures used for experiments is visualized in Appendix 7.2. It’s worth noting
that we disentangle the model of CIFAR100 based on the number of superclasses (i.e., 20). In all
baselines, we use the original LeNet and RestNet-18 architectures. All the models have the same
structure between different clients under the same setting. We evaluate the performance of pFedC
on 20 clients with 100% participation, and 100 clients with 10% participation, respectively. The
average model accuracy of all clients is obtained after 1000 communication rounds training for all
baselines and 40 communication rounds training for pFedC, respectively.

Implementation. We simulate all clients and the server on a workstation with an RTX 2080Ti GPU,
a 3.6-GHZ Intel Core i9-9900KF CPU and 64GB of RAM.

5.2 EXPERIMENTAL RESULTS

Performance Comparison. We compare the performance of pFedC with all baselines under two
different non-IID cases: pathological non-IID setting and real-world non-IID setting. For all exper-
iments, we use SGD optimizer with a batch size of 32 for MNIST and EMNIST, 16 for CIFAR10
and CIFAR100. The learning rate is 0.01 for CIFAR10 and CIFAR100, and 0.005 for MNIST and
EMNIST. The performance of all baselines is evaluated by the mean testing accuracy, which is the
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Table 2: Task Accuracy over 20 clients on the MNIST, EMNIST and CIFAR10, CIFAR100 datasets
(Real-world non-IID setting, T denotes the number of disentangled tasks). For MNIST and EM-
NIST, the local epochs is set as 5; For CIFAR10 and CIFAR100, the local epochs is set as 10.

Average Test Accuracy

Dataset α FedAvg Per-FedAvg pFedMe FedBN FedRep FedFomo pFedC (Ours)

MNIST
T = 10

0.05 54.59±0.12 65.64±0.59 67.27±0.28 68.77±0.42 74.82±0.29 70.66±0.37 80.05±0.28
0.1 57.72±0.32 88.21±0.57 92.84±0.38 83.57±0.21 71.88±0.37 92.25±0.74 94.99±0.46
1 84.56±0.18 90.08±1.12 94.03±0.95 93.24±0.82 89.44±0.44 80.60±1.11 96.87±0.28

EMNIST
T = 10

0.05 60.39±0.40 67.92±0.94 80.18±0.19 64.90±1.19 64.20±1.07 65.68±0.86 76.34±0.96
0.1 74.68±0.51 69.02±0.11 82.77±0.82 65.34±0.94 65.65±1.66 65.29±0.93 89.18±0.82
1 77.89±0.16 69.59±0.91 84.37±0.14 75.02±0.33 72.23±0.42 66.02±0.50 91.01±0.54

CIFAR10
T = 10

0.05 34.88±0.08 48.08±0.56 52.19±0.23 53.27±0.73 53.61±0.57 53.17±0.74 70.65±0.34
0.1 48.12±0.11 64.37±0.38 69.20±0.29 70.13±0.31 70.34±0.49 70.13±0.51 77.85±0.24
1 61.37±0.18 67.24±1.07 73.12±0.56 74.98±0.92 74.20±0.16 70.70±0.08 83.04±0.34

CIFAR100
T = 20

0.05 36.99±1.04 58.63±0.08 62.91±0.14 64.72±0.51 64.06±0.88 63.41±0.11 81.79±1.60
0.1 54.16±0.09 62.44±0.91 66.24±0.98 68.36±0.96 68.18±1.89 67.31±0.83 85.91±0.26
1 58.56±0.17 75.66±0.37 79.38±0.25 81.75±0.13 82.25±0.70 79.50±1.01 87.69±0.37

Table 3: Performance comparison (%) on CIFAR-100 with 100 clients (T = 20).

