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Abstract
Deep learning models with a large number of pa-
rameters, often referred to as over-parameterized
models, have achieved exceptional performance
across various tasks. Despite concerns about
overfitting, these models frequently generalize
well to unseen data, thanks to effective regular-
ization techniques, with data augmentation be-
ing among the most widely used. While data
augmentation has shown great success in clas-
sification tasks using label-preserving transfor-
mations, its application in regression problems
has received less attention. Recently, a novel
manifold learning approach for generating syn-
thetic data was proposed, utilizing a first-order
approximation of the data manifold. Building on
this foundation, we present a theoretical frame-
work and practical tools for approximating and
sampling general data manifolds. Furthermore,
we introduce the Curvature-Enhanced Manifold
Sampling (CEMS) method for regression tasks.
CEMS leverages a second-order representation
of the data manifold to enable efficient sampling
and reconstruction of new data points. Exten-
sive evaluations across multiple datasets and com-
parisons with state-of-the-art methods demon-
strate that CEMS delivers superior performance
in both in-distribution and out-of-distribution sce-
narios, while introducing only minimal compu-
tational overhead. Code is available at https:
//github.com/azencot-group/CEMS.

1. Introduction
Deep neural networks have demonstrated remarkable per-
formance across a wide range of applications in various
fields (Krizhevsky et al., 2012; Long et al., 2015; Mnih
et al., 2015; Noh et al., 2015; Vinyals et al., 2015; He
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et al., 2016; Nam & Han, 2016; Wu et al., 2016). De-
spite their success, these models are often significantly over-
parameterized, meaning they possess more parameters than
the number of training examples. As a result, deep neural
networks are prone to overfitting, whereby they “memorize”
the training set rather than learning generalizable patterns,
thus compromising their performance on unseen data. Reg-
ularization techniques are crucial to address this issue, as
they modify the learning process to prevent overfitting by
reducing the variance and increasing the bias of the under-
lying model (Goodfellow, 2016). Classical regularization
methods, such as weight decay, dropout (Srivastava et al.,
2014), and normalization techniques like Batch Normaliza-
tion (Ioffe & Szegedy, 2015) and Layer Normalization (Ba
et al., 2016), have been effective in many scenarios. In ad-
dition to these methods, recent research has explored the
potential of data augmentation (DA) as a form of regulariza-
tion. In this paper, we focus on the problem of regularizing
regression models via data augmentation. That is, we ex-
plore how to artificially expand the train set (DA) for models
that predict continuous values (regressors) to improve gen-
eralization and robustness.

Early work in modern computer vision revealed the effec-
tiveness of basic image transformations such as translation
and rotation (Krizhevsky et al., 2012), promoting data aug-
mentation to become one of the key components in design-
ing generalizable learning models (Shorten & Khoshgoftaar,
2019). In particular, classification tasks, whose goal is to
predict a discrete label, benefited notably from the rapid de-
velopment of DA (Simonyan & Zisserman, 2015; DeVries,
2017; Zhang et al., 2018; Zhong et al., 2020). The discrete
and categorical nature of classification labels makes it easier
to define label-preserving transformations and apply inter-
polations without compromising data integrity. In contrast,
regression tasks, where the outputs are continuous, face
unique challenges in ensuring that transformations produce
valid input-output pairs and that interpolations maintain the
underlying functional relationships. While certain regres-
sion challenges have adopted standard data augmentation
approaches successfully (Redmon et al., 2016; Nochumsohn
& Azencot, 2025), existing DA methods are generally less
effective for regression problems (Yao et al., 2022). For
this reason, developing data augmentation tools for gen-
eral regression problems is an emerging field of interest
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with a relatively small number of available effective tech-
niques. One of the recent state-of-the-art (SOTA) works
introduced FOMA, a data-driven and domain-independent
approach based on the theory and practice of manifold learn-
ing (Kaufman & Azencot, 2024b). Our work is also inspired
by manifold learning, where we consider DA as a manifold
approximation and sampling challenge.

Manifold learning is fundamental to modern machine learn-
ing primarily through the manifold hypothesis (Belkin &
Niyogi, 2003; Goodfellow, 2016), where complex and high-
dimensional data is assumed to lie close or on an associated
low-dimensional manifold. Multiple works leveraged the re-
lation between data and manifolds (Zhu et al., 2018; Ansuini
et al., 2019; Kaufman & Azencot, 2023), and particularly,
FOMA (Kaufman & Azencot, 2024b) can be viewed as a
method for generating new examples by sampling from the
tangent space of the data manifold, approximated using the
training distribution. The tangent space at a point is a linear
approximation of the manifold at that point (Lee, 2012),
and thus, FOMA is a first-order approach. However, while
first-order approximations work well for relatively simple
or well-behaved data, they often fall short when dealing
with complex, curved real-world data. We demonstrate this
effect in Fig. 1B-C, where first-order approximations of
points with high curvature fail to capture the structure of
the manifold. While it is natural to consider higher-order
approximations for improving FOMA, their computational
burden may be too limiting. In this work, we advocate that
second-order manifold representations offer a compelling
trade-off between effectiveness and compute requirements
for data augmentation for regression problems.

We propose the curvature enhanced manifold sampling
(CEMS) approach, which generates new examples by draw-
ing from a second-order representation of the data manifold.
Particularly, CEMS randomly generates points in the tan-
gent space of the manifold, whereas FOMA is different as
it scales down the orthogonal complement of the tangent
space which captures how the manifold deviates from the
linear approximation. FOMA and CEMS are data-driven
and domain-independent, i.e., their samples are based on the
underlying data distribution, whose domain can be arbitrary,
e.g., time series, tabular, images, and other data forms. The
inclusion of curvature information allows CEMS to better
capture the intrinsic geometry of the data manifold, as it
accounts for the non-linearities and complex structures that
first-order methods might miss. In general, second-order
methods are infeasible in modern machine learning due to
computational costs incurred by high-dimensional vectors.
Nevertheless, our analysis shows that CEMS is governed by
the intrinsic dimension d of the manifold, and its value is
much smaller than the data dimension D, i.e., d≪ D. We
extensively evaluate CEMS and show it is competitive in
comparison to SOTA data augmentation approaches on in-

distribution and out-of-distribution tasks. The contributions
of our work can be summarized as follows:

1. We consider data augmentation for regression as a
manifold learning problem, extending and generalizing
prior approaches through providing the foundational
theory and practice.

2. We introduce CEMS, a novel fully-differentiable, data-
driven and domain-independent data augmentation
technique that is based on a second-order approxima-
tion of the data manifold.

3. Across nine datasets, featuring several large-scale, real-
world in-distribution and out-of-distribution tasks, we
demonstrate that CEMS performs competitively or sur-
passes other augmentation strategies.

2. Related work
The theoretical foundation for data augmentation (DA)
is related to the study of Empirical Risk Minimization
(ERM) (Vapnik, 1991) vs. Vicinal Risk Minimization
(VRM) (Chapelle et al., 2000). In VRM, one considers
an extended distribution to train on, in comparison to ERM,
where the train distribution is used. Although related to
generative modeling (Kingma & Welling, 2014; Goodfel-
low et al., 2014; Sohl-Dickstein et al., 2015; Naiman et al.,
2024b;a), data augmentation is a distinct approach com-
monly used to expand data distributions by generating syn-
thetic samples. With the increased dependence of deep
models on large volumes of data, DA has become a corner-
stone in enhancing the performance and generalization of
neural networks (DeVries, 2017; Chen et al., 2020b; Feng
et al., 2021; Yang et al., 2022). Early work focused on
domain-dependent augmentations for image, audio, and nat-
ural language data (Krizhevsky et al., 2012; He et al., 2016;
Huang et al., 2017; Kobayashi, 2018; Park et al., 2019;
Zhong et al., 2020). Later, automatic augmentation tools
have been proposed (Cubuk et al., 2019; Lim et al., 2019),
including domain-dependent search spaces for transforma-
tions. Still, adapting these methods to new data domains
remains a challenge. This has sparked interest in devel-
oping domain-independent approaches that make minimal
assumptions about the data domain, and it is the focus of
our research.

DA for Classification. Zhang et al. (2018) introduced
mixup, a well-known domain-independent DA method that
convexly combines pairs of input samples and their one-
hot label representations during training. Following their
work, a plethora of mixup-based techniques have been sug-
gested such as manifold mixup (Verma et al., 2019) which
extends the idea of mixing examples to the latent space.
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Figure 1. We demonstrate the effect of sampling from a one-dimensional manifold embedded in a two-dimensional space. A) The original
data representing a sine wave where the color of each point represents the curvature at that point (brighter means higher curvature). B)
Sampling using FOMA. C) Sampling using a first-order approximation. D) Sampling using CEMS (our approach).

CutMix (Yun et al., 2019) implants a random rectangular
region of the input into another and many others (Guo et al.,
2019; Hendrycks et al., 2020; Berthelot et al., 2019; Gree-
newald et al., 2023; Lim et al., 2022). Recently, (Erichson
et al., 2024) extended the work (Lim et al., 2022) via stable
training and further noise injections. While the family of
mixup techniques have been shown to consistently improve
classification learning systems (Cao et al., 2022), its efficacy
is inconsistent on regression tasks (Yao et al., 2022).

