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3D Dense Captioning

3D Visual Grounding

3D Question Answering

Describe the room in detail. 

The room is a small office with 

desks arranged along the walls, a 

sofa in the center, and several 

chairs. It has a compact layout 

where most of the workspace is 

around the edges…

Describe the writing desk on the 

right side of the room in detail. 

The desk is long and rectangular, 

placed against the wall with 

monitors, books, and …

Give the coordinates of the chair 

right of the sofa.

[1.13, 1.64, 0.35, 0.92, 0.03, 1.16]

What furniture is placed in the 

center of the room?

An orange sofa.

How many chairs are in the room?

There are six chairs in the room.

Figure 1: We propose Vid-LLM to achieve diverse 3D vision-language reasoning tasks using only
video inputs.

ABSTRACT

Recent developments in Multimodal Large Language Models (MLLMs) have sig-
nificantly improved Vision–Language (VL) reasoning in 2D domains. However,
extending these capabilities to 3D scene understanding remains a major challenge.
Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on
3D data inputs, which limits scalability and generalization. To address this lim-
itation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes
video inputs without requiring external 3D data, making it practical for real-world
deployment. In our method, the geometric prior are directly used to improve the
performance of the sceen perception. To integrate the geometric cues into the
MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D
geometric priors with the vision-language representations. To ensure geometric
consistency and integrity, we introduce a Metric Depth Model that recovers real-
scale geometry from the reconstruction outputs. Finally, the model is fine-tuned
with a two-stage distillation optimization strategy, realizing fast convergence and
stabilizes training. Extensive experiments across diverse benchmarks verified the
effectiveness of our method on 3D Question Answering, 3D Dense Captioning
and 3D Visual Grounding tasks, demonstrating the superior multi-task capabili-
ties. Project page: https://chenhaijier.github.io/Vid-LLM/.
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1 INTRODUCTION

Recent advances in Large Language Models (LLMs) (Vaswani et al., 2017; Radford et al., 2019;
Naveed et al., 2025) and Multimodal Large Language Models (MLLMs) (Zhang et al., 2024a;
Yin et al., 2024; Wu et al., 2023) have reinforced the paradigm of language as a universal inter-
face, substantially improving cross-modal perception and reasoning. Extending this progress to 3D,
recent research has focused on 3D-aware Multimodal Large Language Models (3D-MLLMs) (Ren
et al., 2025), which unify 3D scene understanding and vision–language reasoning under a linguistic
interface. This line of work underscores the importance of grounding language in persistent 3D
spatial representations (Cheng et al., 2024a; Roh et al., 2022), offering a unified pathway toward
systematic scene-level reasoning.

Recent studies have made substantial progress in 3D vision–language (3D VL) reasoning (Chen
et al., 2024c; Huang et al., 2023b), yet most approaches rely on complex 3D inputs, incurring high
costs in data collection, preprocessing, and computation. Some models rely on point clouds or re-
constructed scenes augmented with rendered views or semantic–geometric features (Hong et al.,
2023a; Fu et al., 2024), while others adopt simpler inputs but still depend on explicit 3D scene rep-
resentations such as reconstructed objects aligned with semantic representations (Chu et al., 2024;
Huang et al., 2023a; 2024). Despite their effectiveness, these pipelines depend on depth, poses,
or external modules, leading to substantial data and engineering overhead as well as high memory
and latency costs. This rigid input requirements and system complexity fundamentally limit the
scalability and transferability of current 3D-MLLMs.

To overcome these limitations, a more general solution is to enable the model to directly reconstruct
scene geometry from video (Leroy et al., 2024; Wang et al., 2024), thereby eliminating the reliance
on external depth, pose, or registration modules. More importantly, reconstruction and reasoning are
intrinsically interdependent: geometric structures underpin semantic understanding, while semantic
reasoning, in turn, provides contextual priors that guide and refine geometric modeling (Cheng
et al., 2024a; Ha & Song, 2022).

In this work, we introduce Vid-LLM, a compact model that jointly performs reconstruction and 3D
vision–language reasoning from monocular video inputs, as illustrated in Fig. 1. The core compo-
nent of Vid-LLM is a Cross-Task Adapter (CTA) that tightly couples reconstruction with reasoning,
enabling intrinsic geometry–semantics interaction with mutual reinforcement and constraint. CTA
disentangles geometry-aware and language-aware features; the geometric stream is then processed
by a Global-Frame Attention backbone and specialized heads to estimate camera poses and relative
depth, followed by a Metric Depth Model for real-scale calibration. The recovered 3D informa-
tion is then fused with semantic features to construct 3D patches, which are fed into the LLM for
spatial reasoning. Finally, a two-stage training strategy ensures convergence and improves overall
performance. Extensive experiments across diverse 3D vision–language benchmarks demonstrate
the performance of Vid-LLM and confirm its effectiveness as a practical and scalable framework for
video-based 3D multimodal reasoning.

Our main contributions are summarized as follows:

• We propose Vid-LLM for versatile 3D scene understanding. The framework does not rely
on dense 3D inputs or prior poses, making it practical for real-world deployment.

• We design a Cross-Task Adapter to align the 3D geometry priors with VL representations,
boosting the integration of 3D visual geometry priors into MLLM. A two-stage training
strategy is further adopted to improve the stability and performance.

• Extensive experimental evaluations are conducted on real datasets to evaluate the perfor-
mance of our method. The experimental results demonstrate that our method achieves su-
perior performance in terms of question answering, dense captioning and visual grounding.
We will publish our code to facilitate communication.

2 RELATED WORK

3D-MLLMs have achieved significant advances in 3D scene understanding, yet their reliance on
explicit 3D data still limits scalability and applicability. Meanwhile, progress in 3D reconstruction
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shows that geometry can be directly reconstructed from videos. Integrating such geometric priors
into 3D-MLLMs represents a promising approach to enhance semantic grounding. We therefore
review related work in three directions: (i) 3D-MLLMs, (ii) 3D reconstruction, and (iii) geometry
priors in vision-language models.

