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ABSTRACT

In black-box optimization, when directly evaluating the function values of solu-
tions is very costly or infeasible, access to the objective function is often lim-
ited to comparing pairs of solutions, which yields dueling black-box optimization.
Dueling optimization is solely based on pairwise preferences, and thus notably
reduces cost compared with function value based methods such as Bayesian op-
timization. However, an optimization performance gap obviously exists between
dueling based and function value based methods. This is mainly due to that most
existing dueling optimization methods do not make full use of the pairwise prefer-
ences collected. To fill this gap, this paper proposes relation augmented preferen-
tial Bayesian optimization (RAPBO) via preference propagation. By considering
solution similarity, RAPBO aims to uncover the potential preferential relations
between solutions within different preferences through the proposed preferential
relation propagation technique. Specifically, RAPBO first clusters solutions using
a Gaussian mixture model. After obtaining the solution set with the highest intra-
cluster similarity, RAPBO utilizes a directed hypergraph to model the potential
relations between solutions, thereby realizing relation augmentation. Extensive
experiments are conducted on both synthetic functions and real-world tasks such
as motion control and spacecraft trajectory optimization. The experimental results
disclose the satisfactory accuracy of augmented preferences in RAPBO, and show
the superiority of RAPBO compared with existing dueling optimization methods.
Notably, it is verified that, under the same evaluation cost budget, RAPBO is
competitive with or even surpass the function value based Bayesian optimization
methods with respect to optimization performance. The codes can be found in
https://anonymous.4open.science/r/RAPBO-E15F.

1 INTRODUCTION

Black-box optimization (Conn et al., 2009; Liu et al., 2022), also termed as derivative-free opti-
mization, is a class of optimization methods designed for situations where the objective function
is unknown, complex, or expensive to evaluate. It enables global search for the optimal solution,
with Bayesian optimization (BO) (Garnett, 2023; Mei et al., 2023; Shahriari et al., 2016) as a rep-
resentative. Due to the significant advantages and progress of black-box optimization, it has been
widely applied in fields such as chemical synthesis (Shields et al., 2021), machine learning (Freund
& Schapire, 1997; Elsken et al., 2019) and reinforcement learning (Qian & Yu, 2021).

In traditional black-box optimization, evaluating the numerical objective function values is typically
necessary. However, in many real-world scenarios, acquiring the objective function values can be
extremely costly or entirely infeasible (Brochu et al., 2010). It has been found that comparing
two solutions by preferences is relatively cheaper than scoring solutions (Kahneman & Tversky,
1979), such as in A/B tests (Siroker & Koomen, 2013). Thus, dueling or preferential optimization
has been developed as an easier and cheaper alternative, e.g., preferential Bayesian optimization
(PBO) (González et al., 2017). Instead of relying on function values, dueling optimization leverages
pairwise preferences (i.e., which solution is preferred) to guide the optimization process, making it
easier and cheaper in scenarios where evaluating objective function values is costly or infeasible.
Dueling optimization has been successfully applied in a wide range of fields, such as visual design
optimization (Koyama et al., 2020) and robotic gait optimization (Li et al., 2021), showcasing its
adaptability and effectiveness across various domains.
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However, due to that most existing dueling optimization methods have typically made simple use of
pairwise preferences, a obvious optimization performance gap exists between dueling or preference
based methods such as PBO and function value based methods such as BO. It is obviously that
insufficient utilization of pairwise preferences may significantly impact the performance of dueling
optimization, while making a fuller use of the preferences can improve the optimization process.

Problem. Although dueling optimization can optimize using only low-cost pairwise preferences, the
insufficient exploitation of preferences of existing methods could significantly limit the optimization
performance of dueling optimization, e.g., preferential Bayesian optimization. This leads to an
obvious optimization performance gap between preference based and function value based methods.

Contribution. This paper aims to fill the optimization performance gap between preference based
and function value based methods, and answer whether the preference based methods can match
or even surpass the performance of function value based methods. To this end, we propose the
relation augmented preferential Bayesian optimization (RAPBO) method via preference propaga-
tion. RAPBO aims to uncover the potential preferential relations between different preferences
through the proposed preferential relation propagation technique based on solution similarity. The
experimental results reveal that the preferences augmented by the preference propagation technique
achieve satisfactory accuracy and verify its superiority over existing dueling optimization methods.
Notably, it is verified that, within the same evaluation cost budget, the performance of RAPBO can
match and even surpass that of function value based Bayesian optimization methods.

The following sections provide an overview of related work and essential preliminaries, detail the
proposed RAPBO method, present the experimental results, and conclude the paper.

2 RELATED WORK

This section provides a brief overview of the related work, including preferential Bayesian optimiza-
tion and hypergraph, to explain the necessary preliminary knowledge and notation.

2.1 PREFERENTIAL BAYESIAN OPTIMIZATION

To extend BO to scenarios where direct access to the objective function is unavailable, but infor-
mation about user preferences can be obtained, González et al. (2017) propose a framework called
preferential Bayesian optimization (PBO). PBO leverages pairwise preferences to fit a Gaussian pro-
cess (GP) (Rasmussen & Williams, 2006) within preference function domain. The PBO employs
the dueling-Thompson Sampling (DTS) to determine the potential optimal solution and the solution
with high uncertainty as candidates for the next duel. Benavoli et al. (2021) prove that the true
posterior distribution of the preference function is a skewed Gaussian process (SkewGP), and incor-
porate SkewGP to enhance the performance of PBO. Based on the work of Benavoli et al. (2021),
Takeno et al. (2023) propose a practical method, HB, which ensures high computational efficiency
and low sample complexity. Due to the lack of theoretical guarantees for most acquisition functions
in PBO, Astudillo et al. (2023) introduce qEUBO, a promising acquisition function with a grounded
decision-theoretic justification. Guided by the optimism principle, POP-BO (Xu et al., 2024) con-
structs a confidence set from preferences and employs an optimistic strategy that ensures a bound
on cumulative regret, enabling it to effectively report an estimated best solution with guaranteed
convergence. To address the dimensionality issue exacerbated by modeling the preference function,
PE-DBO (Zhang et al., 2023) extends the concept of intrinsic effective dimensionality to preference
function. Despite these advancements, these methods still do not fully utilize the available pairwise
preferences, which continues to impact the performance of dueling optimization.

