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3D Dense Captioning

3D Visual Grounding

3D Question Answering

Describe the room in detail. 

The room is a small office with 

desks arranged along the walls, a 

sofa in the center, and several 

chairs. It has a compact layout 

where most of the workspace is 

around the edges…

Describe the writing desk on the 

right side of the room in detail. 

The desk is long and rectangular, 

placed against the wall with 

monitors, books, and …

Give the coordinates of the chair 

right of the sofa.

[1.13, 1.64, 0.35, 0.92, 0.03, 1.16]

What furniture is placed in the 

center of the room?

An orange sofa.

How many chairs are in the room?

There are six chairs in the room.

Figure 1: We propose Vid-LLM to achieve diverse 3D vision-language reasoning tasks using only
video inputs.

ABSTRACT

Recent developments in Multimodal Large Language Models (MLLMs) have sig-
nificantly improved Vision–Language (VL) reasoning in 2D domains. However,
extending these capabilities to 3D scene understanding remains a major challenge.
Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on
3D data inputs, which limits scalability and generalization. To address this lim-
itation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes
video inputs without requiring external 3D data, making it practical for real-world
deployment. In our method, the geometric prior are directly used to improve the
performance of the sceen perception. To integrate the geometric cues into the
MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D
geometric priors with the vision-language representations. To ensure geometric
consistency and integrity, we introduce a Metric Depth Model that recovers real-
scale geometry from the reconstruction outputs. Finally, the model is fine-tuned
with a two-stage distillation optimization strategy, realizing fast convergence and
stabilizes training. Extensive experiments across diverse benchmarks verified the
effectiveness of our method on 3D Question Answering, 3D Dense Captioning and
3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) (Vaswani et al., 2017; Radford et al., 2019;
Naveed et al., 2025) and Multimodal Large Language Models (MLLMs) (Zhang et al., 2024a;
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Yin et al., 2024; Wu et al., 2023) have reinforced the paradigm of language as a universal inter-
face, substantially improving cross-modal perception and reasoning. Extending this progress to 3D,
recent research has focused on 3D-aware Multimodal Large Language Models (3D-MLLMs) (Ren
et al., 2025), which unify 3D scene understanding and vision–language reasoning under a linguistic
interface. This line of work underscores the importance of grounding language in persistent 3D
spatial representations (Cheng et al., 2024a; Roh et al., 2022), offering a unified pathway toward
systematic scene-level reasoning.

Recent studies have made substantial progress in 3D vision–language (3D VL) reasoning (Chen
et al., 2024c; Huang et al., 2023b), yet most approaches rely on complex 3D inputs, incurring high
costs in data collection, preprocessing, and computation. Some models rely on point clouds or re-
constructed scenes augmented with rendered views or semantic–geometric features (Hong et al.,
2023a; Fu et al., 2024), while others adopt simpler inputs but still depend on explicit 3D scene rep-
resentations such as reconstructed objects aligned with semantic representations (Chu et al., 2024;
Huang et al., 2023a; 2024). Despite their effectiveness, these pipelines depend on depth, poses,
or external modules, leading to substantial data and engineering overhead as well as high memory
and latency costs. This rigid input requirements and system complexity fundamentally limit the
scalability and transferability of current 3D-MLLMs.

To overcome these limitations, a more general solution is to enable the model to directly reconstruct
scene geometry from video (Leroy et al., 2024; Wang et al., 2024), thereby eliminating the reliance
on external depth, pose, or registration modules. More importantly, reconstruction and reasoning are
intrinsically interdependent: geometric structures underpin semantic understanding, while semantic
reasoning, in turn, provides contextual priors that guide and refine geometric modeling (Cheng
et al., 2024a; Ha & Song, 2022).

In this work, we introduce Vid-LLM, a compact model that jointly performs reconstruction and 3D
vision–language reasoning from monocular video inputs, as illustrated in Fig. 1. The core compo-
nent of Vid-LLM is a Cross-Task adapter (CTA) that tightly couples reconstruction with reasoning,
enabling intrinsic geometry–semantics interaction with mutual reinforcement and constraint. CTA
disentangles geometry-aware and language-aware features; the geometric stream is then processed
by a Global-Frame Attention backbone and specialized heads to estimate camera poses and relative
depth, followed by a Metric Depth Model for real-scale calibration. The recovered 3D informa-
tion is then fused with semantic features to construct 3D patches, which are fed into the LLM for
spatial reasoning. Finally, a two-stage training strategy ensures convergence and improves overall
performance. Extensive experiments across diverse 3D vision–language benchmarks demonstrate
the performance of Vid-LLM and confirm its effectiveness as a practical and scalable framework for
video-based 3D multimodal reasoning.

Our main contributions are summarized as follows:

• We propose Vid-LLM for versatile 3D scene understanding. The framework does not rely
on dense 3D inputs or prior poses, making it practical for real-world deployment.

• We design a Cross-Task adapter to align the 3D geometry priors with VL representations,
boosting the integration of 3D visual geometry priors into MLLM. A two-stage training
strategy is further adopted to improve the stability and performance.

• Extensive experimental evaluations are conducted on real datasets to evaluate the perfor-
mance of our method. The experimental results demonstrate that our method achieves su-
perior performance in terms of question answering, dense captioning and visual grounding.
We will publish our code to facilitate communication.

