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ABSTRACT

We study the generalization properties of binary logistic classification in a simplified setting,
for which a "memorizing" and "generalizing" solution can always be strictly defined, and
elucidate empirically and analytically the mechanism underlying Grokking in its dynamics.
Analyzing the final stages of training of logistic classification on Gaussian data with a
constant label, we show that it may exhibit Grokking, in the sense of delayed generalization
and non-monotonic test loss, when the parameters of the problem are close to a critical
point. Specifically, we find that Grokking is amplified when the training set is on the verge
of linear separability from the origin. Even though a perfect generalizing solution always
exists, the implicit bias of the logisitc loss will cause the model to overfit if the training
data is linearly separable from the origin. For training sets that are not separable from the
origin, the model will always generalize perfectly in infinite time, but overfitting may occur
at early stages of training. Importantly, in the vicinity of the transition, that is, for training
sets that are almost separable from the origin, the model may overfit for an arbitrarily long
time before generalizing. We gain more insights by examining a tractable one-dimensional
toy model that quantitatively captures the key features of the full model. Finally, we
highlight intriguing common properties of our findings with recent literature, suggesting
that grokking generally occurs in proximity to the interpolation threshold, reminiscent of
critical phenomena often observed in physical systems.

1 INTRODUCTION

Understanding the relationship between the intrinsic properties of data, the training dynamics of neural
networks (NNs), and their ability to generalize is crucial to explaining the success of modern machine
learning (ML) algorithms. In particular, highly over-parameterized models based on the transformer
architecture (Vaswani et al., 2023), such as Large Language Models (LLMs) (OpenAI, 2024; Google,
2023; Zeng et al., 2022; Brown et al., 2020; Chowdhery et al., 2022; Anil et al., 2023), as well as state of the
art models for computer vision (Srivastava and Sharma, 2023), defy expectations and are able to generalize
with a number of parameters far exceeding the so called interpolation threshold (Kaplan et al., 2020; Schaeffer
et al., 2023). Interestingly, these models have been shown to exhibit unpredictable behaviors when changing
the number of network parameters, not only with respect to generalization, but also in their learning dynamics.

One such phenomenon is Grokking, first observed by Power et al. (2022) when training a transformer model
on modular arithmetic tasks. Grokking occurs when a model initially achieves perfect training accuracy but
no generalization (i.e. no better than a random predictor), and upon further training, transitions to almost
perfect generalization. This phenomenon has garnered substantial attention in recent years (Gromov, 2023;
Liu et al., 2023; Xu et al., 2023) due to its striking contrast with naive expectations, whereby over-fitting is
generally seen as an undesirable property of models that should not generalize with further training, originally
dealt with using early stopping (Prechelt, 1996).

In this work, we study grokking in a synthetic, yet illuminating, setting where the asymptotic optimal
solution can always be identified, allowing a sharp definition of notions that are typically ambiguous, such
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as “memorization” and “learning”. Concretely, we focus on the extreme case of feature noise where the
network needs to ignore the input features and classify all points as a constant label by optimizing the logistic
loss (generalization to the discriminative case is discussed in App. H). The input data are N points in Rd,
assumed initially to be drawn independently from an isotropic normal distribution with diagonal covariance,
xi ∼ N (0, σId) where Id is the d× d identity matrix and σ > 0. This assumption, however, can be relaxed
as our results hold practically for almost any input distributions (see App. G). We study the limit of large
N, d → ∞, while keeping the ratio λ = d/N fixed. Our main contributions are:

1. We prove, and demonstrate numerically, that grokking may occur in this setting, and is promoted
when λ is close to 1/2 and σ is large.

2. We show that this occurs because λ = 1/2 is a critical point. That is, for λ < 1/2 the model will
almost surely asymptotically approach perfect generalization accuracy and vanishing loss, while for
λ > 1/2 the model will almost surely achieve imperfect generalization accuracy and the population
loss will diverge at t → ∞.

3. We prove that the generalization properties depend only on whether the training set is linearly
separable from the origin. The model will achieve asymptotically optimal generalization if and only
if the origin is contained in the convex hull of the training set.

4. Moreover, we show that near the threshold value, the dynamics may generically track the
overfitting solution for arbitrarily long times before transitioning to the optimal generalizing solution,
manifesting as non-monotonicity of the test loss and delayed generalization.

5. We construct a simple, one-dimensional model which captures the salient aspects of the problem,
and explicitly solve the time evolution of the model parameters for several interesting cases.

The main takeaway from our setup is that grokking happens near critical points, similar to the phenomenon
known in the physics literature as ’critical slowing down’. While further study is needed, we conjecture that
this applies to other grokking examples, as was demonstrated explicitly (though not necessarily stated in these
terms) in Levi et al. (2023); Liu et al. (2023); Gromov (2023); Rubin et al. (2023; 2024).

The rest of the paper is organized as follows: Sec. 3 presents our main analysis of grokking as a critical
phenomenon, beginning with empirical results in Sec. 3.1, studying the possible solutions in Sec. 3.2, and
relating it to linear separability in Sec. 3.3. Finally, we bring together the pieces in Sec. 3.4 to explain why
grokking occurs near the critical point. Sec. 4 provides a tractable effective model which fully captures the
grokking dynamics. We conclude in Sec. 5 and discuss future directions. In the appendix we discuss several
generalizations of our results and provide some further proofs and derivations.

2 RELATED WORK

Following the discovery of grokking by Power et al. (2022), numerous studies have attempted to elucidate its
underlying mechanisms. Liu et al. (2022) showed that when sufficient data determines the structured
representation, perfect generalization can be achieved on a non-modular addition task. Other works
have identified factors contributing to grokking, including pattern learning (Davies et al., 2023), delayed
robustness Humayun et al. (2024), and transitions from memorization to circuit formation Nanda et al.
(2023), reaffirmed by Golechha (2024) which shown that activation sparsity, absolute weight entropy and
circuit complexity are well aligned with grokking in real world tasks. Others analyzed the trigonometric
algorithms learned by networks after grokking (Nanda et al., 2023; Chughtai et al., 2023; Merrill et al., 2023;
Gromov, 2023), and demonstrated similar dynamics in sparse parity tasks (Merrill et al., 2023). Additional
works proposed "slingshots" (Thilak et al., 2022) or "oscillations" (Notsawo et al., 2023) as explanations
for grokking, while others have studied the role of regularization, which has proven to significantly impact
grokking in certain scenarios (Power et al., 2022; Liu et al., 2023). Our work requires none of these in order
to exhibit or explain grokking.

Recently, a body of works on solvable models which grok in various settings has emerged. Liu et al. (2023);
Kumar et al. (2023) and Lyu et al. (2024) have linked grokking to memorization and transitions from lazy
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SeparableInseparable SeparableInseparable

Figure 1: Left panels: Gradient descent dynamics for three different values of λ = d/N . Loss and
accuracy over the train and test datasets, and the time evolution of b(t) and ∥S(t)∥. Grokking is significant
only when λ approaches to 0.5 from below. We can see that for λ > 0.5, ∥S∥ increases indefinitely and
generalization is not possible (see Eq. (4)). The parameters are N = 4 · 104,σ = 5, η = 0.01. The direction
of S(t = 0) was drawn isotropically with ∥S0∥ = 0.1 and b(t = 0) = 0. The number of test samples is
Ntest = 104. Right panels: Top: The norm of the limiting value S∞ in the separable case λ > 1/2, as
a function of λ. Note that ∥S∞∥ diverges for λ → 1

2 . Middle: the accuracy at the end of the training (in
blue), and the predicted limiting accuracy (orange), calculated only using the margin of the dataset, see
Proposition 2. Bottom: The Grokking time, defined here as the delay between the times when Atrain/gen

surpass a threshold of 0.9. Grokking time and ∥S∞∥ diverge near λ = 0.5. Additional details regarding the
experiments can be found in App. J.

to rich dynamics. Žunkovič and Ilievski (2022); Gromov (2023); Doshi et al. (2024) analyzed solvable
models exhibiting grokking and related their findings to the formation of latent-space structure, Xu et al.
(2023) related grokking to benign over-fitting for ReLU networks on XOR data, Rubin et al. (2024) described
grokking as a first-order phase transition, and Levi et al. (2023) provide the full dynamical solution of
grokking in linear regression. Our work attempts to sidestep external probes, and fill the gap between solvable
models and representation learning, whereby we can always identify the optimal solutions, while still solving
the dynamics of the model. To accomplish this, our work relies on the results of Soudry et al. (2018); Nacson
et al. (2019); Ji and Telgarsky (2019), which analyze the late-time dynamics properties of logistic regression
for separable and inseparable data under gradient descent (GD).

