
LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene
Reconstruction

Pou-Chun Kung1,2* Xianling Zhang1 Katherine A. Skinner2 Nikita Jaipuria1
1 Latitude AI 2 University of Michigan, Ann Arbor

Figure 1. LiHi-GS provides higher quality color and depth renderings for interpolated novel views and for ego/actor shifts compared to state-of-the-art
NeRF and GS-based methods [29, 35] LiHi-GS does particularly well on actor shifts at longer-ranges (183 meters) .

Abstract

Photorealistic 3D scene reconstruction plays an important
role in autonomous driving, enabling the generation of
novel data from existing datasets to simulate safety-critical
scenarios and expand training data without additional ac-
quisition costs. Gaussian Splatting (GS) facilitates real-
time, photorealistic rendering with an explicit 3D Gaussian
representation of the scene, providing faster processing and
more intuitive scene editing than the implicit Neural Ra-
diance Fields (NeRFs). While extensive GS research has
yielded promising advancements in autonomous driving ap-
plications, they overlook two critical aspects: First, existing
methods mainly focus on low-speed and feature-rich urban
scenes and ignore the fact that highway scenarios play a
significant role in autonomous driving. Second, while Li-
DARs are commonplace in autonomous driving platforms,
existing methods learn primarily from images and use Li-
DAR only for initial estimates or without precise sensor
modeling, thus missing out on leveraging the rich depth in-

*The project is done during his internship at Latitude AI

formation LiDAR offers and limiting the ability to synthesize
LiDAR data. In this paper, we propose a novel GS method
for dynamic scene synthesis and editing with improved
scene reconstruction through LiDAR supervision and sup-
port for LiDAR rendering. Unlike prior works that are
tested mostly on urban datasets, to the best of our knowl-
edge, we are the first to focus on the more challenging and
highly relevant highway scenes for autonomous driving,
with sparse sensor views and monotone backgrounds. Visit
our project page at: https://umautobots.github.io/lihi gs

1. Introduction

While there has been a lot of recent progress in semi-
supervised and weakly supervised deep learning, in prac-
tice, most vision tasks for automated driving still rely on su-
pervised learning and often fail to generalize to unseen sce-
narios. No matter how big the size of the dataset, capturing
long tails is impractical, and neglecting them can have dev-
astating consequences in safety-critical applications [24].
Dataset diversity is thus key to successful real-world de-

1

ar
X

iv
:2

41
2.

15
44

7v
2

 [
cs

.C
V

]
 2

6
D

ec
 2

02
4

https://umautobots.github.io/lihi_gs

ployment. However, data collection and human labeling re-
main time-intensive and costly.

Synthetic data offers a cost-effective approach to en-
hance diversity and capture long tails [40]. One such source
is a gaming-engine-based simulation (e.g., CARLA [8]),
which provides perfect annotation for free but lacks real-
ism. More recently, Neural Radiance Fields (NeRFs) [21]
have emerged as a popular choice for photorealistic novel
view synthesis and scene editing. Prior works have shown
promising results in autonomous driving scenarios [13, 18,
23, 28, 29, 37]. However, due to the sampling step in
NeRF, these approaches face limitations such as computa-
tionally intensive rendering and degraded rendering quality
at longer distances [30], which are important for highway
driving.

In contrast, 3D Gaussian Splatting’s (GS) [16] explicit
scene representation enables faster and improved rendering
for larger scenes and longer distances, coupled with intu-
itive scene editing. Recent works have shown promising re-
sults for autonomous driving scenarios [17, 35, 41, 43, 44].
However, existing works are limited to urban environments
even though autonomous driving applications extend far be-
yond city streets. In particular, highway scenarios form
a major portion of the operating domain for commercial
Level 2 and Level 3 Advanced Driver Assistance Sys-
tems (ADAS) and pose distinct challenges for scene recon-
struction, such as sparse sensor viewpoints, uniform back-
grounds, and repetitive patterns. All of these combined
make geometry learning for highway scene reconstruction
quite difficult compared to the feature-rich and lower-speed
urban settings.

LiDAR offers dense and precise depth measurements
that enhance 3D scene understanding in challenging high-
way scenarios where camera images suffer from sparse
viewpoints and lack of features. However, existing works
only superficially use LiDAR data either for initializa-
tion [17, 43] or basic positional alignment [10, 44] and,
therefore, fail to generalize to LiDAR-sparse regions. More
recent approaches attempt to leverage LiDAR depth mea-
surements by projecting point clouds onto camera image
planes for depth supervision [6, 12, 35]. However, they only
make use of the LiDAR measurements that overlap with
camera views, make a strong simplifying assumption that
the LiDAR sensor is physically close to the cameras (see
Figure 2), and fail to support LiDAR novel view synthe-
sis. In summary, existing methods miss out on leveraging
LiDAR data to its full potential.

To address these limitations, we propose LiHi-GS, the
first GS method with explicit LiDAR sensor modeling. It
not only enables LiDAR supervision during training, result-
ing in significantly improved scene geometry learning and
novel view image rendering quality, but it also provides the
ability for realistic LiDAR synthesis. While prior works

have primarily focused on urban close-range scene recon-
struction and editing (0-50 meters) [29, 35], we bridge this
research gap by conducting comprehensive evaluations on
highway scenes with objects at 200 meters and beyond,
where the benefits of LiDAR supervision become particu-
larly evident (see Figure 1). Our key contributions are as
follows:
• Developed the first differentiable LiDAR rendering

model for GS, enabling both LiDAR rendering and su-
pervision.

• Demonstrated the importance of LiDAR supervision in
GS for image and LiDAR novel view synthesis.

• LiHi-GS outperformed state-of-the-art (SOTA) methods
in both image and LiDAR synthesis, particularly for view
interpolation, ego-view changes, and scene editing tasks.

• Presented the first comprehensive study on highway scene
reconstruction and editing, addressing a crucial yet under-
developed use case in existing research.

2. Related Works

2.1. NeRF-Based Driving Scene Synthesis
NeRF [21] was originally designed for static room-scaled
scenes. Follow-up works like Block-NeRF [26] extended it
to city-scale reconstruction but are also limited to model-
ing static backgrounds. To model dynamic actors, Neural
Scene Graph (NSG) [23] and MARS [33] create a scene
graph in which each actor is modeled as an independent
NeRF model and annotated 3D poses are used for scene
composition. SUDS [31] and EmerNeRF [36] are SOTA
unsupervised dynamic scene modeling methods, i.e. they
do not rely on annotated poses. However, they do not sup-
port LiDAR rendering, which is an indispensable sensor in
many autonomous driving systems.

