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1 Introduction

Understanding passenger intents from spoken interactions and car’s vision (both inside and outside the
vehicle) is an important building block towards developing contextual dialog systems for autonomous
vehicles (AV). In this study, we continued exploring AMIE (Automated-vehicle Multimodal In-cabin
Experience), the in-cabin agent responsible for handling multimodal passenger-vehicle interactions.
When the passengers give instructions to AMIE, the agent should parse commands properly consider-
ing three modalities (i.e., verbal/language/text, vocal/audio, visual/video) and trigger the appropriate
functionality of the AV system.

In previous work [6}[7], we collected a multimodal in-cabin dataset with multi-turn dialogues between
the passengers and AMIE using a Wizard-of-Oz (WoZ) scheme, and we experimented with various
RNN-based models to detect utterance-level intents (i.e., set-destination, change-route, go-faster,
go-slower, stop, park, pull-over, drop-off, open-door, other) along with relevant slots associated with
these intents.

In this work, we discuss the benefits of multimodal understanding of in-cabin utterances by incorpo-
rating verbal/language input together with the non-verbal/acoustic and visual input from inside and
outside the vehicle. This ongoing research has potential impact of exploring real-world challenges
with human-vehicle-scene interactions for autonomous driving support via spoken utterances.

2 Methodology

We explored leveraging multimodality for the Natural Language Understanding (NLU) module in
the Spoken Dialogue System (SDS) pipeline. As our AMIE in-cabin dataseﬂ has audio and video
recordings, we investigated three modalities for the NLU: text, audio, and visual.

For text (verbal/language) modality, previous work [[7] presents the details of our best-performing
Hierarchical & Joint Bi-LSTM [11} 3 15} [14]] model (H-J oint-2f] and the results for utterance-level

Details of AMIE data collection setup can be found in [12} [7].

2H-Joint-2: Detects/extracts intent keywords & slots using seq2seq Bi-LSTMs first (Level-1), then only the
words that are predicted as intent keywords & valid slots are fed into Joint-2 model (Level-2), which is another
seq2seq Bi-LSTM network for utterance-level intent detection (jointly trained with slots & intent keywords).

14th Women in Machine Learning Workshop (WiML 2019), co-located with the 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



intent recognition and slot filling. These previous uni-modal results were obtained on the transcribed
(i.e., via human transcriptions) and/or recognized (i.e., via Automatic Speech Recognition) text using
GloVe word embeddings [9]] as features.

In this study, we explore the following multimodal features to better assess in-cabin passenger intent
in autonomous vehicles:

2.1 Word and Speech Embeddings

We incorporated pre-trained speech embeddings, SpeechZVecﬂ as features. These Speech2Vec
embeddings are trained on a corpus of 500 hours of speech from LibriSpeech. We experimented with
concatenating word and speech vectors using GloVe [9] (400K vocab, 100-dim), Speech2Vec [1]]
(37.6K vocab, 100-dim), and its Word2Vec [5] (37.6K vocab, 100-dim) counterpart. These Word2Vec
embeddings are trained on the transcript of the same speech corpus (LibriSpeech).

2.2 Audio Features

Using openSMILEE] [2], 1582 audio features are extracted for each utterance using the segmented au-
dio clips from the in-cabin AMIE dataset. These features are the INTERSPEECH 2010 Paralinguistic
Challenge (IS10) features including PCM loudness, MFCC, log Mel Freq. Band, LSP, etc. [10].

2.3 Visual Features

We extracted intermediate CNN featuresf] from each video clip segmented per utterance in the AMIE
dataset. Using the feature extraction process described in [4], visual descriptors are extracted from
the activations of the intermediate convolution layers of a pre-trained CNN. We used the pre-trained
Inception-ResNet-v2 modeﬂ [13] and generated 4096-dim features for each sample. We utilized two
sources of visual information: (i) cabin/passenger view RGB video streams, (ii) road/outside view
RGB camera recordings.

3 Experimental Results

Performance results of the compared intent recognition models with varying modality and feature
concatenations can be found in Table I} using hierarchical joint learning (H-Joint-2). We investigated
incorporating the audio-visual features on top of text-only and text+speech embedding models. Using
speech embeddings, as well as adding IS10 features from audio and intermediate CNN features from
video brought improvements to our intent recognition models, reaching 0.92 F1-score.

Table 1: Fl-scores of Intent Recognition with Multimodal Features (Embeddings & Audio & Visual)

Modalities Features F1(%)
Text GloVe 89.02
Text & Audio GloVe & Audio (openSMILE/IS10) 89.53
Text & Visual GloVe & Video_cabin (CNN/Inception-ResNet) 89.40
Text & Visual GloVe & Video_road (CNN/Inception-ResNet) 89.37
Text & Visual GloVe & Video_cabin+road (CNN/Inception-ResNet) 89.68
Text & Audio GloVe+Speech2Vec 90.85
Text & Audio GloVe+Word2Vec+Speech2Vec 91.29
Text & Audio GloVe+Word2Vec+Speech2Vec & Audio (IS10) 91.68
Text & Audio & Visual GloVe+Word2Vec+Speech2Vec & Video_cabin (CNN) 91.50

Text & Audio & Visual GloVe+Word2Vec+Speech2Vec & Video_cabin+road (CNN)  91.55

3Further details and in-cabin dataset statistics can be found in the short-paper version of this work [8].
*github.com/iamyuanchung/speech2vec-pretrained-vectors

>www.audeering.com/opensmile/

8 github.com/MKLab-ITI/intermediate-cnn-features

" github.com/tensorflow/models/tree/master/research/slim



4 Conclusion

In this work, we briefly present our initial explorations towards multimodal understanding of passenger
utterances in autonomous vehicles. We show that our experimental results outperformed the uni-
modal text-only baseline results, and with multimodality, we achieved improved performances for
passenger intent detection in AVs. These initial results may require further explorations for specific
intents such as stop (e.g., audio intensity could have helped), or for relevant slots such as passenger
gesture/gaze (e.g., cabin-view features) and outside objects (e.g., road-view features).
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