2 RELATED WORK

3D-MLLMs have achieved significant advances in 3D scene understanding, yet their reliance on
explicit 3D data still limits scalability and applicability. Meanwhile, progress in 3D reconstruction
shows that geometry can be directly reconstructed from videos. Integrating such geometric priors
into 3D-MLLMs represents a promising approach to enhance semantic grounding. We therefore
review related work in three directions: (i) 3D-MLLMs, (ii) 3D reconstruction, and (iii) geometry
priors in vision-language models.
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3D-aware Multimodal Large Language Models (3D-MLLMs). 3D-MLLMs aim to unify 3D
scene understanding and vision–language reasoning within a unified linguistic interface, represent-
ing an important extension of multimodal large language models (MLLMs). Existing approaches
predominantly rely on explicit geometric inputs: some leverage point clouds or reconstructed scenes,
often augmented with rendered views, region-level alignments, or condensed 3D feature grids to sup-
port large-scale embodied training (Hong et al., 2023a; Chen et al., 2024b;c; Fu et al., 2024; Huang
et al., 2023b); others map 3D features to the language space and model spatial relations to enable
interactive dialogue (Huang et al., 2023a; 2024). Despite their progress, these methods invariably
depend on complex inputs such as point clouds, reconstructed scenes, multi-view renderings, or
object-level annotations, which impose substantial burdens on data acquisition, preprocessing, and
computation, thereby limiting scalability and transferability.

3D Reconstruction. 3D reconstruction has evolved from multi-view geometry pipelines to neural
implicit representations and, more recently, feed-forward transformer-based architectures. Classical
methods yield accurate geometry but require dense views and heavy preprocessing (Schonberger &
Frahm, 2016; Furukawa et al., 2015). Neural radiance fields and point-based extensions improve
fidelity and efficiency but focus mainly on appearance modeling while lacking semantic reason-
ing (Mildenhall et al., 2021; Barron et al., 2022; Kerbl et al., 2023). Recent feed-forward approaches
enable direct prediction of depth, pose, and point clouds from video inputs (Wang et al., 2024; Leroy
et al., 2024; Wang et al., 2025a). Nevertheless, 3D reconstruction is still only weakly integrated into
vision–language research, and its role in supporting semantic reasoning remains underexplored.

Geometry Priors in Vision-Language Models. Incorporating geometry priors has become a key
approach for Vision-Language Models (VLMs) to enhance spatial understanding. Along a spec-
trum of reliance on explicit 3D inputs, existing methods can be organized into three categories:
first, explicit input injection, which introduces depth, point clouds, or scene graphs as additional
modalities to provide metric properties (Cai et al., 2025; Cheng et al., 2024b; Guo et al., 2023);
second, internalization at the data and training level, which leverages spatially annotated corpora
or geometric distillation to embed geometry implicitly into the alignment space, enabling spatial
reasoning without explicit 3D inputs at inference (Chen et al., 2024a; Peng et al., 2023); and third,
modular or prompt-based integration, which augments VLMs with lightweight modules or outputs
from 3D foundation models, typically without large-scale retraining (Ma et al., 2024; Kerr et al.,
2023). In contrast, our approach generates geometry through a video-driven reconstruction branch
and achieves alignment with the semantic branch, enabling a structured and reusable integration of
geometry priors within a video-based setting.

3 METHOD

We present Vid-LLM, a video-based 3D multimodal large language model (3D-MLLM). The main
components are presented in the following sections: the Cross-Task adapter is described in Sec-
tion 3.1, the reconstruction and reasoning branches are detailed in Sections 3.2 and 3.3, and the
training strategy is outlined in Section 3.4. The overall architecture is shown in Fig. 2.

3.1 CROSS-TASK ADAPTER

In Vid-LLM, we employ DINOv2 as the shared visual encoder to extract base tokens Tbase ∈ RN×C

from the input image sequence, where N denotes the number of tokens and C is the embedding di-
mension. To enhance feature effectiveness, we introduce a Cross-Task adapter (CTA) that aligns 3D
geometry priors with vision–language (VL) representations, facilitating the integration of geometric
cues into multimodal reasoning.

To adapt the shared visual representations for different branches, we employ two lightweight MLP
projection heads, ϕgeom(·) and ϕlang(·), which map the shared vision tokens to geometry-specific
and semantic feature spaces, respectively:

Tgeom = ϕgeom(Tbase), Tlang = ϕlang(Tbase) (1)

To effectively align 3D geometry priors with vision–language representations thus enhance the in-
tegration of spatial cues into multimodal reasoning, we introduce learnable Bridge Tokens, denoted

3
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Figure 2: Architecture of Vid-LLM. From video, a shared DINOv2 encoder produces tokens that
are bidirectionally fused by Cross-Task adapter with learnable Bridge Tokens, yielding geometric
and semantic streams. The reconstruction branch predicts camera poses, depth and recovers real-
scale via a Metric-Bins module, while the 3D-VL branch lifts features into 3D tokens for LLM
reasoning.

as Tbridge ∈ RK×C . Acting as shared memory units, the bridge tokens attend to geometric and
semantic features separately, and the updated representation is formulated as:

T ′
bridge = Attn(Tbridge, T

fused
geom , T fused

geom ) + Attn(Tbridge, T
fused
lang , T fused

lang ) (2)

where Attn(·) denotes a standard multi-head attention operation. This operation enables bridge
tokens to dynamically capture complementary information from both tasks and update their repre-
sentations during training. The joint propagation of geometric and semantic signals strengthens the
alignment of 3D geometry priors with vision–language features, leading to more robust cross-modal
representations.