2.2. LiDAR-Integrated NeRFs
Many recent works extend the NeRF formulation for Li-
DAR supervision [2, 14, 25]. Others focus on LiDAR-only
novel view synthesis, like LiDAR-NeRF [28] and NFL [13].
DyNFL [32] and LiDAR4D [42] further extend it to dy-
namic scenes. UniSim [37] follows NSG-style dynamic

Figure 2. (Left) Issues with LiDAR projected pseudo-depth image
supervision, highlighted in blue boxes. Points from both near and
far distances can map to the same pixel, resulting in depth ambigu-
ity. In the rendered opacity view (right), vehicles appear distorted
in the case of pseudo-depth supervision, whereas LiHi-GS (mid-
dle) preserves object geometry and integrity.

2

Figure 3. System overview. LiHi-GS takes multiple cameras, LiDAR, and annotated 3D poses as input. In the preprocessing step, a
LiDAR map combined with a COLMAP sparse point cloud is used for static scene initialization, while aggregated LiDAR points are used
for dynamic object initialization. Our method enables LiDAR supervision during training and supports rendering both images and LiDAR.

scene modeling and supports both images and LiDAR su-
pervision. NeuRAD [29] further addresses multiple approx-
imations in UniSim and models camera rolling shutter and
LiDAR ray drop and intensity for more realistic camera and
LiDAR view synthesis.

2.3. GS-Based Driving Scene Synthesis
3DGS [16] explicitly represents scenes with Gaussians.
The CUDA-accelerated Gaussian projection and rasteriza-
tion expedited training and also enabled real-time render-
ing. PVG [4] is one of the first GS methods to reconstruct
autonomous driving scenes using periodic vibration-based
temporal dynamics. Recent works [17, 35, 43, 44] extend
the NSG idea to GS and show promising results for driv-
ing scenarios. Unsupervised learning has also been investi-
gated [12].

2.4. LiDAR-Integrated GS
In contrast to NeRFs, LiDAR measurements can be inte-
grated into GS in multiple ways, of which the most common
is initializing Gaussians with the LiDAR point cloud as a
geometric prior [17, 43]. However, this approach fails to
fully integrate LiDAR data into the training pipeline, lead-
ing to potential inaccuracies in scene geometry as the model
may overfit camera images used for training. Correctly in-
corporating LiDAR data into the training regime is chal-
lenging because the original GS is designed to project 3D
Gaussians onto a 2D image plane and then rasterize the im-
age using depth-sorted 2D Gaussians. This 3D-to-2D cam-
era projection is inherently incompatible with the LiDAR
sensor model. To tightly integrate LiDAR measurements
into GS training, Some studies indirectly supervise the GS
model with a LiDAR-supervised NeRF model [41] or a
LiDAR point cloud map represented by Gaussian Mixture
Model [15]. However, this indirect training fails to provide
LiDAR rendering capability. Alternatively, some works in-
troduce an additional loss to encourage Gaussian centers to
align with the LiDAR point cloud [10, 44]. This approach,

however, assumes that the LiDAR point cloud fully cov-
ers the camera-visible region, resulting in degraded image
quality in areas without LiDAR measurements. More recent
methods attempt to integrate LiDAR data directly into the
training pipeline by projecting the LiDAR depth point cloud
onto the camera image plane to create a pseudo-depth im-
age for supervision [6, 12, 35]. However, this approach has
limitations. First, the pseudo-depth image assumes depth
measurements originate from the camera view, while in au-
tonomous driving setups, LiDAR sensors are typically off-
set from the cameras. The side effect is shown in Figure 2.
Second, this method fails to leverage LiDAR points outside
the camera’s field of view. To correctly and fully leverage
LiDAR supervision in GS training, we propose a differen-
tiable LiDAR model for GS that projects 3D Gaussians onto
LiDAR range image frames. There is a concurrent work [3]
on LiDAR modeling focused exclusively on LiDAR data
synthesis.

3. Method

Figure 3 illustrates an overview of the method. Section 3.1
presents the 3D Gaussian scene representation for dynamic
scenes and introduces the proposed LiDAR visibility rate.
Section 3.2 discusses the camera modeling convention. Fi-
nally, Section 3.3 describes the novel LiDAR modeling
framework with four key components: (1) a differentiable
LiDAR rendering method to project 3D Gaussians into a
range image frame; (2) 2D Gaussian scale compensation to
better approximate LiDAR ray-tracing with image projec-
tion; (3) depth uncertainty rendering to remove floating ar-
tifacts on object edges; and (4) a decoupled camera-LiDAR
pose optimization for handling temporal offsets between
camera and LiDAR measurements for high-speed actors.

3.1. Dynamic 3D Gaussian Scene Representation
GS models the scene as a set of 3D Gaussians. Splat model
G with N Gaussians is composed of the mean µ, rotation

3

quaternion q, scaling vector S, opacity α, spherical har-
monic (SH) coefficients sh, and LiDAR visibility rate γ:

G = {Gi : (µi, qi, Si, αi, shi, γi) |i = 1, ..., N}. (1)

Each Gaussian’s covariance is parameterized by Σ =
RSSTRT , where S ∈ R3 is a 3D scale vector with square
roots of Σ’s eigenvalues and R ∈ SO(3) is the rotation ma-
trix computed from quaternion q.

LiDAR Visibility. In addition to opacity α denoting the
opaque state in an image, a LiDAR visibility rate γ is in-
troduced to handle the fundamental differences in how the
two sensors perceive the environment. For example, Li-
DAR reflects off surfaces based on their material and ge-
ometry. Low-reflective or semi-transparent surfaces can be
missing in LiDAR measurements. Moreover, LiDAR has
a limited sensing range compared to cameras. For exam-
ple, the VLS-128 LiDAR can perceive only 5% of targets ¿
180m, whereas high-resolution cameras can capture many
more distant objects. Therefore, camera and LiDAR visi-
bility are decoupled for each Gaussian via αlidar

i = αiγi
to better handle the challenging open highway scenes with
many targets at far distances.

Gaussian Scene Graph. Dynamic driving scenes are re-
constructed by separating the background and actors’ splat
models following the idea first proposed in [23] and later
used in [17, 35, 43, 44]. The time sequence of actor trans-
formations is then used to combine the background and ac-
tor splat models to create the full scene splat model:

µij = Rjµ
o
ij + Tj (2)

Σij = RjΣ
o
ijR

T
j (3)

where Σo
ij , µo

ij are the ith Gaussian mean and covariance in
the jth object model, where Rj and Tj are object rotation
and translation.

