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Summary. Motivated by an application to the clustering of milking kinetics of dairy goats,
we propose a novel approach for functional data clustering. This issue is of growing interest
in precision livestock farming, which is largely based on the development of data acquisition
automation and on the development of interpretative tools to capitalize on high throughput raw
data and to generate benchmarks for phenotypic traits. The method that we propose in the
paper falls in this context. Our methodology relies on a piecewise linear estimation of curves
based on a novel regularized change-point-estimation method and on the k-means algorithm
applied to a vector of coefficients summarizing the curves. The statistical performance of our
method is assessed through numerical experiments and is thoroughly compared with existing
experiments. Our technique is finally applied to milk emission kinetics data with the aim of
a better characterization of interanimal variability and towards a better understanding of the
lactation process.
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1. Introduction

Precision livestock farming is a blooming field grounded in the development of sensors pro-
viding high throughput data and thus potentially increasing access to valuable information on
biological processes. Therefore, developing methods for data analysis and interpretation has
become a challenging issue in animal science. Economic performance of dairy goat farming
systems is primarily based on milk production and a large amount of farmers’ working time
is spent milking animals; see Marnet et al. (2005). Moreover, with the increasing size of goat
herds and the rapid growth of the dairy goat industry, more detailed information on individual
milking performance is necessary. In this context, a better understanding of the variability in
milk flow kinetics could for instance help in refining selection criteria for breeding programmes,
simplifying milking workload or controlling udder health. Milk emission kinetics recorded dur-
ing milking of dairy goats are classically described and classified through synthetic parameters
such as milking time, maximum and average milk flow rates, and the time to reach 500 g min~—!
milk flow; see Romero ez al. (2017). In this paper, we explore the possibility of considering milk
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emission kinetics as a whole function, opening new perspectives to study interanimal varia-
bility.

From a statistical point of view, this issue belongs to the general field of functional data
analysis; see Ramsay and Silverman (2005) for a survey on this subject. In the specific functional
data clustering framework, several approaches have been proposed by Abraham et al. (2003),
Jacques and Preda (2013) and Bouveyron ez al. (2015) among others. For a review on this subject,
we refer the reader to Jacques and Preda (2014a) and the references therein. The main idea
underlying these approaches consists in applying unsupervised clustering methods to the vector
of the coefficients corresponding to the projection of the curves onto an appropriate basis, the
B-splines basis being one of the most popular. This kind of approach was extended to deal with
multivariate functional data by Jacques and Preda (2014b), who proposed the first model-based
clustering algorithm in the multivariate context, and more recently by Schmutz ez al. (2018).

To deal with the functional clustering of the milking kinetics of goats, which correspond to
the cumulative amount of milk (in millilitres) retrieved from the goat udder during machine
milking at the experimental station, some specific features must be taken into account; see Fig.
1 for some examples of such kinetics. We can see from Fig. 1 that these curves are non-decreasing
and can be split into two parts, namely an increasing linear part and an almost constant part.
Inspired by Abraham ez al. (2003), we propose in this paper a dimension reduction approach
based on a continuous piecewise linear function fit to each curve which boils down to a change-
point-detection issue which will be crucial in our method.

The problem of detecting change points in the mean of a signal is largely addressed in the
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Fig. 1. Some examples of milking kinetics of goats: (a) goat 250053006212047; (b) goat
250053006212054; (c) goat 250053006212064; (d) goat 250053006212075; (e) goat 250053006212084;
(f) goat 250053006213039
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literature. In particular, it is now well known that in (penalized) maximum likelihood frameworks
the dynamic programming (DP) algorithm (Bellman, 1961; Auger and Lawrence, 1989) and
its recent pruned versions (Killick er al., 2012; Rigaill, 2015; Maidstone et al., 2016) are the
only algorithms that retrieve the exact solution very quickly. However, DP can be used only
if the contrast to be optimized is additive with respect to the segments; see for example Bai
and Perron (2003), Picard ez al. (2005) and Lavielle (2005). When detecting changes in the slope
with a continuity condition, the segments will unavoidably be linked and therefore the additivity
condition is not satisfied. This partly explained why this change-point-detection problem has
not been thoroughly investigated in the literature compared with the simpler detection in the
mean problem. Recently, Fearnhead ef al. (2019) proposed to extend the pruned exact linear
time algorithm (Killick ez al., 2012) to this problem. Their idea is to include the penalty in the
DP algorithm with a pruning strategy. The penalty that they proposed is proportional to the
number of change points up to a penalty constant. However, this penalty constant needs to be
chosen in advance, which is not easy in practical situations.