Instead of constructing a surrogate model to fit the preference function, Sui et al. (2017) and Xu
et al. (2020) respectively propose kernel-self-sparring (KSS) and comp-GP-UCB (COMP-UCB).
KSS uses a GP to model the function, where the value represents the probability of one solution
beating the optimal solution, rather than modeling a preference function. COMP-UCB employs the
Borda function, inspired by the Borda score (Sui et al., 2018), to replace the preference function and
regards the average performance of all solutions as the basis for comparison. While these methods
simplify the dueling optimization problems compared to the methods that model the preference
function, they may still face challenges caused by the insufficient utilization of pairwise preferences,
leading to performance that cannot match that of function value based methods.
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2.2 HYPERGRAPH REPRESENTATION

Hypergraphs (Bretto, 2013) are mathematical models that extend the classical graph structure. In
a traditional graph, edges are binary relations connecting two vertices, while a hypergraph allows
edges to connect multiple vertices, and these edges are called hyperedges. This characteristic enables
hypergraphs to naturally represent more complex, higher-order relationships and interactions, par-
ticularly excelling in modeling multi-party interactions. Various algorithms, such as hypergraph par-
titioning (Papa & Markov, 2007) and hypergraph clustering (Zhou et al., 2006), have been developed
to efficiently process hypergraph structures, further enhancing their applicability in large-scale data-
driven tasks. Consequently, hypergraphs are widely used in fields such as machine learning (Gao
et al., 2022), data mining (Ji et al., 2020), and social network analysis (Lin et al., 2009).

3 PRELIMINARIES

3.1 DUELING OPTIMIZATION

Consider a black-box function f : X → R, where X ⊂ RD, which is costly to evaluate. The goal
of global optimization is to find the optimal solution x∗ = argmaxx∈X f(x) in a D-dimensional
continuous solution space. Instead of directly evaluating numerical function values, the objective
function is evaluated by comparing pairs of solutions (x,x′), i.e., duels. An human oracle provides
feedback on which solution in a duel is better, yielding binary information (i.e., 0 for x′ and 1 for
x). This type of feedback is referred to as preference, and only these preferences will be used during
the optimization process. Throughout this paper, each duel is treated as a coloum vector, represented
by [x;x′] ∈ R2D, where the space with dimension 2D is called dueling solution space.

Preference Function. In dueling optimization, the feedback from a comparison between two so-
lutions [x;x′] is treated as a stochastic process. This feedback is sampled from a Bernoulli distri-
bution, where the probability reflects the likelihood that solution x is preferred over x′. Under the
assumption that the probability of solution x being preferred over x′ is positively correlated with
the difference in their objective function values, i.e., P (x ≻ x′) ∝ f(x) − f(x′), and the logistic
function is commonly used to convert this difference into a probability. Therefore, the preference
function in the dueling solution space can be formulated as

πf ([x;x
′]) = P (x ≻ x′) =

1

1 + e−[f(x)−f(x′)]
, (1)

where πf ([x;x
′]) represents the probability that solution x is preferred over solution x′ in the

dueling solution space.

Copeland Score. To find the optimal solution x∗, we introduce the concept of the Condorcet win-
ner, an extension from multi-armed bandit tasks, which is the solution that outperforms all others.
However, in dueling optimization, a strict Condorcet winner cannot be obtained, so the solution with
the highest Copeland score (González et al., 2017) is selected as the best one. Due to the objective
function is continuous, the normalized Copeland score is defined as

S(x) = Vol(X )
−1

∫
X
I{πf ([x;x′])≥0.5} dx′, (2)

where Vol(X )−1 =
∫
X 1dx′ is a normalizing constant that ensures S(x) is in the [0, 1] range and

I{·} is the indicator function. For the optimal solution x∗, πf ([x
∗;x′]) ≥ 0.5 holds for all so-

lutions, which implies that S(x∗) = Vol(X )−1
∫
X 1dx′ = 1. The difficulty in calculating the

normalized Copeland score limits its applicability in dueling optimization, thus the soft-Copeland
score (González et al., 2017) is adopted, which has the empirically same maximum as the normalized
Copeland score. The soft-Copeland score is defined as

C(x) = Vol(X )−1

∫
X
πf ([x;x

′])dx′. (3)

3.2 DIFFERENT SAMPLING RULES IN PREFERENTIAL BAYESIAN OPTIMIZATION.

Rather than classifying dueling optimization methods based on the construction of surrogate models
(see Section 2.1), this paper categorizes them according to whether one solution in the next duel is
fixed, specifically if the current best solution is used as one of the solution in the next duel.
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For methods where one solution in the duel is fixed, such as HB (Takeno et al., 2023) and POP-
BO (Xu et al., 2024), the first solution is selected as the current best, while the second solution
is resampled based on a given acquisition function. In this case, the pairwise preferences are not
entirely independent, as there is a common solution in the duels of consecutive comparisons, which
allows a part of relations between different preferences to be inferred. However, this strategy limits
the ability of methods to explore the solution space. In contrast, in the second type of methods, both
solutions in a candidate duel are resampled through the acquisition functions, with PBO (González
et al., 2017) being a typical algorithm of this kind. The PBO uses DTS to choose the potential
optimal solution and the most uncertain one for the next duel, thereby balancing exploration and
exploitation. However, these approaches lead to pairwise preferences being more isolated, making
it challenging to obtain the relations between different preferences.