3 GROKKING IN BINARY CLASSIFICATION

3.1 MODEL SETUP AND EMPIRICAL RESULTS

Consider a dataset of N training samples {xi}Ni=1 ⊂ Rd which are identically and independently drawn
from a distribution which is symmetric around the origin. Our results hold for any such distribution, but
for concreteness and simplicity, WLOG, we assume here xi ∼ N (0, σ2Id) with σ > 0 the feature standard

3
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deviation, and Id is the d × d identity matrix. We stress that this choice is made for simplifying the
discussion, and that neither Gaussianity nor trivial covariance are required for our analysis. The task is
logistic classification, where all input points are assigned the same label, which for concreteness we take
as {yi}Ni=1 = −1. We work in the N, d → ∞ regime, and their ratio, λ = d/N , plays a crucial role in the
model’s training dynamics and generalization properties.

Linear Model. The model parameters are a weight vector S ∈ Rd and a bias term b ∈ R. The output is
a scalar fi = f(xi) = S · xi + b. We optimize the empirical cross-entropy loss L(S, b) and measure the
empirical accuracy A(S, b), given by1

L(S, b) = 1

N

N∑
i=1

ℓ
(
STxi + b

)
, A =

1

N

N∑
i=1

Θ
(
−STxi − b

)
, (1)

where ℓ(fi) = log
(
1 + e−yi·fi

)
= log

(
1 + efi

)
is the single sample loss and Θ(z) is the Heaviside function,

defined as Θ(z) = 1 if z ≥ 0 and Θ(z) = 0 if z < 0.

Optimizer. Throughout the main text we use gradient descent (GD) dynamics. The effect of other optimizers
are discussed in App. F. The GD equations at training step t with learning rate η are

St+1 − St = −η∇SL, bt+1 − bt = −η∂bL. (2)
In this paper we will focus on the gradient flow limit (η → 0) of these equations.

In Fig. 1 we show numerical results depicting the gradient-descent dynamics of the model across three values
of λ ≡ d/N . Notably, we observe a significant grokking effect, both in the non-monotonicity of the test loss,
and the delayed rise in test accuracy, only when λ → λc = 1/2 (there may be some differences between the
grokking observed here and other examples in the literature, but they seem to be superficial - see App. B). In
the following section, we explain how λc can be interpreted as the interpolation threshold in this setting.

3.2 THE GENERALIZING AND OVER-FITTING SOLUTIONS

To understand grokking in this setup, we begin by examining the optimal generalizing solution. Since the
support of the input distribution is unbounded and all labels are equal, the model must position all points in
Rd on the same side of the separating hyperplane, effectively pushing the decision boundary to infinity.

To see this rigorously, we derive expressions for the generalization accuracy and loss. Since the data follows
a Gaussian distribution, xi ∼ N (0, σ2Id), the generalization (population) loss is, by definition:

Lgen = Ex∼N (0,σ2Id)

[
log
(
1 + exp

(
STx+ b

))]
= Ey∼N (0,1)

[
log
(
1 + eσ∥S∥y+b

)]
, (3)

where we used the fact that STx ∼ N (0, ∥S∥2σ2). Note that Lgen depends only on b and ∥S∥. Similarly,
the generalization accuracy is given by:

Agen(S, b) = Ey∼N (0,1)

[
Θ(−σ∥S∥y − b)

]
=

1

2

[
1− erf

(
1√
2

b

σ∥S∥

)]
, (4)

where erf is the error function.
Proposition 1. Perfect generalization, i.e., Lgen → 0 and Agen → 1, is achieved only if both b → −∞ and
b/∥S∥ → −∞. That is, b must tend to negative infinity while also being infinitely large compared to ∥S∥.

Proof. It is easily seen from Eq. (4) that the condition Agen → 1 requires b/∥S∥ → −∞. If b is bounded,
then this can only happen for ∥S∥ → 0, but this cannot be since then Eq. (3) implies that Lgen is bounded
away from zero. Therefore, perfect generalization implies both b → −∞ and b/∥S∥ → −∞.

1The labels do not appear explicitly in L since they are identical for all samples. See App. H for a relaxation of this
constraint.
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The bottom panels of Fig. 1 show that b → −∞ at late times in all parameter regimes. However, while
∥S∥ saturates at a constant value for λ < 1/2, it diverges when t → ∞ for λ > 1/2, and does so at a rate
comparable to b, leading to sub-optimal generalization limt→∞ A(S(t), b(t)) < 1.

Relation to prior results regarding separability. These results are closely related to the framework
developed by Soudry et al. (2018), who studied the convergence of binary classification for linearly separable
data, and later expanded by Ji and Telgarsky (2019) for inseparable data. In our case, since the model contains
a bias term and all labels are the same, the data is always separable by a hyperplane “at infinity”. To use their
framework, we need to work in an extended space of dimension d+ 1, where we define the extended weight
vector w = (S, b) ∈ Rd+1. The network solution at the late stages of training can be obtained as a direct
corollary of Theorem 3 from Soudry et al. (2018).

Theorem 1 (Rephrased from Theorem 3 of Soudry et al. (2018) ). In the setting described above, for any
smooth monotonically decreasing loss function with an exponential tail, and for small learning rate, GD
iterates will converge at the late stages of training to:

w(t) = wSVM log(t) + ρ(t) , wSVM = argmin
(S,b)

{
∥S∥2 + b2 s.t. STxi + b ≤ −1

}
. (5)

Here, wSVM is the solution2 to the hard margin SVM problem in the extended d+ 1 space and ρ is a residual
vector which is bounded for all t.

Connecting this result to the previous discussion, we see indeed that either |b| and/or ∥S∥ must diverge at
infinite training times, and the question is now reduced to the directionality of wSVM.

The true generalizing solution, which classifies correctly all points in Rd is when wSVM = (0,−1), (0 being
the d-dimensional zero vector) i.e. when it points in the direction of the bias and the separating plane is at
infinity. This is exactly the aforementioned condition b → −∞ and |b|/ ∥S∥ → ∞. In contrast, over-fitting
occurs when the hyperplane is far enough from the data to correctly classify all the training samples, but does
not go to infinity. In the extended space, this means that wSVM also contains a component in the direction of
the data, and the model did not learn correctly the data distribution. In what follows, we will show that the
factor determining whether we observe grokking in this setup is not the regular separability of data points
from one another, but rather "separability from the origin" (or, separability with no bias), defined as follows:

Definition 2. A data-set {xi}Ni=1, xi ∈ Rd×1 is linearly separable from the origin iff there exists a vector
S ∈ Rd×1 such that STxi > 0 for any i.

In the rest of the paper, we will use "separable" as a shorthand for "separable from the origin". We are now
ready to present our main claims regarding the grokking phenomenology presented in Fig. 1. We claim that:

• The generalization and overfitting at t → ∞ depend only on whether the training samples (in Rd)
are separable (from the origin) (Proposition 2).

• In the limit of large N, d, the training set is separable for λ > 1
2 and inseparable for λ < 1

2 , with
probability 1. This is a direct corollary of Wendel’s theorem Wendel (1962), proven in App. A.

