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Abstract

Factual consistency is an essential quality of001
text summarization models in practical settings.002
Existing work in evaluating this dimension can003
be broadly categorized into two lines of re-004
search, entailment-based and question answer-005
ing (QA)-based metrics, and different exper-006
imental setups often lead to contrasting con-007
clusions as to which paradigm performs the008
best. In this work, we conduct an extensive009
comparison of entailment and QA-based met-010
rics, demonstrating that carefully choosing the011
components of a QA-based metric, especially012
question generation and answerability classi-013
fication, is critical to performance. Building014
on those insights, we propose an optimized015
metric, which we call QAFACTEVAL, that016
leads to a 14% average improvement over pre-017
vious QA-based metrics on the SummaC fac-018
tual consistency benchmark, and also outper-019
forms the best-performing entailment-based020
metric. Moreover, we find that QA-based and021
entailment-based metrics can offer complemen-022
tary signals and be combined into a single met-023
ric for a further performance boost.024

1 Introduction025

Text summarization aims to compress long docu-026

ment(s) into a short and fluent form that preserves027

salient information. The field has benefited from028

the application of pretrained methods (Liu and La-029

pata, 2019; Lewis et al., 2020; Zhang et al., 2020a).030

However, state-of-the-art models are not always031

factually consistent with the source documents they032

are conditioned on (Maynez et al., 2020; Fabbri033

et al., 2021). Thus, determining the factual consis-034

tency of a summary remains an essential task.035

Recent metrics for summarization factual consis-036

tency can be broadly split into two categories: 1)037

Entailment-based metrics that determine whether038

the content in the summary is entailed by the in-039

put document (Kryscinski et al., 2020; Koto et al.,040

Document
The Knicks beat the Rockets. The fans were excited.

Summary
The Knicks beat the Bucks.

Entailment Matrix Selected Answer
[Contra, Neutral, Support] the Bucks[
0.90 0.07 0.03
0.02 0.90 0.08

] Generated Question
Who did the Knicks beat?

QA Output
the Rockets

Max Support Score Answer Overlap Score
0.08 0.20

Table 1: Toy example of a factual inconsistency be-
tween a summary and a source document. Left: The
entailment-based metric computes the level of contradic-
tion, neutrality, and support between the summary and
each source document sentence. The final factual consis-
tency metric is calculated as the maximum support score
over all source sentences. Right: The QA-based metric
first selects a noun-phrase answer from the summary. A
QG model then generates an associated question that a
QA model answers based on the source document. The
answer overlap score of the QA-based metric measures
the semantic overlap between the QA model output and
the selected answer as the final metric score.

2020) and 2) QA-based metrics that compute a 041

factual consistency score based on a QA model’s 042

ability to answer, using the input document, ques- 043

tions generated from the summary (Wang et al., 044

2020a; Durmus et al., 2020). We provide an illus- 045

trative example in Table 1 in which both metric 046

types correctly identify the factual inconsistency 047

and output a low score. 048

Quantitative comparisons among entailment- 049

based and QA-based metrics, however, often differ 050

in their choices of baseline model and input granu- 051

larity, evaluating on single datasets and drawing dif- 052

fering conclusions as to the best paradigm. For ex- 053

ample, some work reports entailment-based metrics 054

as performing best (Koto et al., 2020; Maynez et al., 055

2020), while other work argues for QA metrics 056

(Durmus et al., 2020; Wang et al., 2020b; Scialom 057

et al., 2021). Recently, Laban et al. (2021) pro- 058
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posed a benchmark called SummaC to compare059

metrics across six factual consistency datasets for060

the task of binary factual consistency classifica-061

tion, whether a summary is entirely factually con-062

sistent or not. This work unifies prior work on063

entailment-based metrics by studying the effect of064

input granularity, pretrained entailment model, and065

other hyperparameter choices on downstream eval-066

uation performance. However, it does not study the067

components of QA-based metrics, which are more068

interpretable by their inherent decomposability.069

To unify work in QA-based factual consistency070

evaluation, we do an extensive hyperparameter071

analysis of current metrics. We break down these072

metrics into four constituent components: 1) the073

selection of answers to ask questions about, 2) ques-074

tion generation (QG) conditioned upon these an-075

swers, 3) question answering (QA) based on the076

source document, and 4) answer overlap evaluation077

between QA model output and selected answers.078

We study the effect of each of these components079

on metric performance. Based on our insights,080

we propose an optimized metric, which we call081

QAFACTEVAL , that outperforms the entailment-082

based metrics of Laban et al. (2021).083

Our contributions are the following: 1) We084

analyze all components of the QA-based metric085

pipeline, and our proposed solution improves per-086

formance over prior QA-based metrics by over087

14% on a factual consistency benchmark consisting088

of 6 individual datasets, achieving state-of-the-art089

results. 2) We show that QA-based metrics and090

NLI-based metrics offer complementary signals091

and combine them into a new metric via a simple092

learned network, further improving performance.093

3) We report results for 10 additional metrics across094

classification and correlation analysis, providing095

the most comprehensive benchmark results for fac-096

tual consistency metrics and highlighting areas for097

future work in QA-based metrics 1.098

2 Related Work099

Evaluating Factual Consistency Within100

entailment-based factual consistency evaluation,101

Falke et al. (2019) propose the task of ranking102

summary pairs for factual consistency based on103

entailment models, while Kryscinski et al. (2020)104

explore factual consistency classification jointly105

with source support or contradiction span extrac-106

1Code and metric outputs will be made publicly available:
https://github.com/anonymous