In this paper, we focus on the second type of methods and aim to uncover the potential preferential
relations through a preference propagation technique, thereby enhancing the performance of dueling
optimization to match that of function value based methods.

3.3 DIRECTED HYPERGRAPH

Directed hypergraphs are extension of traditional graphs in which edges, called directed hyperedges,
can connect multiple vertices from a source set to a target set, unlike traditional graphs where edges
only link pairs of vertices. Formally, a directed hypergraph is defined as G = (V, E), where V rep-
resents the set of vertices and E represents the set of directed hyperedges. Each directed hyperedge
ε ∈ E is an ordered pair of vertex subsets (Vs,Vt), where Vs ⊆ V is the source set, and Vt ⊆ V is
the target set, with Vs ∩Vt = ∅. The directed hyperedge ε ∈ E represents a relationship in which all
vertices in the source set Vs direct to all vertices in the target set Vt. Directed hypergraphs provide
a flexible way to model complex interactions between groups of vertices, avoiding the individual
connections between each pair, as would be necessary in traditional graphs.

4 THE PROPOSED METHOD

Although dueling optimization, e.g., preferential Bayesian optimization, adapts well to scenarios
where the objective function can only be evaluated through comparing a pair of solutions, the op-
timization performance gap still exists between preference based and function value based meth-
ods due to the insufficient utilization of pairwise preferences (i.e., which solution is preferred).
This section introduces the proposed method, relation augmented preferential Bayesian optimiza-
tion (RAPBO), which aims to make fuller use of pairwise preferences and enhance the performance
of dueling optimization through a preference propagation technique, thereby achieving performance
comparable with function value based methods such as Bayesian optimization. To clarify the expla-
nation of the proposed method, we have included a notation section in Appendix E.

4.1 RELATION AUGMENTED PREFERENTIAL BAYESIAN OPTIMIZATION

To make fuller use of the pairwise preferences and thus enhance the performance of dueling opti-
mization, the RAPBO method is proposed, with pseudo-code shown in Algorithm 1.

By utilizing a preference propagation technique (detailed in Section 4.2) to make fuller use of the
pairwise preferences, and employing PBO as the framework for this process, RAPBO is proposed.
The RAPBO begins with an initial dataset DM , consisting of M evaluated pairwise preferences
{[x;x′], p}, where p indicates whether one solution can beat the other (i.e., 0 for x′ and 1 for
x). In each iteration j, RAPBO fits a surrogate model GP to the current dataset Dj and performs
the preference propagation with parameter k to create an augmented dataset D+

j (line 2). This
augmented dataset includes additional preferential relations, allowing for fuller utilization of the
existing pairwise preferences. A new GP model GP+ is then trained on D+

j to learn the preference
function πfp,j([x;x

′]) (line 3). A sample function πf̂p
is drawn from the new GP model GP+,

which guides the selection of the first solution xnext (lines 4-5). Next, based on the GP , the solution
with the highest uncertainty is chosen as x′

next (line 6), resulting in a candidate duel [xnext;x
′
next].

Then, the duel is evaluated, and the resulting preference pj+1 is used to update the dataset to Dj+1

(lines 7-8). It is worth noting that the additional preferential relations generated by the preference

4
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Algorithm 1 Relation Augmented Preferential Bayesian Optimization (RAPBO)
Input: Initial dataset DM = {[xi;x

′
i], pi}Mi=1, number of available duels N , boundary of subspace

X ⊂ RD and preference propagation parameter k.
Procedure:
1: for j = M to M +N − 1 do
2: Fit a GP to Dj and perform preference propagation with parameter k to obtain the aug-

mented dataset D+
j .

3: Fit a GP+ to D+
j and learn πfp,j([x;x

′]).
4: Sample a function πf̂p

from GP+.
5: xnext = argmaxx∈X

∫
X πf̂p

([x;x′];D+
j )dx

′ .
6: x′

next = argmaxx′∈Xσ(GP|x = xnext,Dj) .
7: Run the duel [xnext;x

′
next] and obtain pj+1.

8: Augment Dj+1 = {Dj ∪ ([xnext;x
′
next], pj+1)}.

9: end for
10: Fit a GP to DM+N and find the solution x∗ with the highest soft-Copeland score.
11: return x∗.

propagation technique in each iteration do not carry over to the next iteration. After N iterations,
the final GP model is fit to the complete dataset DM+N , and the optimal solution x∗ is determined
based on the highest soft-Copeland score (line 10).

In the following sections, we will provide a detailed explanation of the preference propagation tech-
nique as well as the time and space complexity of the technique.

4.2 PREFERENCE PROPAGATION TECHNIQUE

Preference Propagation Technique

 good solution bad solution

 similar solution  preference 
 hyperedges 

solution

Figure 1: A diagram of the prefer-
ence propagation technique. The pair-
wise preferences are modeled as a di-
rected graph, where each solution is rep-
resented by a vertex and each prefer-
ence is represented by a directed edge,
pointing from the worse solution to the
better solution (left). And after prefer-
ence propagating, a directed hypergraph
is used to model the relations between
the solutions (right).