Data Setting
Method FedAvg Per-FedAVg pFedMe FedBN FedRep FedFomo pFedC(Ours)

classs = 2 45.19 43.72 53.60 56.16 56.47 44.28 92.15
α = 0.05 40.89 42.56 44.35 46.42 43.51 29.63 84.03
α = 0.1 54.03 54.40 58.23 60.62 60.36 47.08 89.25
α = 1 60.10 77.28 80.12 82.01 81.19 78.07 90.98

average of the testing accuracy on all clients and the ± indicates the error range of the mean testing
accuracy after 3 repeated experiments. For pFedC, we evaluate the performance by calculating the
mean testing accuracy on all tasks. During the training process, MGDA-UB Sener & Koltun (2018)
is used to solve the local optimization problem on each client. The experimental results are listed in
Table 1 and Table 2, respectively.

Table 1 demonstrates the mean testing accuracy of all methods on four datatsets with the pathological
non-IID data setting. It can be observed that pFedC constantly outperforms other competitors by
large margins under a variety of settings. The reason mainly lies in the MTL-based local training and
personalized aggregation of the pFL models, which encourages the clients to optimize the objective
in a conflict-aware manner. For real-world non-IID setting, Table 2 shows the results of FedAvg, Per-
FedAvg, pFedMe, FedBN, FedRep, FedFomo and our pFedC on four datasets under three different
level of data heterogeneity (i.e., α = 0.05, 0.1, 1). From Table 2, we can notice that pFedC provides
superior performance than the baselines over different datatsets and data distributions in most cases.
Besides, we emphasize that even if all clients own all types of classes (e.g., α = 1), the performance
of pFedC is still better than that of FedAvg. This is enabled by the disentangled architecture and
task-specific aggregation process.

Effect of Data Heterogeneity. To further verify the efficiency of our proposed pFedC, we inves-
tigate the effect of data heterogeneity on training performance. The final mean test accuracies of
each algorithm under different value of α = 0.05, 0.1, 1 are recorded to plot the trends between per-
formance and data heterogeneity. As shown in Figure 2, pFedC can provide stable gain over other
methods when the data distributions are highly heterogeneous (i.e., with smaller α). In most cases,
pFedC shows an obvious advantage in training performance, while the advantage of Per-FedAvg,
FedRep, FedFomo vanishes as data heterogeneity alleviates. These results show the robustness of
pFedC under different levels of data heterogeneity.

Scalability. To verify the scalability of pFedC, we further conduct experiments on large-scale FL
systems, where the number of clients reaches 100. During the training process of pFedC, partial
clients (sampling rate: 0.1) will be selected and related partial elements in the mask matrix will be
used for aggregation in each communication round. In Table 3, the experimental results demonstrate
the efficiency and scalability of pFedC. Besides, we notice that disentangling the original bottom
layer (i.e., classifier) into T parts in pFedC only expands the width in the last FC layer while the
depth has not changed at all. Taking ResNet-18 on CIFAR-100 for example, one FC layer (50×1)
is disentangled and reconstructed into twenty FC layers (50×1) for pFedC (in our experimental
setting). The parameter size on the original model and our proposed model are 8,869,427 and

8



Under review as a conference paper at ICLR 2023

α=0.05 α=0.1 α=1
Reduced Data Heterogeneity

50

60

70

80

90

100

A
ve
ra
ge
 T
es
t A

cc
ur
ac
y

(a) MNIST Dataset.

α=0.05 α=0.1 α=1
Reduced Data Heterogeneity

50

60

70

80

90

100

A
ve
ra
ge
 T
es
t A

cc
ur
ac
y

FedAvg
Per-FedAvg
pFedMe
FedBN
FedFomo
FedRep
pFedC

(b) EMNIST Dataset.
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(c) CIFAR10 Dataset.
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(d) CIFAR100 Dataset.

Figure 2: Performance v.s. data heterogeneity
Table 4: Effect of different disentanglement strategies on CIFAR100 (Real-world non-IID setting,
T denotes the number of disentangled tasks). The local epochs is set as 10.

Data Setting # Number of Tasks

T = 1 T = 10 T = 20 T = 100

α = 0.05 37.99 97.30 74.94 62.48
α = 0.1 54.16 95.38 76.14 62.50
α = 1 58.56 90.69 76.36 62.57

8,870,396, respectively, which has only 0.011% increments. Compared with the original model, the
additional cost on memory, computation and communication are negligible.