Finally, the updated bridge tokens T ′
bridge are integrated into the feature streams, yielding enhanced

task-specific representations T ′
geom and T ′

lang . These enriched features capture complementary geo-
metric and semantic cues and are subsequently passed to the reconstruction and reasoning branches.
In essence, the Cross-Task adapter establishes intrinsic geometry–semantics interaction at the feature
level, allowing the two streams to reinforce and guide each other for more robust representations.

3.2 3D RECONSTRUCTION MODEL

In the reconstruction branch of Vid-LLM, we build on recent transformer-based architectures for
end-to-end 3D reconstruction (Wang et al., 2025a) to recover scene geometry from video inputs. To
additionally recover real-scale information, we design a Metric Depth Model that provides robust
global scale cues, enabling reconstructions with both fine structural details and metric consistency.

Geometry Encoding and Prediction Heads. Based on the cross-task enhanced geometric features
T ′

geom, together with camera tokens T cam and register tokens T reg, the Global-Frame Attention back-
bone produces an integrated geometric representation, which is then fed into two prediction heads:
a camera head estimating intrinsic-extrinsic parameters and a DPT head that predicts the relative
depth map D̂rel ∈ RH×W , where H and W denote the image height and width, respectively.

Metric Depth Model. To recover real-scale geometry, we equip the DINOv2 features with a DPT-
style decoder that produces multi-scale depth representations. Each pixel’s depth is modeled using
a bin-based formulation, where the probability pi(k) over the k− th bin and its refined center ci(k)
jointly determine the prediction as d̂(i) =

∑N
k=1 pi(k) ci(k). we use an ordinal-aware normalization

to capture relative depth ordering. To further stabilize scale, the bin centers ci(k) are adaptively
refined as ci(k) = ck +∆ci(k), where ∆ci(k)= rk(Fi) is predicted from the decoder features Fi.
The resulting metric depth map D̂metric = {d̂(i)}H×W

i=1 provides global scale cues that are aligned
with relative predictions for real-scale reconstruction.

4
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Figure 3: Overview of the two-stage training strategy. Stage-1 employs dual-teacher distillation to
align geometry and semantics, and Stage-2 jointly optimizes reconstruction and 3D vision–language
tasks.

Real-Scale Alignment. We estimate a scaling factor between the relative depth D̂rel predicted by
the DPT head and the metric depth D̂metric predicted by the Metric Depth Model via weighted least
squares. For each scene, 16 images are randomly sampled to compute per-image scaling factors, and
their median is taken median as the final scene-level factor. This factor is then applied to convert
both the relative depth and the predicted camera pose into real-world units. Rather than directly
using metric depth as the final output, we adopt this alignment strategy since the DPT head provides
more accurate texture details compared with the Metric Depth Model, which could also be observed
from experimental results.

3.3 3D VISION–LANGUAGE MODEL

In the reasoning branch of Vid-LLM, cross-task-enhanced semantic features T ′
lang are combined with

reconstructed geometry to generate dense 3D patch representations, which are then fed into the LLM
for 3D question answering, grounding, and captioning tasks.

3D Patch Construction. Each 2D feature T ′
lang(i, j) is back-projected into 3D using the estimated

depth D̂, camera pose (R̂, t̂) and intrinsics K produced by the 3D Reconstruction Model, yielding
its camera-frame coordinates Pv(i, j) as:

Pv(i, j) = R̂−1K−1[i, j, 1]⊤D̂(i, j)− R̂−1t̂ (3)

These coordinates are encoded by an MLP into positional embeddings P ′
v(i, j) that match the di-

mensionality of the semantic features. Therefore, the final 3D patch tokens are then obtained by
fusing geometry and semantic features:

T3D(i, j) = T ′
lang(i, j) + P ′

v(i, j) (4)

This operation feeds spatial information into the semantic tokens, further enhancing the spatial
awareness in the LLM.

3.4 TRAINING STRATEGY

We adopt a two-stage training strategy to utilize the shared encoder for both geometry and semantics.
Stage 1 performs dual-teacher distillation, transferring geometric priors from a reconstruction model
and semantic knowledge from a multimodal LLM, enabling the encoder to learn both capabilities
in a balanced way. Stage 2 jointly optimizes all downstream modules with 3D vision–language
objectives, while incorporating auxiliary reconstruction losses to provide the model with sufficient
reconstruction capability and ensure real-scale consistency. The overall pipeline is illustrated in
Fig. 3.

Stage-1 Dual-Teacher Distillation. In stage 1, we adopt a dual-teacher distillation strategy to
jointly train the DINO encoder and the Cross-Task adapter, enabling the modules to quickly learn
both geometric and semantic representations. The pretrained DINO encoder and CLIP encoder
serve as the geometry and semantic teachers in the distillation strategy, which are initialized from
VGGT (Wang et al., 2025a) and LLaVA-3D (Zhu et al., 2025), respectively. The distillation loss is

5
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defined as:
Ldistill = Lfeat

geo + Lfeat
lang + λLsc (5)

where Lfeat
geo , Lfeat

lang and Lsc are the geometry loss, semantic loss and structural consistency loss,
respectively. λ is a balancing hyperparameter. The geometry loss and semantic loss are defined as:

Lfeat
geo = 1

N

N∑
i=1

∥Norm(T ′
geom,i)−Norm(T geo

tea,i)∥
2
2, Lfeat

lang = 1− cos(T ′
lang, T

lang
tea ) (6)

where T ′
geom and T ′

lang are the task-specific geometric and semantic features, respectively, extracted
by the Cross-Task Adapter, serving as the student representations in the distillation strategy. T geom

tea

and T lang
tea are the features of the DINO and CLIP encoder and serve as the teacher representations.