In this paper, we first propose a novel method to estimate the change points in the slope
combining the trend filtering that was proposed by Tibshirani (2014) with a (penalized) max-
imum likelihood approach which is useful for removing the spurious change points that may
be proposed by trend filtering. These change point estimators are then used for devising a new
dimension reduction approach: each curve is summarized by a vector containing the coefficients
of its projection onto an order 2 B-spline basis having for knots the change points obtained and
also the change point locations. Including the change points both in the features characterizing
the curves and in the B-spline knots is the main novelty compared with classical approaches
reviewed in Jacques and Preda (2014a).

The paper is organized as follows. The methodology that we propose is decribed in Section 2.
The performance of our approach is investigated in Section 3 through numerical experiments.
Finally, in Section 4, we apply our method to the data that motivated this study.

2. Methodology

In this section, we describe our novel functional data clustering approach which consists of two
steps which can be summarized as follows:

step 1, piecewise linear estimation of the curves by using a novel change-point-estimation
method based on the trend filtering approach and B-splines;

step 2, applying the k-means algorithm to a vector of coefficients summarizing the curves that
are obtained in the first step.

These two steps are further described in what follows.

2.1. First step: piecewise linear estimation of the curves based on a change-point-
estimation method

In what follows, we assume that the observations of a given curve Y =(Y1, ..., Y;,) correspond
to a noisy function evaluated at the input points X = (x, ..., x;,). In this step, we aim to estimate
each curve by a piecewise linear function by using a two-stage approach described below.

2.1.1.  First stage: trend filtering for change point estimation

We use the trend filtering approach that was proposed by Tibshirani (2014) which consists in
fitting to the observations Y the vector ,@ = (Bl, ey B,,) by using a regularized method. More
precisely, we use
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B =argmin(|Y - BII3 + AIDPBI),

ﬁGRn
where ||y||2:§]l lyl o Iyl =X lyil, for y=(y1,...,y1), A is a positive constant which must
be tuned and D@ is the discrete difference operator of order 2 defined by

1 -2 1 0 0O --- 0

p@—[0 1 =2 1 0 - 0

The estimated piecewise linear function is obtained with 3(1) where A must be properly tuned.
Usually, this parameter is chosen by using resampling approaches such as cross-validation or
stability selection; see Meinshausen and Bihlmann (2010). From B(N), we define a set of po-
tential change point indices as the co-ordinates where the vector D(z)f)’(}:) is not equal to 0.
However, in change-point-estimation frameworks, the performance of such methods may be
altered since some change points may be omitted by subsampling. Moreover, it is well known
that such regularization approaches lead to oversegmentation phenomena. Usually, in these
cases, a DP algorithm is then used on the set of potential change points to remove the irrelevant
change points; see for instance Harchaoui and Lévy-Leduc (2008, 2010).

We make a proposal following this strategy: to avoid the use of a resampling method, we
choose a sufficiently small A to obtain a sufficiently large a set of potential change points. More
precisely, we set a maximal number of change points denoted by Kpax and choose A such that,
among the As leading to Ky,x change points, \ is the value minimizing ||Y — ,@()\) ||%.

Let (111,...,Mk,,,) be the resulting change point indices and the associated change point po-
Sitions (71, . . ., fkpa) = (Xiys - - > Xy, ). Foreach K in {1,..., Kmax}, we use the DP algorithm
to retrieve the K most relevant change point indices among i1, . . ., 7ik,,,, - DP is thus applied to
the restricted set Yn1 s+ Vi . Note that a slight modification of the algorithm is considered
to make the piecewise linear fit to data continuous. The optimal number of change points K is
then chosen by using the criterion that was proposed by Lavielle (2005).