3.2. Camera Modeling for Gaussian Splatting
Color Rendering. To render an image from a camera view
from the Gaussian primitive, we need to project 3D Gaus-
sians into a 2D image plane as follows:

µ′ = KWµ (4)

Σ′ = JWΣWTJT (5)

here W is the camera pose with respect to the world frame,
K is the camera intrinsic matrix, and J is the Jacobian of
K used to project the 3D covariance into the image plane.
Next, the pixel color is computed as:

Ĉ(p) =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1− α′
j) (6)

where p is the pixel in an image, and ci is the color of a
Gaussian obtained by shi and view direction v. The opacity,
α′
i, of Gaussian at pixel x′ is:

α′
i = αi exp

(
−1

2
(x′ − µ′

i)
TΣ−1

i (x′ − µ′
i)

)
(7)

where x′ and µ′ are the rendered pixel and Gaussian center
in projected 2D image space.

Depth Rendering. Since cameras do not provide direct
depth measurements, recent studies project LiDAR point
cloud into the image plane to generate pseudo-depth im-
ages for GS training [6, 12, 35]. The rendered depth for
each pixel is computed as:

D̂(p) =
∑
i∈N

diα
′
i

i−1∏
j=1

(1− α′
j) (8)

where di is the depth of the Gaussian center.

3.3. LiDAR Modeling for Gaussian Splatting
3.3.1. Range Image Rendering
To render LiDAR range images from 3D Gaussians, we first
convert 3D Gaussian means from the original Cartesian co-
ordinates to spherical coordinates:

r =
√
x2 + y2 + z2, (9)

θ = arctan 2(y, x), (10)

ϕ = arcsin
(z
r

)
(11)

Next, we project 3D Gaussians into the LiDAR range
image frame. For a LiDAR with N beams and inclination
Φ = {ϕ1, ϕ2, . . . , ϕN}, a coordinate in the range image
R ∈ RN×W is represented as (v, u) where v is the index
of the closest element in Φ and u = θW

2π . A LiDAR beam
is approximated as a frustum of a range image pixel. This
holds true only for beams with low angle resolution. While
most LiDARs have a relatively sparse beam distribution on
the edge of the vertical Field-of-View (FOV), we filter out
Gaussians in which the center is too far off from the beam
angle: |ϕclosest − ϕ| > 0.5◦.

The same idea is used to project the 3D covariance ma-
trix Σ by first converting it to spherical space:

Σspherical = JΣJT (12)

where the Jacobian is:

J =

∂r
∂x

∂r
∂y

∂r
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

 =

x
r

y
r

z
r−y

x2+y2
x

x2+y2 0

−xz

r2
√

r2−z2

−yz

r2
√

r2−z2

√
r2−z2

r2

 (13)

We then project into the LiDAR range image space:

Σuv = AΣsphericalA
T (14)

4

Figure 4. LiDAR depth uncertainty rendering helps compensate
for noisy artifacts around object edges.

Given the non-uniform LiDAR beam inclination, the Ja-
cobian A depends on the elevation angle resolution:

Ai =

[1
∆θi

0

0 W
2π

]
(15)

where ∆θv = 1
2 (θv+1 − θv−1). Finally, we can sort Gaus-

sians by the distance of their center r and rasterize a ren-
dered range image R̂ with the same depth rendering equa-
tion as (7) and (8).

3.3.2. 2D Gaussian Scale Compensation
In the original GS image rasterization model, a small Gaus-
sian far from the camera image plane becomes invisible in
the projected pixel due to numerical instability. However,
since LiDAR emits laser beams to measure the distance of
objects, a Gaussian should remain fully visible if its center
is sufficiently close to the ray, regardless of its scale. To ad-
dress Gaussians that are lost during projection, we rescale
the 2D Gaussian when it is near the ray and has a scale be-
low the visible threshold. Eigendecomposition is applied to
Gaussians to get their 2D scales after projection:

Σi
uv = ViS

i
uvV

−1
i , S = diag(s1, s2) (16)

Visible scale depends on the distance of the Gaussian:

siδ = 2di tan
(π

w

)
(17)

We adjust the invisible scale that is too small:

s̃ij =

siδ
3
, if sij <

siδ
3

sij , otherwise
(18)

Finally, the 2D covariance matrix is constructed using the
updated scale.

Σ̃i
uv = Vi diag(s̃i1, s̃i2)V

−1
i (19)

Figure 5. Depth uncertainty filter removes floating artifacts from
rendered point cloud.

Figure 6. Camera-LiDAR misalignment for highway actors.

3.3.3. Depth Uncertainty Rendering
We note that the point cloud rendered using GS can in-
clude floating artifacts on object edges. This is mainly be-
cause depth discontinuities are hard to represent using the
inherently continuous Gaussian distribution. To render a
crisp and clean point cloud with clear object edges, we ad-
ditionally incorporate depth uncertainty to identify pixels
that cause floating noise in the rendered image, as shown
in Figure 4. A low-pass filter using an uncertainty thresh-
old is then applied to filter out floating points. To integrate
the uncertainty estimation into the CUDA rasterization, un-
certainty is calculated as the incremental weighted variance
along each ray.

Wn = Wn−1 + α′
n (20)

µn = µn−1 +
α′
n

Wn
(dn − µn−1) (21)

Γn = Γn−1+α′
n ·

Wn−1

Wn
(dn−µn−1)(dn−µn−1)

T (22)

where α′
n is the opacity contributed by a Gaussian, de-

scribed in Eq. 7. Figure 5 demonstrates the rendered point
cloud with and without the uncertainty filter.

3.3.4. Camera-LiDAR Actor Alignment with Decoupled
Pose Optimization

Our method heavily relies on accurately labeled poses for
actors’ reconstruction. However, not only can human anno-
tations be imperfect, the camera and LiDAR measurements
can also be misaligned for fast-moving actors due to the
temporal observation difference, as shown in Figure 6. Un-
like [29, 35] which optimize a unified pose, we propose a

5

decoupled pose optimization to solve pose misalignment
between sensors in a more agnostic way. Thus, the GS
model for LiDAR and camera rendering is constructed sepa-
rately via Eq. 2, 3 using different poses T j

lidar and T j
camera.

3.4. Training Losses
The total optimization objective is as follows:

L = Lc + λ1LLidar + λ2LL
opa + λ3Ls

reg + λ4Lc
opa (23)

Lc
opa = Lsky + Lfg + Lobj

reg (24)

Color loss Lc follows the color image loss from [16].
LiDAR loss is calculated as the L1 difference between the
target and rendered range images: LLidar = ∥Rimg−R̂∥1.
LL
opa encourages LiDAR visibility αlidar = 1 for pixels

with depth returns in the range image. This loss term is
crucial considering LiDAR’s 360° field of view, which in-
cludes regions outside camera coverage. Ls

reg is a scale reg-
ularization term designed to make Gaussians more evenly
shaped, preventing spike artifacts and providing more accu-
rate depth rendering, inspired by [34]. Lc

opa encompasses
all opacity losses from the camera image. Lsky ensures sky
pixels have low opacity, while Lfg guides foreground pixels
to have high opacity. Additionally, Lobj

reg is a regularization
term used to improve decomposition effects, following [35].
Further details on each loss term are provided in the supple-
mentary.