N denotes the number of feature tokens sampled for alignment. To maintain structural consistency,
we also introduce the structural consistency loss Lsc, which is defined as:

Lsc =
1

M2
∥Sstu − Stea∥2F , where Sstu = ZstuZ

⊤
stu, Stea = ZteaZ

⊤
tea (7)

Zstu = [Norm(T ′
geom);Norm(T ′

lang)] ∈ RM×C concatenates the geometry and semantic tokens
from student representation. Ztea = [Norm(T geo

tea );Norm(T lang
tea )] is similarly defined for the teacher

representation. ∥ · ∥F is the Frobenius norm, and M is the total number of tokens.

Stage-2 Joint Optimization. In Stage 2, we further fine-tune all the modules to optimize overall
performance. The joint loss is defined as:

Ljoint = Lrecon−task + LV L−task + LMD (8)

where Lrecon−task is the multi-task loss for 3D reconstruction, consisting of the camera loss, depth
loss, and point map loss following Wang et al. (2025a). LV L−task supervises 3D vision–language
reasoning, including cross-entropy loss for instruction-following tasks, along with bounding box
regression and matching losses for grounding (Zhu et al. (2025)). LMD represents the metric depth
loss, combining a global scale penalty and a robust local refinement term, and is defined as:

LMD = b2 +
1

K

K∑
i=1

(ei − b)2

1 + α|ei − b|
, (9)

where ei = log(dpredi + ε) − log(dgti + ε) is the log-depth error where ε is a small constant for
numerical stability. b = 1

K

∑K
i=1 ei is the mean error across all K valid pixels in the image. The

parameter α > 0 controls the robustness by down-weighting large residuals.

4 EXPERIMENTS

This section provides a comprehensive evaluation of Vid-LLM. In Section 4.1, the model is bench-
marked on 3D vision–language reasoning tasks against state-of-the-art methods. In Section 4.2, the
comparison with naive concatenation pipelines highlighting the importance of feature-level integra-
tion over post-hoc combination. In Section 4.3, ablation studies analyze the contributions of core
modules. Further implementation details are provided in Appendix A.3.

4.1 3D VISION–LANGUAGE REASONING

Overview. To comprehensively assess the performance of Vid-LLM on 3D vision–language rea-
soning tasks, we conduct experiments using widely adopted datasets covering three task categories:
3D Question Answering on ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2022), 3D Dense
Captioning on Scan2Cap (Chen et al., 2021), and 3D Visual Grounding on ScanRefer (Chen et al.,
2020), Multi3DRefer (Zhang et al., 2023), and Nr3D/Sr3D (Achlioptas et al., 2020b). We follow
the standard evaluation protocols and metrics defined for each dataset. For grounding tasks, Vid-
LLM directly outputs 3D bounding boxes on ScanRefer and Multi3DRefer, which target scene-level
grounding with natural language descriptions. For Nr3D/Sr3D, we adopt the Chat-3D v2 proto-
col (Huang et al., 2023a). which employs the ViL3DRel (Chen et al., 2022) method to generate
grounding candidates, emphasizing instance-level referential resolution.

6
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Table 1: Evaluation of 3D Question Answer-
ing on ScanQA and SQA3D. Methods marked
with * are 3D MLLM evaluated in video mode.
”C” stands for ”CIDEr”, ”B-4” for ”BLEU-4”,
”M” for ”METEOR”, ”R” for ”ROUGE”, and
”EM@1” for top-1 exact match.

Method ScanQA SQA3D

C↑ B-4↑ M↑ R↑ EM@1↑ EM@1↑
3D-based models
Scan2Cap – – – – – 41.0
ScanQA 64.9 10.1 13.1 33.3 21.1 47.2
3D-VisTA 69.6 10.4 13.9 35.7 22.4 48.5
3D-LLM 69.4 12.0 14.5 35.7 20.5 –
LL3DA 76.8 13.5 15.9 37.3 – –
Grounded3D-LLM 75.9 13.2 – – – –
Chat-3D v2 77.1 7.3 16.1 40.1 21.1 –
Scene-LLM 80.0 12.0 16.6 40.0 27.2 54.2
ChatScene 87.7 14.3 18.0 41.6 21.6 54.6
LEO 101.4 13.2 20.0 49.2 24.5 50.0

Video-based models
VILA-40B 48.2 9.9 11.4 27.3 17.2 37.2
IXC-2.5-7B 53.9 8.7 13.2 31.5 19.4 41.5
LLaVA-OV-7B 78.2 13.3 17.2 40.5 22.9 47.6
LLaVA-Video-7B 88.7 – – – – 48.5
Uni3DR2* 70.3 12.2 14.9 36.3 17.3 –
ChatScene* 85.6 – – – – 52.9

Vid-LLM (Ours) 101.9 15.8 18.3 49.5 27.6 57.3

Table 2: Evaluation of 3D Dense Caption-
ing on Scan2Cap. The n-gram metrics for
Scan2Cap are governed by IoU@0.5.

Method Scan2Cap

C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
Scan2Cap 39.1 23.3 22.0 44.8
3D-VisTA 61.6 34.1 26.8 55.0
LL3DA 65.2 36.8 26.0 55.0
Grounded3D-LLM 70.2 35.0 – –
LEO 68.4 36.9 27.7 57.8
ChatScene 77.1 36.3 28.0 58.1

Vid-LLM (Ours) 81.5 40.6 28.7 61.8

Table 3: Evaluation of 3D Visual Grounding
on ScanRefer and Multi3DRefer.