DA for Regression. Unfortunately, there has been consid-
erably less focus on developing data augmentation methods
for regression tasks in comparison to the classification set-
ting. Due to the simplicity and effectiveness of mixup-based
tools in classification, a growing body of literature is drawn
to adapting and extending the mixing process for regression.
For instance, RegMix (Hwang & Whang, 2021) learns the
optimal number of nearest neighbors to mix per sample.
C-mixup (Yao et al., 2022) employs a Gaussian kernel to
create a sampling probability distribution for each sample,
taking label distances into account, and selecting samples
for mixing according to this distribution. Anchor Data Aug-
mentation (Schneider et al., 2023) clusters data points and
adjusts the original points either towards or away from the
cluster centroids. R-Mixup (Kan et al., 2023) focuses on
enhancing model performance specifically for biological
networks, whereas RC-Mixup (Hwang et al., 2024) extends
C-mixup to be more robust against noise. Perhaps clos-
est to our work is the recent FOMA method (Kaufman &
Azencot, 2024b) that does not rely on mixing samples, but
rather, it samples from a first-order approximation of the
data manifold. Still, to the best of our knowledge, our work
is first in suggesting fundamental manifold learning theory
and tools for DA, accompanied by an effective second-order
augmentation technique.

Manifold Learning. Manifold learning has been a funda-
mental research area in machine learning, aiming to discover
the intrinsic low-dimensional structure of high-dimensional
data. While early work focused on dimensionality reduction
of points and preserving their geometric features (Tenen-
baum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi,
2003; Weinberger & Saul, 2004; Zhang & Zha, 2005; Coif-
man & Lafon, 2006), modern approaches also considered
regularization (Ma et al., 2018; Zhu et al., 2018), explain-
able artificial intelligence (Ansuini et al., 2019; Kaufman
& Azencot, 2023; 2024a), and autoencoding (Chen et al.,
2020a), among other applications.

Second-order methods have also been investigated in this
domain. Notably, Donoho & Grimes (2003) introduced
Hessian Eigenmaps, a technique that incorporates second-
order information to more accurately preserve local curva-
ture during nonlinear dimensionality reduction. Although
their approach is designed for unsupervised embedding, our
method extends the use of second-order local approxima-
tions to the supervised setting. Specifically, we utilize this
geometric insight to guide data augmentation, enabling the
generation of new training samples in a manner that is both
geometry-aware and differentiable.

Recent work from the statistical learning community has
also proposed more sophisticated local chart models. These
include Gaussian process-based manifold inference (Dun-
son & Wu, 2021), spherelet-based approximations (Li et al.,
2022), and manifold denoising via generalized L1 medi-
ans (Faigenbaum-Golovin & Levin, 2020). While these
methods aim to infer or reconstruct manifold structure with
statistical guarantees, our focus is on utilizing local geo-
metric information specifically for data augmentation in
supervised learning.

Recent advancements in manifold learning have enhanced
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anomaly detection and out-of-distribution (OOD) recog-
nition. Li et al. (2024) leveraged submanifold geome-
try, estimating tangent spaces and curvatures to define in-
distribution regions for OOD detection. Gao et al. (2022)
proposed a hyperbolic feature augmentation method, using
the Poincaré ball model for distribution estimation and in-
finite sampling, improving few-shot learning performance.
Humayun et al. (2022) proposed MaGNET, a framework
that enables uniform sampling on data manifolds derived
from generative adversarial networks providing a retraining-
free solution for data augmentation. Similarly, Chadebec
& Allassonnière (2021) introduced a geometry-aware varia-
tional autoencoder that leverages second-order Runge–Kutta
schemes for effective data generation in low-sample-size
scenarios. Extending these ideas, Cui et al. (2023) presented
a trajectory-aware principal manifold framework for image
generation and data augmentation, which aligns sampled
data with learned projection indices to improve representa-
tion and synthesis quality.

3. Background
3.1. Manifold learning

A manifoldM⊂ Rd is a mathematical structure that locally
resembles an Euclidean space near each of its points (Lee,
2012). A ubiquitous assumption in machine learning states
that high-dimensional point clouds Z ⊂ RD satisfy the
manifold hypothesis. Namely, the data Z lie on a mani-
foldM whose intrinsic dimension d is significantly lower
than the extrinsic dimension of the ambient space D, i.e.,
d≪ D (Goodfellow, 2016). Manifold learning is a field in
machine learning that develops theory and tools for analyz-
ing and processing high-dimensional data under the lens of
geometric manifolds.

3.2. Curvature-aware manifold learning
Our curvature enhanced manifold sampling (CEMS) data
augmentation method is based on a second-order approxima-
tion of the data manifold. There are several existing practical
approaches for parameterizing a manifold given a collection
of data points Z = {z1, z2, · · · , zN} ⊂ RD. Here, we
focus on the curvature-aware manifold learning (CAML)
algorithm (Li, 2018), since it scales to high-dimensional
problems, it is numerically stable, and it is easy to code.
Below, we include the necessary details for describing our
approach, and we refer the reader to (Lee, 2012; 2018; Li,
2018) for additional details on Riemannian geometry and
its realization in machine learning.

Following our discussion above, we assume Z satisfies the
manifold hypothesis. Formally, it means that there exists an
embedding map f :M→ RD such that

zi = f(ui), i = 1, . . . , N , (1)

where U = {u1, u2, · · · , uN} ⊂ Rd are low-dimensional
representations of Z. In practice, CAML parameterizes
f by projecting z ∈ Z to its tangent and normal spaces
at u ∈ M, where the tangent space is obtained by a lin-
ear transformation and the normal space is provided via
a second-order local approximation. Specifically, given a
point z ∈ Z, we find close points Nz = {zj}kj=1, forming
the neighborhood of z. Next, we construct an orthonormal
basis Bu := [BTu ∈ RD×d, BNu ∈ RD×(D−d)] ∈ RD×D

for the tangent space TuM and the normal space NuM
at u, where the operation [·, ·] denotes column-wise con-
catenation. We then project Nz and z onto BTu

and BNu
,

yielding Uz = {uj}kj=1, u and Gz = {gj}kj=1, g respec-
tively. To allow arbitrary sampling fromM, we assume that
g is a map from the tangent space to the normal space, i.e.,
g : TuM→NuM. The second-order Taylor expansion of
g around a point u ∈M is given by

g(uj) = g(u) + (uj − u)T∇g(u)

+
1

2
(uj − u)TH(u)(uj − u) +O(|uj |32) , (2)

where the linear (gradient) and quadratic (Hessian) terms
are unknown. To compute ∇g(u) and H(u), one needs to
collect the linear coefficients and constants arising from
Eq. 2 into matrices Ψ and G, respectively, solve a linear
system of equations (Eq. 6), and extract the numerical esti-
mates of the gradient and Hessian. Finally, we can map the
pair (u, g) back into its original space z ∈ Z by computing
z := f(u) = Bu[u, g(u)]. See also App. A.

4. Curvature Enhanced Manifold Sampling
We assume to be given a regression training set D :=
{(xi, yi)}Ni=1, where xi ∈ Rk1 is the data sample and
yi ∈ Rk2 is its corresponding prediction. Following the
approach used in FOMA (Kaufman & Azencot, 2024b), we
denote by zi = [xi, yi] ∈ RD the concatenation of the input
xi and its corresponding label yi along the columns, treating
the pair as a point on a joint input-output manifold. During
training, given a mini-batch Z = {z1, · · · zb}, where b is
the batch size, we perform the following procedure for each
z ∈ Z to create a new sample z̃, omitting the superscript
to simplify notation. To account for the discrepancies in
scale between X and Y , we normalize Y to match the range
of X , i.e., [0, 1]. Our curvature enhanced manifold sam-
pling (CEMS) augmentation approach consists of four main
steps: 1) Extract a neighborhood Nz from D for every point
z; 2) Construct a basis Bu := [BTu , BNu ] for the tangent
space TuM and the normal space NuM and project the
neighborhood onto it; 3) Form and solve the linear system
of equations in Eq. 6 to obtain the parameterization g; 4)
Sample a new point from Tu, evaluate its g via Eq. 2, and
un-project it onto the ambient space using f . Below, we de-
tail how we perform each step, and we motivate our design
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Figure 2. CEMS forms a neighborhood for every point z (left), computes a basis BTu for the tangent space via SVD (middle) while
obtaining an estimate for the embedding f , samples a new point η close to u (right), and un-projects it back to RD using f (red arrow).

choices. Pseudo-code and illustration of CEMS are given in
Alg. 1 and Fig. 2.

Neighborhood extraction. The approach we consider in
this work is local in the sense that we represent the manifold
structure in the vicinity of a specific point z ∈ D or within
its neighborhood Nz . High-quality approximations of local
properties of the manifold∇g(u) and H(u) depend directly
on the proximity of the elements in Nz to z. A straightfor-
ward approach to extracting Nz is to compute the k-nearest
neighbors (kNN) (Cover & Hart, 1967) of z. Specifically,
we construct neighborhoods in the joint input-output space
X × Y to align with the manifold hypothesis, preserving
the local continuity of the data and avoiding the artificial
separations introduced by clustering-based methods. For
each point zi ∈ Z , Nzi is defined as the k closest points in
feature space, which ensures the local geometry is captured
reliably while minimizing diversity within the neighbor-
hoods. Furthermore, our reliance on the local-Euclidean
prior assumes that the manifold is sufficiently smooth at
small scales, justifying the validity of linear approximations
such as those employed by our method. This assumption un-
derpins the extraction of neighborhood sets and their utility
in manifold analysis, as it guarantees that the neighborhoods
respect the underlying manifold structure.