tion. Other work on entailment-based metrics has 107

examined input granularity (Goyal and Durrett, 108

2020), trained on adversarial datasets (Barrantes 109

et al., 2020), and explored entailment-based 110

models as the backbone of others metrics such as 111

BERTScore (Zhang et al., 2020b) as in Koto et al. 112

(2021). Metric comparisons, however, were often 113

conducted on isolated datasets. Laban et al. (2021) 114

unify work in entailment-based metrics for factual 115

consistency, showing the effect of granularity, base 116

models, and other hyperparameter choices. This 117

work also proposes a learned metric built on top of 118

the output of an entailment model, with parameters 119

fine-tuned on synthetic data. While this work fills 120

a gap in the use of entailment-based metrics for 121

factual consistency, our work analogously unifies 122

QA-based metrics for factual consistency and 123

proposes to combine entailment and QA-based 124

metrics in a single learned metric. 125

QA-based evaluation metrics have received at- 126

tention for summary quality dimensions beyond 127

factual consistency (Eyal et al., 2019; Scialom 128

et al., 2019; Deutsch et al., 2020). Recent work 129

has shown that QA-based metrics better measure 130

the overlap of information units for determining 131

summary relevance over embedding-based metrics 132

(Deutsch and Roth, 2021), further driving our study 133

of QA-based metrics for factual consistency. While 134

several QA-based metrics with similar structures 135

have been applied for factual consistency, (Durmus 136

et al., 2020; Wang et al., 2020b; Scialom et al., 137

2021), they differ in their underlying answer se- 138

lection, question generation, question answering, 139

and answer overlap components, reporting differ- 140

ent performances. We perform a comprehensive 141

evaluation of QA-based metric components and 142

propose improved model components for the task 143

of answer overlap and question filtering. 144

Summarization Benchmarking A recent line 145

of work aims to take stock of the current state of 146

summarization models and progress, both within 147

factual consistency and across summarization more 148

broadly. Kryscinski et al. (2019) note biases and 149

failure modes of abstractive summarization models, 150

while other work analyzes and collects annotations 151

over the output of recent summarization models 152

across multiple dimensions, including factual con- 153

sistency (Fabbri et al., 2021; Bhandari et al., 2020; 154

Huang et al., 2020). Lux et al. (2020) propose a 155

typology of errors found in summarization models, 156

while Gabriel et al. (2021) propose a framework for 157
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meta-evaluation of factual consistency metrics. La-158

ban et al. (2021) propose to combine recent work in159

factual consistency evaluation for summarization160

through a single benchmark. Our work directly161

makes use of this benchmark while emphasizing162

QA-based metrics. We also include correlation163

analysis for a more comprehensive understanding164

of current factual consistency metrics.165

3 Evaluation Metrics166

In this section, we introduce the factual consistency167

metrics studied, which we divide into entailment168

metrics, QA-based metrics, and learned metrics.169

3.1 Entailment-based Metrics170

The metrics below produce a score for each sum-171

mary sentence which is then averaged to compute172

the final metric score.173

MNLI applies a RoBERTa large (Liu et al., 2019)174

model trained on MNLI (Williams et al., 2018).175

The score of a summary sentence is the maximum176

entailment score over all input sentences.177

ANLI Barrantes et al. (2020) uses the same178

method as the MNLI metric with a model trained179

on the ANLI (Nie et al., 2020) dataset consisting180

of adversarial datapoints.181

SCZeroShot Laban et al. (2021) works analo-182

gously to the above metrics with a base model183

trained on both MNLI and Vitamin-C data (Schus-184

ter et al., 2021), consisting of closely-related con-185

trastive entailment examples.186

BertScore-FFCI Koto et al. (2021) applies187

BertScore (Zhang et al., 2020b) with an backbone188

RoBERTa-MNLI model, averaging the three high-189

est BertScore F1 scores over the input sentences.190

DAE Goyal and Durrett (2020) computes en-191

tailment scores between a source document and192

summary dependency arcs, applying an entailment193

model trained on synthetic data.194

FactCC Kryscinski et al. (2020) is a RoBERTa-195

base model trained on FactCC synthetic data to196

compute a document-level score, and thus the197

scores need not be aggregated over input sentences.198

DocNLI Yin et al. (2021) train a document-level199

entailment model, similar to the FactCC metric.200

3.2 QA Metric Components 201

We now describe the components that constitute 202

the QA-based pipeline for factual consistency. We 203

refer to our metric, consisting of the best combina- 204

tion of the below components, as QAFACTEVAL. 205

Answer Selection QA-based metrics compare in- 206

formation units between the summary and source, 207

so it is thus necessary to first extract such units, or 208

answers, from the given summary. We follow the 209

protocols from Deutsch et al. (2020) and compare 210

extracting the following answer types: named enti- 211

ties (NER), noun phrase chunks (NP Chunks), max- 212

imally sized noun phrases (Max NP), whereby the 213

dependency subtrees of nouns reached by travers- 214

ing a given sentence’s dependency parse from the 215

root are chosen as answers, and All, which com- 216

bines answers from the above three techniques. 217

Question Generation Having selected answers, 218

questions are generated conditioned upon these an- 219

swers using the summary as context. Typically, this 220

is an encoder-decoder model which inputs the an- 221

swer and context separated by a special token. On 222

the modeling side, we examine BART (Lewis et al., 223

2020) and T5 (Raffel et al., 2019) as the underlying 224

generators. On the data side, we experiment with 225

models trained for question generation on SQuAD 226

(Rajpurkar et al., 2016), a standard QA dataset con- 227

sisting of questions on Wikipedia articles, and on 228

QA2D (Demszky et al., 2018), a dataset of declar- 229

ative sentences with associated question/answer 230

pairs derived from SQuAD. Furthermore, we exper- 231

iment with the recently-introduced MixQG models 232

(Murakhovs’ka et al., 2021), which are T5 models 233

trained on a combination of nine QA datasets with 234

diverse answer types and which outperform other 235

QG models across several tasks. 236

Question Answering The QA component an- 237

swers questions from the previous steps using the 238

input document as context. We experiment with 239

both extractive QA models, which extract a text 240

span from the input as an answer, and abstractive 241

QA models, which generate an answer token-by- 242

token. For extractive models, we ablate Electra 243

(Clark et al., 2020), which achieves strong per- 244

formance on the SQuAD 2.0 dataset, and MADE 245

(Friedman et al., 2021), which models multi-dataset 246

QA with a collection of dataset-specific adapter 247

modules sharing the same underlying RoBERTa- 248

base model. For abstractive QA, we experiment 249

with T5 fine-tuned on SQuAD and UnifiedQA 250
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(Khashabi et al., 2020), an approach which trains a251