In order to make fuller use of the pairwise preferences,
a preference propagation technique is used to uncover
potential relations between different preferences, with
the pseudo-code detailed in Appendix C. The preference
propagation technique first clusters solutions using a clus-
tering algorithm. Specifically, we employ a Gaussian
mixture model (Reynolds et al., 2009), which excels at
capturing complex data distributions by modeling them
as a combination of multiple Gaussian components. After
identifying the solution set with the highest intra-cluster
similarity, the technique utilizes a hypergraph to model
the relations between solutions, achieving relation aug-
mentation. This technique enables a fuller utilization of
the pairwise preferences, ultimately enhancing the opti-
mization process.

Inspired by Sui et al. (2017), we model a special Gaus-
sian process GPD, where the kernel is initially set as
1.0 ∗ RBF (1.0), to fit the function where the value rep-
resents the probability of one solution beating the op-
timal solution, ensuring that GPD operates in the D-
dimensional solution space. Then, GPD can be used to
compute the covariance between any two solutions in the dataset, which can serve as a measure of
similarity between the two solutions. Finally, these similarities will be transformed into distances,
specifically 1− similarity, and clustering will be performed based on these distances, resulting in
a set of solutions with the highest intra-cluster similarity (i.e., the smallest intra-cluster distance).

As Figure 1 shown, pairwise preferences are modeled as a directed graph, where each vertex repre-
sents a solution, and each preference corresponds to a directed edge pointing from the worse solution
to the better solution. Next, preference propagation is conducted on the current dataset, with the set
of all solutions defined as V . The preference propagation technique first utilizes clustering based on

5
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the surrogate model GPD to partition all solutions into k clusters and obtain a solution set with the
highest intra-cluster similarity (the green circle), where the solutions in this set are termed similar
solutions (the green vertices), and this set is defined as Vs ⊆ V . We assume that similar solutions
exhibit analogous relations, meaning that if A and B are similar solutions and A is preferred over C,
then B is also preferred over C. Subsequently, all solutions that can direct towards similar solutions
via directed edges are termed bad solutions (the blue vertices), forming the set of the bad solutions
Vbad ⊆ V , while all solutions that can be reached from similar solutions through directed edges are
termed good solutions (the red vertices), forming the set of the good solutions Vgood ⊆ V . The sets
Vbad, Vs, and Vgood have no intersection with each other. Finally, we construct a complete directed
hypergraph G using two directed hyperedges. Specifically, ε1 directs from the set of bad solutions
to the set of similar solutions, i.e., ε1 is an ordered pair of sets (Vbad,Vs), and ε2 directs from the set
of similar solutions to the set of good solutions, i.e., ε2 is an ordered pair of sets (Vs,Vgood).

Based on this directed hypergraph G = (V, E), where E = {ε1, ε2}, RAPBO can uncover more
potential preferential relations, i.e., all similar solutions are better than the bad solutions, and all
good solutions are better than the similar solutions. Moreover, by leveraging the transitivity of
preferences, we can also conclude that all good solutions are better than the bad solutions. Thus,
the preference propagation technique realizes relation augmentation based on the existing dataset,
enabling a fuller utilization of the pairwise preferences.

4.3 COMPLEXITY ANALYSIS

In this section, we analyze the improvements in time and space complexity achieved by using hy-
pergraphs to model the relations between solutions in the preference propagation technique.

The introduction of hypergraphs avoids the full connection that occurs when traditional graphs are
used in the preference propagation technique. To establish the connections between the three so-
lution sets, a traditional graph requires full connections from the bad solution set to the similar
solution set, and from the similar solution set to the good solution set. We denote the quantities of
bad solutions, similar solutions, and good solutions as n1, n2 and n3, respectively. Specifically, in
the case of using a traditional graph, the time complexity of modeling the relations between solu-
tions is O(n1 ∗ n2 + n2 ∗ n3), and the space complexity of the preference propagation technique is
also O(n1 ∗ n2 + n2 ∗ n3). However, when employing a hypergraph instead of a traditional graph,
the two solution sets can be directly connected through a single hyperedge, resulting in the time
complexity of modeling the relations reducing to O(m), where m is the number of hyperedges and
m = 2 in the preference propagation technique. Thus, the time complexity can also be expressed
as O(2). Additionally, the space complexity of the preference propagation technique also decreases
to O(m + n1 + n2 + n3) with m = 2. The reduction in complexity brought about by the directed
hypergraphs makes the preference propagation technique more efficient and practical.

5 EXPERIMENT

In this section, we compare RAPBO with a series of dueling optimization algorithms through ex-
periments on synthetic functions and real-world tasks. RAPBO is implemented by BoTorch (Ba-
landat et al., 2020) and our experimental codes are publicly available at https://anonymous.
4open.science/r/RAPBO-E15F. RAPBO uses a Gaussian process with default parameters
from the BoTorch library as the surrogate model, and employs CMA-ES (Hansen et al., 2003) as the
optimizer of the acquisition function. We compare RAPBO with four dueling optimization meth-
ods, where both solutions in a candidate duel are resampled based on specific acquisition functions,
rather than having one solution fixed as the current best, such as HB (Takeno et al., 2023) and POP-
BO (Xu et al., 2024). The methods include PBO (González et al., 2017), KSS (Sui et al., 2017),
qEUBO (Astudillo et al., 2023) and a simplified version of COMP-UCB (Xu et al., 2020), which
omits the second part of the optimization process that depends on function values. Specifically, PBO
can be regarded as the version of RAPBO after ablating the preference propagation technique. The
experiments are designed to answer the following four significant questions.

Q1: Effectiveness and superiority: Can RAPBO handle dueling optimization tasks and achieve
better performance than other dueling optimization methods?

6
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Figure 2: The best function value found by RAPBO on synthetic functions are compared with differ-
ent dueling optimization algorithms. All methods are evaluated with 5 initial duels, 100 iterations,
and each experiment is repeated 20 times. The mean and standard deviation of the results are plotted.
The horizontal axis of the plots represents the number of evaluations, and the vertical axis represents
the best function value found by the algorithm.

