
Published as a conference paper at ICLR 2024

OPENFMNAV: TOWARDS OPEN-SET ZERO-SHOT OB-
JECT NAVIGATION VIA VISION-LANGUAGE FOUNDA-
TION MODELS

Yuxuan Kuang1, Hai Lin2, Meng Jiang2

1Peking University
2University of Notre Dame

ABSTRACT

Object navigation (ObjectNav) requires an agent to navigate through unseen envi-
ronments to find queried objects. Many previous methods attempted to solve this
task by relying on supervised or reinforcement learning, where they are trained on
limited household datasets with close-set objects. However, two key challenges are
unsolved: understanding free-form natural language instructions that demand open-
set objects, and generalizing to new environments in a zero-shot manner. Aiming
to solve the two challenges, in this paper, we propose OpenFMNav, an Open-set
Foundation Model based framework for zero-shot object Navigation. We first un-
leash the reasoning abilities of large language models (LLMs) to extract proposed
objects from natural language instructions that meet the user’s demand. We then
leverage the generalizability of large vision language models (VLMs) to actively
discover and detect candidate objects from the scene, building a Versatile Semantic
Score Map (VSSM). Then, by conducting common sense reasoning on VSSM, our
method can perform effective language-guided exploration and exploitation of
the scene and finally reach the goal. By leveraging the reasoning and generaliz-
ing abilities of foundation models, our method can understand free-form human
instructions and perform effective open-set zero-shot navigation in diverse envi-
ronments. Extensive experiments on the HM3D ObjectNav benchmark show that
our method surpasses all the strong baselines on all metrics, proving our method’s
effectiveness. Furthermore, we perform real robot demonstrations to validate our
method’s open-set-ness and generalizability to real-world environments.1

1 INTRODUCTION

As a fundamental task in robotics and embodied AI, object navigation requires an agent to navigate
through unseen environments to find queried objects. Compared to other robotic tasks, it is particularly
important because it is a prerequisite for robots to interact with objects. To address this issue, several
household datasets and benchmarks, such as MP3D (Chang et al., 2017), Gibson (Xia et al., 2018)
and HM3D (Ramakrishnan et al., 2021) are proposed. Many previous studies (Chaplot et al., 2020a;
Ramrakhya et al., 2022; Zhang et al., 2023) have attempted to solve this problem through supervised
or reinforcement learning, where they are trained on particular household datasets above with close-set
objects and comparable environments.

However, there are two significant challenges remaining unsolved. First, as shown in Fig 1, in
many scenarios, instead of only mentioning an object category (e.g., “Find the bed.”), humans often
provide free-form instructions, either specifying objects with specific characteristics (e.g., “Find
the bed with the blue mattress next to the window.”), or expressing their demand without explicitly
mentioning the object (e.g., “I’m exhausted. I need to lie down and rest.”). These natural language
instructions may demand open-set objects not included in the training vocabulary. In such cases,
existing supervised or reinforcement learning-based methods fail to understand these natural language
instructions since they require specific object categories and were trained to perform close-set object
detection. Second, due to the data scarcity of embodied navigation (Gu et al., 2022), these methods

1We show further information and demo videos on https://yxkryptonite.github.io/OpenFMNav/.

1

https://yxkryptonite.github.io/OpenFMNav/


Published as a conference paper at ICLR 2024

Find the bed.

Find the bed with the 
blue mattress next to 

the window.

I'm exhausted. I need 
to lie down and rest.

Close-Set:

Find the bed.

Find the bed with the 
blue mattress next to 

the window.

I'm exhausted. I need 
to lie down and rest.

Open-Set:

VLM LLM

Foundation Models

Language-guided
Exploration &
Exploitation

Find the goal!

Figure 1: Leveraging foundation models, our proposed OpenFMNav can follow free-form natural
language instructions with open-set objects and achieve effective zero-shot object navigation.

are typically trained on limited datasets that only cover household environments, which causes severe
overfitting issues and prevents them from generalizing to unseen and diverse environments, let alone
performing zero-shot navigation.

To address the first challenge, some initial progress has been made in understanding free-form natural
language instructions with open-set objects. For instance, demand-driven navigation (DDN) was
proposed by Wang et al. (2023) to map human instructions to a demand-conditioned attribute space.
However, it is still limited to household settings and cannot be generalized to various environments.
Another approach was suggested by Majumdar et al. (2023), which involves finding objects with
specific attributes and eliminating distractors. However, it needs 2D occupancy maps and pre-
exploration of the scene in the beginning, which are unavailable in unseen environments.