2.1.2.  Second stage: projection onto the B-spline basis having as knots the change points
obtained

Each curve will then be summarized by a few coefficients corresponding to the coefficients of
its projection onto the B-spline basis (B; 2)1<l< %42 defined as follows; see Hastie et al. (2009),
page 206, for a review on the subject. Let 7o =x; and 7 41 =%n. Also we define the augmented
knot sequence 7 such that

TI =Ty =1y =X1,
Ti+2 =1}, j=1,...,K,
TR43=TR4a =g 11 =%ns
namely
(T17°"37—]2+4)=(x1’x1’t19‘-'9t]e’xna~xn)-

The ith B-spline function B; » having 7 for knot sequence satisfies

U—T; —u
Bir(u)y=——B; (u )+7Bi+1,1(u),
Ti+l1 —Ti Ti+2 — Ti+1

withie{l,..., K +2} and the convention 0/0 =0, where
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1 ifm <u<tiyn
B: — s AN g i+1>
100 { 0, otherwise.

Thus, each curve is estimated by 7 defined by

R K42,
f@w)y= > 0iBisx(u), (N
i=1
where the §;s are obtained by using a least square criterion. Hence, the coefficients summarizing
each curve are
(91""’91%-1-29519"";[2)' 2)

Note that the coefficients 6 can be interpreted as the values of the estimated piecewise linear
curves at the change points.

2.2. Second step: clustering using the k-means algorithm

We propose to cluster the curves (milking kinetics) by using the summarized coefficients obtained
in expression (2). However, the number of change points K may change from one curve to
another, leading to different lengths of the summarized coefficient vectors. Thus, we consider
summarized coefficients of length 2Ky, + 2 where Ky corresponds to the largest value of K.
For curves having a number of change points that is smaller than K 7, we replace the missing 7
and the missing ) by 0 that are added after the #;s and after the d;s respectively. Other values
could have been considered such as x,, for the missing #xs and Y,, for the missing Oxs. We decided
to choose 0 for the two following reasons. Firstly, the choice of x, was not adapted for the
application that we had in view since it was not relevant to cluster the curves by using their
length. Secondly, the choices x;,, and Y, have been tested through some simulations (adapted
from model 1 of the simulation study) and we could observe that they altered the performance
of the clustering compared with our strategy. The results are not displayed here but they are
available on request.

To ensure that all the coefficients belong to the same range, the coefficients are centred and
normalized among the different individuals to guarantee that the empirical mean is equal to 0
and the empirical variance is equal to 1. Then, we use the k-means algorithm of Hartigan and
Wong (1979). The number k of clusters is chosen by using the strategy that was proposed by
Charrad et al. (2014) which consists in using the majority rule, i.e. taking for k the value that
is chosen by the largest number of criteria among the four following indices: the Krzanowski
and Lai (1988) index, Hartigan index, SDindex and Ptbiserial index. Further details on these
indices can be found in Charrad et al. (2014).

3. Numerical experiments

In this section, we investigate the statistical performance of our procedure. The simulation
scheme that we used for this investigation is described in Section 3.1. We also propose in Section
3.2 to benchmark our procedure against existing approaches and to assess our change-point-
estimation approach in Section 3.3.

3.1.  Simulation scheme
Based on the data coming from our motivating application, we consider two different models
for generating the data that we shall refer to as model 1 and model 2 in what follows. For



628 C. Denis, E. Lebarbier, C. Lévy-Leduc, O. Martin and L. Sansonnet

each model, the complete observed data are (Y, Z), where Y is in R" and corresponds to the
observations of an underlying function, which we shall specify later at the input points x =
(x)1<ign = (100 = 1)) 1<ign With n=151. Z denotes the label of Y which takes its value in
Z={1,2,3,4}. Moreover, for each z € Z, the associated cluster C; is characterized by a number
of change points K, a vector of change points t¢ and a vector of parameters 8 € RX= 1. Hence,
each model is defined by a set of parameters {K,t*,0%: z€ Z}. The values of the parameters
that are associated with each model are reported in Tables 1 and 2. For each model, the clusters
are distinguishable by both the change points and the parameters.
For each model, the vector (Y, Z) is simulated according to the following procedure.

(a) The label Z is drawn from a uniform distribution on Z.