Q2: Utilization: Dose RAPBO uncover potential preferential relations based on the existing
preferences and make fuller use of pairwise preferences?

Q3: The benefit of dueling optimization: Under a fixed budget, can RAPBO match or even
surpass the performance of function value based Bayesian optimization methods?

Q4: The impact of hyper-parameters: How sensitive is RAPBO to changes in hyper-parameters?

The four questions are answered sequentially in this section. For all tasks, the best function value
found so far is used as the evaluation criterion.

5.1 EXPERIMENTAL SETTINGS

The Setting of Synthetic Functions. To evaluate the performance of RAPBO, experiments are
first conducted on synthetic functions. In this paper, we construct objective functions for evalua-
tion in a standard setting based on different synthetic functions1. Specifically, let f : RD → R
be a base synthetic function, with its domain adjusted to [−1, 1]D. The input is an D-dimensional
vector x = [x1, x2, . . . , xD], and the output is the function value f(x) for this input. In the exper-
iments, we evaluate RAPBO on six synthetic functions with D = 10, namely Dixon-Price, Levy,
Sphere, Rosenbrock, Griewank, and Schwefel. These synthetic functions collectively cover various
optimization problem types, including multimodal landscapes, complex terrains, periodic variations,
and convex optimization. All experiments on synthetic functions are maximization optimization.

The Setting of Real-world Tasks. To further explore the performance of RAPBO and its appli-
cability to real-world tasks, RAPBO is evaluated on three real-world datasets. The first dataset is
RobotPush problem (Eriksson et al., 2019), which is a noisy 14-dimensional motion control problem
involving optimizing the pre-image for pushing an object to a goal location. The second dataset is
Sagas (Schlueter et al., 2021), a 12-dimensional problem, which is designed for trajectory optimiza-
tion problems, aiming to minimize the overall mission length to reach targets. The third dataset is
a 10-dimensional problem, Cassini1-MINLP (Schlueter & Munetomo, 2019), which is designed to

1http://www.sfu.ca/~ssurjano/optimization.html

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60 70 80 90100
Iteration

2

4
B

es
t-s

o-
fa

r

RobotPush
RAPBO (ours) PBO KSS qEUBO COMP-UCB

10 20 30 40 50 60 70 80 90100
Iteration

8

6

4

2

B
es

t-s
o-

fa
r

Sagas

10 20 30 40 50 60 70 80 90100
Iteration

2.0

1.5

1.0

0.5

B
es

t-s
o-

fa
r

×102 Cassini1-MINLP

Figure 3: The best function value found by algorithms on real-world datasets. Each experiment is
repeated 20 times. The mean and standard deviation of the results are plotted. The horizontal axis
of the plots represents the number of evaluations, and the vertical axis represents the best function
value found by the algorithm. All methods are evaluated with 5 initial duels and 100 iterations.

optimize a mixed-integer nonlinear programming problem (MINLP), allowing for flexible selection
of any planet in the solar system. These real-world datasets are well-suited for dueling optimization.
RobotPush is a noisy dataset where the noise affects the performance of function value based meth-
ods, while dueling optimization can mitigate the impact of noise to some extent. Cassini1-MINLP
and Sagas are spacecraft trajectory optimization problems where evaluating the function value of a
given solution may be very costly and time-consuming, while comparing a pair of solutions is much
more manageable. All real-world tasks are maximization tasks.

5.2 THE PERFORMANCE OF RAPBO

About Q1: Effectiveness and Superiority. In the synthetic functions and real-world tasks experi-
ments, I = 500 samples are employed to estimate the integral of the soft-Copeland score, and the
GP model is initialized using M = 5 duels, followed by N = 95 duels for the optimization process.
For RAPBO, we use k = 3 to execute the preference propagation technique. For more detailed
algorithm parameter settings, refer to the Appendix C. All experiments are repeated 20 times and
the results are shown in Figure 2 and 3. More detailed results are in the Appendix D.

Across all synthetic functions, RAPBO consistently achieves better performance compared to the
other optimization methods, showcasing its ability to handle dueling optimization tasks well. The
RAPBO curve converges relatively quickly and remains below other methods at around 50 iterations,
indicating that it finds better solutions earlier in the optimization process. Moreover, RAPBO shows
a stable improvement in performance during optimization, particularly as other methods begin to
converge around iterations 70 (a phenomenon we will explore further in the next section). Finally,
the standard deviation of RAPBO is relatively narrow in most cases, suggesting that its performance
is more reliable compared to the other methods, particularly in challenging functions like Griewank.

Across all real-world tasks, the RAPBO also achieves the best results. In RobotPush task, PBO,
KSS, and COMP-UCB all achieve the similar final performance, as they are troubled by noise during
optimization. However, due to the preference propagation technique, which uncovers many potential
preferential relations from the existing preferences, RAPBO can find the better solutions. In Sagas
and Cassini1-MINLP tasks, RAPBO exhibits a stable improvement throughout the optimization
process, and ultimately achieve the best results.

In a nutshell, the experimental results verify that RAPBO can handle dueling optimization tasks well
and reflect the superiority of RAPBO over other dueling optimization methods, which answers Q1.

About Q2: Utilization. To explore the utilization of pairwise preferences in RAPBO and explain
why RAPBO shows a stable improvement in performance, we analyze the augmented preferences
to better understand the factors driving the algorithm performance, as shown in Figure 4. The
experiments conduct on the Griewank function and three real-world tasks, with all settings consistent
with those in the above section, and the experiments are repeated 20 times.