3D-aware Multimodal Large Language Models (3D-MLLMs). 3D-MLLMs aim to unify 3D
scene understanding and vision–language reasoning within a unified linguistic interface, represent-
ing an important extension of multimodal large language models (MLLMs). Existing approaches
predominantly rely on explicit geometric inputs: some leverage point clouds or reconstructed scenes,
often augmented with rendered views, region-level alignments, or condensed 3D feature grids to
support large-scale embodied training (Hong et al., 2023a; Chen et al., 2024b;c; Fu et al., 2024;
Huang et al., 2023b); others map 3D features to the language space and model spatial relations to
enable interactive dialogue (Huang et al., 2023a; 2024; Zheng et al., 2025b; Huang et al., 2025).
Despite their progress, these methods invariably depend on complex inputs such as point clouds,
reconstructed scenes, multi-view renderings, or object-level annotations, which impose substantial
burdens on data acquisition, preprocessing, and computation, thereby limiting scalability and trans-
ferability. In addition, the recent approach VGLLM (Zheng et al., 2025a) explores a video-based
3D-MLLM setting by adopting the geometry encoder of VGGT (Wang et al., 2025a) to extract 3D
geometry features from video.

3D Reconstruction. 3D reconstruction has evolved from multi-view geometry pipelines to neural
implicit representations and, more recently, feed-forward transformer-based architectures. Classical
methods yield accurate geometry but require dense views and heavy preprocessing (Schonberger &
Frahm, 2016; Furukawa et al., 2015). Neural radiance fields and point-based extensions improve
fidelity and efficiency but focus mainly on appearance modeling while lacking semantic reason-
ing (Mildenhall et al., 2021; Barron et al., 2022; Kerbl et al., 2023). Recent feed-forward approaches
enable direct prediction of depth, pose, and point clouds from video inputs (Wang et al., 2024; Leroy
et al., 2024; Wang et al., 2025a). Nevertheless, 3D reconstruction is still only weakly integrated into
vision–language research, and its role in supporting semantic reasoning remains underexplored.

Geometry Priors in Vision-Language Models. Incorporating geometry priors has become a key
approach for Vision-Language Models (VLMs) to enhance spatial understanding. Along a spec-
trum of reliance on explicit 3D inputs, existing methods can be organized into three categories:
first, explicit input injection, which introduces depth, point clouds, or scene graphs as additional
modalities to provide metric properties (Cai et al., 2025; Cheng et al., 2024b; Guo et al., 2023);
second, internalization at the data and training level, which leverages spatially annotated corpora
or geometric distillation to embed geometry implicitly into the alignment space, enabling spatial
reasoning without explicit 3D inputs at inference (Chen et al., 2024a; Peng et al., 2023); and third,
modular or prompt-based integration, which augments VLMs with lightweight modules or outputs
from 3D foundation models, typically without large-scale retraining (Ma et al., 2024; Kerr et al.,
2023). In contrast, our approach generates geometry through a video-driven reconstruction branch
and achieves alignment with the semantic branch, enabling a structured and reusable integration of
geometry priors within a video-based setting.

3 METHOD

We present Vid-LLM, a video-based 3D multimodal large language model (3D-MLLM). The main
components are presented in the following sections: the Cross-Task Adapter is described in Sec-
tion 3.1, the reconstruction and reasoning branches are detailed in Sections 3.2 and 3.3, and the
training strategy is outlined in Section 3.4. The overall architecture is shown in Fig. 2.

3.1 CROSS-TASK ADAPTER

In Vid-LLM, we employ DINOv2 as the shared visual encoder to extract base tokens Tbase ∈ RN×C

from the input image sequence, where N denotes the number of tokens and C is the embedding di-
mension. To enhance feature effectiveness, we introduce a Cross-Task Adapter (CTA) that aligns 3D
geometry priors with vision–language (VL) representations, facilitating the integration of geometric
cues into multimodal reasoning.
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Figure 2: Architecture of Vid-LLM. From video, a shared DINOv2 encoder produces tokens that
are bidirectionally fused by Cross-Task Adapter with learnable Bridge Tokens, yielding geometric
and semantic streams. The reconstruction branch predicts camera poses, depth and recovers real-
scale via a Metric-Bins module, while the 3D-VL branch lifts features into 3D tokens for LLM
reasoning.

To adapt the shared visual representations for different branches, we employ two lightweight MLP
projection heads, ϕgeom(·) and ϕlang(·), which map the shared vision tokens to geometry-specific
and semantic feature spaces, respectively:

Tgeom = ϕgeom(Tbase), Tlang = ϕlang(Tbase) (1)

To effectively align 3D geometry priors with vision–language representations thus enhance the in-
tegration of spatial cues into multimodal reasoning, we introduce learnable Bridge Tokens, denoted
as Tbridge ∈ RK×C . Acting as shared memory units, the bridge tokens attend to geometric and
semantic features separately, and the updated representation is formulated as:

T ′
bridge = Attn(Tbridge, T

fused
geom , T fused

geom ) + Attn(Tbridge, T
fused
lang , T fused

lang ) (2)

where Attn(·) denotes a standard multi-head attention operation. This operation enables bridge
tokens to dynamically capture complementary information from both tasks and update their repre-
sentations during training. The joint propagation of geometric and semantic signals strengthens the
alignment of 3D geometry priors with vision–language features, leading to more robust cross-modal
representations.

Finally, the updated bridge tokens T ′
bridge are integrated into the feature streams, yielding enhanced

task-specific representations T ′
geom and T ′

lang . These enriched features capture complementary geo-
metric and semantic cues and are subsequently passed to the reconstruction and reasoning branches.
In essence, the Cross-Task Adapter establishes intrinsic geometry–semantics interaction at the fea-
ture level, allowing the two streams to reinforce and guide each other for more robust representa-
tions.

3.2 3D RECONSTRUCTION MODEL

In the reconstruction branch of Vid-LLM, we build on recent transformer-based architectures for
end-to-end 3D reconstruction (Wang et al., 2025a) to recover scene geometry from video inputs. To
additionally recover real-scale information, we design a Metric Depth Model that provides robust
global scale cues, enabling reconstructions with both fine structural details and metric consistency.

Geometry Encoding and Prediction Heads. Based on the cross-task enhanced geometric features
T ′

geom, together with camera tokens T cam and register tokens T reg, the Global-Frame Attention back-
bone produces an integrated geometric representation, which is then fed into two prediction heads:
a camera head estimating intrinsic-extrinsic parameters and a DPT head that predicts the relative
depth map D̂rel ∈ RH×W , where H and W denote the image height and width, respectively.
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Figure 3: Overview of the two-stage training strategy. Stage-1 employs dual-teacher distillation to
align geometry and semantics, and Stage-2 jointly optimizes reconstruction and 3D vision–language
tasks.