• For separable training sets (λ > 1
2 ), the model will always overfit, and the limiting generalization

accuracy is directly related to the optimal separating margin (Proposition 2.2). For inseparable
training sets (λ < 1

2 ) the model will always generalize perfectly: limt→∞ b(t) = ∞ and S saturates
on a finite value limt→∞ S(t) = S∞ (Proposition 2.1).

• However, for λ → 1
2

−, the training set is on the verge of separability, and ∥S∞∥ diverges
(Proposition 3).

2Note that the SVM solution in the extended d+ 1 is not the same as the typical formulation of the Support Vector
Machine (SVM) with bias in d dimensions, because of the different penalty used for the bias term.
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• Consequently, our main result follows: dynamics may take arbitrarily long times to reach the
generalizing solution. This is the underlying mechanism of grokking in this setting.

3.3 SEPARABILITY DETERMINES WHETHER THE MODEL WILL GENERALIZE PERFECTLY OR NOT

Proposition 2. The model will reach perfect generalization if and only if the data is not linearly separable
from the origin. In particular:

1. If the data is not linearly separable from the origin, then limt→∞ b(t) = ∞ while S saturates on a
finite value limt→∞ S(t) = S∞.

2. If the data is linearly separable from the origin, then limt→∞ Agen = 1
2

[
1 + erf

(
1

σM
√
2

)]
, where

M is the margin.

To prove it, we first note that due to the “exponential tail” of the cross-entropy loss, at late times the loss
is dominated by samples with large model outputs f = STx + b, for which the cross-entropy loss ℓ(f)
of Eq. (1), approaches the exponential loss ℓe(f) = ef (Soudry et al., 2018; Nacson et al., 2019; Ji and
Telgarsky, 2019). Specifically, the exponential loss must converge to the same late time dynamics as the cross
entropy loss. Therefore, we will consider the exponential loss for which the calculations are tractable,

Le(S, b) =
1

N

N∑
i=1

eS
Txi+b. (6)

In the gradient-flow limit, the dynamics for the exponential loss are
∂S

∂t
= − η

N
eb
∑
i

eS
Txixi ,

∂b

∂t
= − η

N
eb
∑
i

eS
Txi . (7)

Note that both rates are proportional to a common time-dependent scalar eb(t). We can thus define a so-called
conformal time3: τ(t) =

´ t
0
eb(t

′)dt′, which is a strictly increasing function of t. In terms of τ , the time
evolution takes the form

∂S

∂τ
= − η

N

∑
i

eS
Txixi ,

∂b

∂τ
= − η

N

∑
i

eS
Txi . (8)

The importance of this chagne of variables is that the dynamics of S(τ) in terms of the conformal time are
identical to those of S(t) in the absence of bias. That is, S(t) follows the same path that would be obtained by
minimizing L = 1

N

∑N
i=1 e

STxi , but does so at a different rate which depends exponentially on the current
value of b(t). This is demonstrated in the middle panel of Fig. 2. Since τ(t) diverges for t → ∞, S(t) must
follow the same path at long times, as it would have followed without bias (see App. C for details). We can
now complete the proof:

Proof of 2.1 (inseparable case) Consider the dynamics without bias. In case the data is inseparable,
Le of Eq. (6) is unbounded in all directions of S. That is, for any unit vector e ∈ Rd we have
limα→∞ Le(αe, 0) = ∞. Since Le is convex, the gradient flow dynamics will lead to a global minimum at
a finite point limt→∞ S(t) = S∞. Recalling the discussion of conformal time above, this is also the limit
of the dynamics with bias. From Eq. (5), we know that either ∥S(t)∥ or |b(t)| must diverge, and since S(t)
approaches a finite value, we conclude that |b|/ ∥S∥ → ∞ for t → ∞. That is, wSVM = (0,−1) and the
model flows towards the generalizing solution.

3This is a common measure in cosmology and gravitational physics to describe co-moving objects in an expanding or
shrinking spacetime background (Guth, 1981).

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Separable

Inseparable

Separable

Inseparable

Figure 2: Evolution of the model parameters. (left) the distribution of STxi/∥S∥, where S is the final
spatial weight vector that was found using GD dynamics for λ = 0.05, 0.48, 0.52, 0.8. The parameters are
identical to those of Fig. 1. We can see that for λ = 0.05, 0.48 the model does not separate the data (because
the data is inseparable) while for 0.52, 0.8 it does. The margin is plotted for λ = 0.8 Middle panel: ∥S(t)∥,
optimized with GD using the exponential loss given in Eq. (6), with and without a bias term. With a bias
term, the result is shown as a function of the conformal time (Eq. (8). The two curves follow the same path
different rates. The inset shows d∥S∥

d log(t) and db
d log(t) , (right) Optimization paths for different λ values, shown

in the b, σ∥S∥ plane. For inseparable data b diverges while S is bounded, while slightly above the limit of
separability both b and ∥S∥ diverge.

Proof of 2.2 (separable case) When the training set is separable from the origin, it is easier to examine the
optimization problem in Eq. (5) directly. We wish to minimize ∥w∥2 = ∥S∥2 + b2 under the separability
constraints. The generalizing solution wg = (0,−1) satisfies all constraints trivially and has ∥wg∥ = 1.
However, since the data is separable from the origin, there exists another solution to the constraints, namely
w∗ = (S∗, 0), where S∗ is the separating vector in d dimensions without bias, i.e. the solution to

S∗ = argmin
S

{
∥S∥2 s.t. STxi ≤ −1

}
. (9)

The norm of S∗ is the inverse of the separation margin M = 1/ ∥S∗∥.

Due to convexity, any convex combination of wg and w∗ will also satisfy the constraints, and since they are
orthogonal it also has a smaller norm. The combination with the smallest norm is the global optimum, which
is easily shown to be proportonal to wSVM = (M2S∗,−1). That is, both S and b diverge when t → ∞ and
limt→∞

b(t)
∥S(t)∥ = − 1

M . Plugging the result into Eq. (4) completes the proof.

3.4 COLLECTING THE PIECES: WHY GROKKING HAPPENS NEAR λ = 1
2 ?

We have established that for λ < 1
2 , the model will almost surely generalize perfectly. For infinitely long

times, S(t) converges to a finite vector S∞, and b(t) diverges. For λ > 1
2 , the model will almost surely over

fit. Intuitively, one should expect that in the vicinity of this critical point, where the two solutions exchange
stability, dynamics may become slow. This is because for λ > 1/2 the overfitting solution is stable and
for λ smaller than but close to 1/2, it is unstable but only slightly so. Therefore, the dynamics may spend
arbitrarily long times in the vicinity of the overfitting solution before flowing to the generalizing solution.
This is delayed generalization. Rigorously, this happens through of the following properties:

Proposition 3. For λ → 1
2

−
, ∥S∞∥ → ∞.

7
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Figure 3: Simplified model. Two left panels: Illustration of the hard margin SVM problem in 1+1 dimensions
for the simplified model. Note that −wSVM is the point closest to the origin in the intersection of the two
shaded regions. (right) Grokking time, defined as the time it takes for the generalization accuracy to reach
0.95, plotted against σ and 1 − 2λ. We see it diverges when both λ → 0.5 and σ → ∞, while neither
condition suffices alone.

That is, when the training set is non-separable, but on the verge of separability, ∥S∞∥ obtains arbitrarily
large values. This statement is formally proven in App. D and empirically demonstrated in Fig. 1. It can
also be obtained as a corollary of Ji and Telgarsky (2019). An intuitive geometric interpretation is that for a
nearly separable set, S(t) approaches a finite limit S∞, but a small translation of the data would make the set
separable, and correspondingly would make |S(t)| → ∞. Smoothness thus implies |S∞| must be large if the
set is almost separable.

Proposition 4. For λ < 1
2 and σ large enough, S(t) will approach its asymptotic value S∞ arbitrarily fast.