On the second challenge, recent years have witnessed progress in Zero-Shot Object Navigation
(ZSON) (Majumdar et al., 2022; Gadre et al., 2023; Yokoyama et al., 2023; Zhou et al., 2023;
Dorbala et al., 2023; Yu et al., 2023; Shah et al., 2023; Cai et al., 2023; Liang et al., 2023). However,
some of these works (Majumdar et al., 2022; Yu et al., 2023; Cai et al., 2023) require data to train
specific modules such as locomotion planning, and hence are not real “Zero-Shot”. More importantly,
these methods cannot conduct explicit and comprehensive reasoning on free-form natural language
instructions, leading to their low performance and preventing them from being applied to many
downstream robotic tasks.

To better address the aforementioned two key challenges, in this paper, we propose OpenFMNav,
a novel framework based on foundation models to achieve effective open-set zero-shot navigation.
To this end, we utilize foundation models to leverage their reasoning abilities and generalizability
to interpret human instructions and actively explore the environment. To be more specific, we first
leverage large language models to extract initially proposed objects from natural language instructions
and merge them with user-defined prior objects and objects discovered by vision language models. We
then construct an object prompt to detect and segment objects from the observation image, leveraging
large vision language models. By using depth images to project the segmentation masks to the space,
we can build a 2D top-down Versatile Semantic Score Map (VSSM) of the whole scene, on which we
sample frontiers with semantic information for a large language model to conduct common sense
reasoning and wisely choose frontiers to guide navigation. This way, we can perform language-guided
exploration and exploitation of the scene and achieve effective open-set zero-shot object navigation
without prior training on any household datasets. Moreover, unlike previous map-based methods
such as Zhou et al. (2023); Yu et al. (2023); Shah et al. (2023); Yokoyama et al. (2023), the VSSM
produced by our method will keep updating during the navigation, which better adapts to changing
environments and can be further used in downstream robotic tasks, such as multi-goal navigation and
mobile manipulation.

We conduct extensive experiments on the HM3D ObjectNav benchmark (Yadav et al., 2022a).
Results show that our method outperforms the State-of-the-Art open-set zero-shot object navigation
method (Zhou et al., 2023) by over 15% on success rate and surpasses all the strong baselines on
all metrics, validating the effectiveness and superiority of our framework. Additionally, our method
has been proven to understand free-form natural language instructions with open-set objects and
generalize well to real-world environments through real robot demonstrations.
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2 RELATED WORK

2.1 EMBODIED NAVIGATION

Embodied navigation is a fundamental yet challenging task in robotics and embodied AI since it is
the precursor to many downstream robotic tasks, such as object manipulation and teleoperation. In
such scenarios, given a specific goal and egocentric observations, agents are required to move to a
desired location within a maximum timestep.

Due to the importance of embodied navigation, recent years have witnessed several branches of
navigation tasks with different goal specifications. For instance, point goal navigation (PointNav) (Wi-
jmans et al., 2019; Savva et al., 2019) uses point coordinates in the space as the goal; image goal
navigation (ImageNav) (Chaplot et al., 2020b; Savinov et al., 2018) requires the agent to move
where the given image is taken; and vision-language navigation (VLN) (Anderson et al., 2018;
Ku et al., 2020) requires the agent to follow step-by-step instructions to reach the location; and in
object navigation (ObjectNav) (Batra et al., 2020), the agent is required to find objects of specified
categories.

Compared to vision-language navigation (VLN), which offers detailed and step-by-step instructions
and requires an agent to strictly follow the trajectories conditioned by step-by-step instructions, object
navigation (ObjectNav) is particularly challenging since the agent needs to do semantic recognition
to find the goal and needs more efficient exploration than VLN since there are no step-by-step
instructions (Chen et al., 2023). It is also more common in real life that humans will give ambiguous
demands (Wang et al., 2023) rather than detailed instructions in VLN. Additionally, many VLN
datasets (Anderson et al., 2018; Ku et al., 2020) are typically discretized into checker-like waypoint
graphs, which makes it difficult to deploy algorithms in the real world. Compared to VLN, ObjectNav
is object-centric and continuous so that it can be easily deployed and extended to many downstream
robotic tasks like object manipulation.

To take a step further, in this paper, we propose a solution to the problem of open-set-ness in
ObjectNav by introducing a framework that transforms the paradigm of ObjectNav from given
close-set category names to free-form natural language instructions with open-set objects. This
transformation will help bridge the interaction between humans and embodied agents, making it
more useful in real-world applications. Compared to existing works (Majumdar et al., 2023; Wang
et al., 2023), our method doesn’t need prior occupancy maps and pre-exploration in the beginning
and thus can navigate in unseen environments. Furthermore, our method addresses the overfitting
issue in embodied navigation and easily generalizes to the real world in a zero-shot manner, enabling
intelligent robot agents to navigate in more diverse environments.