T5 QA model on 8 diverse, seed datasets and was252

shown to generalize across 20 datasets and 4 input253

formats. All QA models except MADE are trained254

on data containing unanswerable questions.255

Answer Overlap Evaluation An answer over-256

lap metric must be computed to determine the257

match between the initial answer selected in the258

first component and the QA model output. Typi-259

cally, answer overlap in QA is measured through260

exact match (EM) score or word F1 score. We also261

test a learned metric, the LERC score proposed by262

Chen et al. (2020). This metric outputs a 1-5 an-263

swer overlap score conditioned on a question and264

context. The scorer is trained on their MOCHA265

dataset, consisting of 40k crowdsourced judgments266

on QA model outputs. We include the BERT-base267

(Devlin et al., 2019) model from the original paper,268

which we call LERC (orig). We additionally experi-269

ment with two models trained from RoBERTa-large270

checkpoints, one trained from the original check-271

point, LERC (RoBERTa), and one initialized from272

Jia et al. (2021), which we call LERC (QuIP), for273

the task of jointly encoding passages and answers274

with question-infused pretraining. Lastly, we ex-275

periment with the IsAnsweredInput answer metric,276

which is a 0/1 score of whether the question is an-277

swerable using the input document according to the278

QA model. We use the Electra-large QA model to279

determine whether a question is answerable, as this280

model shows strong performance on identifying281

unanswerable questions on SQuAD.282

Question Filtering Model-generated questions283

may contain noise from the QG model itself or284

from disfluencies in the summary the QG model285

conditions upon. Such noisy questions can skew286

the overall metric score, as the QA component may287

be unable to correctly answer the question, regard-288

less of the summary’s factual consistency. We filter289

such questions through a step called IsAnswered-290

Summ Filter: the same Electra-large QA model291

returns a 0/1 score of whether the question is an-292

swerable, now using the summary as context, and293

questions labeled as unanswerable are filtered.294

Overall For a given question, if IsAnsweredIn-295

put returns 0, the question is unanswerable using296

the input, we label all the above answer overlap297

scores as 0, and otherwise use the answer overlap298

score. We refer to this scoring of unanswerable299

questions as 0 as the Answerability Penalty. We300

also experiment with not setting the overlap score 301

of these unanswerable questions to 0 but rather us- 302

ing the answer overlap score of the most probable 303

answer from the QA model. Finally, the overall fac- 304

tual consistency score for each metric is computed 305

as its average scores over all questions remaining 306

following Question Filtering. 307

3.3 Learned Metrics 308

SCConv is a model introduced by Laban et al. 309

(2021) which learns to aggregate entailment-model 310

output scores across input sentences into a single 311

score. More concretely, for a document consisting 312

of M sentences and a summary consisting of N 313

sentences, the entailment-based model produces an 314

M ×N matrix of entailment scores. The M ×N 315

matrix is then transformed to an H × N matrix 316

by binning the M sentences to create a histogram, 317

where H is the number of bins. This matrix is input 318

to a 1-D convolution layer to produce a score for 319

each summary sentence, and the scores are aver- 320

aged across summary sentences. The parameters 321

of this model are fine-tuned on synthetic data. 322

QAFACTEVAL-NLI While SCConv captures 323

sentence-level support, QAFACTEVAL measures 324

finer-grained answer overlap between the source 325

and summary. Thus, we are able to combine 326

these two into a single factual consistency met- 327

ric, QAFACTEVAL-NLI. Assume that K answers 328

are extracted from the summary. The pipeline de- 329

scribed above will then output a single score per 330

answer for the entire summary, resulting in an array 331

of length K. We convert this to a histogram of size 332

H in a similar manner as SCConv and pass this 333

histogram through a 1-D convolution layer to pro- 334

duce a single QA score. This score is concatenated 335

with the NLI score produced by SCConv and input 336

to a linear layer to produce the final metric score. 337

The linear layer can be trained in either synthetic 338

or supervised ways, detailed in Section 4.2. 339

3.4 Additional Metrics 340

We include the following metrics for completeness. 341

BARTScore Yuan et al. (2021) calculates 342

the log-likelihood from BART fine-tuned on 343

CNN/DailyMail (Hermann et al., 2015; Nallapati 344

et al., 2016) of the summary conditioned upon the 345

source text as a metric for factual consistency. 346

BLANC Vasilyev et al. (2020) is a reference-less 347

metric of summary quality that measures the dif- 348
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ference in masked language modeling performance349