4. Experiments
4.1. Dataset
Existing research often relies on open-source datasets for
evaluation that are dominated by texture-rich urban sce-
narios with dense sensor coverage. This limits their ap-
plicability to feature-sparse and view-sparse highway sce-
narios — a key use case for autonomous driving. To ad-
dress this gap, we conduct experiments on a self-collected
dataset with challenging highway environments. Our data
collection vehicle is equipped with a VLS-128 LiDAR and
three cameras facing front, back-left, and back-right, syn-
chronized at 10 Hz. We gather highway data across three

U.S. states — Michigan, Pennsylvania, and North Carolina.
Each data slice includes human-labeled bounding box anno-
tations, enabling the construction of Gaussian scene graphs.
Four challenging segments, ranging from 16 to 25 seconds
in length and featuring multiple moving objects, high ego
speeds, small scale far field objects, and monotonous back-
grounds, are used in our experiments. Frames sampled ev-
ery second are used for evaluation, and the rest are used
exclusively for training.

4.2. Baselines
LiHi-GS is compared with four baselines. 1) Instant-
NGP [22], an image-only scalable NeRF-based method
with a feature hash grid. 2) NeuRAD [29], a SOTA NeRF-
based method for driving scenes that supports LiDAR su-
pervision and rendering. 3) 3DGS [16]; we use a more effi-
cient re-implementation, Nerfstudio splatfacto-big [27, 38],
higher quality than default splatfacto. Here, LiDAR point
clouds are used with COLMAP sparse points for Gaussian
initialization. 4) StreetGS [35], a SOTA GS-based method
designed for autonomous driving. Here, LiDAR is used in
initialization and depth image loss.

Ablation studies are conducted with our LiDAR loss
disabled and replaced with the depth image loss from
[6, 17, 35] in the proposed LiHi-GS pipeline.

4.3. Novel View Image and LiDAR Synthesis
Benchmarking. Table 1 shows the quantitative comparison
of our method LiHi-GS with SOTA baselines for novel view
rendering quality. LiHi-GS outperforms Instant-NGP and
3DGS on image metrics PSNR and SSIM by a large mar-
gin since both methods are not designed for dynamic scene
reconstruction. However, in terms of LPIPS, 3DGS typi-
cally does the best while our method is second best. This
reflects GS methods can easily overfit to the static back-
ground resulting in high LPIPS scores even in the absence
of accurate actor modeling. When compared with SOTA
methods for dynamic scene reconstruction (NeuRAD and
StreetGS), LiHi-GS has the overall best image rendering
quality. The only exception is the Greenville scene with

Method LiDAR
Pittsburg, PA Dearborn, MI Greenville, SC Pittsburg II, PA

Image LiDAR Image LiDAR Image LiDAR Image LiDAR

PSNR↑ LPIPS↓ SSIM↑ Mean↓ Med.↓ PSNR↑ LPIPS↓ SSIM↑ Mean↓ Med.↓ PSNR↑ LPIPS↓ SSIM↑ Mean↓ Med.↓ PSNR↑ LPIPS↓ SSIM↑ Mean↓ Med.↓
Benchmarking

Instant-NGP [22] X 25.56 0.396 0.833 - - 26.80 0.339 0.862 - - 24.41 0.367 0.868 - - 27.00 0.39 0.86 - -

NeuRAD [29] O 29.14 0.304 0.891 4.19 0.60 30.40 0.281 0.913 2.21 0.34 30.74 0.245 0.917 1.64 0.18 31.24 0.307 0.923 1.16 0.20

3DGS [16] O 26.87 0.230 0.900 - - 27.79 0.238 0.912 - - 26.48 0.278 0.913 - - 30.43 0.238 0.927 - -

StreetGS [35] O 29.65 0.313 0.907 5.02 4.92 29.98 0.302 0.924 8.23 3.60 26.68 0.337 0.920 15.99 6.72 31.48 0.330 0.931 5.57 2.77

LiHi-GS (Ours) O 30.04 0.268 0.913 2.655 0.60 30.76 0.265 0.928 1.68 0.49 30.07 0.276 0.932 1.15 0.32 31.89 0.287 0.935 1.14 0.32

LiDAR Loss Ablation
Only LRGB X 29.68 0.284 0.911 10.21 3.20 28.69 0.308 0.918 7.39 2.63 28.88 0.289 0.930 10.68 2.85 31.12 0.290 0.934 3.38 2.71

+ Ldepth [6, 12, 35] O 29.53 0.285 0.911 4.63 4.01 29.42 0.276 0.926 5.87 2.04 28.66 0.291 0.929 9.65 3.25 31.21 0.288 0.934 4.78 2.13

+ Proposed Llidar O 30.04 0.268 0.913 2.655 0.60 30.76 0.265 0.928 1.68 0.49 30.07 0.276 0.932 1.15 0.32 31.89 0.287 0.935 1.14 0.322

Table 1. Comparison of image and LiDAR novel view rendering. Best and second best results are highlighted in red and orange.

6

Figure 7. Comparison of the rendered depth image from LiHi-GS vs. SOTA baselines. Results show cleaner geometry over StreetGS due
to the added LiDAR supervision. NeuRAD depth also has overall correct geometry but is noisier. Using a 500m depth threshold to classify
the sky (white) showed that NeuRAD introduces noisy depth measurements on the sky and fails to model the distant mountain.

Figure 8. Point cloud synthesized using different methods. Our
method (LiHi-GS) provides a clean point cloud with minimal
noise on objects’ edges.

Figure 9. Comparing LiDAR range images from a model trained
with the proposed LiDAR loss vs. existing depth image loss.

the vehicle driving down a wide lane with most of the things
within camera view lying outside the LiDAR sensing range.
Since GS relies on good point cloud initialization, this scene
is challenging for all GS-based methods vs. NeRF-based
NeuRAD. However, this issue can potentially be solved by
advanced GS with activate densification [1] or dense ini-
tialization [9]. Full qualitative image rendering results are
included in the supplementary. Qualitative rendered depth
is shown in Figure 7. LiHi-GS captures finer geometric de-
tails, accurately rendering the sky and distant mountain.