(b) We generate =t +U, such that Y = (U,...,U), where U is a uniformly distributed
random Varlap%e on {-30, —20, 10,0, 10, 20,30}.

(c) We generate & =6+ V, such that V=(V,..., V), where V is a uniformly distributed
random variable on [—200, 200]. Z s s —

(d) Then, we consider che sequences (fy, .. le+l) = (0, t ,500), By 5., 0k,+1)=1(0,6")
and define forxe[tj,t]H] and je{0,...,Kz},

Z
~7 ~z  X—I; ~7
fz g0 =05 —0) 57— +0;. 3)
’ g1 — 1
(e) Finally, we define Y such that, forie{l,...,n},
Yi=fz 52(xi)+eis 4

where the ¢;s are independent and identically distributed A/(0, o2) random variables with
oe{l,5}.

Note that the function f that is defined in equation (3) can be seen as another way of writing
equation (1).

Table 1. Set of parameters for model 1

: K, t 6°
12 (150,250 (1600, 1900, 2000)

2 2 (150,300 (1400, 1800, 2200)

34 (100,200,300,400) (300, 1500, 1700,2000,2200)
4 3 (50,150,300) (200, 1300, 1800, 2100)

Table 2. Set of parameters for model 2

: K, t2 0°

1 2 (150,250 (1600, 1900, 2000)

2 2 (150,300) (1400, 1800, 2200)

34 (100,200,300,400) (300, 1500, 1700, 2000, 2200)
4 3 (150,250,300) (200, 700, 1000, 1600)
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Fig. 2 displays some observations that were generated by using the above simulation scheme
for each model and for each 0. We can see from Fig. 2 that the clustering problem that is
associated with model 1 seems to be the most difficult. In model 1, the clusters are indeed
completely mixed whereas in model 2 cluster Cy4 is well separated from the others. Observe also
that the data that are generated have the same behaviour as the data coming from our motivat-
ing application: they are non-decreasing and piecewise linear with a small additive noise; see
Fig. 1.

3.2. Statistical performance
Following the simulation scheme that was described in Section 3.1, the performance of our
procedure is assessed for each model and each o and is compared with two different clustering
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Fig.2. Examples of observations generated from (a), (b) model 1 and (c), (d) model 2 for (a), (c) o =1 and
(b), (d) o =5: , , , , representative curves of each cluster 77, 67 respectively cluster
1, cluster 2, cluster 3 and cluster 4; - - - - - R - - - , , some examples of the corresponding Y
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Fig. 3. Boxplots of ARI for (a), (b) model 1 and (c), (d) model 2 for (a), (c) o =1 and (b), (d) o =5

methods: The k-means algorithm applied to the raw data Y and the ‘FunFEM’ procedure
(clustering in the discriminative functional subspace) described in Bouveyron et al. (2015) and
available in the R package FunFEM. The FunFEM method is dedicated to the clustering of
functional data and is based on a functional mixture model. All the methods are compared
thanks to the adjusted Rand index ARI which was defined in Hubert and Arabie (1985) and is
often used for clustering validation. It is indeed a measure of agreement between two partitions.
Note that the number of clusters & in the k-means algorithm is chosen by using the same
strategy as we considered in our approach. As far as FunFEM is concerned, we used the default
parameters.

For each model and for each o in {1, 5}, we repeat independently 100 times the following
steps.

(a) We simulate a sample Dy = {(Y', Z")... (YN, ZN)} of size N =100 according to the
scheme that was described in Section 3.1.
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Fig. 6. Some examples of milking kinetics belonging to cluster 1 (O, the data; , piecewise linear
fit obtained thanks to our method; |, position of the change point): (a) goat 250053006212058; (b) goat
250053006212048; (c) goat 250053006212064; (d) goat 250053006212083; (e) goat 250053006213036; (f)
goat 250053006213031; (g) goat 250053006213005; (h) goat 250053006213008; (i) goat 250053006213030

(b) We apply each method to Dy.
(¢) On the basis of the clustering obtained, we compute ARI.