with and without access to the summary.350

QuestEval (Scialom et al., 2021) is the prior351

state-of-the-art QA-based metric for factual con-352

sistency. The T5-base (SQuAD) QG and T5-base353

QA models described above are applied directly354

from the QuestEval metric. QuestEval generates355

questions based on the input document and answers356

them using the summary in addition to following357

the above QA metric pipeline. QuestEval aggre-358

gates the score from these two pipelines. We be-359

lieve that our described pipeline more closely mea-360

sures factual consistency, while generating ques-361

tions from the source may confound factual consis-362

tency with relevance.363

4 Methodology364

We present the datasets explored for binary classifi-365

cation and correlation analyses. We also describe366

settings for reporting ablation and final results.367

4.1 Data368

The SummaC benchmark (Laban et al., 2021) in-369

troduces a collection of datasets for binary factual370

consistency evaluation. A data point is labeled as371

positive if it contains no factual inconsistencies or372

is rated the highest possible score in the case of373

Likert scaling, and as negative otherwise. We now374

briefly describe the datasets in the benchmark and375

any departures from the original benchmark, and376

additional datasets we use for correlation analysis.377

We refer the reader to Laban et al. (2021) for further378

details regarding the benchmark creation.379

CGS Falke et al. (2019) consists of paired sum-380

mary sentences from CNN/DailyMail (Hermann381

et al., 2015; Nallapati et al., 2016), one correct382

sentence and one containing an error. Laban et al.383

(2021) treats the correct summaries as positive ex-384

amples and the others as negative examples.385

XSF Maynez et al. (2020) consists of summaries386

from the XSum dataset (Narayan et al., 2018) an-387

notated for word-level factual consistency errors.388

Polytope Huang et al. (2020) propose a typology389

of eight summarization errors consisting of both390

content and stylistic errors and annotate model out-391

puts from 10 systems on CNN/DailyMail data. The392

original SummaC benchmark included the Omis-393

sion and Addition errors of this proposed typology394

as factual inconsistencies, but these are largely ex- 395

tractive, factually consistent summaries. We thus 396

label these examples as factually consistent and 397

report results on this modified dataset. 398

FactCC Kryscinski et al. (2020) introduce a fac- 399

tual consistency dataset on CNN/DailyMail anno- 400

tated by the authors of the paper to ensure the qual- 401

ity of the annotations. 402

SummEval Fabbri et al. (2021) analyze sum- 403

maries from 17 models on CNN/DailyMail across 404

the dimensions of factual consistency, coherence, 405

fluency, and relevance. 406

FRANK Pagnoni et al. (2021) introduce an ex- 407

tensive typology of errors made by summarization 408

systems across CNN/DailyMail and XSum. 409

QAGs Wang et al. (2020b) crowdsource 410

sentence-level summary annotations for factual 411

consistency across CNN/Daily Mail and XSum 412

data. We only report correlation analysis for this 413

dataset as it was not a part of SummaC. 414

4.2 Experiment Setup 415

Metric Implementation Metrics were applied 416

directly from the original GitHub repository or by 417

using the SacreRouge Library (Deutsch and Roth, 418

2020), which was also used in correlation analy- 419

sis. The learned metrics make use of code released 420

from Laban et al. (2021) for training, and all mod- 421

els are implemented in PyTorch (Li et al., 2020) 422

and in the Transformers library (Wolf et al., 2019). 423

The BART-larege (QA2D) QG and Electra-large 424

QA models are applied from the QAEval relevance 425

modeling metric (Deutsch et al., 2020). 426

Ablation Settings Following Laban et al. (2021), 427

a metric threshold score for binary classification 428

is determined from the validation set of SummaC 429

and applied to the test set. For ablation studies, we 430

both perform thresholding and evaluation on the 431

validation set to preserve the integrity of the test set. 432

For each benchmark dataset, we sample a random 433

subset of 80% of the validation set to determine 434

the threshold and evaluate on the remaining 20% 435

of the validation set. The best performing combi- 436

nation of QA metric components constitutes our 437

QAFACTEVAL metric. We take the best perform- 438

ing combination of QA metric components and 439

vary a given component, such as answer selection, 440

while holding all other components constant and 441

consistent with the best component combination. 442
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Training Settings To tune the parameters of the443

learned metrics, we train on a subset of 50k syn-444

thetic data points from FactCC, following Laban445

et al. (2021). We name these runs synthetic setting446

due to the lack of human-labeled data. We also447

experiment with a supervised setting by fine-tuning448

the parameters on the SummaC validation set for449

each individual dataset, choosing the threshold on450

this validation data, and applying the model to the451

test set. Training on such a small amount of data452

is feasible due to the small number of parameters453

of the learned metrics. Cross entropy loss with454

Adam (Kingma and Ba, 2015) optimizer is used,455

with a batch size of 32 and a learning rate of 1e-2.456

5 Results457

In this section, we first study the effects of model458

component choices on QAFACTEVAL . We then459

compare metric results across both the SummaC460

binary classification task and correlation analysis.461

5.1 Ablation Results462

We provide the results of our ablation studies on463

the components of QA-based metrics in Table 2464

and show two illustrative examples in Table 4.465

Effect of Answer Selection Selecting NP466

Chunks performs best, aligning with Deutsch et al.467

(2020), which shows that NP Chunks obtain the468

largest coverage of information units while retain-469

ing high precision. We find a large decrease in470

performance when selecting NER and only a slight471

decrease in performance when choosing Max NP472

or ALL answers together. Named entity selection473

likely performs worse due to the scarcity of ex-474

tracted answers; only three entities are extracted475

on average across the benchmark, while all other476

approaches extract over 10 answers per summary.477

Effect of QG Models The choice of the QG478

model notably affects downstream performance.479

BART-large (QA2D) works the best and produces480

much longer questions, about 17 tokens on average,481

versus about 10 from the other models. Deutsch482

et al. (2020) note how humans tend to produce483

shorter questions. However, longer questions may484

be preferable for this task to facilitate the QA485

model’s ability to understand and answer the ques-486

tion. BART-large (QA2D) also is the most extrac-487

tive, with only about 20% novel unigrams in the488

question, while T5-base (SQuAD) model is the489

most abstractive with about 47% novel unigrams,490

Component Model Choice Benchmark
QAFACTEVAL 77.5

Answer Selection

NP Chunks -
Max NP 75.7
NER 66.4
ALL 75.7

Question Generation

BART-large (QA2D) -
BART-large (SQuAD) 74.3
T5-base (SQuAD) 67.0
MixQG-base 75.1
MixQG-large 74.9