As shown in Figure 4, a significant number of augmented preferences are newly added after pref-
erence propagation, and these preferences all maintain a high accuracy, which verifies that pairwise
preferences are not fully utilized in previous work like PBO (González et al., 2017).
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Figure 4: The utilization of RAPBO on Griewank function and three real-world tasks. The figure
shows the mean number of preferences in the original dataset (blue) and the augmented preferences
newly added after preference propagation (red) in the top plot, as well as the mean accuracy of
the augmented preferences in the bottom plot. During the optimization process, RAPBO uses a
combination of original preferences and augmented preferences (blue + red). All settings are the
same as Figure 2 and Figure 3, and each experiment is repeated 20 times.

The Figure 4(a) illustrates the results on the Griewank function, which we consider as an ideal en-
vironment. In the top plot, it is clear that as optimization progresses, the number of newly added
augmented preferences significantly exceeds that of original preferences, with a faster growth rate
as well. The bottom plot shows the mean accuracy of the augmented preferences, which increases
steadily throughout the optimization process, consistently remaining above 0.5. Additionally, the
lower accuracy of the augmented preferences during the early process of optimization may explain
why RAPBO performs worse than methods like PBO and KSS in certain situations, as shown in
Figure 2, and as the accuracy of the augmented preferences increases, the performance of RAPBO
also improves rapidly. The Figure 4(b) shows the results on the RobotPush task, and due to the
presence of the noise, the accuracy of the augmented preferences is relatively low, but it remains
consistently above 0.5. In this context, the preference propagation technique does not merely seek
to propagating more relations, but instead uncovers a limited number of relations from the existing
pairwise preferences, i.e., the scope of preference propagation is relatively narrow. This behavior
ensures that the accuracy of the augmented preferences does not decline further, thereby preventing
the newly generated preferential relations from affecting optimization performance. The Figure 4(c)
and (d) show the results on the Sagas and Cassini1-MINLP tasks, respectively. In both tasks, the
augmented preferences all exhibit relatively high accuracy, which encourages the preference prop-
agation technique to uncover more preferential relations from the existing dataset, i.e., the scope of
preference propagation is relatively broad. In the three real-world tasks, due to the complexity of the
tasks, there is no gradual increase in accuracy of the augmented preferences as shown in Figure 4(a).

In a nutshell, the results indicate that RAPBO has effectively uncovered the potential preferential
relations, thereby further utilizing the available preferences, which answers Q2.

5.3 DUELING OPTIMIZATION VS. FUNCTION VALUE BASED OPTIMIZATION

About Q3: Benefit of Dueling Optimization. To explore the optimization performance gap be-
tween preference based and function value based methods, and verify that the performance of
RAPBO can match or even surpass that of function value based Bayesian optimization methods,
RAPBO and PBO (regarded as the ablated version of RAPBO) are compared with the function
value based method, GP-UCB (Srinivas et al., 2010). All methods are tested on the real-world tasks
and repeated 20 times, with the results shown in Figure 5. In Figure 5(a), (b) and (c), the cost of
evaluating the function value is set to be twice expensive as that of comparing a pair of solutions,
and GP-UCB is initialized with 15 random solutions for a better initialization. While in Figure 5(d),
it is set to be 1.5 times as expensive and GP-UCB is initialized with 20 solutions. In all experiments,
RAPBO and PBO is initialized with M = 30 random duels. In Figure 5(a), (b) and (c), all methods
have a budget of 100 while in Figure 5(d), the budget is set to 90.

In Figure 5(a), (b) and (c), the initial value of the function value based method is found to be worse
than that of the two other preference based methods after initialization. This is because the function
value based method only randomly selects 15 solutions from the solution space for initialization,
while the preference based methods randomly select 60 solutions from the solution space, which are
then paired into 30 duels for initialization. However, due to the more informative solution evalua-
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Figure 5: The best function value found by algorithms with fixed budget. In (a), (b) and (c), evalu-
ating the function value is twice as expensive as comparing a pair of solutions, and in (d) it is set to
be 1.5 times as expensive. Each experiment is repeated 20 times. The mean and standard deviation
of the result are plotted. The vertical axis represents the best function value found by the algorithm
and the horizontal axis of the plots represents is the cost that the algorithm has used.

tions, GP-UCB shows a rapid improvement in performance, subsequently surpassing that of PBO,
which exhibits a clear optimization performance gap between preference based and function value
based methods. In the RobotPush and Cassini1-MINLP tasks, RAPBO continues to exhibit a sta-
ble improvement, ultimately achieving performance comparable to those of GP-UCB. However, in
Sagas task, due to the advantages of pairwise preferences, RAPBO consistently outperforms GP-
UCB while continuously improving. To further verify that the performance of RAPBO under a
fixed budget can match that of value based methods, we conduct additional experiment on Cassini1-
MINLP task and set the cost of evaluating the function value to be 1.5 times that of comparing a
pair of solutions, as shown in Figure 5(d). It can be found that the performance of GP-UCB quickly
surpasses that of RAPBO, but RAPBO shows a stable improvement in performance and achieves
performance similar to that of GP-UCB when the cost is exhausted.

In a nutshell, these results verify that, under the same cost budget, RAPBO is competitive with or
even surpass the function value based Bayesian optimization methods with respect to optimization
performance. It for the first time indicates that, if preferential relations between solutions within
different preferences are fully and deeply exploited and utilized, dueling optimization could be more
effective for expensive and costly optimization tasks, which answers Q3.