2.2 ZERO-SHOT OBJECT NAVIGATION

As Gu et al. (2022) elaborates, embodied navigation faces a severe challenge of data scarcity, limiting
the amount and distribution of available data for training. Methods directly supervised on these
limited data cannot generalize to diverse real-world environments.

Therefore, recent years have witnessed great progress in Zero-Shot Object Navigation (ZSON).
Methods proposed by Majumdar et al. (2022); Gadre et al. (2023); Yokoyama et al. (2023) leverage
CLIP (Radford et al., 2021) or BLIP-2 (Li et al., 2023) embedded features to compute similarities
between object goal and input image and construct an implicit map for certain goal objects to guide
navigation. Other methods, such as those proposed by Zhou et al. (2023); Dorbala et al. (2023); Yu
et al. (2023); Shah et al. (2023), leverage object detectors to construct metric maps and use large
language models to conduct reasoning. Cai et al. (2023) leverages foundation models to perform
basic image processing and trains a locomotion module to navigate to certain chosen pixel points.

2.3 FOUNDATION MODELS

Foundation models (Bommasani et al., 2022) are large-scale models that are pre-trained on vast
amounts of data and can perform general tasks. The sheer volume of pretraining data endows them
with exceptional generalizability, which allows them to perform zero-shot inference. Moreover, the
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Figure 2: The framework of our proposed OpenFMNav. Based on the natural language instruction and
observations, we utilize foundation models to interpret human instructions and construct a Versatile
Semantic Score Map (VSSM), on which we perform common sense reasoning and scoring to conduct
language-guided frontier-based exploration.

extensive training data helps foundation models acquire common sense about our physical world,
making them ideal for real-world applications.

Foundation models, particularly the large language models (LLMs), also have an intriguing fea-
ture — In-Context Learning (ICL) (Dong et al., 2023). This feature enables these models to follow
pre-defined instructions to ground their output into certain patterns. By combining ICL with common
sense learned from the large-scale data, foundation models can effectively perform semantic common
sense reasoning and guesswork to provide intuitions of possible exploration directions like human
beings, as illustrated in Zhou et al. (2023); Yu et al. (2023); Shah et al. (2023). For example, if the
goal is a “toilet”, from common sense it is highly possible to find it around an area that contains a
“bathtub”.

According to different modalities, foundation models can be mainly divided into Visual Foundation
Models (VFM), such as SAM (Kirillov et al., 2023), Large Language Models (LLM), such as GPT-
3.5/GPT-4 (Ouyang et al., 2022; OpenAI, 2023) and LLaMA/LLaMA-2 (Touvron et al., 2023a;b),
and Vision Language Models (VLM), such as GPT-4V (Yang et al., 2023b), CLIP (Radford et al.,
2021), Grounded-SAM (Liu et al., 2023), etc. There are also foundation models covering other
modalities, such as audio (Yang et al., 2023a) and video (Xu et al., 2021). In this paper, we use VLMs
and LLMs since our setting only involves vision and language modalities.

3 METHOD

3.1 PROBLEM STATEMENT AND METHOD OVERVIEW

Problem Statement. As shown in Fig. 1, in an unfamiliar environment, given a natural language
instruction I , an embodied agent needs to explore the environment in search of a certain queried
object. At timestep t, the agent is provided with egocentric RGBD observation ot and should output
an action at such as move_forward, turn_left, stop, etc. A successful navigation is defined as
finding the queried object within the maximum navigation timestep.

Method Overview. As shown in Fig. 2, given a starting point and human instruction I , the agent
first utilizes the ProposeLLM to propose possible objects to meet the instruction. At timestep t, the
agent can leverage the DiscoverVLM to discover new objects from the scene and check whether they
can meet the instruction. Along with prior defined objects and proposal objects, the full object list
is then converted into an object prompt pt for foundation models to reason. Given current RGBD
observation ot, the PerceptVLM will detect and segment object masks based on pt, constructing
a Versatile Semantic Score Map (VSSM) Mt, on which possible exploration frontiers are sampled.
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Finally, the ReasonLLM will conduct common sense reasoning based on the semantic information
of frontiers and give the next frontier goal Gt to explore, which will be executed by an underlying
control policy to output low-level actions. The whole process is looped until the object is found or
the agent fails.