Question Answering

Electra-large -
Electra-base 77.0
MADE 77.4
T5-base 76.1
UnifiedQA-base 75.7

Answer Overlap

LERC (QuIP) -
EM 68.4
F1 71.7
IsAnsweredInput 73.3
LERC (orig) 71.8
LERC (RoBERTa) 77.3

Filtering/Answerability

Both -
No IsAnsweredSumm Filter 73.8
No Answerability Penalty 72.1
Neither 67.4

Table 2: Results of ablation studies on the SummaC
benchmark validation set, showing the effect of the indi-
vidual components of QAFACTEVAL . The first row rep-
resents the performance of the best combination of com-
ponents. Ablations are performed by swapping a given
component while holding all others consistent with the
best overall model, and the best setting is bolded.

resulting in occasional hallucinations and questions 491

that the QA model struggles to answer. As seen in 492

Table 4, MixQG models do often produce highly- 493

fluent questions, but the longer, highly-extractive 494

output of BART-large (QA2D) improves down- 495

stream factual consistency performance. 496

Effect of QA Model Surprisingly, we do not 497

find a large difference in the QA model compo- 498

nent across model sizes or between extractive and 499

abstractive QA models, implying that QA ability is 500

not the bottleneck of our task. In this setting, we 501

keep IsAnsweredInput from Electra-large constant, 502

as not all QA models are trained with unanswer- 503

able questions; thus the only differences are in the 504

answers to questions marked as answerable. 505

Effect of Answer Overlap Metric We observe 506

a large difference between EM and other overlap 507

metrics. We also see a notable gap between LERC 508

(orig) and LERC (RoBERTa) along with a further 509

slight improvement with LERC (QuIP), showing 510

the effect of the underlying model of the learned 511

metric on factual consistency performance. 512

Effect of Question Filtering and Answerabil- 513

ity Not filtering questions according to the QA 514

model’s ability to answer them using the summary 515

decreases performance. Furthermore, not applying 516
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Model Type Model Name CGS XSF Polytope FactCC SummEval FRANK Benchmark

Misc
BARTScore 63.3 53.3 80.4 66.8 69.8 80.0 68.9
BLANC 51.6 54.5 72.2 53.0 63.0 76.2 61.8
FactCC 64.8 56.6 80.2 77.1 73.6 70.3 70.4

Entailment

BertScore-FFCI 56.9 68.8 69.2 57.9 67.4 71.9 65.4
DAE 71.3 49.7 78.9 80.7 74.7 81.0 72.7
ANLI 74.9 53.0 77.6 85.8 75.9 78.9 74.4
MNLI 67.6 61.5 77.3 89.8 78.7 79.6 75.7
DocNLI 49.6 57.0 84.7 73.0 75.6 70.9 68.5
SCZeroShot 59.6 56.1 81.5 83.2 77.9 78.5 72.8

QA
QuestEval 59.4 61.9 73.1 66.5 68.4 79.8 68.2
QAFACTEVAL 75.1 63.1 79.8 84.1 80.9 83.9 77.8

Learned

SCConv (synthetic) 60.8 60.9 76.0 88.1 78.1 81.6 74.3
QAFACTEVAL-NLI (synthetic) 74.2 59.1 82.1 91.1 80.2 83.4 78.3
QAFACTEVAL-NLI (supervised) 78.1 60.9 83.7 89.3 80.5 84.3* 79.5*

Table 3: Balanced accuracy on the test set of the six SummaC benchmark datasets, and the average over the
benchmark. Metrics are divided into entailment-based, QA-based, and learned metrics that are fine-tuned on
synthetic or supervised data. An improvement over prior work with a 99% confidence interval is indicated by *.

Document Paul Merson has restarted his row with Andros
Townsend. ... ’... it was a great goal,’ Merson
said. ’It’s just a matter of opinion, and ... he
got pulled off after half an hour .... in front
of Roy Hodgson, so he shouldn’t have been in
the squad. ...’ ... Sky Sports pundit Merson
(centre) criticised Townsend’s call-up to the
England squad last week ....

They’re not gonna take it anymore. Really.
Twisted Sister says that its 2016 tour will be its
last, according to a press release. ... The band
will also perform two shows in Pero’s honor:
one at Las Vegas Hard Rock Hotel and Casino,
the other at the Starland Ballroom in Sayreville,
New Jersey.

Summary Paul Merson is not happy with Andros
Townsend’s call-up to the England squad last
week

The band will perform two shows.

Selected Answer Andros Townsend’s call-up the band
Question Generation BART-QA2D MixQG-large BART-QA2D Question

What is Paul Mer-
son not happy with to
the England squad last
week?

What is Paul Merson
not happy with? Who will perform two shows?

QA Output Townsend’s call-up he shouldn’t have been
in the squad

Unanswerable (Twisted Sister)

Answer Overlap 1.00 0.30 0.00 (0.80)

Table 4: Example source documents and summaries along with component outputs from the QA-based metric.
Left: This example illustrates that the fluency of the QG model does not necessarily improve downstream factual
consistency evaluation performance; the less fluent, more extractive BART-QA2D question is more-easily answerable
by the QA model. Not shown in this table, the entailment-based SCConv metric incorrectly labels this entity-centric
example, likely due the introduction of novel unigrams. Right: The QA model incorrectly labels this question as
unanswerable, perhaps due to the generality of the question or due to noise in the input document. The QA output
and score if forced to extract an answer are in parenthesis. SCConv correctly labels this highly extractive example.