Our analysis below and in App. D shows that the com-
putational complexity of CEMS is governed by singular
value decomposition (SVD) calculations, required for basis
construction. To reduce runtime, D can be pre-processed,
storing∇g(u) and H(u) for every z := f(u) on the disk, as
these properties remain unchanged during training. While
this pre-computation reduces runtime significantly, it incurs
high memory complexity, O(2d(D− d)), and the choice of
neighbors is fixed during training. To address these limita-
tions, we use the same neighborhood for all points in Nz ,
re-using neighborhoods and basis computations for every

zj ∈ Nz . This improves efficiency, though at the cost of
accuracy, since every zj ∈ Nz is assumed to share the same
neighborhood. Finally, the batch size determines the number
of neighbors for each point, providing a balance between
computational efficiency and accuracy.

Basis construction and projection. To find an orthonor-
mal basis for the tangent space TuM and the normal space
NuM, we follow standard approaches (Singer & Wu, 2012;
Li, 2018) that utilize the singular value decomposition
(SVD). Specifically, we compute SVD on the centered
points {zj − z}kj=1 = USV T , while keeping our pipeline
to be fully differentiable (Ionescu et al., 2015). Importantly,
SVD is calculated once for every batch, as discussed above.
The first d columns of U determine the basis for the tangent
space, i.e., BTu

:= U [:, 1:d] and the last D− d columns de-
termine the basis for the normal space BNu := U [:, d+1:D]
such that Bu := [BTu , BNu ] is the concatenation of the
bases. While the intrinsic dimension d can be viewed as a
hyper-parameter of CEMS, we estimate it in practice using
a robust estimator (Facco et al., 2017). The centered neigh-
bors zj−z are projected to the tangent space and the normal
space via uj := BT

Tu
· (zj − z), g(uj) := BT

Nu
· (zj − z),

respectively, where AT is the transposed matrix of A, and
A · v is a matrix-vector multiplication. Centering the points
around z map the point u to the zero vector, and thus, Eq. 2
is transformed to the following approximation:

g(uj) = uT
j ∇g(u) +

1

2
uT
j H(u)uj . (3)

Linear system of equations. Under the change of basis
Bu, we form the matrices Ψ and G as described in App. A,
containing {uj}kj=1 and {g(uj)}kj=1, respectively. We then
solve Eq. 6 via differentiable least squares, and we obtain an
estimation of∇g(u) and H(u), allowing to map new points
in the vicinity of u by computing g. Note that while Nz
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Algorithm 1 CEMSp : Sample generation

Require: Training data Z = {zi = [xi, yi]}Ni=1

Require: A sample z ∈ Z
1: Find k-nearest neighbors Nz of z
2: Construct an orthonormal basis Bu spanning Nz − z
3: Project zj − z to local orthonormal coordinates:

uj ← BT
u (zj − z)

4: Construct G and Ψ as in Eq. (6)
5: Solve ΨA = G
6: Extract∇g(z) and H(z) from A
7: Sample noise η ∼ N (0, σId)
8: Calculate g(η) from:

g(η)← ηT∇g + 1
2η

THη.
9: Un-project η back to the original coordinates:

zη ← f(η) = Bu[η, g(η)] + z
Return zη

and Bu are shared across the batch, the linear solve is still
computed separately per point.

Sampling and un-projecting. To generate new examples
using the above machinery, we need to sample a point η ∈
Rd from the neighborhood of u, and un-project it to the
ambient space RD (through the parameterization g and map
f ). While various sophisticated sampling techniques could
be devised, we opted for a simple sampler with a single
hyperparameter. In practice, we draw η ∼ N (0, σId). To
un-project η back to the original space, we compute

zη := f(η) = Bu · [η, g(η)] + z . (4)

Adaptation to batches. For completeness, we also de-
scribe briefly the adaptation of CEMS to the training setting
where we utilize mini-batches. We provide a comparison
between the two methods in App. G. In contrast to CEMSp,
where a neighborhood of close points is constructed for each
individual sample to generate a corresponding synthetic
point, CEMS requires a batch of mutually close points to
estimate a shared tangent space and produce a new batch of
samples. As mentioned above, given z and its neighborhood
Nz , we re-use the same neighborhood and subsequent basis
computations for every zj ∈ Nz . This adaptation requires a
small modification to the method. 1) We include the point
z := z0 in the neighborhood Nz = {zj}kj=0. 2) We find
an orthonormal basis Bu that spans Nz − µ, where µ is
the mean of Nz . 3) After projecting to the coordinates of
Bu, we get Uz = {uj}kj=0 and Gz = {gj}kj=0. For every
point uj , we gather a set of close points and their embed-
dings via g. 4) In contrast to the point-wise basis estimation,
where u served as the origin (zero vector), in the batch-wise
computation we need to account for uj and g(uj) in Eq. 2.
While Steps 5-7 in Alg. 1 remain unchanged, at Step 7 we

sample a point η near ul: η ∼ N (ul, σId). Step 8 changes
to g(ηl) = g(ul)+ (ηl−ul)

T∇g+ 1
2 (ηl−ul)

TH(ηl−ul)
and Step 9 changes to zηl

:= f(ηl) = Bu · [ηl, g(ηl)]+µNz .
A full description of the algorithm appears in Alg. 2.

Complexity analysis. There are two computationally
demanding calculations used by CEMS, SVD and least
squares. Given a data mini-batch Z ∈ Rb×D, where b is
the batch size. Then, SVD requires O(min(bD2, Db2)) op-
erations, whereas the solution of under-determined least
squares costs O(b2d2). Using the manifold hypothesis, we
assume that d≪ D therefore d2 ∈ O(D) and thus, the over-
all time complexity of CEMS is given by O(b2D) which is
proportional to the ambient dimension D. See also App. D
for a more detailed analysis.

Memory analysis. The memory requirements of CEMS
are primarily dictated by the computation of the SVD. No-
tably, the SVD is computed independently for each batch
rather than for the entire dataset. In our PyTorch imple-
mentation, we leverage the economy/reduced SVD variant,
which significantly reduces memory usage compared to the
full SVD. For a batch matrix of size b × D (where b is
the batch size and D is the ambient dimension), the space
complexity is O(bD + min(b,D)(b + D)). This is sub-
stantially more efficient than the full SVD, which requires
O(bD+b2+D2) memory. In practice, CEMS is particularly
effective in scenarios where the batch size b is much smaller
than the ambient dimension D (common in deep learning),
resulting in a memory complexity that is proportional to D.

Comparison with FOMA. FOMA (Kaufman & Azen-
cot, 2024b) can be interpreted as a special case of CEMS.
Specifically, we can describe FOMA using our notations as
follows: given a sample z and its neighborhood Nz , FOMA
constructs a basis Bu := [BTu

, BNu
] for the tangent space

TuM and the normal spaceNuM and projects the neighbor-
hood onto it, yielding Uz = {uj}kj=1 and Gz = {gj}kj=1,
respectively. Rather than estimating the gradient ∇g(uj)
and Hessian H(uj) at each point uj ∈ Uz and then sam-
pling using the Taylor expansion as performed in CEMS,
FOMA generates new samples by scaling down Gz . That
is, for each zj ∈ Nz , the corresponding g̃j = λgj is scaled
where λ ∈ (0, 1). To complete the sampling process, every
uj is un-projected back to the original coordinates by com-
puting z̃ := f(uj) = Bu · [uj , λg(uj)]. Therefore, FOMA
does not use the embedding map g as detailed in Eq. 2, but
it samples random points instead. Unfortunately, this sam-
pling technique may yield new points that are not on the
data manifold, especially on highly curved locations, as is
also illustrated in Fig. 1.
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Table 1. Results for in-distribution generalization. Values in bold indicate the best results, while underlined values represent the second
best. We present the average RMSE and MAPE across three seeds. Detailed results, including standard deviation, are available in App K.

Airfoil NO2 Exchange-Rate Electricity

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ERM 2.901 1.753 0.537 13.615 0.024 2.423 0.058 13.861
Mixup 3.730 2.327 0.528 13.534 0.024 2.441 0.058 14.306
Mani Mixup 3.063 1.842 0.522 13.382 0.024 2.475 0.058 14.556
C-Mixup 2.717 1.610 0.509 12.998 0.020 2.041 0.057 13.372
ADA 2.360 1.373 0.515 13.128 0.021 2.116 0.059 13.464
FOMA 1.471 0.816 0.512 12.894 0.013 1.262 0.058 14.614

CEMS 1.455 0.809 0.507 12.807 0.014 1.293 0.058 13.353

5. Experiments
5.1. Sine example

Real-world data is often complex and curved, exhibiting in-
tricate patterns that cannot be adequately captured by linear
or simplistic models. By employing higher-order approx-
imations of the manifold, we can generate samples that
align with the true nature of real-world data. In Fig. 1, we
demonstrate a toy sine example, highlighting the differences
between first-order and second-order approaches. Specif-
ically, we generated a two-dimensional point cloud of a
sine wave whose intrinsic dimension is one (Fig. 1, left).
Then, we sampled points from this distribution using mini-
batches from the train set and various data augmentation
techniques. The first-order method, FOMA (Kaufman &
Azencot, 2024b), struggles to adhere to the curvature of the
manifold in highly-curved points, as can be seen in Fig. 1,
middle left. Similarly, restricting CEMS to a first-order
approximation presents a similar behavior (Fig. 1, middle
right). Finally, our second-order CEMS method samples the
manifold well, even near high curvature areas (Fig. 1, right).
See App. A.1 for a theoretical justification for the sampling
error of CEMS in comparison to first-order approaches.