3.2 DISCOVERY AND PERCEPTION

Discovery. Given a free-form human instruction I that may contain open-set objects, we first leverage
a ProposeLLM to get all possible proposal objects Opro that can satisfy the instruction. Each proposal
object contains attributes such as color, location, etc, to satisfy fine-grained instructions. At timestep t,
given egocentric RGBD and pose observations ot, we propose a DiscoverVLM using GPT-4V (Yang
et al., 2023b) that actively discovers novel objects Odis from the RGB image. Meanwhile, the
DiscoverVLM also conducts reasoning on the instruction, trying to discover objects that potentially
meet the instruction and update Opro. Extracting novel objects from the environment is essential for
open-set navigation since they may contain scene-specific information that helps to find the goal. To
save time and cost, the DiscoverVLM is randomly activated by a frequency parameter σfreq.

Perception. After getting proposal objects Opro and discovered objects Odis, we merge them with
prior objects Opri to construct an object prompt pt to feed into our PerceptVLM based on Grounded-
SAM (Liu et al., 2023) to detect and segment all the appearing objects in pt from the RGB image of
ot. Note that due to the BERT encoder (Devlin et al., 2019) and powerful SAM backbone (Kirillov
et al., 2023) in the PerceptVLM, it can achieve open-set object detection in high granularities. This
process will output object masks with confidence scores for further mapping and reasoning.

3.3 MAPPING AND REASONING

Mapping. At timestep t, based on the confidence scores of object masks produced by PerceptVLM
and the depth image and pose in ot, we project the masks to the top-down 2D space and construct a
Versatile Semantic Score Map (VSSM) Mt ∈ RH×W×(C+2), which contains C channels of object
semantics, and two channels of the occupied area and explored area, with a resolution of H ×W .
Each element in the map is a score in [0, 1] instead of binary labels. Since we continuously discover
novel objects from the environment, the C is versatile so that we can keep updating the map, enabling
life-long learning and downstream robotic tasks. Also, instead of filling binary labels into semantic
channels, we fill each semantic channel with confidence scores, with which we can easily update the
map if there is a change in the environment.

Reasoning. Based on Mt, we can sample frontiers {Fi} with semantic information in unexplored
areas for further exploration. To choose the next frontier to explore, we leverage ReasonLLM by
unleashing the power of LLM’s common sense reasoning. Specifically, given the semantic information
around each frontier, we construct a query template in the form of “This area contains A, B and
C.”. Combined with the thought T produced by Chain-of-Thought (Wei et al., 2022) prompting from
ProposeLLM and the object prompt pt, the ReasonLLM will conduct common sense reasoning as in
Section 2.3 and rate these frontiers to pick one frontier goal Gt which is most likely to find the object
goal. This frontier goal Gt will guide the agent for further exploration and produce low-level actions
to control the agent.

Instead of directly asking the LLM which frontier to explore for once or multiple times (Shah et al.,
2023), we leverage another reasoning process, which prompts the LLM to rate these frontiers {Fi}
to scores {Si}, in which Si ∈ [0, 1], indicating the likelihood to find the goal. Then, the frontier
with the highest score will be picked out for further exploration. By leveraging this rating process,
ReasonLLM can map its common sense to concrete numbers that reflect the actual ranking, leading
to better reasoning. We verified its effectiveness in Section 4.5. It’s also worth mentioning that
to balance exploration and exploitation, ReasonLLM is activated at regular timestep intervals δ to
update Gt. At other timesteps, the frontier goal Gt remains unchanged to fully explore the previously
chosen frontier Gt−δ .

After obtaining the frontier goal and the occupancy channel in Mt, we utilize a control policy based
on the Fast Marching Method (FMM) (Sethian, 1999) to output a low-level action at to control the
agent. This closes the loop and goes to the next timestep t+ 1.

We present the whole process of our OpenFMNav algorithm in Algorithm 1.
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Algorithm 1: Pseudo-Code of the Overall Algorithm for OpenFMNav
Data: Natural Language Instruction I , Prior Objects Opri, Discovery Frequency σfreq , Frontier Goal

Update Interval δ
t← 0;
done← False;
G0, M0, Odis ← None;
Opro, T ← ProposeLLM(I);
while not done do

ot ← getObservation();
if toDiscover(σfreq) then

Odis, Opro ← DiscoverVLM(ot, I);
end
pt ← getPrompt(Opro, Odis, Opri);
Masks← PerceptVLM(ot, pt);
Mt ← semanticMapping(Mt−1, Masks, ot);
if Opro in Mt then

Gt ← getLocation(Mt, Opro);
else

if t% δ == 0 then
{Fi} ← sampleFrontiers(Mt);
{Si} ← ReasonLLM({Fi}, pt, T );
Gt ← getLocation(Mt, argmax({Si}));

else
Gt ← Gt−1;

end
end
Opri ← updateObj(Opro, Odis, Opri);
at ← FMMPlanner(Mt, Gt);
done← stepAction(at, t);
t← t+ 1;

end

4 EXPERIMENTS

In this section, we evaluate our method comprehensively in simulation to show our method’s effective-
ness compared to baseline methods. We also conducted ablation studies to validate the effectiveness
of our framework design.