the Answerability Penalty and using the answer517

overlap score for all questions, even those judged518

unanswerable by the QA model, also decreases per-519

formance. While the answer overlap metric should520

capture unanswerable questions for information not521

found in the input (extrinsic error), the answer from522

the answer selection component may appear in both523

the summary and source but in different contexts524

(intrinsic error). The QA model may return this525

answer and be scored as correct by the answer over-526

lap component despite a factual inconsistency. This527

finding demonstrates the importance of determin-528

ing question answerability, a point also emphasized 529

in Deutsch et al. (2020) for QA-based metrics of 530

relevance. Removing both of these components 531

results in a drastic performance decrease. 532

5.2 Overall Results 533

We present the results on the test set of SummaC 534

in Table 3. QAFACTEVAL shows a substantial 535

improvement over the previous state-of-the-art QA 536

metric for factual consistency, QuestEval. Further- 537

more, it outperforms all other entailment-based 538

metrics. QAFACTEVAL-NLI shows slight im- 539
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Model Type Model Name XSF SummEval FRANK-CNNDM FRANK-XSum QAGs-CNNDM QAGs-XSum

Misc
BARTScore 0.25 0.37 0.58 0.15 0.73 0.17

BLANC 0.03 0.20 0.33 0.07 0.33 0.02
FactCC 0.04 0.37 0.38 0.06 0.40 0.30

Entailment

BertScore-FFCI 0.45 0.27 0.36 0.16 0.53 0.21
DAE 0.02 0.45 0.50 0.22 0.63 -0.20
ANLI 0.16 0.43 0.53 0.18 0.65 0.39
MNLI 0.18 0.44 0.52 0.18 0.66 0.35

DocNLI 0.01 0.41 0.12 0.26 0.16 -0.34
SCZeroShot 0.06 0.50 0.55 0.27 0.57 0.44

QA
QuestEval 0.45 0.41 0.52 0.24 0.51 0.23

QAFACTEVAL 0.29 0.61 0.66 0.32 0.68 0.44

Learned
SCConv (synthetic) 0.12 0.50 0.59 0.30 0.03 0.06

QAFACTEVAL-NLI(synthetic) 0.19 0.61 0.66 0.25 0.65 0.48

Table 5: Instance-level Pearson correlation coefficients across factual consistency evaluation datasets. Metrics are
divided into entailment-based, QA-based, and learned metrics that are fine-tuned on synthetic or supervised data.
The two highest-correlated metrics for each dataset are shown in bold.

provements on the synthetic data. Notable im-540

provements in this synthetic setting can be ob-541

served on the FactCC dataset, likely as the syn-542

thetic FactCC data the model is trained on was de-543

signed to mirror the errors captured in annotations.544

This performance boost on FactCC motivated our545

use of supervised data for fine-tuning our learned546

metric. Supervised fine-tuning on validation data547

helps in most cases and QAFACTEVAL-NLI (su-548

pervised) improves on the overall benchmark by549

a statistically significant margin, using bootstrap550

resampling (Efron, 1982) with Bonferroni correc-551

tion (Bonferroni, 1935) to obtain 99% confidence552

intervals (see Appendix for details). The perfor-553

mance drop on FactCC could be due to the prox-554

imity of the synthetic data to the labeled data and555

the data size difference. BertScore-FFCI performs556

best on XSF perhaps due to the closeness between557

BertScore’s token-level metric and XSF’s word-558

level annotations, and DocNLI’s Polytope perfor-559

mance may also be from training data similarity.560

We find that QAFACTEVAL and SCConv do561

offer complementary signals that can be learned562

from supervised data. Individually fine-tuning563

the learned SCConv or a learned variation of564

QAFACTEVAL on supervised data did not improve565

results over the non-supervised metrics; this re-566

sult suggests the necessity of combining the two567

for further improvements. Training on the valida-568

tion sets combined, rather than on each individual569

dataset separately, did not give an improvement,570

likely due to the learnable combination of NLI and571

QAFACTEVAL being dataset dependent.572

5.3 Correlation Analysis573

We provide instance-level Pearson correlation be-574

tween aggregated human judgments and metric575

scores for each model to compare to previous work 576

in factual consistency that reports correlation analy- 577

sis. Results are shown in Table 5. We split FRANK 578

into CNN/DailyMail and XSum subsets for finer- 579

grained analysis, as substantial differences have 580

been noted in correlation performance across the 581

two datasets (Durmus et al., 2020). We exclude 582

Polytope, FactCC, and CGS here as prior work has 583

only studied these datasets for binary classification. 584

We find that QAFACTEVAL performs well 585

across most datasets. As in the classification results, 586

BertScore-FFCI’s performs well on XSF, and we 587

note that QuestEval’s answerability classifier corre- 588

lates more so with these fine-grained annotations 589

than on other datasets. QAFACTEVAL-NLI per- 590

forms well on most datasets except XSF. Fine- 591

tuning on FactCC synthetic data for binary clas- 592

sification likely does not capture the aggregated, 593

word-level factuality scores of XSF. We leave a 594

study of fine-tuning this model on supervised data 595

with a regression loss for future work. 596

6 Conclusion 597

In this work, we demonstrated that QA-based met- 598

rics, when its components are properly optimized, 599

outperform entailment-based metrics on a compre- 600

hensive factual consistency evaluation benchmark. 601

We identify question generation and answerability 602

detection as key components for improving QA- 603

based metrics in future work. Furthermore, we 604

show that entailment and QA-based metrics offer 605

complementary signals through a combined met- 606

ric that achieves state-of-the-art performance on 607

this benchmark. We believe that our work lays the 608

foundation for future work in QA-based metrics for 609

factual consistency by offering a fairer comparison 610

to other metrics across datasets and settings. 611
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7 Ethical Considerations612