5.2. In-Distribution Generalization

In what follows, we consider the in-distribution benchmark
that was introduced in (Yao et al., 2022). This benchmark
evaluates the performance of various data augmentation
techniques in the setting of training on a train set and its
augmentations, while testing on a test set that was sampled
from the same distribution as the train set. Thus, a strong
performance in this benchmark implies that the underlying
DA method mimics the train distribution well. Below, we
compare CEMS to other recent SOTA approaches, while
using the same datasets that were studied in (Yao et al.,
2022) and closely replicating their experimental setup.

Datasets. We evaluate in-distribution generalization us-
ing four datasets. Two of these are tabular datasets: Airfoil
Self-Noise (Airfoil) (Brooks et al., 2014), containing aerody-
namic and acoustic measurements of airfoil blade sections,
and NO2 (Aldrin, 2004), which predicts air pollution levels
at specific locations. We also use two time series datasets:
Exchange-Rate and Electricity (Lai et al., 2018), where
Exchange-Rate includes daily exchange rates of several cur-
rencies and Electricity contains measurements of electric
power consumption in private households. For a detailed
description of these datasets, see App. J.

Experimental Settings. We perform a comparative anal-
ysis between our method, CEMS, and several established
baseline approaches, including the standard empirical risk
minimization (ERM) training, Mixup (Zhang et al., 2018),
Manifold-Mixup (Verma et al., 2019), C-Mixup (Yao et al.,
2022), Anchor Data Augmentation (ADA) (Schneider et al.,
2023), and FOMA (Kaufman & Azencot, 2024b). The neu-
ral networks we trained are the same as considered in (Yao
et al., 2022), where a fully connected three layer model
was used for tabular datasets, and an LST-Attn (Lai et al.,
2018) is utilized for time series data. The evaluation met-
rics include the root mean square error (RMSE) and mean
absolute percentage error (MAPE). Additional details and
hyperparameters are available in App. I.

Results. We present the in-distribution generalization
benchmark results in Tab. 1. The results of all previous
methods are reported as they appear in the corresponding
original papers. Lower values are preferred either in RMSE
or in MAPE. Boldface and underline denote the best and sec-
ond best approaches, respectively. Remarkably, across all
datasets and metrics, CEMS attains the best or second best
error measures. In particular, CEMS outperforms other data
augmentation strategies on Airfoil and NO2 while being
comparable with FOMA on Electricity and Exchange-Rate.
We also note that when CEMS is second best, its result is
relatively close to the best result. We present the full results
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Table 2. Comparison of out-of-distribution robustness. Bold values indicate the best results, while underlined values represent the second
best. We present the average RMSE across domains as well as the ”worst within-domain” RMSE from three different seeds. For the DTI
and Poverty datasets, we provide the average R and the ”worst within-domain” R. Complete results, including standard deviation, can be
found in App K.

RCF (RMSE) Crimes (RMSE) SkillCraft (RMSE) DTI (R) Poverty (R)

Avg. ↓ Avg. ↓ Worst ↓ Avg. ↓ Worst ↓ Avg. ↑ Worst ↑ Avg. ↑ Worst ↑
ERM 0.164 0.136 0.170 6.147 7.906 0.483 0.439 0.80 0.50
Mixup 0.159 0.134 0.168 6.460 9.834 0.459 0.424 0.81 0.46
ManiMixup 0.157 0.128 0.155 5.908 9.264 0.474 0.431 - -
C-Mixup 0.146 0.123 0.146 5.201 7.362 0.498 0.458 0.81 0.53
ADA 0.175 0.130 0.156 5.301 6.877 0.493 0.448 0.79 0.52
FOMA 0.159 0.128 0.158 - - 0.503 0.459 0.78 0.49

CEMS 0.146 0.128 0.159 5.142 6.322 0.511 0.465 0.81 0.50

including standard deviation measures in App. K.

5.3. Out-of-distribution

To extend our in-distribution evaluation, we also consider
an out-of-distribution benchmark, as was proposed in (Yao
et al., 2022). Unlike the in-distribution case, here the test set
is sampled from a distribution different from that of the train
set. Therefore, excelling in this scenario provides valuable
information regarding the generalization capabilities of data
augmentation tools. In what follows, we perform a compari-
son between CEMS and several SOTA methods, while using
the same datasets that were studied in (Yao et al., 2022) and
closely replicating their experimental setup.

Datasets. We leverage five datasets to evaluate the perfor-
mance of out-of-distribution robustness. 1) RCFashionM-
NIST (RCF) (Yao et al., 2022) is a synthetic variation of
Fashion-MNIST, designed to model sub-population distribu-
tion shifts, with the aim of predicting the rotation angle for
each object. 2) Communities and Crime (Crime) (Redmond,
2009) is a tabular dataset focused on predicting the total
number of violent crimes per 100,000 population, aiming
to create a model that generalizes to states not included
in the training data. 3) SkillCraft1 Master Table (Skill-
Craft) (Blair et al., 2013) is a tabular dataset designed to
predict the average latency in milliseconds from the onset of
perception-action cycles to the first action where “LeagueIn-
dex” is considered as domain information. 4) Drug-Target
Interactions (DTI) (Huang et al., 2021) seeks to predict drug-
target interactions that are out-of-distribution, using the year
as domain data. 5) PovertyMap (Poverty) (Koh et al., 2021)
is a satellite image regression dataset created to estimate
asset wealth in countries that were not part of the training
set. For more details, please refer to App. J.

Experimental Settings. Similar to Sec. 5.2, we consider
the same baseline DA approaches. For metrics, we report
the RMSE (lower values are preferable) for RCF, Crimes,
and SkillCraft. In addition, we use R (higher values are
preferable) as the evaluation metric for Poverty and DTI, as
was originally proposed in their corresponding papers (Koh
et al., 2021; Huang et al., 2021). For a fair comparison, we
follow the methodology in (Yao et al., 2022), and we train
a ResNet-18 on the RCF and Poverty datasets, three-layer
fully connected networks on Crimes and SkillCraft, and
DeepDTA (Öztürk et al., 2018) on DTI. We provide further
details on hyperparameters and experiments in App. I.

Results. We detail our out-of-distribution benchmark re-
sults in Tab. 2. Similarly to the in-distribution setting, the
error measures of previous SOTA approaches were taken
from the related original papers. We include both the aver-
age (Avg.) and worst domain performance metrics. Lower
values are preferred in RMSE, and higher values are opted
for R. We denote in bold and underline the best and second
best results, respectively. Our results indicate that CEMS
attains strong performance measures, achieving the best re-
sults in 6/9 tests. Further, the rest of the error measures of
CEMS are either second best or very close to the second
best. We particularly note the SkillCraft test where CEMS
improves the second best results by a relative 1% and 8%
for the average and worst metrics. The relative improve-
ment is computed via erel · 100, where erel = (e− eCEMS)/e,
with eCEMS and e denoting the errors of CEMS and the sec-
ond best approach, respectively. We present the full results
including standard deviation measures in App. K.

6. Conclusions
This work introduces CEMS, a novel data augmentation
method tailored specifically for regression problems, framed
within the context of manifold learning. By leveraging
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second-order manifold approximations, CEMS captures the
underlying curvature and structure of the data more accu-
rately than previous first-order methods. Our extensive eval-
uation across nine diverse benchmark datasets, spanning
both in-distribution and out-of-distribution tasks, shows
that CEMS achieves competitive performance compared
to SOTA techniques, often surpassing them in challenging
settings. The main contributions of this work are threefold:
(1) extend the view of DA for regression as a manifold
learning problem, thereby providing a principled foundation
and practical tools; (2) proposing CEMS, a fully differen-
tiable, data-driven, and domain-independent second-order
augmentation method; and (3) empirically validating CEMS
across a variety of regression scenarios, showing its poten-
tial to serve as a robust and effective regularization tech-
nique for models predicting continuous values. Our results
suggest that higher-order manifold sampling approaches
hold promise for improving the generalization of regression
models, especially in scenarios with limited data.