Metric Depth Model. To recover real-scale geometry, we equip the DINOv2 features with a DPT-
style decoder that produces multi-scale depth representations. Each pixel’s depth is modeled using
a bin-based formulation, where the probability pi(k) over the k− th bin and its refined center ci(k)
jointly determine the prediction as d̂(i) =

∑N
k=1 pi(k) ci(k). we use an ordinal-aware normalization

to capture relative depth ordering. To further stabilize scale, the bin centers ci(k) are adaptively
refined as ci(k) = ck +∆ci(k), where ∆ci(k)= rk(Fi) is predicted from the decoder features Fi.
The resulting metric depth map D̂metric = {d̂(i)}H×W

i=1 provides global scale cues that are aligned
with relative predictions for real-scale reconstruction.

Real-Scale Alignment. We estimate a scaling factor between the relative depth D̂rel predicted by
the DPT head and the metric depth D̂metric predicted by the Metric Depth Model via weighted least
squares. For each scene, 16 images are randomly sampled to compute per-image scaling factors, and
their median is taken median as the final scene-level factor. This factor is then applied to convert
both the relative depth and the predicted camera pose into real-world units. Rather than directly
using metric depth as the final output, we adopt this alignment strategy since the DPT head provides
more accurate texture details compared with the Metric Depth Model, which could also be observed
from experimental results.

3.3 3D VISION–LANGUAGE MODEL

In the reasoning branch of Vid-LLM, cross-task-enhanced semantic features T ′
lang are combined with

reconstructed geometry to generate dense 3D patch representations, which are then fed into the LLM
for 3D question answering, grounding, and captioning tasks.

3D Patch Construction. Each 2D feature T ′
lang(i, j) is back-projected into 3D using the estimated

depth D̂, camera pose (R̂, t̂) and intrinsics K produced by the 3D Reconstruction Model, yielding
its camera-frame coordinates Pv(i, j) as:

Pv(i, j) = R̂−1K−1[i, j, 1]⊤D̂(i, j)− R̂−1t̂ (3)

These coordinates are encoded by an MLP into positional embeddings P ′
v(i, j) that match the di-

mensionality of the semantic features. Therefore, the final 3D patch tokens are then obtained by
fusing geometry and semantic features:

T3D(i, j) = T ′
lang(i, j) + P ′

v(i, j) (4)

This operation feeds spatial information into the semantic tokens, further enhancing the spatial
awareness in the LLM.

3.4 TRAINING STRATEGY

We adopt a two-stage training strategy to utilize the shared encoder for both geometry and semantics.
Stage 1 performs dual-teacher distillation, transferring geometric priors from a reconstruction model
and semantic knowledge from a multimodal LLM, enabling the encoder to learn both capabilities
in a balanced way. Stage 2 jointly optimizes all downstream modules with 3D vision–language
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objectives, while incorporating auxiliary reconstruction losses to provide the model with sufficient
reconstruction capability and ensure real-scale consistency. The overall pipeline is illustrated in
Fig. 3.

Stage-1 Dual-Teacher Distillation. In stage 1, we adopt a dual-teacher distillation strategy to
jointly train the DINO encoder and the Cross-Task Adapter, enabling the modules to quickly learn
both geometric and semantic representations. The pretrained DINO encoder and CLIP encoder
serve as the geometry and semantic teachers in the distillation strategy, which are initialized from
VGGT (Wang et al., 2025a) and LLaVA-3D (Zhu et al., 2025), respectively. The distillation loss is
defined as:

Ldistill = Lfeat
geo + Lfeat

lang + λLsc (5)

where Lfeat
geo , Lfeat

lang and Lsc are the geometry loss, semantic loss and structural consistency loss,
respectively. λ is a balancing hyperparameter. For geometry learning, an L2 loss is applied to
patch-level features, following DINO’s patch regression strategy. For semantic learning, a cosine
similarity loss is applied to pooled features to align with CLIP’s global semantic embedding space.
The specific forms are defined as follows:

Lfeat
geo = 1

N

N∑
i=1

∥Norm(T ′
geom,i)−Norm(T geo

tea,i)∥
2
2, Lfeat

lang = 1− cos(Pool(T ′
lang),Pool(T

lang
tea ))

(6)
where Norm(·) denotes L2 normalization, and Pool(·) indicates mean pooling. T ′

geom and T ′
lang are

the task-specific geometric and semantic features extracted by the Cross-Task Adapter, and serve as
the student representations in the distillation strategy. T geom

tea and T lang
tea are features from the DINO

and CLIP encoders and serve as teacher representations. N represents the number of tokens in
T ′
geom. Before computing Lfeat

geo and Lfeat
lang, we apply lightweight linear projection layers to align

the features to the same embedding dimension. To maintain structural consistency, we also introduce
the structural consistency loss Lsc, which is defined as:

Lsc =
1

M2
∥Sstu − Stea∥2F , where Sstu = ZstuZ

⊤
stu, Stea = ZteaZ

⊤
tea (7)

Zstu = [Norm(T ′
geom);Norm(T ′

lang)] ∈ RM×C is obtained by concatenating the geometry and se-
mantic tokens from the student representation. Ztea = [Norm(T geo

tea );Norm(T lang
tea )] is defined in the

same way as Zstu, but using the teacher representation. ∥ · ∥F is the Frobenius norm, M is the total
number of tokens, and C is the embedding dimension of each token.

Stage-2 Joint Optimization. In Stage 2, we further fine-tune all the modules to optimize overall
performance. The joint loss is defined as:

Ljoint = Lrecon−task + LV L−task + LMD (8)

where Lrecon−task is the multi-task loss for 3D reconstruction, consisting of the camera loss, depth
loss, and point map loss following Wang et al. (2025a). LV L−task supervises 3D vision–language
reasoning, including cross-entropy loss for instruction-following tasks, along with bounding box
regression and matching losses for grounding (Zhu et al. (2025)). LMD represents the metric depth
loss, combining a global scale penalty and a robust local refinement term, and is defined as:

LMD = b2 +
1

K

K∑
i=1

(ei − b)2

1 + α|ei − b|
, (9)

The log-depth error is defined as ei = log(dpredi + ε) − log(dgti + ε), where ε is a small constant
for numerical stability. b = 1

K

∑K
i=1 ei is the mean error across all K valid pixels in the image. The

parameter α > 0 controls the robustness by down-weighting large residuals.