Dataset Biases The underlying models of the613

metrics presented in this work are trained on doc-614

uments in English and thus mainly represent the615

culture of the English-speaking populace. Politi-616

cal or gender biases may also exist in the datasets,617

and models, and subsequently the metrics, trained618

on these datasets may propagate these biases. We619

did not stress test these metrics for such biases and620

request that the users of these metrics be aware of621

these potential issues in applying them.622

Misuse Potential and Failure Mode When prop-623

erly used, the metrics described in this paper can624

be a useful tool for detecting summarization model625

errors. However, the current metrics fail to detect626

all factual inconsistencies, which must be remem-627

bered when applying these metrics as a filter for628

downstream applications. Factual inconsistencies629

in summaries could contribute to misinformation630

on the internet.631

Environmental Cost The experiments described632

in the paper primarily make use of A100 GPUs.633

Most of the metrics have already been trained, in634

which case we simply ran inference using the ex-635

isting models. We typically used a single GPU636

per experiment. Training learned answer overlap637

components can take a couple of hours, while ex-638

periments for learned metrics on SummaC take639

less than 10 minutes. These are the base mod-640

els used in these experiments, with the number641

of parameters, in millions, in parentheses: BERT-642

base (110), BART-large (400), Electra-base (110),643

Electra-large (335), RoBERTa-large (355), T5-base644

(220), T5-large (770). Future work may analyze645

the effect of using distilled backbone models on646

factual consistency evaluation.647
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A Additional Data and Model Details968

In this section, we provide details regarding statisti-969

cal testing, benchmark statistics, and miscellaneous970

details regarding our QA-based experiments.971

A.1 Statistical Testing972

To determine whether the improvements on the973

SummaC benchmark are statistically significant,974

we perform significance tests using bootstrap re-975

sampling (Efron, 1982), following Laban et al.976

(2021). We compare our best model to the best-977

performing model from prior work on a given sub-978

set of the benchmark. We compare confidence979

intervals at significance levels of 0.05 and 0.01980

and apply the Bonferroni correction (Bonferroni,981

1935). Statistically significant differences at the982

0.01 level exist between QAFACTEVAL-NLI (su-983

pervised) and the best prior work on the FRANK984

subset and for the overall benchmark result. We do985

not see statistically significant differences on the986

other datasets in the benchmark. However, the sta-987

tistically significant difference at the overall bench-988

mark is notable; while other metrics may perform989

comparably or better on a given dataset, our metric990

demonstrates consistent good performance across991

datasets.992

Dataset # Valid # Test % Positive
CGS 1281 400 49.7
XSF 996 996 9.4

Polytope 634 634 87.2
FactCC 931 503 85.8

SummEval 850 850 90.6
FRANK 671 1575 33.2

Table 6: Statistics of the six datasets in the SummaC
benchmark. We provide the number of validation and
test set examples and the percentage of positive exam-
ples in the validation set.

A.2 Benchmark Statistics 993

For completeness, we provide additional statistics 994

for the SummaC benchmark in Table 6. Due to 995

the exclusion of Omission and Addition as fac- 996

tual consistency errors in the Polytope dataset, our 997

dataset contains benchmark replication contains 998

many more positive examples for that dataset. For 999

XSF, we restrict the dataset to those examples with 1000

labels for factual consistency with respect to the 1001

source, as opposed to more general factuality labels 1002

which take into account world knowledge, which 1003

results in fewer examples than the original Sum- 1004

maC benchmark. This is the same subset as was 1005

used in Koto et al. (2021). 1006

Please see the following links for the licenses 1007

of the datasets and annotations: CGS2, XSF3, 1008

FactCC4, SummEval5. We did not find licenses 1009

for the remaining datasets analyzed in our study. 1010

The intended uses of these licenses align with our 1011

use for research purposes. 1012

A.3 Model Parameters 1013

Ablation experiments started from a combination 1014

that provided good initial validation results and 1015

then swapped components. Running every combi- 1016

nation of QA-based metric components is expen- 1017

sive. We experimented with running an ablation of 1018

the QA models with a 2nd-best performing answer 1019

selection component ALL. This reduced all scores 1020

compared to using the NP Chunks component. This 1021

2https://tudatalib.ulb.tu-darmstadt.
de/handle/tudatalib/2002

3https://github.com/
google-research-datasets/xsum_
hallucination_annotations#license

4https://github.com/salesforce/factCC/
blob/master/LICENSE.txt

5https://github.com/Yale-LILY/
SummEval/blob/master/LICENSE
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experiment supports our setup of keeping the best1022

component constant when running ablations in or-1023

der to determine the highest-performing combina-1024

tion of components, rather than experimenting with1025

every combination.1026

Inference for the MADE QA model is run using1027

the average of the six MADE adapters’ parameters.1028

For Question Filtering with the IsAnswered-1029

Summ Filter, in addition to if the Electra-large1030

QA model labels the question as unanswerable,1031

if the F1 overlap score between the selected an-1032

swer and the QA model output is less than 0.60, we1033

remove this question. This filter was added only1034

to IsAnsweredSumm and not IsAnsweredInput as1035

answering questions based on the summary, from1036

which the question was generated, should be an1037

easy task. We reached this threshold based on a1038

qualitative analysis of model outputs, although this1039

number could have also been further tuned on the1040

validation set.1041

B Additional Correlation Results1042

We provide additional correlation coefficients as a1043

point of reference for future work. Instance-level1044

correlations calculate the correlation between all in-1045

stances, while the summary-level correlation com-1046

putes the correlation between scores for each sum-1047

mary of the same input and then averages over1048

inputs. Summary-level correlations are excluded1049

for QAGS as this dataset does not contain anno-1050

tations for multiple models, which is necessary to1051

compute this score.1052
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Model Type Model Name XSF SummEval FRANK-CNNDM FRANK-XSum QAGs-CNNDM QAGs-XSum

Misc
BARTScore 0.25 0.34 0.54 0.14 0.68 0.17

BLANC 0.07 0.20 0.33 0.06 0.30 0.03
FactCC 0.05 0.37 0.41 0.05 0.49 0.26

Entailment

BertScore-FFCI 0.45 0.26 0.34 0.15 0.50 0.20
DAE 0.00 0.40 0.49 0.20 0.58 -0.14
ANLI 0.18 0.35 0.46 0.08 0.60 0.36
MNLI 0.16 0.39 0.49 0.11 0.61 0.35

DocNLI 0.01 0.34 0.11 0.21 0.21 -0.38
SCZeroShot 0.06 0.39 0.48 0.23 0.52 0.44

QA
QuestEval 0.43 0.33 0.47 0.24 0.45 0.24

QAFACTEVAL 0.30 0.43 0.54 0.26 0.64 0.44

Learned
SCConv (synthetic) 0.19 0.41 0.54 0.22 0.04 0.04

QAFACTEVAL-NLI(synthetic) 0.16 0.47 0.60 0.21 0.64 0.47

Table 7: Instance-level Spearman correlation coefficients across factual consistency evaluation datasets. Metrics are
divided into entailment-based, QA-based, and learned metrics that are fine-tuned on synthetic or supervised data.
The two highest-correlated metrics for each dataset are shown in bold.