Method ScanRefer Multi3DRefer

Acc@0.25↑ Acc@0.5↑ Acc@0.25↑ Acc@0.5↑
ScanRefer 37.3 24.3 – –
3D-VisTA 50.6 45.5 – –
3D-LLM 30.3 – – –
Chat-3D v2 35.9 30.4 – –
Grounded3D-LLM 48.6 44.0 44.7 40.8
ChatScene 55.5 50.2 57.1 52.4
Vid-LLM (Ours) 50.1 46.7 47.2 42.9

Baseline. For the 3D Question Answering and 3D Dense Captioning tasks, we compare Vid-
LLM against representative 3D vision–language reasoning models. The comparison methods in-
clude: ScanQA (Azuma et al., 2022), Scan2Cap (Chen et al., 2021), 3D-VisTA (Zhu et al., 2023),
3D-LLM (Hong et al., 2023b), LL3DA (Chen et al., 2024b), Grounded3D-LLM (Chen et al.,
2024c), Chat-3D v2 (Huang et al., 2023a), LEO (Huang et al., 2023b), Scene-LLM (Fu et al.,
2024), and ChatScene (Huang et al., 2024). All these methods rely on explicit 3D scene inputs.
We also compare recent video-based approaches, namely VILA-40B (Lin et al., 2024), IXC-2.5-
7B (Zhang et al., 2024b), LLaVA-OV-7B (Li et al., 2024), LLaVA-Video-7B (LLaVA Team, 2024),
and Uni3DR2 (Chu et al., 2024). For the 3D visual grounding benchmarks, we compare Vid-LLM
with task-specific grounding models including ScanRefer (Chen et al., 2020), 3D-VisTA (Zhu et al.,
2023), ReferIt3D (Achlioptas et al., 2020a), 3DVG-Trans (Zhao et al., 2021), MVT (Huang et al.,
2022), ViL3DRel (Chen et al., 2022), and SceneVerse (Jia et al., 2024). We also compare against
recent 3D-MLLMs capable of performing grounding tasks, including 3D-LLM (Hong et al., 2023a),
Chat-3D v2 (Huang et al., 2023a), Grounded3D-LLM (Chen et al., 2024c), and ChatScene (Huang
et al., 2024). These comparisons collectively provide a comprehensive evaluation of our proposed
method for 3D vision–language (VL) reasoning.

Result & Analysis. From Tab. 1, we can observe that Vid-LLM achieves the best performance in
almost all metrics on the 3D Question Answering benchmarks, which verifies the effectiveness of
our proposed method. Compared with 3D-based models and 2D-based models, our method achieves
an average improvement of 9% and 31% over the second-best results, respectively. This illustrates
that the integration of geometric cues into sematic reasoning can significantly improve perception
performance. Furthermore, we also carried out experiments on the 3D Dense Captioning and 3D
visual grounding task, which can be seen in Tab. 2 and Tab. 3. Benefiting from our designed cross-
task adapter that compactly integrates semantic and geometric information, our method demon-
strates superior multi-task capabilities. It is worth noting that in Tab. 3, our method ranks second
to ChatScene. This is because ChatScene employs point cloud inputs with instance segmentation,
which require much higher acquisition cost than the video inputs used in our model. For qualitative
analysis, we visualize the 3D grounding on the SCanRefer dataset in Fig. 4. The results intuitively
illustrates the predictive capability of 3D grounding in typical scenarios.

4.2 COMPARISON WITH NAIVE CONCATENATION

Overview. To examine whether video-based 3D vision–language (3D VL) tasks can be addressed
by directly combining a reconstruction model with a 3D multimodal LLM, we build a concatenation
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Image View

Grounding Boxes in Point Cloud

Figure 4: Qualitative results of 3D visual grounding on the ScanRefer dataset. The predicted
3D bounding boxes are visualized on point clouds reconstructed by our model.

Table 4: Evaluation of 3D Visual Ground-
ing on Nr3D and Sr3D. Results are reported
in grounding accuracy (%).

Method Nr3D Sr3D

Overall↑ Hard↑ View Dep↑ Overall↑ Hard↑ View Dep↑
ScanRefer 34.2 23.5 29.9 – – –
ReferIt3D 35.6 27.9 32.5 40.8 31.5 39.2
3DVG-Trans 40.8 34.8 34.8 51.4 44.9 44.6
MVT 55.1 49.1 54.3 64.5 58.8 58.4
ViL3DRel 62.6 55.6 59.8 72.5 68.1 58.0
Chat-3D v2 63.6 57.0 61.1 73.1 68.4 58.1
3D-VisTA 64.2 56.7 61.5 76.4 71.3 58.9
SceneVerse 64.9 57.8 56.9 77.5 71.6 62.8

Vid-LLM (Ours) 65.4 57.9 61.9 77.8 72.2 63.1

Table 5: Comparison with Naive Concatenation
on Reconstruction, 3D VL, and Efficiency. The
reported metrics are averaged over all evaluation
scores on ScanNet and ScanQA. Reconstruction
is evaluated without scale normalization.