Comparison with Federated MTL methods. To further demonstrate the efficiency of MTL process
in pFedC, we compare it with MOCHA Smith et al. (2017b) and FedEM Marfoq et al. (2021). Since
MOCHA only works for linear models, we conduct experiments on two different models: linear
models and CNN models (i.e., ReNet-18). We tuned the parameter λ of MOCHA on a holdout
validation set via grid search in {101, 100, 101, 102, 103}, and we found that the optimal value of
λ is 100. Unless otherwise stated, the number of components considered by FedEM is M = 3.
We show that pFedC can obtain the best performance when compared with other federated MTL
methods. The detailed results are shown in Table 6.

Effect of Different Disentanglement Strategies. For large-scale classification datasets, disentan-
gling the original model at a class level may be infeasible due to the huge number of classes in the
dataset. In this case, how to disentangle the model becomes important and should be carefully inves-
tigated. Therefore, We conduct analysis on the effect of disentanglement strategies on CIFAR100.
Three different disentanglement strategies are proposed in the experiments: 1) T = 10, splitting the
100 classes into 10 groups and considering each 10 consecutive classes as a task von Oswald et al.
(2019); 2) T = 20, splitting the dataset according to the superclasses (i.e., 20 superclasses) Yoon
et al. (2019); 3) T = 100, splitting the dataset according to the original classes (i.e., 100 classes).
T = 1 represents no model disentanglement in the training process, which is equivalent to FedAvg.

As shown in Table 4, the training performance on CIFAR100 with different data heterogeneity varies
greatly with the number of tasks (i.e., T ). Specifically, comparing with FedAvg (i.e., T = 1), pFedC
achieves a significant improvement on model accuracy, e.g., a 32.13% - 59.31% improvement over
FedAvg when T = 10, and 4.01% - 24.49% improvement over FedAvg when T = 100. These
results verify the efficiency of our proposed model disentanglement-based pFL training framework.
However, larger values of T cannot always benefit the convergence of the personalized models. The
reason is that a large number of tasks makes it extremely difficult to learn the relationship between
these different tasks. Moreover, larger values of T may bring disadvantages to the whole training
process due to the huge increase in model size and local training time. Thus, a proper setting of T
is necessary and there are many things to take into consideration, e.g., the computation overhead,
communication overhead, and model performance.

6 CONCLUSION

In this paper, we have investigated the potential conflicts caused by the irrelevant knowledge transfer
from heterogeneous clients in pFL, and integrated a novel model disentanglement method (pFedC)
into the pFL training framework, which can improve the training efficiency and model performance
during the learning process over non-IID data. It is shown that pFedC can capture the relevant
knowledge and circumvent the irrelevant knowledge transfer from other clients. Extensive empirical
experiments have been conducted over various models and datasets to verify the effectiveness and
superior performance of pFedC framework.
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7 APPENDIX

7.1 COMPARISON WITH OTHER PFL METHODS
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Figure 3: Illustration of different pFL methods. The previous approaches either maintain a person-
alized model for each client in a model-wise mechanism, e.g., FedFomo Zhang et al. (2021b) (a)
or simply decouple the whole model into two parts: feature extractor and classifier in a layer-wise
mechanism, e.g., FedRep Collins et al. (2021) (b). Instead, we achieve conflicts-aware model per-
sonalization via task-wise disentanglement (c).

As shown in Figure 3, different from previous pFL methods, e.g., FedFomo Zhang et al. (2021b) and
FedRep Collins et al. (2021), pFedC disentangles the classifier at the semantic dimension to further
improve the FL personalization. We demonstrate that pFedC can let clients selectively acquire
relevant knowledge from others while excluding irrelevant knowledge transfer to avoid potential
conflicts. The proposed pFedC can even deal with the extreme case of user heterogeneity, e.g., each
client needs to solve different classification tasks.