In terms of LiDAR rendering performance,
StreetGS [35] has the worst quality since their depth
image supervision does not leverage the full geometry
information from LiDAR and is not designed for LiDAR

rendering. On the other hand, LiHi-GS consistently has the
lowest L1 mean error due to the decoupled pose optimiza-
tion and uncertainty filter that is lacking in NeuRAD, as
shown in Figure 8. We also discover the same or slightly
higher LiDAR L1 median error than NeuRAD. We assume
the main cause is that NeuRAD’s ray tracing depth ren-
dering is more accurate than our current projection-based
approach. While the differences in LiDAR L1 median
metrics between NeuRAD and LiHi-GS are small, the
actor/sensor shift experiments demonstrate that LiHi-GS
maintains more robust rendering quality under novel
viewpoints. This suggests that despite similar quantitative
performance on reconstruction metrics, LiHi-GS exhibits
better dynamic scene composition to novel conditions
(Figure 10 and 11).
LiDAR Loss Ablations. We also compare the impact of
depth image loss used in prior works and our proposed loss.
The results indicate depth image loss does not improve the
image rendering quality and can sometimes degrade the
image quality, but it does learn more accurate geometry,
which leads to a lower LiDAR L1 mean error. In contrast,
our LiDAR supervision not only improves the image ren-
dering quality but also provides accurate LiDAR rendering.
The LiDAR range image is visualized in Figure 9.

4.4. Scene Editing With Ego and Actor Shifting

We further evaluate the rendering quality with ego-vehicle
shifting and surrounding actors shifting. To obtain views
different from the original trajectory, we apply lateral shift-
ing for both ego and actors from 1 meter to 3 meters. Since
the ground truth after scene editing does not exist, we fol-
low [29] to report the FID score to analyze the data synthe-
sis quality. Table 2 shows our LiHi-GS generates the most
realistic image from new viewpoints that are off from the
original trajectory and learns a better representation of ac-
tors. The qualitative results of actor shifting and ego shift-
ing are shown in Figures 10 and 11.

7

Figure 10. Image renderings with lateral actor shift. LiHi-GS has the best overall image quality, given the accurate geometry information
learned from LiDAR supervision.

Figure 11. Image rendering with lateral ego-vehicle shift. LiHi-
GS reconstructs distant vehicles with correct color modeling, bet-
ter shadow shape, and fewer ghost artifacts.

4.5. Ablations

Table 3 presents the quantitative results when removing the
different proposed designs from our pipeline.

Removing LiDAR opacity loss LL
opa leads to the highest

LiDAR L1 mean error. The visual result is shown in supple-
mentary.Scale regularization Ls

reg also has a great impact
on both image and LiDAR quality. Render depth without
scale regularization is inaccurate and can degrade the im-
age quality during LiDAR supervision. Disabling decou-
pled pose optimization leads to camera-LiDAR misalign-
ment and worse PSNR rendering quality. The model with-
out 2D scale compensation crashed halfway through the
training due to the memory overhead. This is because, with-
out 2D scale compensation, the LiDAR supervision tends
to increase the size of Gaussians at a far distance to fill in
the projected LiDAR pixel, which contradicts the real ge-
ometry of the scene. In the end, LiDAR visibility signif-
icantly improves both image and LiDAR rendering qual-
ity. This reflects the fundamental differences between the
two sensors (Section 3.1). Also, the rendered depth in GS
is approximated using the Gaussian center. Consequently,
strictly combining Gaussian rendering for both modalities

Ego lateral shift Actor lateral shift
1m 2m 3m 1m 2m 3m

NeuRAD 63.2 82.42 101.45 51.25 55.61 79.70
StreetGS 56.09 69.59 82.24 43.65 54.48 65.86
LiHi-GS 40.70 57.47 80.69 30.91 43.72 54.50

Table 2. FID (↓) scores when shifting ego vehicle or actors pose

LL
opa Ls

reg
Decoupled
Pose Opt.

Scale
Comp.

LiDAR
Vis.

Image LiDAR
PSNR↑ IPIPS↓ SSIM↑ Mean↓

X O O O O 30.54 0.229 0.927 2.94
O X O O O 29.65 0.234 0.926 2.76
O O X O O 30.49 0.228 0.927 2.67
O O O X O 30.22* 0.245* 0.923* 2.71*
O O O O X 30.59 0.228 0.928 2.67
O O O O O 31.63 0.208 0.935 2.61

*Disabling 2D scale compensation caused an exponential increase in memory usage, leading the job to crash midway.

Table 3. Ablation Studies.

leads to suboptimal image and LiDAR outputs. The pro-
posed LiDAR visibility rate γ avoids this side effect while
demonstrating improved novel view rendering with LiDAR
assistance (Table 1).
5. Conclusions
In summary, we introduce a novel differentiable LiDAR
rendering model for GS, enabling both LiDAR supervi-
sion and synthesis. Our results demonstrate that LiHi-GS
achieves SOTA performance in novel view synthesis. We
highlight the importance of LiDAR supervision in learning
accurate scene geometry, which significantly enhances im-
age rendering quality, especially under actor or ego shifts.
Unlike prior works that primarily focus on urban datasets
with dense sensor coverage, our approach is the first to
evaluate on monotonous highway data, bridging the gap be-
tween existing research and real-world autonomous driving
applications.

Limitation and improvements: LiHi-GS does not sup-
port deformable objects and harsh weather conditions. We
also notice some non-flat Gaussians can cause geometry
distortion on the ground; inspired by [11, 17, 19], we plan
to make Gaussian flat to further improve rendering quality.

8

References
[1] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.

Revising densification in gaussian splatting. arXiv preprint
arXiv:2404.06109, 2024. 7

[2] Alexandra Carlson, Manikandasriram S Ramanagopal,
Nathan Tseng, Matthew Johnson-Roberson, Ram Vasude-
van, and Katherine A Skinner. Cloner: Camera-lidar fu-
sion for occupancy grid-aided neural representations. IEEE
Robotics and Automation Letters, 8(5):2812–2819, 2023. 2

[3] Qifeng Chen, Sheng Yang, Sicong Du, Tao Tang, Peng Chen,
and Yuchi Huo. Lidar-gs: Real-time lidar re-simulation us-
ing gaussian splatting. arXiv preprint arXiv:2410.05111,
2024. 3

[4] Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and
Li Zhang. Periodic vibration gaussian: Dynamic urban
scene reconstruction and real-time rendering. arXiv preprint
arXiv:2311.18561, 2023. 3, 2

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Scharwächter, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset. In CVPR Workshop on the Future of Datasets in
Vision, page 1, 2015. 1

[6] Jiadi Cui, Junming Cao, Yuhui Zhong, Liao Wang, Fuqiang
Zhao, Penghao Wang, Yifan Chen, Zhipeng He, Lan Xu, Yu-
jiao Shi, et al. Letsgo: Large-scale garage modeling and ren-
dering via lidar-assisted gaussian primitives. arXiv preprint
arXiv:2404.09748, 2024. 2, 3, 4, 6