Method Recon 3D VL Tasks Time (s / scene) ↓
ScanNet ↑ ScanQA ↑

VGGT+LLaVA3D – 24.6 2.7s
VGGT+real-scale+LLaVA-3D 0.587 40.3 2.7s
VGGT+real-scale+LLaVA-3D* 0.587 39.1 2.7s
VGGT*+real-scale+LLaVA-3D 0.591 42.1 2.7s
VGGT*+real-scale+LLaVA-3D* 0.591 41.6 2.7s
Vid-LLM (Ours) 0.582 45.7 1.6s

baseline by feeding the 3D reconstruction results from VGGT (Wang et al., 2025a) into the reasoning
model LLaVA-3D (Zhu et al., 2025), since our reconstruction backbone is derived from VGGT and
our reasoning branch is based on LLaVA-3D. For a fair comparison, we consider several baseline
formulations. First, because the raw outputs of VGGT do not preserve metric scale, we additionally
evaluate settings where its predictions are aligned with metric scale before being passed to LLaVA-
3D. Second, since our Vid-LLM is fine-tuned on ScanNet and its 3D-LLM module is further fine-
tuned on predicted 3D scenes, we correspondingly fine-tune VGGT on ScanNet (denoted VGGT*)
and take the point clouds produced by both VGGT and VGGT as geometric supervision to fine-tune
LLaVA-3D (denoted LLaVA-3D*).

Result & Analysis. As shown in Tab. 5, compared with other settings that incorporate metric-scale
alignment, the direct concatenation of VGGT with LLaVA-3D is largely ineffective for 3D VL tasks,
highlighting that the absence of metric-scale cues renders geometric representations inadequate for
reasoning. With metric-scale alignment, the 3D VL score increases substantially from 24.6 to 40.3,
demonstrating the necessity of metric-scale alignment. A further comparison between VGGT and
VGGT* shows that fine-tuning VGGT on ScanNet improves the reconstruction metric from 0.587
to 0.591. This improvement in geometric accuracy also leads to a higher 3D VL score, increasing
from 40.3 to 42.1. However, when LLaVA-3D is further fine-tuned using predicted point clouds as
geometric supervision, the 3D VL score decreases (42.1 → 41.6), suggesting that direct supervision
from predicted geometry can introduce geometric bias and weaken semantic consistency. Finally,
a comparison of VGGT*+LLaVA-3D* with our Vid-LLM highlights the main advantage of our
approach: Vid-LLM achieves a notable improvement in 3D VL reasoning (45.7 vs. 42.1) while
also reducing inference time (1.6s vs. 2.7s). It is worth noticing that the reconstruction metric of
our method is slightly lower than the best baseline, this is because our model prioritizes geometry-
semantics interaction over raw geometric accuracy. Our advantage derives from the compact design
and the Cross-Task Adapter, which aligns 3D geometry priors with vision–language representa-
tions and provides geometric constraints that improve the robustness of reasoning under geometric
uncertainty. By facilitating effective geometry–semantics interaction, CTA ensures that Vid-LLM
maintains strong reasoning performance even without relying on precise external 3D inputs. Further
analysis of our model’s reconstruction performance can be found in Appendix A.2.
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Table 6: Ablation on Cross-Task adapter
(CTA) and Metric Depth (MD) Modules.
Results are reported as the mean of evaluation
metrics across the corresponding datasets.

3D VL Tasks 3D Recon

ScanOA ↑ Scan2Cap ↑ ScanRefer ↑ scannet ↑

w/o-CTA 33.7 36.6 34.1 0.402
CTA –w/o Bridge 40.8 45.6 42.2 0.473
CTA – 4tokens 43.8 50.9 47.8 0.501
CTA – 8tokens 44.1 52.7 48.1 0.529
CTA – 16tokens (Ours) 45.7 53.2 48.4 0.582
CTA – 32tokens 45.2 52.8 47.6 0.564

w/o MD 29.6 35.7 33.9 -
MD – w/o Alignment 42.1 49.6 43.2 0.531
MD (Ours) 45.7 53.2 48.4 0.582

1 2 4 8
0.6

1.0

1.4

1.8
Test Loss

(104)
#Data

Single-stage
Two-Stage(One-Teacher)
Two-Stage(w/o RelaLoss)
Two-Stage(Ours)

Figure 5: Test loss vs. data size across training
strategies.

4.3 ABLATION STUDIES

Cross-Task adapter. As shown in Tab. 6, we conduct ablation studies on the Cross-Task adapter
to examine its role in video-based 3D MLLM. Since 3D VL reasoning relies on 3D scene informa-
tion provided by geometric reconstruction, both tasks must be jointly optimized to achieve strong
performance. Without CTA, neither reconstruction nor reasoning performs well, revealing that a
single visual feature representation is insufficient to serve both tasks simultaneously. Introducing
CTA brings significant improvements to both reconstruction and reasoning by facilitating cross-task
feature interaction. However, without bridge tokens, the adapter cannot effectively align geometry
priors with semantic features, resulting in notably weaker performance. Adding bridge tokens leads
to significant gains, and using 16 tokens achieves the best trade-off between accuracy and model
complexity by ensuring sufficient interaction without redundancy.

Metric Depth Modules. Tab. 6 also reports ablations on the use of metric depth and our alignment
strategy. Without metric depth supervision (w/o MD), scale ambiguity destroys geometric consis-
tency and leads to near failure of 3D VL reasoning. Incorporating metric depth without alignment
(MD – w/o Alignment) preserves absolute scale but produces less accurate reconstruction, which
in turn limits the performance of 3D VL tasks. By contrast, combining metric depth with our scale
alignment strategy effectively exploits both global scale cues and relative structural details, yielding
the most accurate reconstruction and consistently stronger results on 3D VL tasks.