7.2 ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide more concrete experimental settings and more numerical results to ex-
amine the advantages of our proposed pFedC, i.e., the convergence rate.

7.2.1 NON-IID DATA SETTING

Pathological non-IID setting: each client is randomly assigned two classes with the same amount
of data on each class.

Real-world non-IID setting: each client contains all classes, while the data on each class is not
uniformly distributed, i.e., using a Dirichlet distribution Dir(α), where α indicates the non-IID level,
and a smaller value of α indicates higher data heterogeneity.

We visualize the effects of adopting different α on the data heterogeneity for the MNIST dataset in
Figure 4.

7.2.2 DETAILED ARCHITECTURES USED FOR PFEDC

For MNIST and EMNIST dataset, we use a CNN architecture based on LeNet. We treat all layers
except the last as the shared representation function and put ten fully-connected layers as task-
specific functions. For CIFAR10 and CIFAR100 dataset, we use an architecture based on ResNet-
18. Similarity, all layers except the last one are treated as shared representation for all tasks, and
the fully connected layer are used as task-specific functions. The architectures used for different
datasets are visualized in Figure. 5.

7.2.3 THE TRAINING PERFORMANCE ON DIFFERENT NON-IID SETTINGS

We compare pFedC with state-of-the-art baselines on four datasets: MNIST, EMNIST, CIFAR10
and CIFAR100. There are two non-IID data settings: 1) Pathological non-IID setting, where the
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Figure 4: Visualization of statistical heterogeneity among users on MNIST dataset, where the x-axis
indicates client index, the y-axis indicates label index, and the size of scattered points indicates the
number of training samples for a label available to that client. (a) Pathological non-IID setting; (b)
- (d) Real-world non-IID setting.

data on each client only contains the specific number of labels (maybe only two labels); 2) Real-
world non-IID setting, where the number of labels for each client is randomly chosen.

Figure 6, 7, 8, 9 shows the empirical convergence results of pFedC along with other baselines.
Specifically, we focus on the changes of average test accuracy of these algorithms in each communi-
cation round. It is obvious that pFedC converges to higher average test accuracy on all four datasets
than baselines. This phenomenon validate the effectiveness of the model decomposition based train-
ing and aggregation on pFL. Moreover, pFedC can achieve faster convergence speed than baselines
in most cases, which further verifies the advantages of model decomposition and conflict-aware
personalized aggregation on training performance.

Table 5: Required Rounds (Baselines|pFedC) on CIFAR-100 with different T .

Setting classes per client =2 α = 0.05 α = 0.1 α = 1

T = 1 244 |244 250 |250 200 |200 200 |200

T = 10 244 |55 250 |58 200 |41 200 |49

T = 20 244 |32 250 |28 200 |25 200 |22

T = 100 244 |22 250 |18 200 |19 200 |17

7.2.4 THE REQUIRED COMMUNICATION ROUNDS ON DIFFERENT DECOMPOSITION
STRATEGIES

Finally, we conduct experiments to analyze the convergence rate. From table 5, the required com-
munication rounds to reach the convergence in pFedC is far less than baseline methods.
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Figure 5: Architecture used for MNIST, EMNIST, CIFAR10 and CIFAR100 experiments, respec-
tively.

Table 6: Performance comparison over 20 clients on CIFAR10, dataset(T denotes the number of
disentangled tasks).

Linear Model ResNet-18

(# Data heterogeneity) classes per client=2 α = 0.05 α = 0.1 α = 1

MOCHA Smith et al. (2017a) 64.75±0.65 - - -
FedEM Marfoq et al. (2021) 65.40±0.01 67.12±0.57 75.79±0.66 81.66±0.32
FedMA Wang et al. (2020) - 67.81±0.77 69.54±0.70 81.21±0.81
pFedMA (i.e., FedMA+FT) - 68.83±0.51 75.15±0.53 82.09±0.65