During joint training, Lrecon−task and LMD optimize the 3D reconstruction model, LV L−task opti-
mize the 3D vision-language model, while the shared CTA is jointly optimized by Lrecon−task and
LV L−task. It is worth to noticing that the loss constructed in the 3D-VL reasoning branch is not used
to optimize the 3D reconstruction model, which can be seen in Fig. 2. This one-way gradient flow
ensures that the CTA acts as a stable bridge for geometry-semantics interaction, enabling effective
feature exchange.
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Table 1: Evaluation of 3D Question Answer-
ing on ScanQA and SQA3D. Methods marked
with * are 3D MLLM evaluated in video mode.
† indicates the model consumes VGGT-generated
3D geometry. ”C” stands for ”CIDEr”, ”B-4”
for ”BLEU-4”, ”M” for ”METEOR”, ”R” for
”ROUGE”, and ”EM@1” for top-1 exact match.

Method ScanQA SQA3D

C↑ B-4↑ M↑ R↑ EM@1↑ EM@1↑

3D-based models
Scan2Cap – – – – – 41.0
ScanQA 64.9 10.1 13.1 33.3 21.1 47.2
3D-VisTA 69.6 10.4 13.9 35.7 22.4 48.5
3D-LLM 69.4 12.0 14.5 35.7 20.5 –
LL3DA 76.8 13.5 15.9 37.3 – –
Grounded3D-LLM 75.9 13.2 – – – –
Chat-3D v2 77.1 7.3 16.1 40.1 21.1 –
Scene-LLM 80.0 12.0 16.6 40.0 27.2 54.2
ChatScene 87.7 14.3 18.0 41.6 21.6 54.6
LEO 101.4 13.2 20.0 49.2 24.5 50.0
Video-3D LLM 102.6 16.2 19.8 49.0 30.1 58.6
LLaVA-3D 103.1 16.4 20.8 49.6 30.6 60.1
3DRS 104.8 17.2 20.5 49.8 30.3 60.6

Video-based models
VILA-40B 48.2 9.9 11.4 27.3 17.2 37.2
IXC-2.5-7B 53.9 8.7 13.2 31.5 19.4 41.5
LLaVA-OV-7B 78.2 13.3 17.2 40.5 22.9 47.6
LLaVA-Video-7B 88.7 – – – – 48.5
Uni3DR2* 70.3 12.2 14.9 36.3 17.3 –
ChatScene* 85.6 – – – – 52.9
3DRS† 94.7 12.3 15.9 45.1 23.9 54.5
Vid-LLM (Ours) 101.9 15.8 18.3 49.5 27.6 57.3

Table 2: Evaluation of 3D Dense Caption-
ing on Scan2Cap. The n-gram metrics for
Scan2Cap are governed by IoU@0.5.

Method Scan2Cap

C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
3D-based models
Scan2Cap 39.1 23.3 22.0 44.8
Grounded3D-LLM 70.2 35.0 – –
LEO 68.4 36.9 27.7 57.8
ChatScene 77.1 36.3 28.0 58.1
Video-3D LLM 83.8 42.4 28.9 62.3
LLaVA-3D 84.1 42.6 29.0 63.4
3DRS 86.1 41.6 28.9 62.3

Video-based models
3DRS† 76.4 39.6 27.3 57.1
VGLLM 78.6 40.9 28.6 62.4
Vid-LLM (Ours) 81.5 40.9 28.7 61.8

Table 3: Evaluation of 3D Visual Ground-
ing on ScanRefer and Multi3DRefer.

Method ScanRefer Multi3DRefer
Acc@0.25↑ Acc@0.5↑ Acc@0.25↑ Acc@0.5↑

3D-based models
ScanRefer 37.3 24.3 – –
Chat-3D v2 35.9 30.4 – –
Grounded3D-LLM 48.6 44.0 44.7 40.8
LLaVA-3D 50.1 42.7 49.8 43.6
ChatScene 55.5 50.2 57.1 52.4
Video-3D LLM 58.1 51.7 58.0 52.7
3DRS 62.9 56.1 60.4 54.9
Video-based models
VGLLM 53.5 47.5 – –
3DRS† 55.2 51.1 52.8 48.3
Vid-LLM (Ours) 63.2 56.4 61.6 56.1

4 EXPERIMENTS

This section provides a comprehensive evaluation of Vid-LLM. In Section 4.1, we introduce the
experimental setup, covering the training details of Vid-LLM and the evaluation settings used in
our experiments. In Section 4.2, we evaluate the model on 3D vision–language reasoning tasks
against state-of-the-art methods. In Section 4.3, we compare Vid-LLM with representative joint
reconstruction–reasoning models to examine how different design choices affect performance when
jointly executing reconstruction and 3D VL reasoning. In Section 4.4, we conduct ablation studies
to analyze the contributions of core modules.

4.1 EXPERIMENTAL SETUP

Training Details. We adopt DINOv2-L as the visual backbone, consisting of 24 Transformer layers
with a hidden dimension of 1024. The projection MLPs use two fully connected layers with an
expansion factor of 4 and GELU activation. For data processing, we uniformly sample 32 frames per
scene, resize the shorter side to 518, crop the resolution so that both height and width are multiples
of 14. Optimization is performed using AdamW with β1 = 0.9, β2 = 0.999, and weight decay of
0.05, with gradient clipping at 1.0.

Evaluation Details. We follow the standard evaluation protocols and metrics defined for each
dataset. For tables that summarize performance across multiple datasets (e.g., Tables 5 and 6), the
reported numbers are computed as the mean of the metrics for each benchmark. For the Scan2Cap
dataset, we follow prior work (Zhu et al., 2025; Zheng et al., 2025a): instance proposals are gen-
erated using Mask3D (Schult et al., 2022), and 3D coordinate tokens are constructed from the pre-
dicted instance centers to enable instance-aware caption generation. For the ScanRefer dataset,
Mask3D (Schult et al., 2022) serves as the 3D segmentor to remain consistent with supervised base-
lines (Huang et al., 2024; Chen et al., 2024c; Huang et al., 2023a). For the Nr3D and Sr3D datasets,
the provided segmentation annotations are adopted to align with previous methods (Chen et al.,
2022; Huang et al., 2023a). For reconstruction evaluation on ScanNet, the metrics are computed in
metric scale. All models are trained with the same data and settings for a fair comparison.
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4.2 3D VISION–LANGUAGE REASONING

Overview. To comprehensively assess the performance of Vid-LLM on 3D vision–language rea-
soning tasks, we conduct experiments using widely adopted datasets covering three task categories:
3D Question Answering on ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2022), 3D Dense
Captioning on Scan2Cap (Chen et al., 2021), and 3D Visual Grounding on ScanRefer (Chen et al.,
2020), Multi3DRefer (Zhang et al., 2023), and Nr3D/Sr3D (Achlioptas et al., 2020b).