Proof. To see this, it is useful to define the rescaled variables x̃i = xi/σ, S̃ = σS. Clearly, x̃i ∼ N (0, Id).
The gradient flow equations in terms of the rescaled variables are (we study the exponential loss for simplicity)

∂S̃

∂t
= −σ2 η

N
eb
∑
i

eS̃
T x̃i x̃i,

∂b

∂t
= − η

N
eb
∑
i

eS̃
T x̃i . (10)

Note that these are identical to the gradient flow equations of the original variables, Eq. (7) but the dynamics
of S are faster by factor of σ2. Thus, by taking a large σ, S̃ will approach its asymptotic value S∞ arbitrarily
fast, while the dynamics of b will not change.

We can now understand mechanistically how grokking occurs. For λ values close enough to 1
2 from below,

the limiting norm ∥S∞∥ is arbitrarily large (Proposition 3). For large enough σ, S(t) will grow arbitrarily
fast towards S∞ (Proposition 4). In these conditions the growth rate of b(t) remains boudned, and the
generalization can be delayed for arbitrarily long times. Note that this necessitates both λ → 1

2

− and σ → ∞,
as is also demonstrated in the right panel of Fig. 3. Interestingly, using adaptive momentum based optimizers
like ADAM (Kingma and Ba, 2017), one can see grokking even for σ = 1, see App. F for more details.

4 INSIGHTS FROM A SIMPLIFIED MODEL

Our main claim is that the asymptotic dynamics depend only on the separability of the training set, and
that grokking occurs at the edge of linear separability. This intuition can be worked out explicitly in a
much simpler setting in one dimension. In this case, separability boils down to asking whether the origin is

8
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contained between the extremal points min{xi} and max{xi}. Therefore, all the phenomenology of the full
model described in the previous sections can be captured by a training set consisting of only 2 points x1, x2,
representing the points with maximal and minimal projections along S∞. For consistency with the problem
of Gaussian data, we parameterize this set as

x1 = −σ , x2 = σ (1− 2λ) , L(S, b) = 1

2

(
eSx1+b + eSx2+b

)
, (11)

so that the scale of xi is σ, and they are separable (inseparable) for λ < 1/2 (λ > 1/2). We note that the
margin of the dataset from the origin has the same dependence as in the Gaussian model with N points in d
dimensions.

The asymptotic dynamics of this model qualitatively, and sometimes quantitatively, capture the
phenomenology of the full problem. The model is fully tractable analytically and the detailed analysis
is presented in App. E.2. We summarize here the main results:

• The left panels of Fig. 3 show the geometry of the problem in 1 + 1 dimensions. It is easily seen
that the optimal SVM solution is s = 0, b = −1 if and only if the data is not separable, i.e. when the
segment x2 ≥ 0 contains the origin.

• The limiting value S∞ can be easily found to be S∞ = 1
2(λ−1) log (1− 2λ) , for the separable case

λ < 1/2. Indeed, it diverges logarithmically at λ = 0.5, in agreement with the numerical results of
the full model presented in the upper-right panel of Fig. 1. The long time dynamics of ∥S(t)∥ and
b(t) are summarized in Table 1.

• The behavior of the loss and accuracy of the simplified model as a function of λ is remarkably
similar to that of the full model, see Fig. 7 in the Appendix.

λ < 0.5 (x2 > 0) λ = 0.5 (x2 = 0) λ > 0.5 (x2 < 0)

b(t ≫ 1) − log(t) − log(t) − 1
1+M2 log(t)

∥S∥(t ≫ 1) 1
2(1−λ) log

(
1

1−2λ

)
log(log(t)) M

1+M2 log(t)

Table 1: Summary of the results in the different regimes in the simplified model, where x1 = −1, x2 = 1−2λ,
and the margin is M = |x2| = 2λ− 1.

We note that this result bears a striking resemblance to that of Levi et al. (2023), which employed the MSE
loss in a linear regression problem, again for N points sampled iid from an isotropic Gaussian distribution. In
their setting, the interpolation threshold is at λ = 1, in the sense that for λ < 1 the model always generalizes
asymptotically, and never generalizes for λ > 1. They also found logarithmic divergence of the "grokking
time" (the time difference between the times it takes for the generalization and training accuracy to reach
a certain threshold). It diverges as a function of the distance from criticality as ∝ log (1−

√
λ), which

was explained in terms of a “critical slowing down” effect, arising from a vanishing eigenvalue of the data
covariance near criticality. While the two problems are quite different, they both display a critical behavior
near an effective interpolation threshold of the corresponding problem. We believe this is not a coincidence
but rather a manifestation of a deeper relation between the behaviors of NNs in the vicinity of critical points.

5 DISCUSSION, CONCLUSIONS AND LIMITATIONS

We studied the dynamics of gradient descent in a simple setting of logistic classification of data with a
constant label. We have shown that in this setting Grokking occurs near a critical point in the asymptotic
dynamics. Specifically, at the critical point, which for this simple setting is at λ = 1/2, the overfitting and
generalizing solutions exchange stability. This non-analytic change in the asymptotic dynamics is the cause

9
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for grokking, much like in Rubin et al. (2024); Levi et al. (2023); Doshi et al. (2024), and to some extent
also Humayun et al. (2024), who showed that grokking occurs near a phase transition.

Intuitively, in the vicinity of the critical point there are “flat directions” in the loss landscape. These directions
may cause training to stay in the vicinity of almost-stable solutions for arbitrarily long times periods before
eventually converging to the global minimum. In the physics literature, this behavior is known as "critical
slowing down" (e.g. Sethna (2021)). In the current context, this is the mechanism of delayed generalization,
which also explains the non monotonic evolution of the generalization loss.

While we cannot show it rigorously, we conjecture that Grokking is intimately related to such critical points
also in different settings. In a few examples this has been directly demonstrated, Levi et al. (2023); Rubin et al.
(2023; 2024); Humayun et al. (2024). We note that other intriguing phenomena, such as the non-monotonic
dependence of asymptotic performance on model complexity, a.k.a “double descent”, has also been proposed
to be related to criticality, e.g. Schaeffer et al. (2023).

If this is indeed the case, then in analogy to the theory of critical phenomena in physics, there might
exist "universality classes" that have similar critical behavior, but possibly very different underlying
mechanisms (Sethna, 2021). We will further address this connection in future work.

Limitations: We considered a specific problem of classifying irrelevant features, under a particular choice of
feature distribution, namely, Normal with zero mean in high dimensions. It is natural to ask how our results
extend to more complex data, for instance including non-trivial correlations, hierarchical structure, or a finite
sample space, as in the original observation of grokking Power et al. (2022); Gromov (2023). While we
believe the same analysis can be repeated in these instances, in the sense of (non)linear separability, we leave
this to future work. In any case, we do not claim that the underlying mechanism of criticality is necessarily
related to separability.

All of the analytics were done in the GF limit, and while our results were verified by experiments with finite
learning rate, it may be interesting to study how large learning rates effect this setup, possibly relating to
catapults (Lewkowycz et al., 2020) or the edge of stability literature (Cohen et al., 2022).

Lastly, we did not study the prospect of nonlinear logistic regression, which is closer to deep learning
models in the wild. We believe some of our results may be generalized, provided we accept a “feature map”
description of the model up to the last layer, and consider the SVM solution on the learned features.
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Appendix
A SEPARABILITY AND WENDEL’S THEOREM

Wendel’s theorem (Wendel, 1962) states that the probability that N random vectors drawn from a distribution
in d dimensions are linearly separable, is

p =
1

2N−1

d−1∑
k=0

(
N − 1

k

)
(12)

In relation to our work, the only assumptions required from the distribution is that

• It is symmetric around the origin, i.e. P (x) = P (−x), and

• The dataset is almost surely in general position.

We note that Eq. (12) is a the cumulative probability function of the Binomial distribution, i.e. the probability
that the the number of successes is greater than d out of N − 1 attempts with success probability 1

2 . The
central limit theorem states that in the limit of large N, d the binomial distribution approaches a Gaussian,
and thus the cumulative distribution function approaches the error function. Straightforward manipulations
show that for large N, d,

p(λ) → 1

2

[
1 + erf

(√
d

(√
2λ− 1√

2λ

))]
, λ =

d

N
. (13)

It is seen that for d → ∞ the transition becomes infinitely sharp as a function of lambda and we have

lim
d→∞

p(λ) =


0 λ < 1

2
1
2 λ = 1

2

1 λ > 1
2

(14)

See also Cover (1965) for further discussion.