One limitation of CEMS is that the linear system in Eq. 6
might be underdetermined for data sets with a large intrinsic
dimension d. In practice, the number of neighbors has to be
O(d2), for an overdetermined system. Our implementation
sets the number of neighbors to be a constant size and thus
it is independent of d. While this requirement is reasonable
for low d values, it can become expensive for large d. This
can be resolved by regularizing the linear system via, e.g.,
ridge regression. Another limitation is related to the SVD
computation, where CEMS needs at least d columns. This
may require a full SVD calculation, demanding O(bD2)
memory, where b is the batch size and D is the extrinsic di-
mension, which may be impractical for datasets with many
features. A potential solution is to consider a different intrin-
sic dimension d̃, such that d̃ < d. In future work, we plan to
investigate these ideas, and, in addition, we plan to explore
extensions of CEMS to include adaptive strategies for dy-
namically selecting the appropriate order of approximation
based on local data properties. By pushing the boundaries
of data augmentation for regression, we hope to pave the
way for more robust and versatile learning systems capable
of tackling complex, real-world prediction tasks.
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A. Curvature-aware manifold learning
Given a train set Z = {z1, · · · , zN}, we parameterize the data manifold around a point z ∈ Z that we map to u = 0,
resulting in the following truncated Maclaurin series for a nearby point uj :

gα(uj) = uT
j ∇gα +

1

2
uT
j H

αuj +O(|uj |32) , α = 1, . . . , D − d . (5)

In order to estimate the gradient and Hessian of the embedding mapping gα, we build a set of linear equations that solves
Eq. 5. Particularly, we approximate gα by solving the system G = ΨX , where X holds the unknown elements of the
gradients ∇gα and the Hessians Hα, for every α. We define gα = [gα (u1) , · · · , gα (uk)]

T ∈ Rk, where uj are points in
the neighborhood of z := f(u), and G = [g1, · · · , gD−d]. The point u and points {uj} are associated with the train set Z
under a natural orthogonal transformation. The local natural orthogonal coordinates are a set of coordinates that are defined
at a specific point u of the manifold. They are constructed by finding a basis for the tangent space and normal space at a
point u by applying principal component analysis on the neighborhood Nz = {zj}kj=1. Namely, the first d coordinates
(associated with the most significant modes, i.e., largest singular values) represent the tangent space, and the rest represent
the normal space. Then, we define Ψ = [Ψ1, · · · ,Ψk], stacking Ψj in rows, where Ψj is given via

Ψj =
[
u1
j , · · · , ud

j ,
(
u1
j

)2
, · · · ,

(
ud
j

)2
,
(
u1
j × u2

j

)
, · · · ,

(
ud−1
j × ud

j

)]
,

and

Xα =
[
∇gα1, · · · ,∇gαd, H1,1, · · · , Hd,d, H1,2, · · · , Hαd−1,d

]T
,

with X = [X1, · · · , XD−d]. The set of linear equations

G = ΨX ,xwhere G ∈ Rk×(D−d) and Ψ ∈ Rk×(d+ d(d+1)
2 ) (6)

is solved by using the least square estimation given X = Ψ†G. In practice, we estimate only the upper triangular part of Hα

since it is a symmetric matrix. We refer the reader for a more comprehensive and detailed treatment in (Li, 2018).

A.1. Approximation Error Bounds

In what follows, we provide a theoretical justification for the sampling error of CEMS in comparison to first-order approaches.
Let f : Rd → RD be a twice-differentiable function, we can express the Taylor expansion around a point u0 up to first and
second order as follows,

f (1)(u) = f(u0) +∇f(u0)
T (u− u0) , (7)

f (2)(u) = f(u0) +∇f(u0)
T (u− u0)

+
1

2
(u− u0)

THf (u0)(u− u0) . (8)

Under standard smoothness assumptions, the approximation errors can be bounded as follows:

Theorem A.1 (Error Bounds). (Fowkes et al., 2013) For a twice-differentiable function f with Lipschitz continuous Hessian
in a neighborhood of u0, we have that

∥f(u)− f (1)(u)∥ ≤ M

2
∥u− u0∥2, (9)

∥f(u)− f (2)(u)∥ ≤ L

6
∥u− u0∥3 , (10)

where M bounds the spectral norm of Hf (u) and L is the Lipschitz constant of Hf (u) in the neighborhood of u0.

The second-order error decreases as O(∥u − u0∥3) compared to O(∥u − u0∥2) for first-order methods. This faster
convergence rate ensures more accurate sampling in the vicinity of training points.
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B. Intrinsic Dimension
Many techniques have been proposed for estimating a dataset’s intrinsic dimension (ID). Global linear methods like
principal component analysis (PCA) provide a simple baseline: one examines the eigenvalue spectrum to find the number of
principal components needed to explain most variance. This works well if the data lie near a linear subspace, but it can
overestimate ID for nonlinear manifolds or noisy data. In contrast, fractal geometric approaches such as the correlation
dimension (Grassberger & Procaccia, 1983) measure how the number of point pairs grows with distance. The classic
Grassberger–Procaccia algorithm computes the count of pairs within a radius r and uses the slope of the log–log plot of
this count versus r as the estimated dimension. While the correlation dimension can capture non-integer (fractal) structure,
it typically requires large samples and is sensitive to noise, limiting its robustness in practice. Overall, these early global
methods can struggle with high curvature or sparse, high-dimensional data.

Local neighbor statistics have inspired more robust ID estimators. A prominent example is the maximum likelihood estimator
(MLE) (Levina & Bickel, 2004), which uses distances to each point’s k-nearest neighbors. By modeling the distribution of
neighbor distances (under a Poisson process assumption), this method finds the ID that maximizes the likelihood of the
observed spacing of points. The MLE approach showed improved accuracy over earlier techniques and is relatively robust
across different data distributions. However, it requires choosing the neighborhood size k and can be biased if k is too
small or large. Building on this idea, Facco et al. introduced the Two-Nearest Neighbors (TwoNN) estimator (Facco et al.,
2017), which uses only the first and second nearest-neighbor distances for each point. TwoNN analytically derives an ID
estimate from the ratio of these two distances, a minimalistic approach that greatly reduces bias from curved manifolds or
non-uniform densities. This method is computationally lightweight and has been shown to produce consistent ID estimates
even when data lie on a twisted manifold or are embedded in high-dimensional noise, highlighting its robustness.

Recently, topological data analysis methods, specifically persistent homology, have emerged as robust tools for ID estimation.
Birdal et al. (Birdal et al., 2021) introduced a persistent homology-based estimator that leverages stable topological features,
such as connected components and loops, which persist across multiple scales. The intuition behind persistent homology is
that true geometric and topological features of a dataset tend to persist as one examines data at varying resolutions, while
noise-induced features disappear quickly. This persistence-based approach provides reliable dimension estimates even in
highly noisy, nonlinear, or sparse settings.

In summary, contemporary ID estimation techniques such as TwoNN, persistent homology-based measures, and MLE
represent the state of the art, offering significantly improved robustness to noise, curvature, and sampling heterogeneity
compared to classical PCA or correlation dimension methods.

C. Batch Selection
In our framework, for any data point (x, y) ∈ X × Y , we seek to generate training samples that lie near the manifoldM,
which represents the true data distribution P . Since directly sampling fromM is impossible without knowing its structure,
we instead approximate it locally using the tangent plane T (x, y) at point (x, y).

To construct this tangent plane approximation, we require a neighborhood set Nz around z. We compute the tangent
plane using Singular Value Decomposition (SVD) on these neighboring points. The accuracy of this approximation heavily
depends on how close the points in Nz are to z.

To implement this approach, we explored three distinct batch construction methods:

1. Random batch selection (random)

2. k-Nearest Neighbors batch selection (knn), where points are grouped based on their Euclidean distances in Z

3. k-Nearest Neighbors Probability batch selection (knnp), where points are sampled with probabilities inversely propor-
tional to their distance from the original point, ensuring closer points have higher sampling probabilities

Our hypothesis was that both proximity-based and probability-based batch selection methods would generate samples
closer to the data manifold, thereby improving model performance. We first trained models using the proximity-based
batch selection method and selected the best-performing model based on the validation set. Using the optimal parameters
found from this model, we then trained two additional models using random batch selection and knnp methods for fair
comparison. The experimental results, presented in Table 3, demonstrate the relative performance of these three approaches
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under identical parameter settings. The results reveal interesting patterns across different batch selection methods. While
no single method dominates across all datasets, each approach shows strengths in specific scenarios. The knnp method
demonstrates superior performance on the SkillCraft dataset and matches the best performance on NO2. The knn approach
excels in both RCF and DTI datasets, showing particular strength in structured data scenarios. Interestingly, random batch
selection remains competitive, achieving the best performance on Airfoil and matching the best result on NO2. These
results suggest that the effectiveness of batch selection methods may be dataset-dependent, highlighting the importance of
considering data characteristics when choosing a batch selection strategy.

C.1. Neighborhood Construction

The validity of CEMS relies on three key theoretical foundations. First, our neighborhood construction approach balances
computational efficiency with geometric fidelity by sharing neighborhoods across points in close proximity. While this might
appear to reduce sampling diversity, it actually preserves manifold structure because points that are close in the normalized
input-output space typically share similar geometric properties. The shared neighborhood assumption is particularly valid
because we normalize both input X and output Y features to the same range, ensuring that proximity in the combined space
meaningfully reflects similarity in both domains.

The reliability of our construction is maintained even in regions of high output diversity through our careful treatment of the
input-output space. For a point zi = [xi, yi], its neighborhood Nz is constructed considering distances in both input and
output spaces simultaneously, naturally limiting the diversity of outputs within each neighborhood. This approach ensures
that points sharing a neighborhood basis have similar geometric properties, maintaining the validity of our second-order
approximation.

The stochastic nature of mini-batch training provides an additional beneficial property for CEMS. As different batches are
sampled each epoch, the method naturally explores varying neighborhoods and their associated tangent spaces. This dynamic
sampling process enables CEMS to build a comprehensive representation of the manifold’s local geometry, adapting to
variations in data density across different regions. The continuous exploration of diverse local structures throughout training
enhances the method’s ability to capture the full geometric complexity of the underlying manifold.