5.4 HYPER-PARAMETER ANALYSIS

About Q4: Impact of Hyper-parameters. To explore the sensitivity of RAPBO to different hyper-
parameters, we conduct hyper-parameter experiments for k on all synthetic functions, with the re-
sults shown in Appendix B. It can be found that RAPBO consistently outperforms PBO (regarded as
the ablated version of RAPBO) across different hyper-parameter k and is not significantly affected
by changes in k, showcasing its insensitivity to hyper-parameter variations, which answers Q4. Ad-
ditionally, RAPBO consistently showcases a stable improvement in performance, indicating that the
preference propagation technique still operates reliably across all hyper-parameters k.

6 CONCLUSION AND DISCUSSION

This paper aims to fill the optimization performance gap between preference based and function
value based methods, and verify that the preference based methods can match or even surpass the
performance of the function valued based methods. We propose the method, relation augmented
preferential Bayesian optimization (RAPBO), which enhances the performance of dueling optimiza-
tion by capturing potential preferential relations through the proposed preference propagation tech-
nique. Extensive experiments on synthetic functions and real-world tasks disclose the satisfactory
accuracy of augmented preferences in RAPBO, and exhibit the superiority of RAPBO compared
with existing dueling optimization methods. Notably, it is verified that the performance of RAPBO
can match or even surpass that of the function value based Bayesian optimization methods under
the same cost budget. In future work, we plan to utilize the pairwise preferences more fully through
more efficient methods, and further improve the accuracy of the augmented preferences to enhance
the performance of dueling optimization.
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APPENDIX

A THE PSEUDO-CODE OF THE PREFERENCE PROPAGATION TECHNIQUE

Algorithm 2 Preference Propagation Technique

Input: Current dataset Dj = {[xi;x
′
i], pi}

j
i=1, and preference propagation parameter k.

Procedure:
1: Fit a special GPD to Dj and compute the covariance between any two solutions in the dataset

Dj to assess their similarity.
2: Compute distance between any two solutions by 1 − similarity, and cluster all solutions into

k sets.
3: Obtain the set of similar solutions Vs with the highest intra-cluster similarity, the set of bad

solutions Vbad and the set of good solutions Vgood.
4: Construct the directed hyperedges ε1 and ε2 to model the potential preferential relations.
5: Combine the augmented preferential relations with the dataset Dj and obtain the augmented

dataset D+
j .

6: return the augmented dataset D+
j .

The preference propagation technique, as shown in Algorithm 2, is designed to make fuller utiliza-
tion of the existing pairwise preferences by modeling potential preferential relations among solu-
tions. Initially, it requires the current dataset Dj and a preference propagation parameter k. The
preference propagation technique begins by fitting a specific Gaussian process model GPD to the
dataset Dj and computing the covariance between solutions to assess their similarity (line 1). Next,
the technique calculates distances based on the complement of similarity and clusters the solutions
into k sets (line 2). From these clusters, it identifies a set of similar solutions Vs with the highest
intra-cluster similarity, as well as the set of bad solutions Vbad and the set of good solutions Vgood
(line 3). Directed hyperedges are constructed to model the potential preferential relations among
these solution sets (line 4). Finally, the augmented preferential relations are combined with the orig-
inal dataset Dj to create an augmented dataset D+

j (line 5), which is then returned as output. This
technique aims to better uncover and utilize the potential preferential relations between preferences,
thereby make fuller utilization of the existing pairwise preferences.

B HYPER-PARAMETER ANALYSIS

The hyper-parameter analysis experiments for k are conducted on all synthetic functions, with the
results shown in Figure 6. In the experiments, I = 500 samples are employed to estimate the
integral of the soft-Copeland score, and the GP model is initialized using M = 5 duels, followed
by N = 95 duels for the optimization process. For RAPBO, a series of hyper-parameter values
for k are used to execute the preference propagation technique. For comparison, the final results of
PBO, regarded as a version of RAPBO after ablating the preference propagation technique, are also
plotted. The results clearly show that RAPBO consistently surpasses PBO across various hyper-
parameter values of k, highlighting its insensitivity to changes in k. This characteristic ensures the
adaptability and stability of RAPBO across different application scenarios. Furthermore, regardless
of the hyper-parameter k, RAPBO consistently shows a stable improvements in performance, which
indicates that the preference propagation technique operates reliably, showcasing its reliability and
consistency under varying conditions.

To further analyze why RAPBO is not sensitive to changes in the hyper-parameter k, we explore
the behavior of the preference propagation technique under different values of k on the Griewank
function. Figure 7 shows the mean number of original preferences at the beginning of each itera-
tion and the newly added augmented preferences after preference propagation (top), as well as the
mean accuracy of the augmented preferences (bottom). From the figure, we observe that within a
limited range, the choice of the hyper-parameter k does not significantly affect the number of new
augmented preferences added after preference propagation, nor their accuracy during the optimiza-
tion process. Therefore, the hyper-parameter k do not significantly affect the relation augmentation
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Figure 6: Hyper-parameter analysis on synthetic functions. Each experiment is repeated 20 times
and the final results of PBO are also plotted. The mean and standard deviation of the best function
value found are plotted. The horizontal axis of the plots represents the number of evaluations, and
the vertical axis represents the best function value found by the algorithm.

effect of the preference propagation technique on the existing dataset, allowing RAPBO to achieve
better optimization performance. In fact, within the preference propagation technique, after GMM
performs clustering, we only select the solutions from the cluster with the highest intra-cluster sim-
ilarity as the similar solutions, and the role of GMM is to help us select the most similar batch of
solutions. Therefore, the choice of k does not significantly affect the performance of RAPBO.

These results explain why the optimization performance of RAPBO is not sensitive to changes in
the hyper-parameter k and it further verifies that the preference propagation technique can run stably
under different conditions.