B RELATION TO CANONICAL EXAMPLES

In this section, we will discuss the similarities and differences of our work with previous examples of
Grokking in the literature, focusing on the seminal work of Power et. al. Power et al. (2022). We first note
that Grokking at Power et. al. is significant when the fraction of the data used for training α = Ntraining/N
is near a critical value αc, in the sense that the system achieves perfect generalization if and only if α > αc,
as can be seen in Fig. 1 (center) of their paper. We expect that this non-analytic behavior in the long time limit
of training will be the crucial property that underlies grokking. That is, we expect that near such points the
dynamics will be slow. We note that α in Power et. al. is analogous to our λ parameter, defining an effective
"interpolation threshold" for the modular arithmetic problem.

Secondly, we note that a noticeable difference between our work and that of Power et. al. is that in our case,
the accuracy shows a rise from the start rather than staying at chance level for a long time before generalizing.
We argue that this is only a superficial discrepancy that depends on the choice of optimizer and fine-tuning of
hyperparameters, and that the fundamental mechanism (that grokking occurs near critical points in which
solutions exchange stability and dynamics are generically slow) is the same.
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Figure 4: Grokking in a similar setup to the results in the main text but with ADAM optimizer (with β1 = 0.8,
β2 = 0.9), instead of GD. The parameters are λ = d/N = 0.495, N = 4000 and σ = 1.

Indeed, in Fig. 4 we show that our setup is capable of grokking with accuracy staying at chance level (50%)
at the start, similar to Power et al. We achieved this by using λ values closer to half (“almost separable”) and
the Adam optimizer instead of vanilla gradient descent (GD). The fact that this optimizer converges faster on
the training data is no coincidence: the adaptive learning rate leads to quicker convergence to large values of
|S| (the “memorizing solution"), maintaining accuracy at chance level until later stages, before going to large
−b (the "generalizing solution"). Notably, Power et al. also used Adam (or AdamW). In conclusion, although
Adam can lead to a slightly "cleaner" grokking result, we explored GD because it is easier to derive analytical
insights from it while, we believe, not changing the underlying mechanism of grokking. Finally, We will also
note that the non-monotonicity of the test loss is also a typical sign of Grokking that can be seen in our setup
(for example, compare Fig. 4 of Power et al. with the test loss in Fig. 4).

C DIVERGENCE OF THE CONFORMAL TIME

In the main text we have defined the “conformal time” τ =
´ t
0
eb(t

′)dt′ and saw that as the result the
gradient-decent trajectory of S(t) is the same as one that minimizes the exponential loss without bias:
L = 1

N

∑N
i=1 e

STxi . However, if τ is bounded it might reach a different fixed point. We will show now
that indeed τ must diverge. First, we notice that the loss must be bounded from above: If the points are not
separable (that is, there is some ε > 0 such that for any ST

∥S∥ that we choose ST

∥S∥xi > ε for any i), then it
must be true since ∥S∥ is bounded — otherwise the loss would be infinite. If the points are separable, then
∥S∥ might diverge (and will, as discussed in the main text) but at some point all of the arguments of the
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Figure 5: Left panel: The fraction of positive ST
∞

∥S∞∥xi, which goes to a constant for λ = 0.5. Right panel:
The fraction of separable datasets for λ < 0.5 that were not included in the calculation.
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Figure 6: Numerical investigation of properties of the limiting distribution of STxi, as a function of 1− 2λ

(averaged over different random configurations). In blue, we plot the average value of positive ST
∞

∥S∞∥xi, for

λ < 0.5 (by minimizing L = 1
N

∑N
i=1 e

STxi ), and the margin for λ > 0.5 (using SVM).

exponent would be negative, so the loss would be trivially bounded by 1. Now, using the fact that ∂β
∂t = β ∂b

∂t

we have ∂β
∂t = −ηβ2 1

N

∑
i e

S·xi . Denoting L(t) < C , we see that

− 1

β2

∂β

∂t
< ηC. (15)

We note that on the left-hand side we have a positive function (since ∂β
∂t < 0). In other words, ∂

∂t

[
1

β(t)

]
< ηC,

so we get that

1

β(t)
=

1

β(0)
+

ˆ t

0

∂

∂t

[
1

β(t)

]
<

1

β(0)
+

ˆ t

0

ηC =
1

β(0)
+ ηCt (16)

so that 1
β(t) < 1 + ηCt or, β(t) > 1

1+ηCt . This means that
´ t
0
β(t) >

´ t
0

1
1+ηεt , which diverges.

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

D PROOF THAT S∞ DIVERGES FOR ALMOST SEPARABLE DATA

We look at the function

f(S, {xi}) =
n∑

i=1

eS·xi x, S ∈ Rd (17)

We will assume n > d and that the data is in general position, and that it is not separable from the origin.
Since for every S we must have S · xi > 0 for some i, it is easy to see that f diverges when S grows large in
any direction. Since f > 0, there exists a global minimum at finite S.

A minimum (which is also unique under our assumptions but that’s not crucial) obeys

∂f

∂S
=

n∑
i=1

xie
S·xi = 0 (18)

If we divide this expression by f , we get
n∑

i=1

pixi = 0 pi =
eS·xi

f
0 ≤ pi ≤ 1,

∑
i

pi = 1 (19)

Eq. (19) means that the origin is a convex combination of the sample points with weights pi. We found that
a necessary condition for the existence of a critical point at a finite S is that the origin is contained in the
convex hull of the sample points. This is of course equivalent to the condition that the origin is not linearly
separable from the sample data.

We want to show that if the data is almost separable, that is, if it is not separable but the origin is close to the
boundary of the convex hull, then S must be large. The intuition for this comes from Eq. (19): if the origin is
very close to the boundary of the convex hull then some of the pi’s must be very large compared to the others,
which can only happen if S is large.

In fact, the origin is exactly on the boundary of the convex hull (that is, the data is exactly on the edge of
separability) if and only if for every representation of the origin as a convex combination of the sample points,

n∑
i=1

qixi = 0 , (20)

the weights qi are non zero only for k sample points, say xi, . . . , xk, with k ≤ d, and x1, . . . xk are the
vertices of a facet of the convex hull. This naturally leads to the definition:

Definition We say that the origin is ϵ-close to the boundary if there exist k points x1, . . . , xk such that for
every representation of the type of Eq. (20), the total weight assigned to x1, . . . xk is at least 1− ϵ,

k∑
i=1

qi ≥ 1− ϵ

Theorem If the origin is ϵ-close to the boundary of the convex hull of the sample points, then the norm of
S = argmin f is bounded from below by

|S| ≥ 1

D
log

(
1− ϵ

ϵ

)
where D = maxij |xi − xj | is the diameter of the data.
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Figure 7: Simplified model (left, center) Loss and accuracy for different λ and σ = 5. dotted/solid lines
represent the training/generalization respectively. (right) Grokking time (the time difference between the
time it takes for the training and generalization loss to reach a certain threshold, ε = 10−50 in this case) for
σ = 20. The data is in very good agreement with the prediction. (inset) how grokking time is calculated for
ε = 10−50 and λ = 10−4.

Proof. We divide the points to two groups: A = {x1, . . . xk}, and B = {xk+1, . . . xN}. Since the origin is
ϵ-close, the ratio of the weights of the two groups is bounded by∑

i∈A pi∑
i∈B pi

≥ 1− ϵ

ϵ
(21)

Consider now the convex combination Eq. (19). Using Jensen’s inequality, we can bound the relative weights
of the second group by∑

i∈B

eS·xi ≥ (N − k)eS·x̄ , with x̄ =
1

N − k

∑
i∈B

xi (22)

where x̄ is the average of the points in the second group. Therefore, the ratio is bounded by∑
i∈A pi∑
i∈B pi

=

∑
i∈A eS·xi∑
i∈B eS·xi

≤
∑

i∈A eS·xi

(N −K)eS·x̄ ≤ k

N − k
e|S|D ≤ k

N − k
e|S|D (23)

Combining Eq. (21) and Eq. (23) we get

1− ϵ

ϵ
≤ k

N − k
e|S|D ⇒ |S| ≥ 1

D
log

(
1− ϵ

ϵ
· N − k

k

)
(24)

Since k ≤ d, we also have N − k ≥ n− d.