Two-Stage Training. Fig. 5 compares different training strategies to assess their impact on con-
vergence and performance. The single-stage setting converges slowly and stabilizes at a relatively
high loss value, reflecting gradient interference when all modules are trained jointly. The two-stage
strategy with a single teacher offers limited supervisory signals, limiting optimization quality. Re-
moving the relational loss also degrades convergence and accuracy, highlighting the importance of
cross-task consistency. In contrast, our two-stage strategy converges fastest and achieves the lowest
final loss.

5 CONCLUSION

In this work, we present Vid-LLM, a video-based 3D Multimodal Large Language Model (3D-
MLLM). Our compact architecture extracts geometric cues from video and feeds them into the LLM
through a 3D patch construction strategy to accomplish spatial reasoning. A central component of
our framework is the Cross-Task adapter that aligns 3D geometry priors with vision–language rep-
resentations. This design enhances their integration into the MLLM and improves the robustness of
reasoning under uncertain geometry. Together with a two-stage training strategy, our model achieves
greater training stability and faster convergence. Extensive experiments on 3D vision–language
benchmarks demonstrate that Vid-LLM achieves state-of-the-art results on several benchmarks and
remains competitive on the others, while ablation studies validate the effectiveness of each compo-
nent.
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring reproducibility. Part of our implementation is provided in the Sup-
plementary Materials. Upon acceptance, we will release the complete code, datasets, and pretrained
checkpoints to enable full verification of our results.
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A APPENDIX

In the Appendix, we provide the following experimental results:

• qualitative visualizations of Vid-LLM outputs in Appendix A.1;
• supplementary experiments on reconstruction performance in Appendix A.2;
• comprehensive implementation details, covering optimization settings, training procedures,

and hyperparameters in Appendix A.3.
• The Use of Large Language Models (LLMs) Statement in Appendix A.4.

A.1 QUALITATIVE RESULTS

Q: How many chairs are 
there in the room ?

A: Three.

Q: Where is the monitor?

A: In the corner of the 
desk against the wall.

Q: Where is the bed in 
the room ?

A: On the right side of 
the room

Q: What color are the 
curtains.

A: Brown.

Q: Describe the room 
in detail. 

Q: Describe the 
Washbasin in detail. 

A: This is a brown 
washbasin, made 
entirely of light brown 
wood, with a circular 
washbasin in the 
center of the wash…

A: In the center of the 
meeting room, there is 
a light-colored 
conference table, 
surrounded by black 
conference chairs…

Q: There are two beds 
in the room. Give me 
the coordinates of 
these two beds.

A:[1.13, 1.64, 0.35, 0.92, 
0.03, 1.16], [1.13, 1.64, 
0.35, 0.92, 0.03, 1.16]

A:[1.13, 1.64, 0.35, 
0.92, 0.03, 1.16]

Q: Give me the 
coordinates of the 
light brown wooden 
coffee table.
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Figure 6: Qualitative Results.

Fig. 6 presents reconstruction results on the ScanNet dataset, together with three representative 3D
vision–language (3D VL) tasks. Specifically, it illustrates (1) 3D Question Answering, where the
model answers queries on object counts, locations, and attributes from reconstructed scenes; (2) 3D
Dense Captioning, which provides detailed semantic descriptions of rooms and key objects; and (3)
3D Visual Grounding, where the model localizes target objects in 3D space according to textual
instructions. These qualitative results demonstrate the model’s capability in scene reconstruction
and 3D VL reasoning from video inputs.

A.2 SUPPLEMENTARY EXPERIMENTS ON RECONSTRUCTION

Overview. Since the reconstruction branch not only provides 3D cues for the 3D-MLLM but also
explicitly produces point clouds that can serve downstream applications, it is important to assess
its individual performance. To evaluate the 3D modeling capability of Vid-LLM, we assess three
tasks: camera pose estimation, depth prediction, and point-cloud reconstruction. Depth prediction is
crucial to real-scale reconstruction, and together with poses it determines the quality of the recovered
point clouds. Following standard protocols, we evaluate poses on Co3Dv2 (Reizenstein et al., 2021)
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Table 7: Camera pose evaluation on Co3Dv2 and RealEstate10K.

Method Co3Dv2 RealEstate10K

RRA@15↑ RTA@15↑ mAA(30)↑ mAA(30)↑
COLMAP+SG (Sarlin et al., 2020) 36.1 27.3 25.3 45.2
PixSfM (Lindenberger et al., 2021) 33.7 32.9 30.1 49.4
PoseDiff (Lee & Lee, 2024) 80.5 79.8 66.5 48.0
DUSt3R (Wang et al., 2024) 94.3 88.4 77.2 61.2
MASt3R (Leroy et al., 2024) 94.6 91.9 81.8 76.4
FLARE (Zhang et al., 2025) 95.4 83.6 78.4 75.3
Fast3R (Yang et al., 2025) 96.2 81.6 75.0 72.7
CUT3R (Wang et al., 2025b) 95.7 84.5 73.3 77.1

Vid-LLM (Ours) 96.8 93.4 88.5 83.1

Table 8: Depth estimation results on the NYU Depth v2 dataset.