[7] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu,
Huamin Wang, and Weiwei Xu. High-quality surface recon-
struction using gaussian surfels. In ACM SIGGRAPH 2024
Conference Papers, pages 1–11, 2024. 3

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 2

[9] Zhirui Gao, Renjiao Yi, Chenyang Zhu, Ke Zhuang, Wei
Chen, and Kai Xu. Generic objects as pose probes for few-
shot view synthesis. arXiv preprint arXiv:2408.16690, 2024.
7

[10] Sheng Hong, Junjie He, Xinhu Zheng, Chunran Zheng, and
Shaojie Shen. Liv-gaussmap: Lidar-inertial-visual fusion for
real-time 3d radiance field map rendering. IEEE Robotics
and Automation Letters, 2024. 2, 3

[11] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. In ACM SIGGRAPH 2024 Conference
Papers, pages 1–11, 2024. 8, 3

[12] Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An,
Ming Lu, Wei Zhan, Masayoshi Tomizuka, Kurt Keutzer,
and Shanghang Zhang. S3 gaussian: Self-supervised
street gaussians for autonomous driving. arXiv preprint
arXiv:2405.20323, 2024. 2, 3, 4, 6

[13] Shengyu Huang, Zan Gojcic, Zian Wang, Francis Williams,
Yoni Kasten, Sanja Fidler, Konrad Schindler, and Or Litany.
Neural lidar fields for novel view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 18236–18246, 2023. 2

[14] Seth Isaacson, Pou-Chun Kung, Mani Ramanagopal, Ram
Vasudevan, and Katherine A Skinner. Loner: Lidar only neu-
ral representations for real-time slam. IEEE Robotics and
Automation Letters, 2023. 2

[15] Changjian Jiang, Ruilan Gao, Kele Shao, Yue Wang, Rong
Xiong, and Yu Zhang. Li-gs: Gaussian splatting with lidar
incorporated for accurate large-scale reconstruction. arXiv
preprint arXiv:2409.12899, 2024. 3

[16] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1,
2023. 2, 3, 6, 1

[17] Mustafa Khan, Hamidreza Fazlali, Dhruv Sharma, Tongtong
Cao, Dongfeng Bai, Yuan Ren, and Bingbing Liu. Autosplat:
Constrained gaussian splatting for autonomous driving scene
reconstruction. arXiv preprint arXiv:2407.02598, 2024. 2,
3, 4, 6, 8

[18] Akshay Krishnan, Amit Raj, Xianling Zhang, Alexan-
dra Carlson, Nathan Tseng, Sandhya Sridhar, Nikita
Jaipuria, and James Hays. Lane: Lighting-aware neural
fields for compositional scene synthesis. arXiv preprint
arXiv:2304.03280, 2023. 2

[19] Pou-Chun Kung, Seth Isaacson, Ram Vasudevan, and
Katherine A Skinner. Sad-gs: Shape-aligned depth-
supervised gaussian splatting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2842–2851, 2024. 8, 3

[20] Mingrui Li, Jingwei Huang, Lei Sun, Aaron Xuxiang Tian,
Tianchen Deng, and Hongyu Wang. Ngm-slam: Gaussian
splatting slam with radiance field submap. arXiv preprint
arXiv:2405.05702, 2024. 3

[21] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
2

[22] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM transactions on graphics
(TOG), 41(4):1–15, 2022. 6

[23] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2856–2865, 2021. 2,
4

[24] Betsy Reed. Tesla autopilot feature was involved in 13 fatal
crashes, us regulator says, 2024. Accessed: 2024-04-26. 1

[25] Konstantinos Rematas, Andrew Liu, Pratul P Srini-
vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12932–12942, 2022. 2

[26] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248–8258, 2022. 2

9

[27] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A
modular framework for neural radiance field development.
In ACM SIGGRAPH 2023 Conference Proceedings, pages
1–12, 2023. 6

[28] Tang Tao, Longfei Gao, Guangrun Wang, Yixing Lao, Peng
Chen, Hengshuang Zhao, Dayang Hao, Xiaodan Liang,
Mathieu Salzmann, and Kaicheng Yu. Lidar-nerf: Novel li-
dar view synthesis via neural radiance fields. In Proceedings
of the 32nd ACM International Conference on Multimedia,
pages 390–398, 2024. 2

[29] Adam Tonderski, Carl Lindström, Georg Hess, William
Ljungbergh, Lennart Svensson, and Christoffer Petersson.
Neurad: Neural rendering for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14895–14904, 2024. 1, 2, 3,
5, 6, 7

[30] Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-
scale nerfs for virtual fly-throughs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12922–12931, 2022. 2

[31] Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva
Ramanan. Suds: Scalable urban dynamic scenes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12375–12385, 2023. 2

[32] Hanfeng Wu, Xingxing Zuo, Stefan Leutenegger, Or Litany,
Konrad Schindler, and Shengyu Huang. Dynamic lidar re-
simulation using compositional neural fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19988–19998, 2024. 2

[33] Zirui Wu, Tianyu Liu, Liyi Luo, Zhide Zhong, Jianteng
Chen, Hongmin Xiao, Chao Hou, Haozhe Lou, Yuantao
Chen, Runyi Yang, et al. Mars: An instance-aware, mod-
ular and realistic simulator for autonomous driving. In CAAI
International Conference on Artificial Intelligence, pages 3–
15. Springer, 2023. 2

[34] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,
Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4389–4398, 2024. 6

[35] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang,
Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou,
and Sida Peng. Street gaussians for modeling dynamic ur-
ban scenes. arXiv preprint arXiv:2401.01339, 2024. 1, 2, 3,
4, 5, 6, 7

[36] Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Se-
ung Wook Kim, Boyi Li, Tong Che, Danfei Xu, Sanja Fidler,
Marco Pavone, et al. Emernerf: Emergent spatial-temporal
scene decomposition via self-supervision. arXiv preprint
arXiv:2311.02077, 2023. 2

[37] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Ur-
tasun. Unisim: A neural closed-loop sensor simulator. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1389–1399, 2023. 2

[38] Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen,
Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey
Hu, Matthew Tancik, et al. gsplat: An open-source library for
gaussian splatting. arXiv preprint arXiv:2409.06765, 2024.
6

[39] Baowen Zhang, Chuan Fang, Rakesh Shrestha, Yixun Liang,
Xiaoxiao Long, and Ping Tan. Rade-gs: Rasterizing depth in
gaussian splatting. arXiv preprint arXiv:2406.01467, 2024.
3