Note that the same convexity argument would work also for logisitic loss f =
∑

i ℓ(S · xi), ℓ(z) =
log (1 + ez), or any other monotonic and convex ℓ. In this case the only difference is that the log function
should be replaced the inverse of ℓ.

E DETAILS OF THE SIMPLIFIED MODEL

E.1 JUSTIFICATION AND RELATION TO THE FULL MODEL

We will provide here supplemental results regarding the justification of the simplified model (by numerical
comparison to the full model). To obtain the results we average over different random realizations: Assuming
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the so-called “self averaging” property, we know that the average over a large number of finite systems should
give us the same result as the infinite system (where N, d → ∞ and the ratio is constant).

In the non-separable case, S∞ can be found by any optimizer that minimizes the loss L =
∑

eS
Txi . We note

that when getting close to the transition point, for any finite-sized system we have some probability of getting
a separable set (even though λ < 0.5), see Eq. (12). In this case, we just ignore the the result: In the right
panel of Fig. 5 we present the fraction of realizations that are separable. This will probably introduce some
bias into the results which is likely the cause of the fact that the average of positive samples (and similarly,
the margin) does not go exactly to zero for λ → 0.5 (see Fig. 6). In the left panel of Fig. 5 we present the
fraction of positive ST

∞
∥S∞∥xi . Interestingly, it does not go to zero but to some positive constant, implying that

there is a singularity in the density of ST
∞

∥S∞∥xi at λ = 0.5.

E.2 ANALYTICAL PREDICTIONS

Here, we provide the full analysis of the model presented in Sec. 4, for a single point fixed at x1 = −1, and a
second point x2 = x = 1− 2λ, where λ = d/N .

The gradient flow equations in conformal time are given by

∂S

∂τ
= −η

2

(
xeSx − e−S

)
= −η

2

(
(1− 2λ)eS(1−2λ) − e−S

)
, (25)

∂b

∂τ
= −η

2

(
eSx + e−S

)
= −η

2

(
eS(1−2λ) + e−S

)
.

While there exist analytical solutions for Eq. (25), they do not necessarily provide any intuition, and so we
find it better to begin by investigating three special representative cases:

1. x2 = 1 (non-separable).

2. x2 = 0 (marginally non-separable).

3. x2 = −1 (separable).

For x = 1 (A), the data is entirely non-separable in one dimension and the conformal time solutions are

S(τ) = log
(
tanh

(ητ
2

+ tanh−1
(
eS0
)))

, (26)

b(τ) = b0 + log

(
tanh

(
2 tanh−1

(
eS0
))

cosh
(
2 tanh−1

(
eS0
))

tanh
(
ητ + 2 tanh−1 (eS0)

)
cosh

(
ητ + 2 tanh−1 (eS0)

)) ,

in which case the generalization accuracy reaches 1 for τ → ∞, as b(τ) grows faster than S(τ) with
conformal time.

For x2 = 0 (B), the equations in conformal time become:

∂S

∂τ
=

η

2
e−S ,

∂b

∂τ
= −η

2
(e−S + 1) (27)

By solving for S and plugging into ∂b
∂τ , we immediately get

S = log
(
eS0 +

η

2
τ
)
, b = − log

(
eS0 +

η

2
τ
)
− η

2
τ + S0 + b0. (28)
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Using the fact that eb = ∂τ
∂t , we get that ∂τ

∂t = e−
η
2
τ

eS0+ η
2 τ

eS0+b0 , and taking another integral, we get that

e
η
2 τ
[
eS0 − 1 + η

2 τ
]
= eS0+b0 η

2 t+ (eS0 − 1). Taking the inverse of this, we finally get

τ =
2

η

[
W0

((
eS0+b0

η

2
t+ (eS0 − 1)

)
ee

S0−1
)
− eS0 + 1

]
, (29)

where W0 is the Lambert W function. We note that for large t we have τ ∼ log(t), and therefore b ∼ − log (t),
S ∼ log(log(t)), so it is interesting to note that in the critical point we still have limt→∞ S(t)/b(t) = 0 (i.e.,
accuracy goes to 1), even though S diverges.

Finally, for x = −1 (C), the data is fully separable in one dimension and the solution in conformal time is
given by

S(τ) = S0 + log
(
1 + ητe−S0

)
, b(τ) = b0 − log

(
1 + ητe−S0

)
, (30)

showing that the accuracy is bounded at A∞
gen = 1

2

(
1 + erf

(
1√
2

))
agreeing with Item 1 for M = 1.

For completeness, we report here the full solution, as a function of the conformal time τ =
´ t
0
eb(t)dt

of Eq. (25). We define

f(y) = −
xey(x+2)

2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
(x+1)yx

)
x+ 2

− ey, (31)

then the solution for S(τ) is given by the inverse function f−1(u) evaluated at

u = −
xeS0(x+2)

2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(x+1)x

)
x+ 2

− τ

2
− eS0 , (32)

as

S(τ) = f−1

−
xeS0(x+2)

2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(x+1)x

)
x+ 2

− ητ

2
− eS0

 . (33)

The solution for b(τ) is obtained simply by integrating Eq. (25), resulting in

b(τ) =
1

x

b0x− log

1− e
(1+x)f−1

(
−eS0−

eS0(2+x)x 2F1(1,1+ 1
x+1

;2+ 1
x+1

;eS0(1+x)x)
2+x

)
x

 (34)

+ log

1− e
(1+x)f−1

(
−eS0− ητ

2 −
eS0(2+x)x 2F1(1,1+ 1

x+1
;2+ 1

x+1
;eS0(1+x)x)

2+x

)
x


+ xf−1

−eS0 −
eS0(2+x)x 2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(1+x)x

)
2 + x


− xf−1

−eS0 − ητ

2
−

eS0(2+x)x 2F1

(
1, 1 + 1

x+1 ; 2 +
1

x+1 ; e
S0(1+x)x

)
2 + x

 .
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While these solutions may not necessarily be instructive in this form, appropriate limits can be taken in order
to obtain the results in the main text.

E.3 GROKKING TIME IN THE SIMPLIFIED MODEL

We can define t∗tr, t
∗
gen as the times it would take for the training and generalization loss to reach some

threshold ε. We can find t∗tr by solving Ltr =
1
2e

b
(
e−S + eS(1−2λ)

)
= ε. We will assume that σ is large

enough such that S = S∞ from the start (as discussed in the main text, σ increase the rate that S goes to its
final value). Therefore, we plug S∞ = − log(1− 2λ), and find that for λ which is close enough to 0.5, the
loss is approximately given by Ltr =

1
2e

b. Comparing to ε and plugging the long-time limit b = − log(η2 t),
we find that

t∗tr =
1

ηε
. (35)

Similarly, using the generalization loss Lgen = ebeS
2/2 we can find that

t∗gen =
2

ηε
e

1
2 log2(1−2λ) (36)

It is already clear that for any finite ε, t∗gen − t∗tr diverges. We can also obtain an ε-independent property by
noting that √

log(t∗gen/t
∗
tr) =

1√
2
log(1− 2λ), (37)

which is verified numerically in Fig. 8.