The local-Euclidean structure of CEMS is supported by two complementary mechanisms. First, the second-order ap-
proximation naturally captures local curvature through the Hessian term, enabling accurate representation of nonlinear
geometries. Second, our stochastic batch sampling strategy ensures exposure to different neighborhoods and tangent spaces
throughout training. The projection of points onto the tangent space at µ (the neighborhood mean) maintains validity through
the second-order terms in our Taylor expansion, which account for the primary nonlinearities within each neighborhood.
This approach is particularly robust because the neighborhood size adapts with the batch size, preserving accurate local
approximations even in regions of high curvature.

The empirical success of this construction is demonstrated in our ablation studies (Table 5), where we compare point-wise
basis computation (CEMSp) with our more efficient shared neighborhood approach (CEMS). The comparable performance
across multiple datasets validates our theoretical assumptions about the effectiveness of shared geometric information within
local neighborhoods.

C.2. Local vs. Global Sampling

It is important to note that CEMS focuses on local sampling within neighborhoods where the second-order approximation is
valid. While alternative approaches based on geodesics can enable global sampling along the manifold, they typically incur
significantly higher computational costs. Our local approach strikes a balance between sampling accuracy and computational
efficiency, making it particularly well-suited for data augmentation during training.

Table 3. Results for different batch selection methods CEMS.

Dataset Airfoil ↓ NO2 ↓ SkillCraft ↓ RCF ↓ DTI ↑
CEMS - knn 1.455 0.507 5.142 0.146 0.511
CEMS - knnp 1.441 0.506 4.941 0.173 0.509
CEMS - random 1.435 0.506 5.155 0.162 0.491
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The theoretical guarantees provided by Theorem A.1 hold within the neighborhood where our Taylor approximations are
valid. This aligns with the manifold hypothesis, which posits that real data typically lies on or near a lower-dimensional
manifold with locally Euclidean structure (Goodfellow, 2016; Belkin & Niyogi, 2003). By focusing on accurate local
sampling, CEMS can effectively augment the training data while maintaining the essential geometric structure of the
underlying manifold.

D. Computational cost
General analysis of n-th order embedding maps: To estimate the n-th order Taylor approximation of the embedding g,
we need to find all the partial derivatives up to and including order n. The gradient ∇ vector is composed of d first-order
partial derivatives, the Hessian matrix is composed of d2 second-order partial derivatives. Third-order and higher partial
derivatives are represented using mathematical objects called tensors. In general, the number of partial derivatives of a
multi-input function grows exponentially with the order.

The order n of the partial derivatives determines the number of unknowns X and the size of the matrix Ψ which used to
solve Eq. 6 via least squares. The number of columns in the matrix Ψ is

∑n
i=1 d

i = O(dn), and thus, the dimensions of the
matrix Ψ are k × dn. It is preferred to solve an over-determined set of equations such that the number of neighbors k > dn,
which is memory and computationally expensive. For small values of d and n it is feasible to solve Eq. 6 in a run time
complexity of O(kd2n). For larger values of n, it becomes extremely computationally and memory expensive to achieve
k ≥ dn, therefore, we can assume that k < dn.

There are two computationally expensive operations used to estimate the n-th order approximation of the manifold, SVD and
least squares. The matrix on which we perform SVD is of shape Nz ∈ Rk×D where k represents the number of neighbors
and D is the extrinsic dimension. Thus, the run time complexity of the SVD operation per batch is O(min(k2D, kD2)).
The complexity of least squares is determined by the dimensions of the matrix Ψ ∈ Rk×O(dn) resulting in O(kd2n). If
we wish to solve an over-determined system of equations, we need to set k > dn e.g., k = 2dn resulting in a run time of
O(min(d2nD, dnD2)) for SVD and O(dnd2n) = O(d3n) for least squares.

Computational analysis of CEMS. Given a batch of data A ∈ Rb×D where b is the batch size and D is the ambient
dimension, our analysis considers the point-wise and batch-wise settings.

In the point-wise case, we construct a matrix Na ∈ Rb×D for every sample a ∈ RD in the batch, containing its b closest
neighbors, where the number of neighbors is fixed as the batch size. This practical choice decouples the computational
complexity from the intrinsic dimension d. On each matrix Na, we perform SVD at the complexity of O(min(bD2, Db2)).
We then solve the set of b equations with l = d× (d+ 1)/2 variables (representing the unknowns in the gradient ∇ and
Hessian H) at a complexity of O(b × l2) = O(b × d4). In practice, the batch size is small and constant which leads to
an underdetermined system that can be solved used Ridgr-Regreession at a complexity of O(b2 × l) = O(b2 × d2). The
total complexity per point is therefore O(min(bD2, Db2)) +O(b2 × d2). Since the batch size b is usually smaller than the
ambient dimension D, the total complexity can be revised as O(b2(D + d2)). Under the manifold hypothesis, we assume
that d << D and thus d ∈ O(D2), resulting in the following complexity O(b2D) for a single point and O(b3D) for the
entire batch. Our analysis reveals that under our assumptions, the complexity is proportional to the ambient dimension D.

In the batch-wise setting, the entire batch A ∈ Rb×D is processed collectively. We compute the SVD of A at a complexity
of O(min(bD2, Db2)). The subsequent step involves solving b equations with l = d× (d+ 1)/2 variables at a complexity
of O(b× l2). As in the point-wise case The total computational complexity of CEMS for the batch-wise setting for a single
batch is O(b2D)

Run time comparison In Table 4, we compare the total run time of the training process in seconds to provide an estimate
for the empirical computational cost of CEMS and competing methods. The results are obtained with a single RTX3090
GPU. For each data set, all the methods were estimated using the same parameters (e.g., batch size, number of epochs) for a
fair comparison. It is evident from the results that the empirical run time of CEMS is o par with competing methods and
does not require a large overhead.

E. Adaptation to batches
Below we provide the algorithm for the batched version as described in Sec. 4:
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Table 4. Training times comparison (in seconds).

AIRFOIL NO2 RCF DTI

ERM 3.84 1.01 172 653

C-MIXUP 11.64 2.04 1700 1064
ADA 8.72 3.22 465 3519
FOMA 7.11 1.85 364 1095
CEMS 12.2 3.04 445 1317

Algorithm 2 CEMS: Batch generation
Require: Training data Z = {zi = [xi, yi]}Ni=1

Require: A sample z ∈ Z, batch size B. Set k = B
1: Find K-nearest neighbors Nz ← {zj}kj=1 ∪ {z = z0} of z
2: Find an orthonormal basis Bu that spans Nz − µNz

3: Project every zj − µNz to the local orthonormal coordinates:
4: uj ← BT

Tu
· (zj − µNz

), gj ← BT
Nu
· (zj − µNz

)
5: For each l = 1, . . . , k construct:
6: U l

z ← {uj − ul}kj ̸=l and Gl
z ← {gj − gl}kj ̸=l

7: Construct G and Ψ as in Eq. 6
8: Solve ΨA = G
9: Extract∇g(z) and H(z) from A

10: Sample a point η near ul: η ∼ N (ul, σId)

11: Calculate g(ηl)← g(ul) + (ηl − ul)
T∇g + 1

2 (ηl − ul)
TH(ηl − ul)

12: Un-project ηl back to the original coordinates:
13: zηl

:= f(ηl) = Bu · [ηl, g(ηl)] + µNz

Return zη = {zηl
}kl=1

F. Application in Data Space vs. Latent Space
Our method can be applied in either the data space (i.e., raw input features) or a learned latent space (e.g., the output of a
hidden layer in a neural network). Each setting presents different trade-offs and use cases:

• Data Space: Applying CEMS directly in the input space offers interpretability and preserves direct relationships
between augmented samples and original features. This approach is model-agnostic and particularly suitable when the
input space has meaningful geometric structure (e.g., tabular data). However, high-dimensional or noisy input spaces
may not exhibit a well-defined manifold, limiting the effectiveness of local approximations.

• Latent Space: In contrast, applying CEMS in a learned latent space—typically a lower-dimensional and semantically
structured representation—can lead to more compact and smoother manifolds. Latent representations often disentangle
underlying factors of variation, making them more amenable to local geometric modeling. Moreover, when CEMS
is implemented as a differentiable module in latent space, gradient signals can flow through the augmentation step.
This enables the network to shape the latent space with respect to the augmented samples during training, potentially
improving the alignment between the learned representation and the underlying manifold geometry.

Trade-offs: While latent space augmentation benefits from smoother geometry and end-to-end optimization, it relies on the
quality of the learned representations and is tied to a specific model architecture. Data space augmentation, on the other
hand, is more general and interpretable but may struggle in high-dimensional or non-smooth input spaces.

In our experiments, we found both variants to be viable, and the choice between them depends on the dataset characteristics
and model architecture. We view a deeper investigation of this trade-off as an important direction for future work.
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Table 5. Ablation results for estimating the basis per point in the neighborhood (CEMSp) vs. estimating it once and re-using the basis for
every point Nz (CEMS).