[40] Xianling Zhang, Nathan Tseng, Ameerah Syed, Rohan
Bhasin, and Nikita Jaipuria. Simbar: Single image-based
scene relighting for effective data augmentation for auto-
mated driving vision tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3718–3728, 2022. 2

[41] Cheng Zhao, Su Sun, Ruoyu Wang, Yuliang Guo, Jun-Jun
Wan, Zhou Huang, Xinyu Huang, Yingjie Victor Chen, and
Liu Ren. Tclc-gs: Tightly coupled lidar-camera gaussian
splatting for surrounding autonomous driving scenes. arXiv
preprint arXiv:2404.02410, 2024. 2, 3

[42] Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen, and
Changjun Jiang. Lidar4d: Dynamic neural fields for novel
space-time view lidar synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5145–5154, 2024. 2

[43] Hongyu Zhou, Jiahao Shao, Lu Xu, Dongfeng Bai, Weichao
Qiu, Bingbing Liu, Yue Wang, Andreas Geiger, and Yiyi
Liao. Hugs: Holistic urban 3d scene understanding via gaus-
sian splatting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21336–
21345, 2024. 2, 3, 4

[44] Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang,
Deqing Sun, and Ming-Hsuan Yang. Drivinggaussian:
Composite gaussian splatting for surrounding dynamic au-
tonomous driving scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 21634–21643, 2024. 2, 3, 4

10

LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene
Reconstruction

Supplementary Material

A. Baselines Implementation
Here are detailed descriptions of our baseline implementa-
tions. We unified the train/test frame selection strategy to
make sure all the methods are using the same training and
testing frames.

Instant-NGP. We use the Nerfstudio implementation of
instant-NGP with default configuration.

3DGS. We use Splatfacto-big, a more efficient im-
plementation from Nerfstudio, which has been shown
to outperform the official version. To integrate LiDAR
measurements, we initialize the Gaussian using a voxel-
downsampled LiDAR point cloud map combined with
COLMAP sparse points.

NeuRAD. We utilize the official implementation with
the NeuRAD-paper configuration to ensure a direct com-
parison with the settings proposed in the paper.

StreetGS. We use the Nerfstudio implementation of
StreetGS as our baseline. While this implementation has
been shown to deliver similar or better rendering quality
compared to the original, we incorporate several missing
features to ensure a fair comparison with StreetGS. First, we
added the sampling and pruning steps, as described in the
implementation details of [35], to prevent object Gaussians
from extending beyond the bounding box. Second, we im-
plemented pose optimization for bounding box refinement.
Third, we applied depth image loss following the original
implementation. To mitigate the impact of noisy LiDAR
observations, we optimize only the 95% of pixels with the
smallest depth error. Additionally, we set λdepth to 0.01
following [35].

B. Losses Details
The total optimization objective is as follows:

L = Lc+λ1Llidar+λ2LL
opa+λ3Ls

reg+λ4Lc
opa+λ5Lpose

reg

(25)
Lc
opa = Lsky + Lfg + Lobj

reg (26)

RGB Loss. The color loss Lc is designed to minimize
the difference between color in the image, Cimg , and ren-
dered color, Ĉ. We use the combination of L1 loss and
D-SSIM loss following [16]:

Lcolor = (1− λssim)L1 + λssimLD−SSIM (27)

L1 = ∥Cimg − Ĉ∥1 (28)

and λssim is the weight of D-SSIM loss. We use λssim =
0.2 in our experiment.

LiDAR Loss. Our LiDAR loss Llidar is computed by the
L1 difference between the range image, Rimg , and rendered
range image, R̂:

Llidar = ∥Rimg − R̂∥1 (29)

The range image pixel with Nan value is ignored.
LiDAR Accumulation Loss. Since LiDAR has 360 field

of view that includes some areas without camera coverage,
we add an extra loss LL

opa to encourage the LiDAR visibil-
ity αlidar = 1 for the pixel with depth return in the range
image. The qualitative result of LiDAR accumulation loss
is shown in 12

Sky Loss. Lsky is guiding sky pixels in an image to have
α = 0. This makes sure the sky pixels are rendered from
the sky model.

Foreground Loss. Lfg is guiding foreground pixels
in an image to have α = 1. We choose semantic labels
in ”flat,” ”human,” ”vehicle,” ”construction,” and ”object”
groups as foreground in Cityscapes [5] class definitions.

Note that [35] propose using binary cross-entropy loss
that classifies the image to the sky and non-sky region,
which works well in urban scenes with clear foreground-
background separation. However, distant elements like
fields, mountains, or cityscapes should also be considered
background in our open highway scenes. Our proposed loss
promotes low opacity for sky pixels and high opacity for
specific foreground segments, offering the model greater
flexibility in distinguishing foreground from background.

Scale Reg Loss. Ls
reg is a scale regularization term to

reduce spike-like Gaussian to produce more accurate depth
rendering and avoid spike artifacts when novel view render-
ing. We set the maximum anisotropy ratio to 3. We notice
this loss term has a great impact on novel view rendering
quality.

Pose Reg Loss. Lpose
reg is a pose regularization term to

make sure the optimized pose Topt is not drifting too far
away from the original labeled pose T .

T =

[
R t
0⊤ 1

]
(30)

∆t = topt − t (31)

∆R = R⊤
optR (32)

∆θ = cos−1

(
trace(∆R)− 1

2

)
(33)

Lpose
reg = λtrans∆t+ λrot∆θ (34)

1

Figure 12. The rendered LiDAR range image comparison with and without LiDAR opacity loss. The results without LiDAR opacity loss
include holes in the areas without camera coverage.

In practice, we set λtrans = 1 and λrot = 100.
Depth Image Loss. The depth image loss use in [35] can

be computed by the L1 difference between the depth image,
Dimg , and rendered depth, D̂:

Ldepth = ∥Dimg − D̂∥1 (35)

This loss is not used in proposed LiHi-GS and is only used
to compare the difference between our proposed LiDAR
modeling and the depth image loss used in prior works.

C. Experiments Details
In all of our experiment, we set loss parameters λ1 =
0.5, λ2 = 0.1, λ3 = 10, λ4 = 0.5, λ5 = 0.01. For the
densification step, the densification starts after 3000 itera-
tions with 100 iterations interval, and it stops after 25000
iterations. The gradient threshold is 0.0004. The opacity is
reset every 3000 iteration. The total iteration number is set
to 50000 iterations.

Preprocessing. We generate the Structure-from-Motion
(SfM) point cloud using COLMAP with pre-defined camera
poses. Following the approach in [35], we exclude moving
objects by applying a mask. The LiDAR point cloud map is
created by aggregating individual LiDAR scans and apply-
ing a 2-meter voxel-downsample filter. The initial Gaussian
means are derived from both the COLMAP points and the
LiDAR map. For constructing the actors’ point cloud, we
aggregate the LiDAR points within the labeled bounding

Figure 13. Illustration of the effect of 2D scale compensation.