4.1 EXPERIMENTAL SETUP

In the simulation, we evaluate on the HM3D ObjectNav benchmark based on the Habitat Matterport
3D Semantics Dataset (Yadav et al., 2022b), which contains 80 train scenes and 20 validation scenes.
We utilize the validation scenes for evaluation. There are, in total, 2000 episodes and six goal classes
(chair, couch, potted plant, bed, toilet, and tv) in the dataset. The action space of the robot agent is
{stop, move_forward, turn_left, turn_right, look_up, look_down}. The forward distance
is set to 0.25m, and the rotation angle is set to 30 degrees.

Following previous works (Zhou et al., 2023; Cai et al., 2023), we utilize Success Rate (SR) metric
to measure whether an agent can find our desired objects. We also report results of Success weighted
by Path Length (SPL) to measure the navigation efficiency.

4.2 IMPLEMENTATION DETAILS

In our method, the foundation models we use are: GPT-4 (text-only) (OpenAI, 2023) for ProposeLLM
and ReasonLLM, and GPT-4V (Yang et al., 2023b) for DiscoverVLM. For PerceptVLM, we utilize
Grounded-SAM, which first leverages Grounding DINO (Liu et al., 2023) to produce bounding boxes
given the RGB image in ot and object prompt pt, and then leverages Segment Anything Model
(SAM) (Kirillov et al., 2023) for each bounding box to produce high-granularity object masks for
semantic mapping.
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Method Open-Set Zero-Shot SR (%) ↑ SPL ↑
FBE (Gervet et al., 2023) × ✓ 23.7 0.123

SemExp (Chaplot et al., 2020a) × × 37.9 0.188
ZSON (Majumdar et al., 2022) ✓ × 25.5 0.126

GoW (Gadre et al., 2023) ✓ ✓ 32.0 0.181
ESC (Zhou et al., 2023) ✓ ✓ 38.5 0.220

L3MVN (Yu et al., 2023) × ✓ 50.4 0.231
L3MVN + GPT-4 (Yu et al., 2023) × ✓ 51.8 0.234

PixNav (Cai et al., 2023) ✓ × 37.9 0.205
OpenFMNav (Ours) ✓ ✓ 54.9 0.244

Table 1: Comparison between different methods on the HM3D ObjectNav benchmark. Our method
outperforms all the baseline methods on all metrics and achieves open-set zero-shot object navigation.

Moreover, we utilize the Chain-of-Thought (CoT) (Wei et al., 2022) prompting technique to fully
exploit the reasoning abilities of ProposeLLM, ReasonLLM and DiscoverVLM. The prompts we
used can be found in Appendix C.

In the simulation, we set the update interval δ to 20 timesteps, discovery frequency σfreq to 0.01, and
the initial prior objects to a subset of HM3D object categories, which can be found in Appendix B.

4.3 BASELINE METHODS

We compare our method with several recent works, with a focus on open-set and zero-shot object
navigation baselines to verify our framework’s effectiveness. We classify these baseline methods into
“Open-Set” and “Zero-Shot” or not. Here, we define “Open-Set” as that the method can find whatever
object category we want, and define “Zero-Shot” as that the agent hasn’t been trained or finetuned
on any of the data previously, including images, episodes, and locomotion planning. The baseline
methods are as follows:

• FBE (Gervet et al., 2023). This baseline method employs a classical robotics pipeline for
mapping and a frontier-based exploration algorithm.

• SemExp (Chaplot et al., 2020a). A method that explores and searches for the target using
close-set semantic maps and reinforcement learning.

• ZSON (Majumdar et al., 2022). An RGB-based zero-shot object navigation baseline using
CLIP (Radford et al., 2021) to embed scene features. It is trained on ImageNav and directly
transferred to ObjectNav.

• GoW (Gadre et al., 2023). A modification of CoW (Gadre et al., 2023) implemented
by Zhou et al. (2023) that uses GLIP (Li* et al., 2022) for object detection and the vanilla
fronter-based exploration method.

• ESC (Zhou et al., 2023). A map-based zero-shot object navigation baseline that uses
GLIP (Li* et al., 2022) to detect objects and rooms, and combines LLM with soft common-
sense constraints for planning.

• L3MVN (Yu et al., 2023). An LLM-based baseline that finetunes a close-set object detec-
tor (Jiang et al., 2018) and an LLM to conduct frontier-based exploration. We also conduct
experiments that replace its LLM with GPT-4 for fairer comparisons.