Airfoil NO2 Crimes (RMSE) SkillCraft (RMSE)

RMSE MAPE RMSE MAPE Avg. ↓ Worst ↓ Avg. ↓ Worst ↓
CEMSp 1.462 0.783 0.503 12.759 0.130 0.157 5.026 8.063
CEMS 1.455 0.809 0.507 12.807 0.128 0.159 5.142 6.322

G. Ablation Study
G.1. Ablation: basis computation per point vs. per neighborhood

As mentioned in Sec. 4, given a data point z, we construct a neighborhood Nz which can be used to 1) sample a point z̃
near z 2) sample points Ñz near Nz . The first option requires estimating a basis for the tangent space for each point in
the dataset, whereas the second option estimates a single basis for the the entire batch of points Nz . In practice, the first
option requires significantly more SVD calculations, determined by the batch size b. For large datasets, using the first option
becomes very time consuming. In Tab. 5, we compare between Option 1 (CEMSp), where p stands for point and Option 2
(CEMS), considering specifically the smaller datasets. Based on these results, we find that CEMSp achieves error measures
similar to CEMS. However, the computational complexity of CEMSp is much higher, and thus we advocate the batch-wise
computation as suggested in CEMS.

G.2. Ablation: Intrinsic dimension sensitivity

To evaluate the sensitivity of our method to intrinsic dimension estimation, we conduct a systematic analysis by perturbing
the estimated values obtained from the TwoNN estimator. Table 6 presents results for in-distribution generalization (Airfoil
and NO2) and out-of-distribution generalization (Crimes and SkillCraft), where the parameter id denotes the baseline
dimension estimated by TwoNN, and id±1, id±2 correspond to configurations where the dimension is manually adjusted
up or down. We find that performance is relatively stable under moderate changes in the intrinsic dimension. In many cases,
the baseline value (id) yields the best or second-best results. For example, in the NO2 dataset, the lowest RMSE is achieved
exactly at the TwoNN-estimated dimension (id), and nearby offsets produce slightly worse but comparable performance.
Notably, in this dataset, the results for id+1 and id+2 are identical because the intrinsic dimension is capped at the extrinsic
dimension minus one (i.e., 7), given the total number of features is 8. Similar robustness patterns are observed across other
datasets. For instance, SkillCraft achieves the best average RMSE at id+1, while Crimes shows minimal variation across
offsets, with the best worst-case RMSE appearing at id−2 and id+2. Additionally, Table 6 (bottom) compares intrinsic
dimension estimates produced by different estimators (TwoNN, PH (Birdal et al., 2021), MLE (Levina & Bickel, 2004)). The
strong agreement among estimators e.g., all three return 10 for Crimes supports the reliability of TwoNN and validates its
use as our default choice. Overall, these findings suggest that our method is not overly sensitive to the intrinsic dimension,
and that TwoNN provides a stable and empirically effective estimate.

Table 6. Comparison of intrinsic dimension estimates across different estimators: TwoNN, PH, and MLE. The TwoNN values are used in
our method as the baseline intrinsic dimensions. Consistency between methods (e.g., all return 10 for Crimes) supports the robustness of
the chosen estimates.

Airfoil NO2 Crimes SkillCraft

TwoNN 3 6 10 12
PH 3 1 10 11
MLE 3 4 10 11

G.3. Ablation: Noise sensitivity

To assess the robustness of our method to the choice of the noise scale parameter σ, we conducted a sensitivity analysis by
varying σ across a wide range of values, from σ/10 to 10 · σ. Table 7 summarizes the performance across four datasets in
terms of average RMSE and MAPE (or worst-case RMSE) over three seeds. We observe that performance remains stable
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Table 7. Sensitivity analysis of performance to changes in the estimated intrinsic dimension. The row id corresponds to the baseline
intrinsic dimension estimated by the TwoNN method. Rows id ± 1 and id ± 2 represent perturbations of the estimated dimension.
Results show average RMSE and MAPE across three seeds. Bold and underlined values indicate the best and second-best results per
column, respectively.

Airfoil NO2 Crimes SkillCraft

RMSE MAPE RMSE MAPE Avg. Worst Avg. Worst

id -2 1.466 0.818 0.510 12.688 0.129 0.158 5.183 6.541
id -1 1.444 0.810 0.511 12.762 0.128 0.161 5.211 6.705
id 1.454 0.809 0.507 12.807 0.128 0.159 5.142 6.322
id +1 1.473 0.820 0.523 13.375 0.133 0.172 5.070 6.192
id +2 1.433 0.798 0.523 13.375 0.129 0.158 5.196 6.599

Table 8. Sensitivity of performance to variations in the σ parameter. Each row corresponds to a different scaling factor applied to the
default σ. Results show average RMSE and MAPE across three seeds. Bold and underlined values indicate the best and second-best
results per column, respectively.

Airfoil NO2 Crimes SkillCraft

RMSE MAPE RMSE MAPE Avg. Worst Avg. Worst

σ / 10 1.534 0.843 0.521 13.280 0.133 0.176 5.640 8.730
σ / 5 1.510 0.836 0.515 13.049 0.132 0.174 5.367 8.034
σ / 2 1.518 0.865 0.513 12.927 0.128 0.156 5.297 6.948
σ 1.454 0.809 0.507 12.807 0.128 0.159 5.142 6.322
σ × 2 1.526 0.853 0.507 12.824 0.133 0.159 5.173 6.244
σ × 5 1.494 0.831 0.520 12.961 0.137 0.164 5.849 7.613
σ × 10 1.494 0.826 0.524 12.953 0.138 0.168 5.971 7.370

within a reasonable range around the default value σ, with minimal degradation at extreme low or high values. Notably, the
best performance on NO2 is achieved exactly at the default σ, while SkillCraft achieves optimal or near-optimal results
at both σ and 2 · σ. The variation in metrics is relatively small across the range, indicating that the method is not overly
sensitive to the exact value of σ. These findings suggest that our approach is robust to noise scaling and does not require
fine-grained tuning of this parameter.

G.4. Ablation: Batch sensitivity (neighborhood)

To assess the robustness of our method to the neighborhood size parameter B, which determines the size of the local batch
used in tangent space estimation, we conduct a sensitivity analysis by scaling B across a wide range—from B/4 to 4B. As
shown in Table 9, our method demonstrates stable performance across all datasets for both in-distribution (Airfoil, NO2)
and out-of-distribution (Crimes, SkillCraft) settings. The default value B achieves the best or second-best results in most
metrics, notably yielding the best RMSE and worst-case RMSE in SkillCraft, and the lowest RMSE in NO2. Interestingly,
while smaller neighborhoods (e.g., B/2 or B/4) occasionally improve MAPE in Airfoil or average RMSE in Crimes, overly
small or large values (e.g., B/4 or 4B) tend to degrade performance in other metrics. These results indicate that the method
is not overly sensitive to the exact batch size, and that the default setting strikes a good balance between local geometric
fidelity and stability. Overall, this analysis provides empirical support for the robustness of our hyperparameter selection
strategy and clarifies the trade-offs involved in adjusting B, thereby addressing concerns regarding parameter sensitivity and
general applicability of the method.

H. Geometric Properties Effect on CEMS
To evaluate the impact of curvature on CEMS for regression tasks, we generated a synthetic dataset where features lie on a
manifold of constant scalar curvature. The manifold is defined as a hypersphere with a constant scalar curvature. Data points
are sampled uniformly on the hypersphere using normalized random directions and embedded into a higher-dimensional
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Table 9. Sensitivity analysis of performance to the batch size B. Each row corresponds to a different scale of the batch size. Results show
average RMSE and MAPE (or worst RMSE) across three seeds. Bold and underlined values indicate the best and second-best results per
column, respectively.

B
Airfoil NO2 Crimes SkillCraft

RMSE MAPE RMSE MAPE Avg. Worst Avg. Worst

B / 4 1.435 0.792 0.544 14.021 0.131 0.166 5.148 6.667
B / 2 1.427 0.800 0.517 13.120 0.131 0.162 5.178 6.829
B 1.454 0.809 0.507 12.807 0.128 0.159 5.142 6.322
B × 2 1.499 0.831 0.513 12.714 0.134 0.167 5.571 7.502
B × 4 1.597 0.895 0.518 13.080 0.132 0.162 5.871 8.420

ambient space through a deterministic projection matrix to preserve the manifold structure. The regression target Y is
computed as a non-linear function of the intrinsic coordinates, Y = sin (

∑
Xintrinsic), introducing a smooth dependency

on the features. The features and targets are normalized to lie within the range [0, 1] using min-max scaling. This setup
enables the systematic study of the effects of curvature of CEMS on regression model performance. In Fig. 3 the graph
illustrate the relative improvement in RMSE between the CEMS and baseline ERM for regression tasks across varying
scalar curvatures of the data manifold. The graph plots relative improvement against scalar curvature, highlighting that
CEMS provides minimal advantage for nearly flat manifolds with low curvature but exhibits increasing improvement as the
curvature grows. At higher curvatures (e.g., 16–64), CEMS demonstrates substantial gains, reflecting its ability to exploit
geometric information in highly curved spaces. The hyperparameters of CEMS were not fine-tuned for this experiment and
remained consistent across all intrinsic dimensions and curvature values. This likely explains why, in some cases, CEMS
does not achieve better performance than ERM.