The results are displayed in Fig. 3 with Kpax = 10. We can see from Fig. 3 that our method
outperforms the others in all cases except for model 2 with o =5 where the performance of our
method is on a par with that of FunFEM. Note that applying the k-means to a relevant summary
measure of Y significantly improves the clustering performance. Moreover, we observe that,
when o increases, the performance of our approach is slightly altered since the change points
are more difficult to locate accurately; see Section 3.3.

3.3. Assessment of our change-point-estimation procedure

We provide the following numerical experiments for assessing the change-point-estimation stage
of our method. We used the parameters that are associated with cluster 3 of model 1; see Table 1.
We repeat 100 times the following steps.
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Fig. 7. Some examples of milking kinetics belonging to cluster 2 (O, the data; , piecewise
linear fit obtained thanks to our method; |, position of the change point): (a) goat 250053006213082;
(b) goat 250053006212047; (c) goat 250053006213040; (d) goat 250053006212054; (e) goat
250053006213039; (f) goat 250053006212075; (g) goat 250053006212084; (h) goat 250053006212080;
(i) goat 250053006212091

(a) We simulate Y according to equation (4) with o € {1, 5}.
(b) We estimate the change points according to the procedure that was described in the first
stage of the first step in Section 2.

Some examples of Y for the two values of ¢ are displayed in Fig. 4. We can see from Fig. 4
that the change points at 300 and 400 are more difficult to detect than the others. It is all the
more true when o = 5.

Fig. 5 displays the frequency of the number of times where each position has been estimated
as a change point. We can see that the change points have all been retrieved and that no spurious
change points are provided when o = 1. In the case where o =5, although the positions of the
true change points are retrieved most of the time, some additional spurious change points are
also selected with a very low frequency.
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Fig. 8. Some examples of milking kinetics belonging to cluster 3 (O, the data; , piecewise linear
fit obtained thanks to our method; |, position of the change points): (a) goat 250053006212104; (b) goat
250053006212103; (c) goat 250053006212105; (d) goat 250053006213006; (e) goat 250053006213022; (f)
goat 250053006213073; (g) goat 250053006213066; (h) goat 250053006213109; (i) goat 250053006213124

4. Application

In this section, we apply the methodology that was described in Section 2 to milking kinetics of
dairy goats coming from the experimental herd of the Systemic Modelling Applied to Ruminants
research unit (Paris, France).

4.1. Data description

The data set contains 100470 milking kinetics of goats of two different breeds: ‘Alpine’ and
‘Saanen’. All these kinetics are morning milking kinetics and several kinetics are available for
each goat. The kinetics can also be separated according to parity, which corresponds to the
lactation rank, i.e. to the number of times that a goat has given birth and started a new lactation.
In the data set considered, there are 276 goats for parity 1 and 191 for parity 2. Goats in parity 2
are also in parity 1 and the kinetics of each goat are observed every day during around 5 months.

4.2. Kinetics clustering
First, note that, on the basis of the shapes of the milking kinetics of this data set, the parameter
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Fig. 9. Kinetics average obtained within each of the three clusters: , cluster 1; , Cluster 2;
, cluster 3
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Fig. 10. Histograms of the change point positions for (a) cluster 1 and (b) cluster 2

Kmax that was defined in the first stage of the first step in Section 2 was set to 2. We obtained
three clusters containing 57498, 36757 and 6215 kinetics. Some examples of kinetics belonging
to clusters 1, 2 and 3 are displayed in Figs 6, 7 and 8 respectively. The average of the kinetics
estimates that were obtained within each cluster is displayed in Fig. 9. We can observe that the
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Fig. 11.  Clustering obtained for goats in parity 1 (six clusters) displayed on the plane having for axes the
proportion of kinetics belonging to (a) clusters 1 and 2, (b) 2 and 3, and (c) 1 and 3: ®, ® ® Saanen goats;
+, +, +, Alpine goats

three clusters can be distinguished in terms of quantity of milk production: cluster 1 has the
lowest production, cluster 2 the highest and cluster 3 is between them.

Another difference between the three clusters is the number and the positions of the change
points. The number of change points in the kinetics of cluster 1 and cluster 2 is mainly 1 as
opposed to cluster 3. Fig. 10 displays the histogram of the change point positions for clusters
1 and 2. We can observe that the change point having the highest frequency is not at the
same position for these two clusters. Interestingly, our methodology could distinguish these two
clusters thanks to the change point position. This illustrates the potential of our methodology
to extract synthetic traits from raw data.