• PixNav (Cai et al., 2023). A recent work that solely uses foundation models to pick out
navigation pixels and trains a locomotion module to navigate to chosen pixels.

4.4 RESULTS AND ANALYSIS

We report the main results in Table 1. Our method surpasses all the baselines on both Success Rate
(SR) and Success weighted by Path Length (SPL), especially compared with open-set zero-shot
methods. Our method surpasses the previous State-of-the-Art method on open-set zero-shot object
navigation (Zhou et al., 2023) by over 15% on the success rate metric, suggesting that our framework
is indeed effective.
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Method SR (%) ↑ SPL ↑
w/o GPT-4 53.6 0.230
w/o CoT 51.8 0.208

w/o Discovery 50.0 0.222
w/o Scoring 50.0 0.208

Ours 55.4 0.239

Table 3: Ablation studies on different components
of our method. Experiments are conducted under
the same uniformly sampled episodes.

15.2

12.5
11.7

10.7 10.7

14.3

19.6
18.7

20.5

18.7

16.9
16.1

19.6
18.8

15.2

0

5

10

15

20

25

w/o GPT-4 w/o CoT w/o Discovery w/o Scoring Ours

Collision Exploration Detection

Figure 3: Types and percentages of failure cases
in ablation methods.

First, we compare our method with previous semantic map based methods, such as SemExp (Chaplot
et al., 2020a), ESC (Zhou et al., 2023) and L3MVN (Yu et al., 2023). The results show that our
method performs better since we utilize DiscoverVLM to construct VSSM with versatile out-of-
vocabulary class labels, such as “marble statue” and “range hood”, which helps to alleviate the issue
of limited categories and enriches the semantic information of the environment. Also, compared to
these methods, our method achieves open-set navigation, which better adapts to complex situations
and real-world applications.

Compared with other open-set baselines, such as PixNav (Cai et al., 2023), ZSON (Majumdar et al.,
2022) and GoW (Gadre et al., 2023), our method constructs an explicit map where all discovered
objects are presented. Therefore, we can boost LLMs’ reasoning abilities to balance between
exploration and exploitation and make the agent move to where the goal is most likely to be. Also,
the map constructed by our method is maintained and updated, which is perfect for life-long learning,
enabling downstream robotic tasks with further natural language instructions, while methods like
Gadre et al. (2023); Yokoyama et al. (2023) only construct implicit maps for a certain goal, which is
useless after the navigation.

4.5 ABLATION STUDIES

Probing deeper into our method design, we also performed ablation studies on various components
of our pipeline. Note that to save time and cost, we test all the ablation methods on a subset of the
full dataset under the same uniformly sampled episodes so that there can be slight differences in the
result of our method. Table 3 shows that modifying multiple components of our framework leads to
significantly worse performance. We also categorized the failure cases into different types and report
their percentages in Fig. 3, in which Collision refers to the situation where the agent cannot avoid
colliding with the environment, Exploration means the agent times out while trying to find the goal,
and Detection means the agent mistakenly identifies a wrong object as the goal.

Effectiveness of using larger models. First, we analyze the usage of GPT-4 for LLMs. Compared to
only using GPT-3.5, using larger GPT-4 achieves better performance (+1.8%), reducing failure cases
of Collision and Detection. However, the percentage of Exploration is slightly higher, showing that
larger models have more diverse answers that encourage more exploration, which potentially causes
more time out.

Effectiveness of our joint reasoning pipeline. Then, we analyze different foundation model
components. We found that using CoT prompting (+3.6%) and scoring prompting (+5.4%) are
essential to the strong performance of OpenFMNav since they generate more reasoning chains that
elicit the common sense of large language models. Also, compared to restricting the object set,
leveraging DiscoverVLM not only enables more free-form natural language instructions from users’
input but also enriches the scene’s semantics, which helps the reasoning for frontier-based exploration
and improves performance (+5.4%). These efforts reduce failure cases of all categories.

5 NAVIGATION IN THE REAL WORLD

We further conduct real robot demonstrations to show our method’s ability to understand free-form
natural language instructions and perform open-set zero-shot navigation in the real world.
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my hands!