I. Hyperparameters
We present the hyperparameters for each dataset in Table 10. In our main results, we apply our method to the input space or
the latent space, and we report the configuration with the best performance. All hyperparameters were selected through
cross-validation and evaluated on the validation set. Some hyperparameters, such as architecture and optimizer, are not
included in the tables since they remained unchanged and were used as specified in previous works (Yao et al., 2022;
Schneider et al., 2023).
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Figure 3. Illustration of the relative improvement in RMSE of CEMS over ERM. The graph demonstrates the effect of curvature, indicating
minimal gains for nearly flat manifolds but substantial improvements for highly curved manifolds. These results emphasize the influence
of data geometry on the performance of CEMS relative to ERM.
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Table 10. Hyperparameter choices for the experiments using CEMS.

Dataset Airfoil NO2 Exchange-Rate Electricity RCF Crimes SkillCraft PovertyMap DTI

Learning rate 1e−3 1e−3 1e−3 5e−4 1e−4 1e−3 1e−3 5e−3 1e−4

Batch size 16 32 32 32 64 16 16 32 32
Input/Manifold manifold input input manifold manifold manifold input input input
Epochs 700 100 200 100 50 100 100 50 60
σ 1e−4 0.2 0.1 1e−3 0.01 0.3 0.2 0.1 1e−3

J. Dataset Description
This section provides detailed descriptions of the datasets used in our experiments.

Airfoil Self-Noise (Brooks et al., 2014). This dataset contains aerodynamic and acoustic test data for various NACA 0012
airfoils, recorded at different wind tunnel speeds and angles of attack. Each data point includes five features: frequency,
angle of attack, chord length, free-stream velocity, and suction side displacement thickness, with the label representing the
scaled sound pressure level. Input features are normalized using min-max normalization. The dataset is divided into 1003
training examples, 300 validation examples, and 200 test examples as noted in (Hwang & Whang, 2021).

NO2 (Aldrin, 2004). The NO2 dataset examines the relationship between air pollution near a road and traffic volume
along with meteorological variables. Each input consists of seven features: the logarithm of the number of cars per hour,
temperature at 2 meters above ground, wind speed, temperature difference between 25 and 2 meters above ground, wind
direction, hour of the day, and the day number since October 1, 2001. The response variable is the hourly logarithm of NO2
concentration measured in Oslo from October 2001 to August 2003. The dataset is split into 200 training examples, 200
validation examples, and 100 test examples as in (Hwang & Whang, 2021).

Exchange-Rate (Lai et al., 2018). This time series dataset includes daily exchange rates for eight countries (Australia,
Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to 2016, totaling 7,588 observations
with daily frequency. A sliding window size of 168 days is applied, resulting in an input dimension of 168× 8 and a label
dimension of 1 × 8 data points. The dataset is partitioned into training (60%), validation (20%), and test (20%) sets in
chronological order as described in (Lai et al., 2018).

Electricity (Lai et al., 2018). This dataset contains hourly electricity consumption data from 321 clients, recorded every
15 minutes from 2012 to 2014, totaling 26,304 observations. A sliding window size of 168 is used, resulting in an input
dimension of 168 × 321 and a label dimension of 1 × 321. The dataset is divided into training, validation, and test sets
following a methodology similar to that used for the Exchange-Rate dataset.

RCF (Yao et al., 2022). The RCF-MNIST (Rotated-Colored-Fashion) dataset features images with specific color and
rotation attributes. Images are colored using RGB vectors based on the rotation angle g ∈ [0, 1]. In the training set, 80% of
images are colored with [g, 0, 1− g], and 20% with [1− g, 0, g], creating a spurious correlation between color and label.

PovertyMap (Koh et al., 2021). Part of the WILDS benchmark (Koh et al., 2021), this dataset consists of satellite images
from 23 African countries used to predict village-level asset wealth. Each input is a 224× 22 multispectral LandSat image
with 8 channels, and the label is the real-valued asset wealth index. The dataset is divided into 5 cross-validation folds with
disjoint countries to facilitate the out-of-distribution setting, following the methodology in (Koh et al., 2021).

Crime (Redmond, 2009). The Communities And Crimes dataset merges socio-economic data from the 1990 US Census,
law enforcement data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR. It includes 122 attributes
related to crime, such as median family income and percentage of officers in drug units. The target is the per capita violent
crime rate. Numeric features are normalized to a range of 0.00 to 1.00, and missing values are imputed. The dataset is
divided into training (1,390), validation (231), and test (373) sets, with 31, 6, and 9 disjoint domains, respectively.

SkillCraft (Blair et al., 2013). The SkillCraft dataset from UCI consists of video game telemetry data from real-time
strategy (RTS) games, focusing on player expertise development. Each input includes 17 player-related parameters, such as
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cognition-action-cycle variables and hotkey usage, while the label is the action latency. Missing data are filled by mean
padding. The dataset is divided into training (1,878), validation (806), and test (711) sets with 4, 1, and 3 disjoint domains,
respectively.

DTI (Huang et al., 2021). The Drug-Target Interactions dataset aims to predict the binding activity score between small
molecules and target proteins. Input features include one-hot vectors for drugs and target proteins, and the output is the
binding activity score. Training and validation data are from 2013 to 2018, while the test data spans 2019 to 2020. The
”Year” attribute serves as domain information.

K. Results with Standard Deviation
In Table 11 we report the full results of in-distribution generalization and in Table 12 we report the full results of out-of-
distribution robustness.

Table 11. Full results for in-distribution generalization. Standard deviations are calculated over 3 seeds.

Airfoil NO2

RMSE MAPE RMSE MAPE

ERM 2.901 ± 0.067 1.753 ± 0.078 0.537 ± 0.005 13.615 ± 0.165
Mixup 3.730 ± 0.190 2.327 ± 0.159 0.528 ± 0.005 13.534 ± 0.125
Mani Mixup 3.063 ± 0.113 1.842 ± 0.114 0.522 ± 0.008 13.357 ± 0.214
C-Mixup 2.717 ± 0.067 1.610 ± 0.085 0.509 ± 0.006 12.998 ± 0.271
ADA 2.360 ± 0.133 1.373 ± 0.056 0.515 ± 0.007 13.128 ± 0.147
FOMA 1.471 ± 0.047 0.816 ± 0.008 0.512 ± 0.008 12.894 ± 0.217

CEMS 1.455 ± 0.119 0.809 ± 0.050 0.507 ± 0.003 12.807 ± 0.044

Exchange-Rate Electricity

RMSE MAPE RMSE MAPE

ERM 0.023 ± 0.003 2.423 ± 0.365 0.058 ± 0.001 13.861 ± 0.152
Mixup 0.023 ± 0.002 2.441 ± 0.286 0.058 ± 0.000 14.306 ± 0.048
Mani Mixup 0.024 ± 0.004 2.475 ± 0.346 0.058 ± 0.000 14.556 ± 0.057
C-Mixup 0.020 ± 0.001 2.041 ± 0.134 0.057 ± 0.001 13.372 ± 0.106
ADA 0.021 ± 0.006 2.116 ± 0.689 0.059 ± 0.001 13.464 ± 0.296
FOMA 0.013 ± 0.000 1.262 ± 0.037 0.058 ± 0.000 14.653 ± 0.166

CEMS 0.014 ± 0.001 1.269 ± 0.062 0.058 ± 0.000 13.353 ± 0.217
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Table 12. Full results for out-of-distribution robustness. Standard deviations are derived from a 5-fold data split in PovertyMap and or
calculated over 3 seeds for other datasets.

RCF (RMSE) Crimes (RMSE) SkillCraft (RMSE)

Avg. ↓ Avg. ↓ Worst ↓ Avg. ↓ Worst ↓
ERM 0.164 ± 0.007 0.136 ± 0.006 0.170 ± 0.007 6.147 ± 0.407 7.906 ± 0.322
Mixup 0.159 ± 0.005 0.134 ± 0.003 0.168 ± 0.017 6.461 ± 0.426 9.834 ± 0.942
ManiMixup 0.157 ± 0.021 0.128 ± 0.003 0.155 ± 0.009 5.908 ± 0.344 9.264 ± 1.012
C-Mixup 0.146 ± 0.005 0.123 ± 0.000 0.146 ± 0.002 5.201 ± 0.059 7.362 ± 0.244
ADA 0.163 ± 0.014 0.130 ± 0.003 0.156 ± 0.007 5.301 ± 0.182 6.877 ± 1.267
FOMA 0.159 ± 0.010 0.128 ± 0.004 0.158 ± 0.002 - -

CEMS 0.146 ± 0.002 0.128 ± 0.001 0.159 ± 0.004 5.142 ± 0.143 6.322 ± 0.191

DTI (R) Poverty (R)

Avg. ↑ Worst ↑ Avg. ↑ Worst ↑
ERM 0.483 ± 0.008 0.439 ± 0.016 0.80 ± 0.04 0.50 ± 0.07
Mixup 0.459 ± 0.013 0.424 ± 0.003 0.81 ± 0.04 0.46 ± 0.03
ManiMixup 0.474 ± 0.004 0.431 ± 0.009 - -
C-Mixup 0.498 ± 0.008 0.458 ± 0.004 0.81 ± 0.03 0.53 ± 0.07
ADA 0.493 ± 0.010 0.448 ± 0.009 0.79 ± 0.03 0.52 ± 0.06
FOMA 0.503 ± 0.008 0.459 ± 0.010 0.77 ± 0.03 0.49 ± 0.05

CEMS 5.110 ± 0.005 0.465 ± 0.004 0.81 ± 0.05 0.50 ± 0.07
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