Baseline. We compare Vid-LLM with a broad set of 3D-based and video-based vision–language
reasoning models. 3D-based methods rely on explicit 3D scene inputs such as point clouds or
reconstructed geometry, whereas video-based methods operate solely on video. The 3D-based
baselines include ScanQA (Azuma et al., 2022), Scan2Cap (Chen et al., 2021), 3D-VisTA (Zhu
et al., 2023), 3D-LLM (Hong et al., 2023b), LL3DA (Chen et al., 2024b), Grounded3D-LLM (Chen
et al., 2024c), Chat-3D v2 (Huang et al., 2023a), LEO (Huang et al., 2023b), Scene-LLM (Fu et al.,
2024), ChatScene (Huang et al., 2024), LLaVA-3D (Zhu et al., 2025), Video-3D LLM (Zheng et al.,
2025b), and 3DRS (Huang et al., 2025). The video-based baselines include VILA-40B (Lin et al.,
2024), IXC (Zhang et al., 2024b), LLaVA-OV (Li et al., 2024), LLaVA-Video (LLaVA Team, 2024),
Uni3DR2 (Chu et al., 2024), and VGLLM (Zheng et al., 2025a). To further assess the grounding
capability of Vid-LLM, we additionally compare against task-specific 3D visual grounding models,
including ScanRefer (Chen et al., 2020), 3D-VisTA (Zhu et al., 2023), ReferIt3D (Achlioptas et al.,
2020a), 3DVG-Trans (Zhao et al., 2021), MVT (Huang et al., 2022), ViL3DRel (Chen et al., 2022),
and SceneVerse (Jia et al., 2024). To allow comparison under the same video input setting with the
most competitive 3D-based baseline in our evaluation, we additionally include 3DRS†, a variant of
3DRS that takes VGGT-generated 3D geometry as input. These comparisons collectively provide a
comprehensive evaluation of Vid-LLM across 3D vision–language reasoning tasks.

Result & Analysis. Vid-LLM consistently shows robust performance across all 3D vision–language
reasoning benchmarks. As shown in Tab. 1, Vid-LLM achieves the best results among video-based
models on both ScanQA and SQA3D, outperforming the second-best baseline (3DRS†) by an av-
erage margin of 11%. Tab. 2 further shows that Vid-LLM attains the highest performance among
video-based methods on Scan2Cap; notably, its M@0.5 score (28.7) is close to that of the best-
performing 3D-based model (29.0), despite not using depth or point clouds. These results col-
lectively indicate that the integration of geometric cues into semantic reasoning can significantly
improve perception performance. Tab. 3 and Tab. 4 present results on ScanRefer/Multi3DRefer and
Nr3D/Sr3D. Vid-LLM achieves the best performance across all metrics on the two grounding bench-
marks, surpassing all comparable 3D-based and video-based counterparts. These results demon-
strate that the proposed Cross-Task Adapter, which effectively integrates semantic and geometric
information, enables effective spatial reasoning and yields substantial gains on geometry-intensive
tasks such as 3D visual grounding. For qualitative analysis, we visualize the 3D grounding results
on the ScanRefer dataset in Fig. 4, which further demonstrates the 3D visual grounding capability
of Vid-LLM. More qualitative visualizations for 3D VL tasks can be found in Appendix A.1.

4.3 COMPARISON WITH JOINT RECONSTRUCTION–REASONING MODELS

Overview. In addition to 3D vision–language reasoning, Vid-LLM also incorporates a reconstruc-
tion branch that provides geometric priors and metric-scale cues. This naturally raises the question
of how different design choices for coupling reconstruction and reasoning affect performance when
both tasks must be performed from a single video input. To provide a comprehensive analysis, we
compare Vid-LLM with two representative categories of joint reconstruction–reasoning baselines:
(i) simple concatenation pipelines that feed the 3D geometry reconstructed from video into a 3D
multimodal LLM, and (ii) end-to-end architectures that integrate reconstruction and 3D VL reason-
ing within a single model.

Baseline. For the concatenation baselines, we construct pipelines that feed the predicted geometry
information of VGGT into LLaVA-3D (Zhu et al., 2025) for 3D vision–language reasoning. Three
variants of the concatenation pipeline are evaluated: (i) VGGT+LLaVA-3D, the direct combination
of VGGT and LLaVA-3D; (ii) VGGT+LLaVA-3D†, which introduces metric-scale alignment to the
predictions of VGGT; (iii) VGGT+LLaVA-3D†‡, which further fine-tunes LLaVA-3D using depth
and camera poses predicted by VGGT as geometric supervision. For end-to-end joint-task baselines,
we include Uni3DR2 (Chu et al., 2024), an end-to-end framework that integrates a reconstruction
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Image View

Grounding Boxes in Point Cloud

Figure 4: Qualitative results of 3D visual grounding on the ScanRefer dataset. The predicted
3D bounding boxes are visualized on point clouds reconstructed by our model.

Table 4: Evaluation of 3D Visual Ground-
ing on Nr3D and Sr3D. Results are reported
in grounding accuracy (%).

Method Nr3D Sr3D
Overall↑ Hard↑ View Dep↑ Overall↑ Hard↑ View Dep↑

ScanRefer 34.2 23.5 29.9 – – –
ReferIt3D 35.6 27.9 32.5 40.8 31.5 39.2
3DVG-Trans 40.8 34.8 34.8 51.4 44.9 44.6
MVT 55.1 49.1 54.3 64.5 58.8 58.4
ViL3DRel 62.6 55.6 59.8 72.5 68.1 58.0
Chat-3D v2 63.6 57.0 61.1 73.1 68.4 58.1
3D-VisTA 64.2 56.7 61.5 76.4 71.3 58.9
SceneVerse 64.9 57.8 56.9 77.5 71.6 62.8
Vid-LLM (Ours) 65.4 57.9 61.9 77.8 72.2 63.1

Table 5: Comparison with end-to-end frameworks
for joint 3D reconstruction and 3D VL reasoning.