1015 1034 1053 1072 1091

t

10−87

10−71

10−55

10−39

10−23

10−7 train
test
ε

−7.0 −6.5 −6.0 −5.5 −5.0 −4.5
log(1−2λ)

3.5

4.0

4.5

√
lo
g(

t 1
/t 2

)

Linear fit

Figure 8: Numerical evidence for the Grokking time in the simplified model. In the left panel, we demonstrate
for 1− 2λ = 0.001 how the Grokking time is calculated: t∗tr, t

∗
gen are calculated by finding the intersection

of the loss with some ε. In the right panel we plot
√

log(t∗gen/t
∗
tr) versus log(1− 2λ) numerically, and show

that the result is linear with slope ≈ 1√
2

, in agreement with the prediction of Eq. (37)
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It is interesting to note that in the conformal time, we have b ≈ −τ , and therefore can repeat this calculation
and obtain

τ∗tr = − log(ηε), τ∗gen =
1

2
log2(1− 2λ)− log

η

2
ε. (38)

In this case, the result is a bit more natural since now the time difference (instead of ratio) becomes ε-
independent:

τ∗gen − τ∗tr ≈
1

2
log2(1− 2λ). (39)

We note that this result still depends on ε implicitly, in the sense that our assumption that S = S∞ is true
only for long-times, or ε which is small enough.

E.4 CALCULATION OF THE SUBLEADING TERM IN THE SEPARABLE CASE

We now consider x2 < 0 but close to zero (that is, we are in a separable case where M = −x2 is the margin).
We know that w diverges at long times as w ≈ M

1+M2 log
[
η
2 (1 +M2)t+ 1

]
. We will now denote

u ≡ w − M

1 +M2
log
[η
2
(1 +M2)t+ 1

]
as the difference from the diverging term. The equation for u is therefore

∂u

∂t
= −η

2
eb
(
−e

x1

(
u+ M

1+M2 log[ η2 (1+M2)t]
)
−Me

−M
(
u+ M

1+M2 log[ η2 (1+M2)t]
))

− M

1 +M2

1

t
.

Plugging the (long-time) solution for the bias, b ≈ − 1
M2+1 log

[
η
2 (1 +M2)t+ e−(1+M2)b0

]
(where b0 = 0

in our case), we get

∂u

∂t
= −x1

η

2
ex1u

(η
2
(1 +M2)t+ 1

) x1M−1

1+M2

+
(
e−Mu − 1

) M

(1 +M2)t+ 2
η

.

For M ≈ 0, we note that the second term is O(M2), and by neglecting it we get

u = − 1

x1
log

(
x2
1

x1M +M2

(η
2
(1 +M2)t+ 1

) x1M+M2

1+M2

− x2
1

x1M +M2
+ 1

)
.

For t → ∞, and neglecting the other O(M2) terms, we finally get

u ≈ − 1

x1
log

(
x1

x2

)
.

Remarkbly, this is identical to the result of the in the x2 > 0 case.

F IMPACT OF DIFFERENT PARAMETERS

Here we present supplemental results for Sections ??.
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F.1 THE VARIANCE SCALE σ

Here we provide additional information regarding the effect of σ different than 1. In particular, we will show
that increasing σ can make grokking more apparent (but only up to a certain point). We will first assume that
σ = 1 at the start, and investigate how taking x̃i = σxi changes the dynamics in comparison to that case. We
will begin with the non-separable case (λ < 0.5). Recalling that the equations for gradient flow in our model
are given by Eq. (7), this results in

∂S

∂t
= −σ

η

N
eb
∑
i

eS
Tσxixi,

∂b

∂t
= − η

N
eb
∑
i

eS
Tσxi . (40)

We can now absorb σ into S by denoting S̃ ≡ σS and investigate how it affects the dynamics of S̃, and the
generalization loss and accuracy as a function of S̃. First, the GD equations become

∂S̃

∂t
= −σ2 η

N
eb
∑
i

eS̃
Txixi,

∂b

∂t
= − η

N
eb
∑
i

eS̃
Txi . (41)

We note that the generalization loss and accuracy in Eqs. (3) and (4) are the same except they are now a
function of

∥∥∥S̃∥∥∥ instead of ∥S∥ (being a function of σ ∥S∥). Since the equation for ∂S̃
∂t is just multiplied by a

factor σ2, the limiting value of S̃∞ would be the same as for the σ = 1 case, but it will reach it at a faster
rate. To sum up, obtaining the dynamics of the loss and accuracy when σ is larger than one can be done by
using the same Eqs. (3) and (4), but also (A) Increasing the starting condition of S0 by a factor of σ, and (B)
Multiply only the learning rate of the spatial part by a factor of σ2. If σ is large enough, we can go to the
fixed point of ∥S∥ as fast as we want, enabling the appearance of Grokking (if also the limiting value of ∥S∥
is large, which happens when we are on the edge of being separable).

Finally, we will also investigate the effect of σ in the separable regime (λ > 0.5). Now we can use ??
and Item 2, where we only need to consider how σ changes the margin M . Since it is obtained from the
equation ST

∥S∥xm = −M , we can see that the new margin will be larger by σ than the old one, i.e., M̃ = σM .
Plugging this in the expression for the accuracy in Proposition 2, we get that the accuracy is now

lim
t→∞

Agen ≈ 1

2

[
1 + erf

(
1

σ2M
√
2

)]
. (42)

where we note that the argument inside the erf is smaller in a factor of σ2, drastically reducing the limiting
accuracy.

F.2 OPTIMIZER

The effect of changing the optimizer to Adam is demonstrated in Fig. 10. We note that the fact that adaptive-
type optimizers change each learning rate individually based on past gradients, leads the dynamics faster
in the direction of ∥S∥, relatively to b. The fact that it makes ∥S∥ change faster (and not slower) than b, is
probably related to the fact that S is a vector in high dimension: Moving each component of such vector will
result in a change of the norm in a rate that is proportional to

√
d, but this may need further investigation.

We will also note that using a different optimizer for the non-separable region where, will lead to a different
solution than the hard margin SVM, as is also discussed by Soudry et al. Soudry et al. (2018). This means
that the results we developed in the main text will not hold, but we can still expect to obtain accuracy smaller
than one since ∥S∥ diverges, as indeed can be seen in Fig. Fig. 10.
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F.3 INITIAL CONDITIONS

As discussed in the main text, changing the initial conditions can change the monotonicity of the generalization
loss and accuracy: See Fig. Fig. 11, Fig. 12 below.

F.4 DIFFERENT LOSS

In the main text, we showed that we can use the exponential instead of the CE loss, since it will converge to it
at late times. Here we provide numerical evidence that indeed Grokking could be seen, even when taking
from the beginning just the exponential loss L = 1

N

∑
i e

ST xi+b: See Fig. Fig. 13.
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Figure 9: Gradient descent dynamics for three different values of σ, all for λ = 0.48. The top panels show
the loss and accuracy for the train and test datasets, while the bottom panels present b and the norm of S.
Except for σ, the parameters are the same as in Fig. 1. We can see that increasing σ makes the grokking more
apparent at start, but then saturates (that is, increasing σ will not increase the “grokking time” anymore).
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Figure 10: Dynamics, using ADAM optimizer with PyTorch’s default parameters. The setup is the same
as Fig. 1, except for the fact that σ = 1 now instead of 5. Significant Grokking can be seen even though the
value of σ is not large.
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Figure 11: Gradient descent dynamics for λ = 0.48 and for three different values of starting norm, ∥S0∥.
Except for this, the setup is the same as Fig. 1. We can see that the non-monotonicity of the loss can be
affected by the starting condition.
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Figure 12: Gradient descent dynamics for λ = 0.48 and for three different values of b. Except for this, the
setup is the same as Fig. 1.
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Figure 13: Gradient descent dynamics for a setup which is the same as Fig. 1, but with the exponent loss
L = 1

N

∑
i e

ST xi+b. That is, the loss is strictly the exponent loss at any time (and not just converge to the
exponent loss at long times, as the CE loss). Clearly, we can see that the behavior of the Grokking is similar.
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G DIFFERENT INPUT DATA DISTRIBUTIONS

As discussed in the main text, our results hold for any data distribution that is symmetric around the origin.
Since the underlying mechanism only requires that the data is on the verge of separability (in which case |S∞|
diverges). As we discuss in App. A, in the limit d,N → ∞, λ = 1/2 is the critical value below which the
dataset is almost surely inseparable. Therefore, the analysis and resulting behavior, including the occurrence
of Grokking and the critical point of λ should hold for any symmetric distribution.