In practice, such clustering may be very useful in the precision farming context to refine selec-
tion criteria for breeding programmes, to simplify milking workload or to control udder health.
Thanks to the clustering results, we should be able to define a milking profile for each goat.
Moreover, we propose in the next section to characterize dairy goats belonging to a given parity.

4.3. Parity characterization
To go further into this analysis, we tried to characterize parities 1 and 2 in terms of the proportion



638 C. Denis, E. Lebarbier, C. Lévy-Leduc, O. Martin and L. Sansonnet

1.0

!

+

0.15

0.10

!

0.05
B

!

N

+ qp"' °

Proportion of kinetics 2
05 06 0.7 08 09
1
Proportion of kinetics 3
%

L

+
0.00
+

T T T

0.1 02 03 04 05 05 06 07 08 09 10

Proportion of kinetics 1 Proportion of kinetics 2

(a) (b)

o
=}

0.10 0.15

Proportion of kinetics 3
0.05
1
e

0.00
I

T T T

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of kinetics 1
(c)

Fig. 12. Clustering obtained for goats in parity 2 (five clusters) displayed on the plane having for axes the
proportion of kinetics belonging to (a) clusters 1 and 2, (b) 2 and 3 and (c) 1 and 3: ®, ® ®, Saanen goats;
+, +, +, Alpine goats

of kinetics of type 1, 2 or 3 according to the clustering that was previously obtained. We thus
created for each goat belonging to a given parity a vector of proportions of its kinetics belonging
tocluster 1,2 or 3. For each parity, the goats are clustered by using the k-means algorithm applied
to the vectors of proportions. The results are displayed in Figs 11 and 12 for parities 1 and 2
respectively. The number of groups is selected by using the method that was described in Section
2.2. We found six and five groups respectively for parity 1 and parity 2. We can note that there
is one goat which produces a large quantity of milk compared with the others for both parities:
indeed, in parity 1, 80% of its milking kinetics belongs to cluster 2 and only 20% to cluster 1
whereas, in parity 2, 100% of its milking kinetics belongs to cluster 2.

We also observe from Figs 11 and 12 that, in both parities, the frequency of the milking
kinetics belonging to cluster 2 is between 50% and 70%. In parity 2, all the groups have almost
the same proportion of milking kinetics belonging to cluster 2 (around 65%). One group (in
red) can be distinguished from the others: this group has a higher proportion of milking kinetics
belonging to cluster 3 (13%) than do the others (5%). In parity 1, the behaviour is a little different
in the sense that the majority of goats have a high proportion of milking kinetics belonging to
cluster 2 (around 65%) and a low proportion of milking kinetics belonging to cluster 1 (around
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25%). Such results may be interesting in the context of precision breeding since they could help
to forecast the production of milk at the different parities.

Further analysis should be perfomed in the future to study how the amounts belonging to
each cluster evolve along the lactation course lasting around 150 days in goats. The daily milk
yield of a goat for a given parity indeed follows a typical triphasic shape (an increasing, plateau
and decreasing phase), each daily milk yield being the sum of the total milk produced during
each milking (morning and afternoon milking). Being able to link a particular shape at the
milking kinetics scale with a shape at the lactation scale could open perspectives to characterize
individual goats better and thus to propose options for individual milking management.

5. Conclusion

In this paper, we proposed a novel approach for functional clustering dedicated to the clustering
of the milking kinetics of dairy goats. More precisely, we devised a new dimension reduction
approach which consists in summarizing each curve (milking kinetics) by a vector containing the
coefficients of its projection onto an order 2 B-spline basis having estimated knots. These knots
correspond to change points estimated by using a novel change-point-estimation method based
on the trend filtering approach. Compared with other functional clustering procedures, our
main contribution consists in adding these estimated change points in the dimension reduction
step. In the course of this study, we have shown that our method has two main features which
make it very attractive. Firstly, it is very efficient in terms of statistical performance. Secondly,
its very low computational burden makes its use possible on very large data sets.
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