Method Recon 3D VL Tasks Time
(s / scene)↓ScanNet↑ ScanQA↑ Scan2Cap↑ ScanRefer↑

Concatenation models
VGGT+LLaVA-3D – 24.6 35.1 31.6 2.7
VGGT+LLaVA-3D† 0.591 42.1 50.9 47.3 2.7
VGGT+LLaVA-3D†‡ 0.591 41.6 48.2 45.9 2.7
Joint-task models
Uni3DR2 0.580 30.2 42.7 33.6 2.1
VGLLM-Rec 0.541 40.9 51.6 48.5 1.8
Vid-LLM (Ours) 0.582 45.7 53.2 59.8 1.6

† denotes introducing real-scale;
‡ denotes training LLaVA-3D with 3D geometry predicted by VGGT

module with a 3D VL reasoning branch. Notably, Uni3DR2 requires ground-truth camera poses as
input, whereas Vid-LLM performs both tasks directly from video, making the comparison conser-
vative in favor of Uni3DR2. We also include VGLLM-Rec, an extension of VGLLM (Zheng et al.,
2025a). To support joint reconstruction and reasoning, we reconnect the original camera and depth
prediction heads of VGGT to the geometry encoder in VGLLM, enabling VGLLM-Rec to generate
geometric predictions in addition to performing 3D VL reasoning from video.

Result & Analysis. As shown in Tab. 5, VGGT+LLaVA-3D obtains very low 3D VL accuracy,
indicating that relative-scale geometry cannot provide reliable cues for 3D VL reasoning. Building
on this, VGGT+LLaVA-3D† shows a clear performance gain once metric-scale alignment is ap-
plied. However, even with this setting, the concatenation baseline still underperforms Vid-LLM on
all 3D VL tasks despite achieving a higher reconstruction score (0.591 vs. 0.582). This indicates
that simply providing accurate reconstructed geometry to a 3D-LLM is insufficient and that effec-
tive geometry–semantics interaction is necessary for reliable reasoning performance. Furthermore,
VGGT+LLaVA-3D†‡ yields a slight drop in 3D VL accuracy compared with VGGT+LLaVA-3D†,
suggesting that training the 3D-LLM with noisy predicted geometry may introduce biases that de-
grade the semantic representations of the framework. In contrast to concatenation pipelines, end-
to-end joint-task models avoid multi-stage processing and achieve lower inference latency, reducing
runtime from 2.7 s/scene to 1.6–2.1 s/scene. From Tab. 5, we can observe that Vid-LLM achieves
the best overall performance among the joint models on both reconstruction and 3D VL tasks. It
marginally outperforms Uni3DR² in reconstruction quality on ScanNet (0.582 vs. 0.580) despite
Uni3DR² having access to ground-truth camera poses. On the 3D VL tasks, Vid-LLM demonstrates
a clear advantage, with an average relative improvement of 47.6% over Uni3DR² and 12.1% over
VGLLM-Rec across ScanQA, Scan2Cap, and ScanRefer. Overall, Vid-LLM delivers the fastest in-
ference speed and the best 3D VL performance, while also achieving the best reconstruction quality
among joint-task models. These gains stem from our integrated architecture and the Cross-Task
Adapter, which facilitates geometry–semantics interaction and allows the model to effectively lever-
age geometric cues during joint reasoning. More experimental results about reconstruction perfor-
mance can be found in Appendix A.2.
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Table 6: Ablation on Cross-Task Adapter
(CTA) and Metric Depth (MD) Modules.

3D VL Tasks 3D Recon

ScanOA ↑ Scan2Cap ↑ ScanRefer ↑ scannet ↑

w/o CTA 33.7 36.6 34.1 0.402
CTA – Concat-SA 38.2 41.9 39.6 0.461
CTA – w/o Bridge (CA) 40.8 45.6 42.2 0.473
CTA – 4tokens 43.8 50.9 47.8 0.501
CTA – 8tokens 44.1 52.7 48.1 0.529
CTA – 16tokens (Ours) 45.7 53.2 48.4 0.582
CTA – 32tokens 45.2 52.8 47.6 0.564

w/o MD 29.6 35.7 33.9 -
MD – w/o Alignment 42.1 49.6 43.2 0.531
MD (Ours) 45.7 53.2 48.4 0.582

1 2 4 8
0.6

1.0

1.4

1.8
Test Loss

(104)
#Data

Single-stage
Two-Stage(One-Teacher)
Two-Stage(w/o RelaLoss)
Two-Stage(Ours)

Figure 5: Test loss vs. data size across train-
ing strategies.

4.4 ABLATION STUDIES

Cross-Task Adapter. To assess the contribution of the Cross-Task Adapter, we compare several
configurations: removing the CTA module (w/o CTA); in the setting without bridge tokens, applying
self-attention to the concatenated Tgeom and Tlang (CTA–Concat-SA) and performing cross-attention
between the two feature sets (CTA–w/o Bridge (CA)); and finally using the full CTA with bridge
tokens. We also analyze how different numbers of bridge tokens (4, 8, 16, and 32) affect model
performance. As shown in Tab. 6, w/o CTA leads to the lowest performance on both tasks, con-
firming that a shared visual representation alone cannot jointly support reconstruction and 3D VL
reasoning. Both CTA–Concat-SA and CTA–w/o Bridge(CA) show clear improvements, yet their
effectiveness is limited as neither design provides a stable shared latent space for passing geometric
cues to semantic features. The configurations using the full CTA module achieve clear performance
improvements, since the bridge tokens provide a dedicated latent space that enables consistent geom-
etry–semantic alignment and more effective cross-task interaction. Among different token counts,
using 16 bridge tokens achieves the best balance between accuracy and model complexity.

Metric Depth Modules. Tab. 6 also reports ablations on the use of metric depth and our alignment
strategy. Without metric depth supervision (w/o MD), scale ambiguity destroys geometric consis-
tency and leads to near failure of 3D VL reasoning. Incorporating metric depth without alignment
(MD – w/o Alignment) preserves metric scale but produces less accurate reconstruction, which in
turn limits the performance of 3D VL tasks. By contrast, combining metric depth with our scale
alignment strategy effectively exploits both global scale cues and relative structural details, yielding
the most accurate reconstruction and consistently more reliable results on 3D VL tasks.