pFedC (Ours) 77.23±0.52 70.65±0.34 77.85±0.24 83.04±0.34

7.2.5 COMPARISON WITH MORE PFL METHODS

To further demonstrate the efficiency of MTL process in pFedC, we compare it with MOCHA Smith
et al. (2017b) and FedEM Marfoq et al. (2021). Since MOCHA only works for linear mod-
els, we conduct experiments on two different models: linear models and CNN models (i.e.,
ReNet-18). We tune the parameter λ of MOCHA on a holdout validation set via grid search in
{101, 100, 101, 102, 103}, and find that the optimal value of λ is 100. Unless otherwise stated, the
number of components considered by FedEM is M = 3. From Table 6, we show that pFedC can
obtain the best performance when compared with other federated MTL methods.

7.2.6 EFFECT OF LOCAL EPOCHS

Figure 10 demonstrates the performance of pFedC under different settings of local epochs (the local
epochs E in each communication round are set to 3, 5, 10 and 20 respectively). It is observed
that larger values of E are not always optimal for obtaining the best performance. For example,
the model can achieve the highest averaged accuracy( e.g., 96.86%) on MNIST with α = 1 when
pFedC performs 5 epochs during one communication round, while 10 epochs are better for CIFAR10
(α = 1).
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Figure 6: Performance of pFedC comparede with baselines on MNIST datatset. (a) Pathological
non-IID setting; (b) - (d) Real-world non-IID setting.

7.3 CONVERGENCE ANALYSIS OF PFEDC

The personalized performance convergence analysis for each client is the same, so we only focus on
one client i, 1 ≤ i ≤ N . Consider that all clients participate in the aggregation phase in pFedC.

7.3.1 ADDITIONAL NOTATION

Let θi,t be the model parameters of i-th client at t-th step. Let E be the number of local updates in
each round. Let IE be the set of synchronization steps, i.e., IE = {nE|n = 1, 2, · · · }. If t+1 ∈ IE ,
i.e., the step to communication. Then, the model update with all participants can be described as:

vi,t+1 = θi,t − ηt∇Li(θi,t, ξi,t) (10)

θi,t+1 =

{
vi,t+1, if t+ 1 /∈ IE
Agg(vi,t+1|i = 1, · · · , N), if t+ 1 ∈ IE (11)

where

Agg(vi,t+1|i = 1, · · · , N) =

N∑
i=1

piϕi,t+1 ◦ ω̃i,t+1, (12)

ω̃i,t+1 = {ωc
i,t+1|c = 1, · · · , C}, ωc

i,t+1 =

{
ωc
i,t+1, if πc

i = 0∑N
n=1

pnπ
c
n

ϵc ωc
n,t+1, if πc

i = 1
(13)

and pn = Dn

D , ϵc =
∑N

n=1 m
c
n, vi,t+1 = {ϕi,t+1 ◦ ωi,t+1}. Here, an additional variable vi,t+1 is

introduced to represent the immediate result of one step SGD update from θi,t+1. We regard θi,t+1

as the parameter obtained after communication steps.

In following analysis, we define two virtual sequences v̄i,t = Agg(vi,t|i = 1, · · · , N) and θ̄i,t =
Agg(θi,t|i = 1, · · · , N). As the whole original model is divided into two different roles in our
proposed pFedC: global feature extractor (i.e., ϕ) and task-specific classifier (i.e., ω). According to
Eq. 11, the update policy for ϕ is same as FedAvg algorithm, so we omit the analysis on ϕ and only
consider the task-specific parts. Moreover, for each task c, πc

i has two different values, i.e., 0 or

17



Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000
Communication Rounds

0.5
0.6
0.7
0.8
0.9
1.0

A
ve
ra
ge
 T
es
t A

cc
ur
ac
y

FedAvg
Per-FedAvg
pFedMe
FedBN
FedFomo
FedRep
pFedC

(a) classes per client = 2

0 200 400 600 800 1000
Communication Rounds

0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ve
ra
ge
 T
es
t A

cc
ur
ac
y

FedAvg
Per-FedAvg
pFedMe
FedBN
FedFomo
FedRep
pFedC

(b) α = 0.05

0 200 400 600 800 1000
Communication Rounds

0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
ve
ra
ge
 T
es
t A

cc
ur
ac
y

FedAvg
Per-FedAvg
pFedMe
FedBN
FedFomo
FedRep
pFedC

(c) α = 0.1

0 200 400 600 800 1000
Communication Rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
ve
ra
ge
 T
es
t A