ProposeLLM

Thought: The instruction is general and 
indicates a need related to hand washing. 
Common objects associated with hand 
washing in an indoor environment 
include a sink, soap, and a towel for 
drying hands. I will list these objects.
𝑂!"#: [sink, soap, towel]

PerceptVLM

𝑂$%&: [3D 
printer, 

keyboard, tap]

𝑂!"#: [sink, soap, towel, tap]
𝑂$%&: [3D printer, keyboard]
𝑂!"%: [cabinet, desk…]

DiscoverVLM

𝒐𝒕

(a) Robust to distractors (b) Robust to open-set objects (c) Robust to free-form demands

Figure 4: Qualitative studies in the real world. Text marked in red indicates objects that potentially
satisfy the instruction. Results show that our method is robust to natural language instructions,
including distractors, open-set objects and free-form demands.

5.1 REAL ROBOT SETUP

For robots, we use a TurtleBot4 robot with scalable structures to navigate on the ground. We limit its
action space to {stop, move_forward, turn_left, turn_right}. As in the simulation, we set
the forward distance to 0.25m and the rotation angle to 30 degrees. For robotic perception, we use a
Kinect RGBD camera to capture RGBD images.

For real-world environments, we select multiple rooms (including offices, labs, and meeting rooms)
with sufficient space and various objects for the robot to navigate. These rooms contain not only
common objects like “chair”, “couch”, “desk”, “computer”, “cabinet”, etc., but also less common
ones like “robot arm”, “3D printer”, “coffee machines”, etc.

5.2 QUALITATIVE STUDIES

We conduct qualitative studies on our OpenFMNav in the real world, as shown in Fig. 4. The results
show that our method can perform effective zero-shot navigation in the real world given free-form
natural language instructions. Especially, our method is robust to distractors, open-set objects and
free-form demands.

For distractors, rather than object categories, our proposed ProposeLLM can extract the attributes
in the instruction (“red chair”), which can be further detected and segmented by PerceptVLM. In
Fig. 4(a), we can see that, among the three chairs in the observation, only the red chair is masked.

For open-set objects, due to the large-scale training data of foundation models, our method can also
navigate to objects that are uncommon and out-of-vocabulary, such as the “robot arm” in Fig. 4(b).

Another intriguing feature of our method is that our method can adaptively add up goals in the
navigation. This happens when the instruction is a free-form demand for ambiguous objects. For
example, in Fig. 4(c), when the user needs to wash hands, the ProposeLLM first proposed “sink”,
“soap” and “towel”, but they are not necessarily present in the scene. When the agent explores the
environment, the DiscoverVLM can actively discover what’s new in the environment and reason
about whether they can potentially fulfill the user’s demand. In this case, a “tap” is discovered and
identified as a goal so that the agent can directly navigate to it without further exploration. This is
extremely helpful when the humans are also unaware of the scene details.

6 CONCLUSIONS

In this paper, we presented a novel framework, OpenFMNav, for open-set zero-shot object navigation.
By leveraging foundation models, our method could understand free-form natural language instruc-
tions, conduct reasoning, and perform effective zero-shot object navigation. Extensive experiments
showed the superiority of our framework. Finally, we conducted real robot demonstrations to validate
our method’s open-set-ness and generalizability to real-world environments.
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A API USAGE

Model Name API Name
ProposeLLM gpt-4-1106-preview
DiscoverVLM gpt-4-vision-preview
ReasonLLM gpt-4-1106-preview

Table 4: API usage

B HYPERPARAMETERS

Parameter Value
Discovery Frequency σfreq 0.01

Frontier Goal Update Interval δ 20
Confidence Score Threshold 0.55

LLM/VLM Temperature 0
Initial Prior Objects Opri See Fig. 5

Table 5: Hyperparameters

chair, bed, plant, toilet, tv, couch, desk, refrig-
erator, sink, bathtub, shower, towel, painting,
trashcan, stairs

Figure 5: Initial prior objects Opri

C PROMPTS AND EXAMPLES

Below we show prompts and examples of LLM input/output.

C.1 PROMPTS FOR PROPOSELLM

The prompts for ReasonLLM are shown in Fig. 6.

C.2 PROMPTS FOR DISCOVERVLM

The prompts for ReasonLLM are shown in Fig. 7.

C.3 PROMPTS FOR PERCEPTVLM

For PerceptVLM, given the current object list, we use dots to separate each object as the object
prompt pt.

For example, if the object list is [chair, bed, plant, toilet, tv, couch], the object prompt
is “chair.bed.plant.toilet.tv.couch”.

C.4 PROMPTS FOR REASONLLM

The prompts for ReasonLLM are shown in Fig. 8.
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SYSTEM_PROMPT="""You are an intelligent embodied agent called
ProposeLLM that follows an instruction to navigate in a real indoor
environment. Your goal is to propose a list of objects that can
satisfy the user's need.

You are firstly given an instruction that indicates the user's need.

If the instruction contains a specific goal object, like "go to the
bed" or "find the red bottle", you should directly output the goal
object with its possible attributes, like "bed" or "red bottle".