C IMPLEMENTATION DETAILS OF OPTIMIZATION METHODS

PBO (González et al., 2017): PBO, the first framework to extend Bayesian optimization to scenar-
ios where only information about user preferences can be obtained, is repeated using the BoTorch
framework in the experiments and follows the same hyper-parameter specifications as outlined in
Zhang et al. (2023).

KSS (Sui et al., 2017): KSS is an algorithm that effectively addresses the multi-dueling bandits prob-
lem by reducing it to a conventional bandit setting, and it can also be applied to dueling optimization.
We use the code from the GitHub repository: https://github.com/Zhangywh/PE-DBO.

COMP-UCB (Xu et al., 2020): COMP-UCB is the simplified version that omits the second part
of the optimization process that depends on function values. We use the code from the GitHub
repository: https://github.com/Zhangywh/PE-DBO.

qEUBO (Astudillo et al., 2023): qEUBO provides a promising acquisition function with a grounded
decision-theoretic justification. We use the implementation from the author’s GitHub repository:
https://github.com/RaulAstudillo06/qEUBO.

GP-UCB Srinivas et al. (2010): GP-UCB is a Bayesian optimization algorithm with the upper
confidence bound strategy that builds a model to predict an unknown function, balancing exploration
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Figure 7: Investigating the behavior of the preference propagation technique under different hyper-
parameter values of k on the Griewank function (D = 10). The figure shows the mean number of
preferences in the original dataset (blue) and the augmented preferences newly added after prefer-
ence propagation (red) in the top plot, as well as the mean accuracy of the augmented preferences in
the bottom plot. All settings are the same as Figure 6, and each experiment is repeated 20 times.

and exploitation. In the experiments, the BoTorch framework is used to implement GP-UCB, with
β defined as 0.2Dlog(2n), where D is the dimension of the solution space and n is the number of
samples in the dataset.

D DETAILED RESULTS

Table 1 and Table 2 record the final mean convergence value of various algorithms under each
experimental environment. In order to verify that RAPBO statistically outperforms other baselines
in most cases, we perform t-tests with a significance level of 0.05. As shown in the tables, in most
tasks, RAPBO statistically outperforms other dueling optimization methods. The results show that
RAPBO can handle dueling optimization tasks well and reflect the superiority of RAPBO over other
dueling optimization methods.

Table 1: The detailed results of dueling optimization methods on synthetic functions. In each col-
umn, an entry with the best mean value is marked in bold and underline for the runner-up. If the
mean value of the best method significantly differs from the runner-up, passing a t-test with a sig-
nificance level of 0.05, then we denote it with “*” at the corresponding position.

Method Rosenbrock Dixon Griewank Levy Schwefel Sphere
PBO −66175.670± 31607.440 −34068.125± 18046.893 −1.578± 0.180 −27.021± 6.795 −4085.577± 25.830 −25.920± 6.396
KSS −43576.960± 30242.922 −32522.400± 17915.740 −1.624± 0.168 −23.338± 7.265 −4088.018± 19.577 −21.097± 6.080

qEUBO −71249.730± 45543.810 −33604.113± 18374.818 −1.824± 0.147 −21.008± 8.093 −4094.577± 41.635 −24.646± 10.413
COMP-UCB −85650.450± 51355.145 −44837.203± 16389.234 −1.748± 0.168 −26.435± 6.614 −4100.247± 20.779 −30.497± 7.499

RAPBO −18416.717± 11828.153* −15456.545± 10959.241* −1.3798± 0.100* −18.388± 3.880 −4072.887± 15.641 −16.432± 3.480*

Table 2: The detailed results of dueling optimization methods on real-world datasets. In each col-
umn, an entry with the best mean value is marked in bold and underline for the runner-up. If the
mean value of the best method significantly differs from the runner-up, passing a t-test with a sig-
nificance level of 0.05, then we denote it with “*” at the corresponding position.

Method RobotPush Cassini1-MINLP Sagas
PBO 3.881± 1.221 −58.359± 11.105 −2.117± 0.730
KSS 3.909± 1.000 −70.781± 25.648 −3.382± 0.677

qEUBO 3.204± 1.038 −83.197± 25.342 −3.922± 1.071
COMP-UCB 3.918± 1.247 −81.956± 27.205 −3.721± 0.825

RAPBO 4.302± 1.205 −46.850± 16.175* −1.478± 0.169*

E NOTATION FOR THE PROPOSED METHOD

In order to facilitate a better understanding of the proposed method, we present the notation used
throughout this paper. Table 3 summarizes the key symbols and their corresponding meanings,
providing clarity on the mathematical components and variables involved in our approach, with all
other symbols derived from those in the table.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Notation for the proposed method.

Symbol Meaning Symbol Meaning
X Solution space D Dataset
x Solution [x,x′] Duel
p Preference πfp Preference function
G Directed hypergraph V A set of vertices
ε Directed hyperedge E A set of directed hyperedges
k Preference propagation parameter GP Gaussian process
I Number of iterations M Number of initial solutions
N Number of duels D Dimension of the solution space

17


	Introduction
	Related Work
	Preferential Bayesian Optimization
	Hypergraph Representation

	Preliminaries
	Dueling Optimization
	Different Sampling Rules in Preferential Bayesian Optimization.
	Directed Hypergraph

	The Proposed Method
	Relation Augmented Preferential Bayesian Optimization
	Preference Propagation Technique
	Complexity Analysis

	Experiment
	Experimental Settings
	The Performance of RAPBO
	Dueling Optimization vs. Function Value based Optimization
	Hyper-parameter Analysis

	Conclusion and Discussion
	Ethics and Reproducibility Statements
	The Pseudo-code of the Preference Propagation Technique
	Hyper-parameter Analysis
	Implementation Details of Optimization Methods
	Detailed Results
	Notation for the Proposed Method