cc
ur
ac
y

FedAvg
Per-FedAvg
pFedMe
FedBN
FedFomo
FedRep
pFedC

(d) α = 1

Figure 7: Performance of pFedC comparede with baselines on EMNIST datatset. (a) Pathological
non-IID setting; (b) - (d) Real-world non-IID setting.

1. For convenience, we only consider the case with πc
i = 1. Therefore, in the rest of the analysis,

v, v̄, θ and θ̄ denote the parameter related to ωc unless other specified. It is noticed that v̄i,t+1 comes
from an single step of SGD from θ̄i,t. We also define ḡci,t(ω

c
i ) =

∑N
n=1

pnπ
c
n

ϵc ∇ωc
n
Ln(θn,t) and

gci,t(ω
c
i ) =

∑N
n=1

pnπ
c
n

ϵc ∇ωc
n
Ln(θn,t, ξn,t). For simplicity, we omit the wc

i in the above expression
of ḡci,t and gci,t. Thus, we have v̄i,t+1 = θ̄i,t − ηtgi,t and Egi,t = ḡi,t.

7.3.2 KEY LEMMAS

To clearly show our proof, it is necessary to define some lemmas before the main theorem. The proof
of these lemmas can be easily found in Li et al. (2019) and we only focus on the main theorem.
Lemma 1. (Results of one step SGD). Assume Assumption 1 and 2 hold, we have

E∥v̄i,t+1−θ∗i ∥ ≤ (1−ηtµ)E∥θ̄i,t−θ∗i ∥2+η2tE∥gi,t− ḡi,t∥2+6Lη2tΓ+2E
N∑

n=1

pnπ
c
n

ϵc
∥θ̄i,t−θn,t∥2

(14)
where Γ = L∗

i −
∑N

n=1
pnπ

c
n

ϵc L
∗
n ≥ 0.

Lemma 2. (Bounding the variance). Assume Assumption 3 holds. It follows that

E∥gi,t − ḡi,t∥2 ≤
N∑

n=1

pn
2πc

n
2

αc
n
2 σ2

n (15)

Lemma 3. (Bounding the divergence of θn,t). Assume Assumption 4 holds, that ηt is non-increasing
and ηt ≤ 2ηt+E for all t ≥ 0. It follows that

E

[
N∑

n=1

pnπ
c
n

ϵc
∥θ̄i,t − θn,t∥2

]
≤ 4η2t (E − 1)2G2. (16)
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Figure 8: Performance of pFedC comparede with baselines on CIFAR10 datatset. (a) Pathological
non-IID setting; (b) - (d) Real-world non-IID setting.

7.3.3 FULL PROOF OF THEOREM 1

Proof. It is clear that no matter whether t + 1 ∈ IE or t + 1 /∈ IE , we always have the following
equation: θ̄i,t+1 = v̄i,t+1. Let ∆t = E∥θ̄i,t − θ∗i ∥2. From Lemma 1, Lemma 2 and Lemma 3, it
follows that

∆t+1 ≤ (1− ηtµ)∆ + η2tB (17)

where

B =

N∑
n=1

pn
2πc

n
2

ϵc2
σ2
n + 6LΓ + 8(E − 1)2G2 (18)

For a diminishing stepsize, ηt = β
t+γ for some β > 1

µ and γ > 0 such that η1 ≤ min{ 1µ ,
1
4L} and

ηt ≤ 2ηt+E . We prove that ∆t ≤ v
γ+t where v = max{ β2B

βµ−1 , (γ + 1)∆1}.