Method δ1 ↑ AbsRel ↓ RMSE ↓ log10 ↓
DPT (Ranftl et al., 2021) 0.904 0.110 0.357 0.045
P3Depth (Patil et al., 2022) 0.898 0.104 0.356 0.043
SwinV2-L (Liu et al., 2022) 0.949 0.083 0.287 0.035
AiT (Ning et al., 2023) 0.954 0.076 0.275 0.033
VPD (Zhao et al., 2023) 0.964 0.069 0.254 0.030
ZoeDepth (Bhat et al., 2023) 0.953 0.075 0.270 0.032
DepthAnything (Yang et al., 2024) 0.984 0.056 0.206 0.024

Vid-LLM(Ours) 0.987 0.025 0.109 0.010

and RealEstate10K (Zhou et al., 2018), depth on the indoor NYU Depth v2 dataset (Silberman et al.,
2012), and point-cloud reconstruction on ScanNet (Dai et al., 2017), ensuring consistency with the
3D vision–language benchmarks introduced earlier.

Baseline. For 3D reconstruction, we evaluate three subtasks: (i) camera pose estimation, where
we compare against geometry-based optimization methods including COLMAP+SG and PixSfM,
as well as state-of-the-art learning-based approaches such as PoseDiff, DUSt3R, MASt3R, FLARE,
Fast3R, and CUT3R; (ii) monocular depth estimation, where we benchmark against DPT, P3Depth,
SwinV2-L, AiT, VPD, ZoeDepth, and DepthAnything; and (iii) point-cloud reconstruction, where
we consider pose-dependent methods such as MVDNet, GPMVS, Atlas, NeuralRecon, DG-Recon,
and PanoRecon, together with pose-free approaches including RCVD, GCVD, COLMAP, Frozen-
Recon, and DUSt3R, ranging from traditional multi-view geometry to modern learning-based tech-
niques. Notably, both depth and point-cloud evaluations are conducted in real scale.

Result & Analysis. Across the three benchmarks, Vid-LLM demonstrates strong reconstruction per-
formance. On camera pose estimation (Tab. 7), it consistently surpasses both traditional optimiza-
tion pipelines and advanced learning-based models on Co3Dv2 and RealEstate10K, confirming its
robustness in preserving reliable multi-view consistency. On monocular depth estimation (Tab. 8),
Vid-LLM achieves state-of-the-art results on NYU v2 at real scale, reaching an AbsRel of 0.025,
RMSE of 0.109, log10 of 0.010, and a δ1 score of 0.987, representing substantial improvements over
prior baselines. On point-cloud reconstruction (Tab. 9), Vid-LLM ranks as the best among pose-free
methods on ScanNet, delivering an average improvement of 32% over the second-best approach,
and even attains the highest Precision among all methods including pose-dependent pipelines, while
maintaining a comparable global F-score. These results collectively indicate that Vid-LLM, despite
operating without external poses, produces reliable real-scale depth and point clouds that are both
clean and geometrically consistent.

A.3 IMPLEMENTATION DETAILS

In practice, we adopt DINOv2-L as the visual backbone, consisting of 24 Transformer layers with a
hidden dimension of 1024. The projection MLPs use two fully connected layers with an expansion
factor of 4 and GELU activation. For implementation, the Global–Frame Attention, camera head,
and dense head in the reconstruction branch are adapted from VGGT (Wang et al., 2025a), while the
construction of 3D patch representations in the reasoning branch is inspired by the approach used
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Table 9: Reconstruction results on the ScanNet dataset.

Method GT cams Comp ↓ Acc ↓ Recall ↑ Prec ↑ F-score ↑
MVDNet (Ou et al., 2022)

√
0.040 0.240 0.831 0.208 0.329

GPMVS (Liu et al., 2023)
√

0.031 0.879 0.871 0.188 0.304
Atlas (Murez et al., 2020)

√
0.062 0.128 0.732 0.382 0.499

NeuralRecon (Sun et al., 2021)
√

0.106 0.073 0.428 0.592 0.494
DG-Recon (Ju et al., 2023)

√
0.085 0.039 0.476 0.675 0.521

PanoRecon (Wu et al., 2024)
√

0.089 0.064 0.530 0.656 0.584
RCVD (Kopf et al., 2021) × 0.161 0.425 0.164 0.109 0.125
GCVD (Lee et al., 2022) × 0.175 0.278 0.178 0.146 0.147
Colmap (Schonberger & Frahm, 2016) × 0.142 0.367 0.119 0.267 0.178
FrozenRecon (Xu et al., 2023) × 0.092 0.085 0.436 0.336 0.410
DUSt3R (Wang et al., 2024) × 0.243 0.179 0.284 0.657 0.387

Vid-LLM(Ours) × 0.071 0.042 0.634 0.885 0.582

in LLaVA-3D (Zhu et al., 2025). All attention blocks are equipped with FlashAttention to reduce
memory usage, and QK-Norm is applied prior to LayerNorm for stability. For data processing, we
uniformly sample 32 frames per scene, resize the shorter side to 518, crop the resolution so that both
height and width are multiples of 14, and apply standard augmentations including random cropping,
color jittering, and horizontal flipping, ensuring augmentation independence across frames. Opti-
mization is performed using AdamW with β1 = 0.9, β2 = 0.999, and weight decay of 0.05, with
gradient clipping at 1.0. We further enable mixed-precision training and activation checkpointing to
reduce memory consumption.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

Parts of the language in this manuscript were polished with the assistance of Large Language Models
(LLMs). The authors have carefully reviewed and verified all LLM-assisted text to ensure accuracy
and appropriateness. The intellectual contributions, ideas, and conclusions presented in this work
are entirely those of the authors.
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