Two-Stage Training. Fig. 5 compares different training strategies to assess their impact on con-
vergence and performance. Training all modules jointly without staging (Single-stage) converges
slowly and stabilizes at a relatively high loss, due to gradient interference across modules. Using a
single teacher under the two-stage strategy (Two-Stage (One-Teacher)) offers limited supervision,
resulting in less effective optimization. Removing the relational loss during two-stage strategy (Two-
Stage (w/o RelaLoss)) further slows convergence and reduces accuracy, highlighting the importance
of enforcing cross-task consistency. In contrast, using the full two-stage strategy with dual-teacher
supervision and relational consistency (Two-Stage (Ours)) yields the best training performance.

5 CONCLUSION

In this work, we present Vid-LLM, a video-based 3D Multimodal Large Language Model (3D-
MLLM). Our compact architecture extracts geometric cues from video and feeds them into the LLM
through a 3D patch construction strategy to accomplish spatial reasoning. A central component of
our framework is the Cross-Task Adapter that aligns 3D geometry priors with vision–language rep-
resentations. This design enhances their integration into the MLLM and improves the robustness of
reasoning under uncertain geometry. With a two-stage training strategy, our model achieves greater
training stability and faster convergence. Extensive experiments on 3D vision–language benchmarks
demonstrate that Vid-LLM achieves state-of-the-art results on several benchmarks and remains com-
petitive on the others, while ablation studies validate the effectiveness of each component.
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring reproducibility. Part of our implementation is provided in the Sup-
plementary Materials. Upon acceptance, we will release the complete code, datasets, and pretrained
checkpoints to enable full verification of our results.
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A APPENDIX

In the Appendix, we provide the following experimental results:

• qualitative results and challenging cases of Vid-LLM in Appendix A.1;

• supplementary experiments on reconstruction performance in Appendix A.2;

• the use of large language models (LLMs) statement in Appendix A.3.

A.1 QUALITATIVE RESULTS AND CHALLENGING CASES

Q: How many chairs are 
there in the room ?

A: Three.

Q: Where is the monitor?

A: In the corner of the 
desk against the wall.

Q: Where is the bed in 
the room ?

A: On the right side of 
the room

Q: What color are the 
curtains.

A: Brown.

Q: Describe the room 
in detail. 

Q: Describe the 
Washbasin in detail. 

A: This is a brown 
washbasin, made 
entirely of light brown 
wood, with a circular 
washbasin in the 
center of the wash…

A: In the center of the 
meeting room, there is 
a light-colored 
conference table, 
surrounded by black 
conference chairs…

Q: There are two beds 
in the room. Give me 
the coordinates of 
these two beds.

A:[1.13, 1.64, 0.35, 0.92, 
0.03, 1.16], [1.13, 1.64, 
0.35, 0.92, 0.03, 1.16]

A:[1.13, 1.64, 0.35, 
0.92, 0.03, 1.16]

Q: Give me the 
coordinates of the 
light brown wooden 
coffee table.
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Figure 6: Qualitative Results.

Qualitative Results. Fig. 6 presents reconstruction results on the ScanNet dataset, together with
three representative 3D vision–language (3D VL) tasks. Specifically, it illustrates (1) 3D Question
Answering, where the model answers queries on object counts, locations, and attributes from recon-
structed scenes; (2) 3D Dense Captioning, which provides detailed semantic descriptions of rooms
and key objects; and (3) 3D Visual Grounding, where the model localizes target objects in 3D space
according to textual instructions. These qualitative results demonstrate the capability of Vid-LLM
in scene reconstruction and 3D VL reasoning from video inputs.

Challenging Cases. Fig. 7 presents three challenging cases for Vid-LLM on 3D VL tasks. These
scenes reflect typical failure modes of monocular video reconstruction, where limited camera view-
points, reflective surfaces, or oblique viewing angles lead to incomplete geometry. As shown in
examples (a) and (b), tasks that rely on explicit 3D structural information, such as instance counting
or estimating 3D object extents for grounding, are directly affected by incomplete or unreliable ge-
ometry. In contrast, example (c) shows that Vid-LLM remains effective when sufficient 2D cues are
present, due to the Cross-Task Adapter and bridge-token mechanism, which jointly align semantic
and geometric information. These observations suggest that improving the reconstruction branch
to enhance geometric fidelity could further strengthen the overall 3D VL performance, indicating a
promising direction for future work.
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Q: How many chairs are 
there around the dining 
table?

A: Five.

1
2

3

4

5

6

Question & AnswerReconstructionInput images

GT: Six.

Q: Give me the 
coordinates of the long 
wooden table.

Our box —— Red

GT box —— Green

Q: Describe the wooden 
cabinet in detail. 

A: The long wooden cabinet 

has many flat labeled drawers. 
Its top is cluttered with rolled 
papers, cardboard boxes, and 
plastic-wrapped items …

(a)

(b)

(c)

Figure 7: Challenging Cases. We present one challenging case for each 3D VL task—3D question
answering (a), 3D visual grounding (b), and 3D dense captioning (c). (a) Due to limited camera
viewpoints in the input video, one chair is only partially observed and consequently missing from
the reconstruction, leading to an undercounted result. (b) The highly reflective tabletop results
in unstable depth estimates and incomplete reconstruction, resulting in a predicted 3D box that is
smaller than the ground truth. (c) The top surface of the cabinet is not well reconstructed because it
appears only briefly and mostly from oblique angles, yet Vid-LLM nonetheless produces an accurate
caption by leveraging rich 2D semantic cues.

Table 7: Camera pose evaluation on Co3Dv2 and RealEstate10K.

Method Co3Dv2 RealEstate10K

RRA@15↑ RTA@15↑ mAA(30)↑ mAA(30)↑
COLMAP+SG (Sarlin et al., 2020) 36.1 27.3 25.3 45.2
PixSfM (Lindenberger et al., 2021) 33.7 32.9 30.1 49.4
PoseDiff (Lee & Lee, 2024) 80.5 79.8 66.5 48.0
DUSt3R (Wang et al., 2024) 94.3 88.4 77.2 61.2
MASt3R (Leroy et al., 2024) 94.6 91.9 81.8 76.4
FLARE (Zhang et al., 2025) 95.4 83.6 78.4 75.3
Fast3R (Yang et al., 2025) 96.2 81.6 75.0 72.7
CUT3R (Wang et al., 2025b) 95.7 84.5 73.3 77.1
VGGT (Wang et al., 2025a) 97.3 93.3 89.6 83.8
Vid-LLM (Ours) 96.8 93.4 88.5 83.1
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Table 8: Depth estimation results on the NYU Depth v2 dataset. † Model outputs are in relative
scale; we align them to the ground-truth metric scale prior to evaluation.