First, the definition of v ensures that it holds for t = 1. Assume the conclusion holds for some t, it
follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB

≤
(
1− βµ

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1

(19)

Then, according to the L-smoothness of Li(·), we have

E[Li(θ̄i,t)]− L∗
i ≤

L

2
∆t ≤

L

2

v

γ + t
. (20)
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Figure 9: Performance of pFedC compared with baselines on CIFAR10 datatset. (a) Pathological
non-IID setting; (b) - (d) Real-world non-IID setting.
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(d) CIFAR100 Dataset.

Figure 10: Training Performance under different setting of local epochs, i.e., E.

Specifically, if we choose β = 2
µ , γ = max{8L

µ − 1, E} and denote κ = L
µ , then ηt =

2
µ

1
η+t . One

can verify that the choice of ηt ≤ 2ηt+E for t ≥ 1. Then we have

v = max{ β2B

βµ− 1
, (γ + 1)∆1} ≤

β2B

βµ− 1
+ (γ + 1)∆1 ≤

4B

µ2
+ (γ + 1)∆1, (21)

and

E[Li(θ̄i,t)]− L∗
i ≤

L

2

v

γ + t
≤ κ

γ + t

(
2B

µ
+

µ(γ + 1)

2
∆1

)
(22)

7.4 ANALYSIS ON PRIVACY PRESERVING

The proposed pFedC requires the exchange of local label distribution between the server and the
clients. This property may bring privacy concerns to the user profile or other sensitive information.
In this section, we integrate the homomorphic encryption technique with pFedC to further protect the
local data distribution. Specifically, we propose an evolutionary version of pFedC, dubbed Privacy-
pFedC, to achieve a privacy-preserving training framework. Instead of directly uploading shared
feature extractor ϕ, multiple task-specific parameters ωi and local label distributions Πi to the server,
the results of ωi · Π∗

i will be encrypted and sent to the server, where Π∗
i = [1, π1

i , · · · , πC
i ]. The
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server will aggregate the local updates to obtain the encrypted personalized parameters and then
distribute the updated results back to the clients. Then, the clients can decrypt the updated results
to obtain personalized models and then continue with the next round of training. To this end, the
privacy of the training framework can be guaranteed. Attackers from the server cannot reconstruct
the raw data of clients from aggregated results or encrypted results without access to the private key
on each client. The detailed workflow of Privacy-pFedC is illustrated in Algorithm 2.

Algorithm 2 Privacy-pFedC Algorithm

Require: {D1,D2, . . . ,DN}, η, E, T , {Π∗
1,Π

∗
1, · · · ,Π∗

N}, Encryption function Enc(·), Decryp-
tion function Dec(·).

Ensure: Trained personalized models {θ1, θ2, . . . , θN}.
1: Generate public key pk and secret keys sk
2: procedure SERVER EXECUTES
3: for each communication round t ∈ {1, . . . , T} do
4: Receive ϕi and {ω̃i}Ni=1 from the selected clients
5: ϕ←

∑N
i=1

Di

D ϕi

6: for each task c do
7: ω̃c ←

∑N
n=1 ω̃

c
n

8: Distribute ϕ and {ω̃c}Cc=1 to selected clients
9: for each client i in parallel do

10: θi ← CLIENTUPDATE(ϕ, {ω̃c}Cc=1)
11: ω̃i ← Enc(ωi ·Π∗

i , pk)
return Trained personalized models {θ1, . . . , θN}

12: procedure CLIENTUPDATE(ϕ, {ω̃c}Cc=1)
13: {ωc}Cc=1 ← Dec({ω̃c}Cc=1, sk)
14: for each task c do
15: if πc

i == 1 then
16: ωc

i ← ωc

17: else
18: ωc

i ← ωc
i

19: θi ← ϕ ◦ ωi

20: for each local epoch e ∈ {1, . . . , E} do
21: for mini-batch ξt ⊆ Di do
22: Update model parameters θi via: θi ← θi − η∇θiLi(θi)

23: return θi
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