Otherwise, if the instruction is more general, like "I'm so
thirsty", you should inference via common sense which objects are
feasible and output a list of objects that can satisfy the user's
need, like "bottle", "cup", "refrigerator", etc.

Notice that your output should be a list of objects with their
possible attributes, even if there is only one object in the
list."""

USER1="""go to the bed"""

ASSISTANT1="""Thought: The instruction contains a specific object
goal, so I will directly output "bed".

Answer: ["bed"]"""

USER2="""I have been standing for hours. I need some place to sit
down and rest."""

ASSISTANT2="""Thought: The instruction is quite general, so I will
use my common sense. The user needs some place to sit down, so
candidate objects in an indoor scene can be chair, couch, etc. I
will output a list of these objects.

Answer: ["chair", "couch"]"""

Figure 6: Prompts for ProposeLLM

SYSTEM_PROMPT="""You are an intelligent assistant called DiscoverVLM
that can understand natural language and scene images. Given a list
of objects and an image, your goal is to discover new objects in the
image that are not in the list.

You should consider the following rules when discovering new
objects:

(1) You should first consider, what's in the image? Note that you
should only include objects in the house, and avoid things that are
part of the house, like ceiling, wall, floor, window etc and avoid
room names, like bedroom, kitchen, etc.

(2) Considering the given object list, you should only output things
that are not in the list or are not similar to things in the list
because your duty is to discover new things. For example, if the
given object list contains "couch" or "tv", you should not output
"sofa" or "television" because they are similar.

(3) Confirm that the objects you output are in the image. For
example, if the image is a bedroom, you should not output "bathtub"
because it is impossible to find a bathtub in a bedroom. And also
confirm the objects you output don't violate rule (1).

(4) Avoid objects are common everywhere. For example, objects like
light switch and door are present in every room, so you should not
output them.

Your output should be in the form of "Answer: <list of objects>"
such as:

Answer: ["chair", "bed", "bottle"]
"""

USER="""What objects can you see in the image?"""

Figure 7: Prompts for DiscoverVLM

SYSTEM_PROMPT="""You are an intelligent embodied agent called ReasonLLM that follows an instruction to navigate in an indoor environment. You are firstly given
an object goal class for you to find, which is called the goal.

Then, at each step, your task is to take several descriptions of what an area contains to output scores for these areas to contain the goal. Each score is a
floating point number between 0 and 1.

Your output should be a list of scores.

At each step, you should consider:

(1) For each description, according to what the area contains, is it possible that the goal is also in this area? To better do reasoning, you can imagine what
kind of room the area is in, for example, a bedroom, a living room, a bathroom, etc. Based on the common sense, you can judge the possibility that the goal to
be in this area.

(2) If the goal class is already in the description, the score should be 1 without any hesitation.

(3) If one area contains nothing, it is still possible that the goal is in that area. Give a score of 0.4 to 0.6. Score the area higher in that case when other
areas are not likely to contain the goal.

(4) If there are no current frontiers, skip the thought and output 'No frontiers'."""

USER1="""Goal: toilet

- Description 0: The area contains a towel, a bathtub and a sink.

- Description 1: The area contains a bed and a plant.

- Description 2: The area contains a sofa, a TV and a table.

"""

ASSISTANT1="""Thought: Let's analyze each description.

- Description 0: this area contains a bathtub and a sink, so it is possibly a bathroom, and the goal is toilet, so it is possible that the goal is in this area,
I will give a score of 0.9

- Description 1: this area contains a bed and a plant, so it is possibly a bedroom, and the goal is toilet, so it is not likely that the goal is in this area. I
will give it a 0.2

- Description 2: this area contains a sofa, a TV and a table, so it is possibly a living room, and the goal is toilet, so it is also not likely that the goal is
in this area. I will give it a 0.3

Answer: [0.9, 0.2, 0.3]"""

USER2="""Goal: bed

- Description 0: The area contains a towel, a bathtub and a sink.

- Description 1: The area contains a bed and a plant.

- Description 2: The area contains a sofa, a TV and a table.

"""

ASSISTANT2="""Thought: Let's analyze each description.

- Description 0: this area contains a bathtub and a sink, so it is possibly a bathroom, and the goal is bed, so it is not possible that the goal is in this
area. My score is 0.1

- Description 1: this area contains a bed, which is the goal, so the score is 1

- Description 2: this area contains a sofa, a TV and a table, so it is possibly a living room. The goal is a bed, so it can be near this area. I will give it a
0.5

Answer: [0.1, 1, 0.5]"""

Figure 8: Prompts for ReasonLLM
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