Method δ1 ↑ AbsRel ↓ RMSE ↓ log10 ↓
DPT (Ranftl et al., 2021) 0.904 0.110 0.357 0.045
P3Depth (Patil et al., 2022) 0.898 0.104 0.356 0.043
SwinV2-L (Liu et al., 2022) 0.949 0.083 0.287 0.035
AiT (Ning et al., 2023) 0.954 0.076 0.275 0.033
VPD (Zhao et al., 2023) 0.964 0.069 0.254 0.030
ZoeDepth (Bhat et al., 2023) 0.953 0.075 0.270 0.032
DepthAnything (Yang et al., 2024) 0.984 0.056 0.206 0.024
VGGT† (Wang et al., 2025a) 0.989 0.022 0.103 0.011

Vid-LLM(Ours) 0.987 0.025 0.109 0.010

Table 9: Reconstruction results on the ScanNet dataset. † Model outputs are in relative scale; we
align them to the ground-truth metric scale prior to evaluation.

Method GT cams Comp ↓ Acc ↓ Recall ↑ Prec ↑ F-score ↑
MVDNet (Ou et al., 2022)

√
0.040 0.240 0.831 0.208 0.329

GPMVS (Liu et al., 2023)
√

0.031 0.879 0.871 0.188 0.304
Atlas (Murez et al., 2020)

√
0.062 0.128 0.732 0.382 0.499

NeuralRecon (Sun et al., 2021)
√

0.106 0.073 0.428 0.592 0.494
DG-Recon (Ju et al., 2023)

√
0.085 0.039 0.476 0.675 0.521

PanoRecon (Wu et al., 2024)
√

0.089 0.064 0.530 0.656 0.584
RCVD (Kopf et al., 2021) × 0.161 0.425 0.164 0.109 0.125
GCVD (Lee et al., 2022) × 0.175 0.278 0.178 0.146 0.147
Colmap (Schonberger & Frahm, 2016) × 0.142 0.367 0.119 0.267 0.178
FrozenRecon (Xu et al., 2023) × 0.092 0.085 0.436 0.336 0.410
DUSt3R (Wang et al., 2024) × 0.243 0.179 0.284 0.657 0.387
VGGT† (Wang et al., 2025a) × 0.067 0.044 0.658 0.891 0.580

Vid-LLM(Ours) × 0.071 0.042 0.634 0.885 0.582

A.2 SUPPLEMENTARY EXPERIMENTS ON RECONSTRUCTION

Overview. Since the reconstruction branch not only provides 3D cues for the 3D-MLLM but also
explicitly produces point clouds that can serve downstream applications, it is important to assess
its individual performance. To evaluate the 3D modeling capability of Vid-LLM, we assess three
tasks: camera pose estimation, depth prediction, and point-cloud reconstruction. Depth prediction is
crucial to real-scale reconstruction, and together with poses it determines the quality of the recovered
point clouds. Following standard protocols, we evaluate poses on Co3Dv2 (Reizenstein et al., 2021)
and RealEstate10K (Zhou et al., 2018), depth on the indoor NYU Depth v2 dataset (Silberman et al.,
2012), and point-cloud reconstruction on ScanNet (Dai et al., 2017), ensuring consistency with the
3D vision–language benchmarks introduced earlier. Depth and reconstruction evaluations require
the model to predict real-scale geometric outputs, while camera pose estimation is scale-invariant.

Baseline. For 3D reconstruction, we evaluate three subtasks: (i) camera pose estimation, where
we compare against geometry-based optimization methods including COLMAP+SG and PixSfM,
as well as state-of-the-art learning-based approaches such as PoseDiff, DUSt3R, MASt3R, FLARE,
Fast3R, and CUT3R; (ii) monocular depth estimation, where we benchmark against DPT, P3Depth,
SwinV2-L, AiT, VPD, ZoeDepth, and DepthAnything; and (iii) point-cloud reconstruction, where
we consider pose-dependent methods such as MVDNet, GPMVS, Atlas, NeuralRecon, DG-Recon,
and PanoRecon, together with pose-free approaches including RCVD, GCVD, COLMAP, Frozen-
Recon, and DUSt3R, ranging from traditional multi-view geometry to modern learning-based tech-
niques. We further benchmark against VGGT, which serves as both a high-performing reconstruc-
tion model and as the reconstruction teacher in our framework.

Result & Analysis. Across the three benchmarks, Vid-LLM achieves reconstruction quality com-
parable to VGGT while operating in an end-to-end real-scale setting. On camera pose estimation
(Tab. 7), Vid-LLM attains results close to VGGT on both Co3Dv2 and RealEstate10K and slightly
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outperforms it on RTA@15 for Co3Dv2. On NYU Depth v2 and ScanNet (Tab. 8 and Tab. 9), VGGT
requires an explicit scale-alignment step to match the metric ground truth, whereas Vid-LLM pre-
dicts real-scale depth and point clouds in an end-to-end manner. In this setting, Vid-LLM achieves
lower log10 error on NYU and higher F-score and accuracy on ScanNet than VGGT, indicating that
its real-scale geometry remains competitive against the teacher model. Vid-LLM also surpasses all
other models that predict real-scale outputs. Overall, these results confirm that its reconstruction
module delivers consistent and reliable geometric performance.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

Parts of the language in this manuscript were polished with the assistance of Large Language Models
(LLMs). The authors have carefully reviewed and verified all LLM-assisted text to ensure accuracy
and appropriateness. The intellectual contributions, ideas, and conclusions presented in this work
are entirely those of the authors.

19


	INTRODUCTION
	Related Work
	Method
	Cross-Task Adapter
	3D Reconstruction Model
	3D Vision–Language Model
	Training Strategy

	Experiments
	Experimental Setup
	3D Vision–Language Reasoning
	Comparison with Joint Reconstruction–Reasoning Models
	Ablation Studies

	Conclusion
	Reproducibility Statement
	Appendix
	Qualitative Results and Challenging Cases
	Supplementary Experiments on Reconstruction
	The Use of Large Language Models (LLMs) Statement