Model Type Model Name XSF SummEval FRANK-CNNDM FRANK-XSum QAGs-CNNDM QAGs-XSum

Misc
BARTScore 0.17 0.27 0.42 0.12 0.55 0.14

BLANC 0.05 0.15 0.25 0.05 0.24 0.02
FactCC 0.03 0.29 0.31 0.04 0.38 0.21

Entailment

BertScore-FFCI 0.31 0.20 0.25 0.12 0.39 0.16
DAE 0.00 0.32 0.38 0.16 0.47 -0.11
ANLI 0.12 0.28 0.36 0.07 0.48 0.30
MNLI 0.11 0.31 0.38 0.09 0.49 0.28

DocNLI 0.01 0.27 0.08 0.17 0.17 -0.31
SCZeroShot 0.04 0.31 0.37 0.18 0.41 0.36

QA
QuestEval 0.30 0.26 0.36 0.20 0.35 0.20

QAFACTEVAL 0.22 0.34 0.43 0.23 0.51 0.36

Learned
SCConv (synthetic) 0.13 0.33 0.42 0.18 0.03 0.03

QAFACTEVAL-NLI(synthetic) 0.11 0.37 0.47 0.17 0.51 0.38

Table 8: Instance-level Kendall correlation coefficients across factual consistency evaluation datasets. Metrics are
divided into entailment-based, QA-based, and learned metrics that are fine-tuned on synthetic or supervised data.
The two highest-correlated metrics for each dataset are shown in bold.

Model Type Model Name XSF SummEval FRANK-CNNDM FRANK-XSum

Misc
BARTScore 0.18 0.40 0.65 0.29

BLANC 0.12 0.27 0.47 0.01
FactCC -0.02 0.39 0.40 -0.07

Entailment

BertScore-FFCI 0.21 0.37 0.44 0.19
DAE 0.01 0.51 0.54 0.32
ANLI 0.09 0.49 0.53 0.18
MNLI 0.10 0.48 0.51 0.17

DocNLI 0.00 0.52 0.21 0.47
SCZeroShot 0.11 0.57 0.60 0.52

QA
QuestEval 0.30 0.45 0.54 0.44

QAFACTEVAL 0.24 0.64 0.68 0.53

Learned
SCConv (synthetic) 0.17 0.54 0.60 0.46

QAFACTEVAL-NLI(synthetic) 0.16 0.64 0.70 0.48

Table 9: Summary-level Pearson correlation coefficients across factual consistency evaluation datasets. Metrics are
divided into entailment-based, QA-based, and learned metrics that are fine-tuned on synthetic or supervised data.
The two highest-correlated metrics for each dataset are shown in bold.
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Model Type Model Name XSF SummEval FRANK-CNNDM FRANK-XSum

Misc
BARTScore 0.18 0.38 0.59 0.28

BLANC 0.12 0.25 0.43 0.06
FactCC 0.00 0.37 0.42 -0.01

Entailment

BertScore-FFCI 0.21 0.34 0.40 0.20
DAE 0.00 0.40 0.47 0.30
ANLI 0.10 0.39 0.47 0.17
MNLI 0.08 0.38 0.48 0.15

DocNLI -0.02 0.39 0.19 0.41
SCZeroShot 0.11 0.41 0.51 0.50

QA
QuestEval 0.27 0.35 0.47 0.45

QAFACTEVAL 0.22 0.45 0.59 0.47

Learned
SCConv (synthetic) 0.16 0.43 0.55 0.44

QAFACTEVAL-NLI(synthetic) 0.17 0.47 0.63 0.49

Table 10: Summary-level Spearman correlation coefficients across factual consistency evaluation datasets. Metrics
are divided into entailment-based, QA-based, and learned metrics that are fine-tuned on synthetic or supervised data.
The two highest-correlated metrics for each dataset are shown in bold.

Model Type Model Name XSF SummEval FRANK-CNNDM FRANK-XSum

Misc
BARTScore 0.15 0.32 0.51 0.25

BLANC 0.11 0.21 0.38 0.05
FactCC 0.00 0.30 0.35 -0.01

Entailment

BertScore-FFCI 0.17 0.28 0.34 0.18
DAE 0.00 0.33 0.41 0.27
ANLI 0.08 0.32 0.41 0.16
MNLI 0.07 0.31 0.41 0.14

DocNLI -0.01 0.32 0.17 0.37
SCZeroShot 0.10 0.34 0.44 0.45

QA
QuestEval 0.23 0.29 0.41 0.41

QAFACTEVAL 0.19 0.37 0.51 0.45

Learned
SCConv (synthetic) 0.14 0.36 0.49 0.41

QAFACTEVAL-NLI(synthetic) 0.14 0.39 0.55 0.44

Table 11: Summary-level Kendall correlation coefficients across factual consistency evaluation datasets. Metrics are
divided into entailment-based, QA-based, and learned metrics that are fine-tuned on synthetic or supervised data.
The two highest-correlated metrics for each dataset are shown in bold.

15