To demonstrate this, we compare three input distributions at λ = 0.45 in Fig. Fig. 14: (1) The isotropic
Gaussian input (as discussed in the main text), (2) Non-isotropic Gaussian inputs, generated using a covariance
matrix with eigenvalues that follows the scaling law λn = λ0

nα , with α = 1.5. (3) Mixture of Gaussians
N (µ = ±1, σ = 0.25). We notice that σ in this context (and its effect on Grokking described in ??) could
also be easily generalized for any distribution, by simply multiplying all of the inputs by a factor of σ.
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Figure 14: Grokking for three different input data distributions: Isotropic Gaussian (left), Gaussian with
covariance whose eigenvalues follow a power-law scaling (middle), and uniform distribution (right). The
parameters are: d = 180, N = 400 (λ = 0.45), and the optimizer is gradient-decent. Left panel: Isotropic
Gaussian with σ = 5, as appears in the main text. Middle panel: Gaussian with eigenvalues that follow
λn = λ0/n

α, where α = 1.5. The normalization factor λ0 is chosen such that
∑

n λn = σ · d, where here
σ = 10. Right panel: each element in the input vector is chosen from a mixture of Gaussian distribution, with
µ1,2 = ±1 and σ1,2 = 0.25. After sampling, the input was multiplied by 5, as a generalization of the original
σ.

H DISCRIMINATIVE LABELING CASE: CAN GROKKING STILL BE OBSERVED?

In this section, we investigate how the previous analysis holds when not all labels are the same. To explore
this, we propose the following model: We classify a point xi with label -1 if the value of its first coordinate xi,1
exceeds a threshold µ, and assign it label 1 if it is below this threshold. Specifically, we set µ = Q(r), where
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Q is the Gaussian quantile function (the inverse of the cumulative distribution function) and r is a fraction
between 0 and 1. For instance, if r = 1, all points are assigned the same label (-1), which is equivalent to the
case studied earlier in the paper. However, for r < 1, a fraction r of the points will have label -1, while the
remaining fraction 1− r will be assigned label 1.

In this context, the question that we want to answer is: Can we observe Grokking for values of r that are
smaller than one? It turns out that the answer is yes, but only for values of r that are sufficiently close to 1.
To demonstrate this, we first present numerical calculations for the cases of r = 1, r = 0.99, and r = 0.95
— see Fig. Fig. 15. We can see that for values slightly smaller than one, the behavior at the initial stages of
training is very similar to that of r = 1, for both the training and generalization sets. However, at the final
stages of training, we can clearly see that for r < 1, the model is not able to fully generalize. In fact, the
accuracy limiting value decreases as r deviates further below 1.

Intuitively, this occurs because the closer the dividing plane is to the origin, the relative significance of errors
in its parametrization (i.e., determining S and b) increases. We also note that in this case both S and b go to
infinity, with a ratio that could also be found from the max-margin SVM (Eq. (Eq. (5))). Full generalization
is only possible in the special case where r = 1, placing the plane at infinity.
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Figure 15: Grokking at λ ≈ 1/2, for three different label-fractions: r = 1 (constant label), r = 0.99, and
r = 0.95 (represented by three different opacities). For example, for r = 0.95, approximately 95% of the
input data would be assigned with the label −1 and 0.05 with the label 1. The rest of the parameters are the
same as in Fig. 1.

To sum up, while it is not possible to reach perfect generalization for discriminative labels, Grokking in the
sense of "significantly delayed generalization", can certainly be observed, but it will be prominent only for
λ which is close to 0.5 and r close to 1 (or zero). This is in line with the fact that grokking is a fine-tuned
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phenomenon. Similarly to what we saw for λ, the better the fine-tuning is (which in our case means being
closer to the critical point), the more prominently Grokking appears.

I DIRECT CALCULATION OF THE LATE TIME BEHAVIOR OF b, S IN THE SEPARABLE
REGIME

Here we present a direct calculation for S(t) ≡ ∥S(t)∥ Ŝ(t), b(t) at late times. First, we will work in the
conformal time τ =

´ t
0
β(t′)dt′. As discussed in the main text, when the data is separable we know that in

the late time limit Ŝ goes to a certain direction and ∥S∥ → ∞. Therefore, only the points with maximum
STxm will contribute to the sum in the large

1

N

∑
i

eS
T xi ≈ D

N
eS

T xm , (43)

where STxm is the maximum value that is obtained, D is their degeneracy. We note that STxi are all
negative, so the maximum are just the points which are closest to zero, so these are exactly the support vectors.
To continue, for τ → ∞ we denote

S ∼ Ef(τ)Ŝ, (44)

where E is some constant, and f(τ) is some function of t. Without loss of generality, and for compatibility
with the results of the main text, we will define E by the equation E ≡ − 1

ŜTxm
. We can now find f(τ)

explicitly using the following arguments: We know that

∂ ∥S∥
∂τ

=
ST

∥S∥
∂S

∂τ
= −η

1

N

∑
i

eS
Txi

ST

∥S∥
xi. (45)

Using the approximation and comparing with ∂∥S∥
∂τ = Ef ′(τ), we get that

η
D

N

1

E
e−f(τ) = Ef ′(τ). (46)

Solving for f(τ), we get

f(τ) = log

[
η
D

N

1

E2
τ + C1

]
, (47)

where C1 is some constant. Therefore, we get

∂b

∂τ
≈ −η

D

N

1

ηD
N

1
E2 τ + C1

. (48)

and taking the integral over dτ we get

β(τ) ≈ C2

(
η
D

N

1

E2
t̃+ C1

)−E2

. (49)

Recalling that ∂τ
∂t = eb, we can integrate to find:

τ(t) =
1

ηD
N

1
E2

(
η
D

N

E2 + 1

E2

) 1
E2+1

[C2t+ C3]
1

E2+1 − 1

ηD
N

1
E2

C1. (50)
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Using b = log(∂τ∂t ), we get for long times that

b(t) ≈ − E2

E2 + 1
log(t). (51)

Plugging also ∥S∥ ≈ Ef(τ) ≈ E log(τ), we can see that

∥S(t)∥ ≈ E

E2 + 1
log(t). (52)

Recalling that E = 1
M , this verifies the result of the main text.

J SUPPLEMENTAL DETAILS OF EXPERIMENTS

In this section, we will provide information regarding the experiments. All of our results are computed in
Python, using the standard gradient-decent of the PyTorch library.

We begin by noting that the results of the left panels of Fig. 1 (and all of the results in Section App. F) can be
easily obtained even on a personal laptop. We had only three "large" experiments, which are presented in the
right-most column of Fig. 1 (and in Fig. 6):

(1) Calculation of ∥S∞∥ and STxi properties of the distribution. The setup is: N = 2400, σ = 1, and
d =930, 990, 1050, 1086, 1110, 1134, 1152, 1158, 1164, 1170, 1173, 1176, 1179, 1182, 1185, 1188, 1191,
averaged over 15000 different random realizations. This was run in a cluster of servers with 250 Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60GHz cores with about 9GB RAM per core, which took a few hours to run.
The minimization was done using ADAM (any optimizer will work in the inseparable regime).

(2) Calculation of the margin: The setup is: N = 2400, σ = 1, and d =1230, 1260, 1290, 1320, 1350, 1380,
1410, 1440, 1470, 1500, 1530, 1560, averaged over 1000 realizations. Performed on the same cluster, this
took only a few hours to run.

(3) The results of the right-middel and right-bottom panels of Fig. 1. The setup is: N = 400, and d =20, 40,
80, 100, 120, 140, 160, 168, 180, 188, 192, 196, 200, 208, 220, 228, 240, 260, 280, 300, 320, 360, averaged
over 100 realizations. This also took only a few hours to run.
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