PSNR LiDAR
L1 Med. Memory

W/ Scale Comp. 31.63 0.63 37Gb
W/O Scale Comp. 30.22 0.64 > 80Gb

Table 4. Scale Compensation Ablation Studies.

boxes and apply a 0.2-meter voxel-downsample filter to the
actor point cloud, reducing memory consumption.

Background Model. We follow [4] to model long-range
background objects and the sky with a learnable environ-
ment cube map. The cube map outputs a view-dependent
background image Cbg . With the rendered color Ĉ(p) and
rendered opacity O(p) at pixel p, the final rendered color
can be compute as:

C(p) = Ĉ(p) + (1−O(p)) · Cbg(p) (36)

where the rendered opacity is:

O(p) =
∑
i∈N

α′
i

i−1∏
j=1

(1− α′
j) (37)

D. 2D Gaussian Scale Compensation Details
2D Gaussian scale compensation is aimed at avoiding small
Gaussians that are lost during projection when rendering Li-
DAR range images. Figure 13 shows the core idea of this
scale compensation. Disabling this step can cause memory
overhead due to the expanded Gaussian with wrong geom-
etry at long range. The ablation studies with memory usage
are shown in Table 4

E. Qualitative Rendering Results
In this section, we demonstrate the results of a qualitative
comparison with our main competitors (StreetGS and Neu-
RAD). Figure 14 and Figure 15 demonstrate LiHi-GS pro-
vides overall the best rendering quality on both static and

2

Figure 14. Comparison of dynamic object reconstructions at varying distances from the ego vehicle (13m, 22m, 31m, and 52m). The first three columns
show rear-view reconstructions, while the last column shows a front-view reconstruction. LiHi-GS (bottom row) demonstrates superior reconstruction
quality across all cases: In column 1, it accurately captures both the color and headlights of the blue SUV, while NeuRAD shows color inaccuracies and
StreetGS exhibits blurriness. In column 3, LiHi-GS preserves fine details of the cargo trailer’s fronthood structure that are lost in both baseline methods. In
column 4, LiHi-GS achieves complete vehicle reconstruction with clear details down to the license plate area, while StreetGS produces incomplete geometry
and NeuRAD shows significant blurring.

dynamic objects across different distances. Figure 16 show
LiHi-GS offers better dynamic and static scene decompo-
sition than StreetGS. StreetGS fails to model some moving
actors in the scene, while proposed LiHi-GS successfully
models all moving actors with proposed LiDAR supervi-
sion and camera-LiDAR decoupled pose optimization.

F. Limitations

LiHi-GS has some known limitations. First, the method is
limited to reconstructing moving objects with rigid body
motion. We are not able to model non-rigid objects like
pedestrians or animals.

Secondly, we noticed some limitations in our GS-based
method when performing extreme actor shifting, as shown
in Figure 17. In this scenario, the actor is only partially
observed; while both StreetGS and our method fail to re-
construct the missing part of the vehicle, NeuRAD demon-
strates the ability to predict the remaining geometry and
achieve better completion. However, the texture and color
of the vehicle are still noisy in NeuRAD’s reconstruction.
To improve actor completion in our method, we could lever-
age the reflected Gaussian consistency proposed in[17],

which addresses partially missing observations by assum-
ing symmetry in the vehicle’s structure. Additionally, the
regions originally occluded by actors exhibit greater noise
in GS-based methods than NeuRAD. This is likely also due
to NeRF-based methods offering better interpolation and
hole-filling capabilities, producing plausible results in un-
seen areas where GS-based methods have difficulties. A
potential solution is to hybrid NeRF and GS-based method
for background scene as proposed in [20]

Thirdly, as shown in Table 1 of the main paper, our
method achieves comparable or slightly higher LiDAR L1
median values than NeuRAD. We believe this is primarily
due to NeuRAD’s more accurate ray tracing depth rendering
compared to our current projection-based approach. Specif-
ically, our method approximates the depth of a Gaussian
using the depth of its center, which may result in less pre-
cise depth estimation than NeRF-based methods. However,
recent advancements in rendering accurate depth from GS,
such as those proposed in [7, 11, 19, 39], offer promising
solutions to this limitation. We mark this as a future work
to improve the depth estimation.

3

Figure 15. Comparison of static object reconstructions at varying distances from the ego vehicle (5m, 18m, and 53m). The first two columns show rear-
view reconstructions, while the last column shows a front-view reconstruction. LiHi-GS (bottom row) presents overall best rendering quality in all static
objectcases: In column 1, it achieves precise lane line reconstruction with clear geometry, while StreetGS shows significant blurring and NeuRAD exhibits
geometric distortions in the lane markings. In column 2, LiHi-GS preserves both the shape and color correctness of the red sign, which appear degraded in
both baseline methods. In column 3, LiHi-GS maintains legible text on a matrix board at 53m distance, while NeuRAD and StreetGS fail to preserve text
clarity at this range.

Figure 16. Actor only and actor removal. The left sequence is captured from the front camera, and the right sequence is from the rear-view camera. LiHi-
GS shows better static and moving scene decomposition than StreetGS. StreetGS fails to model some actors due to wrong geometry and camera-LiDAR
bounding box misalignment. With the proposed LiDAR supervision and decoupled pose optimization, LiHi-GS performs better scene decomposition.

4

Figure 17. Failure case when performing extreme lateral actor
shifting. The orange box highlights the reconstruction of a par-
tially occluded actor. GS-based methods fail to reconstruct the
occluded region. While NeuRAD provides better completion, the
reconstruction is noisy. The red box indicates that the NeRF-based
method offers better hole-filling capability than GS-based methods
in unseen regions.

5

	Introduction
	Related Works
	NeRF-Based Driving Scene Synthesis
	LiDAR-Integrated NeRFs
	GS-Based Driving Scene Synthesis
	LiDAR-Integrated GS

	Method
	Dynamic 3D Gaussian Scene Representation
	Camera Modeling for Gaussian Splatting
	LiDAR Modeling for Gaussian Splatting
	Range Image Rendering
	2D Gaussian Scale Compensation
	Depth Uncertainty Rendering
	Camera-LiDAR Actor Alignment with Decoupled Pose Optimization

	Training Losses

	Experiments
	Dataset
	Baselines
	Novel View Image and LiDAR Synthesis
	Scene Editing With Ego and Actor Shifting
	Ablations

	Conclusions
	Baselines Implementation
	Losses Details
	Experiments Details
	2D Gaussian Scale Compensation Details
	Qualitative Rendering Results
	Limitations

