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Abstract

While many have shown how Large Language Models (LLMs) can be applied to
a diverse set of tasks, the critical issues of data contamination and memorization
are often glossed over. In this work, we address this concern for tabular data.
Starting with simple qualitative tests for whether an LLM knows the names and
values of features, we introduce a variety of different techniques to assess the
degrees of contamination, including statistical tests for conditional distribution
modeling and four tests that identify memorization. Our investigation reveals
that LLMs are pre-trained on many popular tabular datasets. This exposure can
lead to invalid performance evaluation on downstream tasks because the LLMs
have, in effect, been fit to the test set. Interestingly, we also identify a regime
where the language model reproduces important statistics of the data, but fails to
reproduce the dataset verbatim. On these datasets, although seen during training,
good performance on downstream tasks might not be due to overfitting. Our
findings underscore the need for ensuring data integrity in machine learning tasks
with LLMs. To facilitate future research, we release an open-source tool that can
perform various tests for memorization https://github.com/interpretml/
LLM-Tabular-Memorization-Checker.

1 Introduction

Large Language Models (LLMs) exhibit remarkable performance on a diverse set of tasks [33, 3, 18].
While their prowess in natural language is undeniable, performance in other applications remains an
ongoing research topic [14, 23]. A main question in current research on LLMs is the degree to which
these models are able to extrapolate to novel tasks that are unlike what they have seen during training
[34]. As such, an important aspect of LLM evaluation is to know to what degree a task might be part
of the model’s training set and, as a consequence, contained in the LLM’s internal representation
either verbatim or compressed [4, 5].

This paper specifically targets the issue of contamination in training sets when evaluating LLMs on
tasks with tabular data — an aspect often neglected in the rapidly growing literature on applications
in this domain [13, 1, 21, 31, 16, 32, 20]. Our investigation reveals that LLMs have been pre-trained
on many of the popular datasets, and that this exposure can lead to invalid performance evaluations
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because the LLMs have, in effect, been fit to the test set. To tackle this issue, we introduce various
methods to detect contamination, including statistical tests for conditional distribution modeling, and
four different tests to detect memorization [4]. To avoid the problem in future research, we release an
open-source tool that can perform these tests.

We distinguish between the following three highly related concepts, which can be seen as different
types of contamination in the representation learned by an LLM:

• Knowledge about a dataset means that the model knows things such as when the dataset was
collected, who collected it, the names of the features (column headings), the legal values or
ranges of categorical or contunuous variables, the delimiter in the csv file, etc.

• Learning from a dataset refers to the model’s ability to perform tasks that depend on learning
the true joint probability distribution from which the data was sampled, e.g., supervised
learning from data to predict a value given other values in a sample.

• Memorization of a dataset means that the model knows more about samples in the dataset
than could be known by sampling from the true distribution, e.g., it has memorized samples
(or parts of samples) perfectly, possibly to all decimal places.

An important contribution of our work is to show that one can make use of the specific structure of
tabular datasets in order to distinguish between knowledge, learning, and memorization [29]. This
allows us to perform an analysis of how LLMs work with tabular data, in ways that can’t easily be
replicated with data modalities such as free-form text. An important result of our investigation is to
identify a regime where the LLM has seen the data during training and is able to perform complex
tasks with the data, but where there is no evidence of memorization.

Our main contributions are the following:

• We emphasize the importance of verifying data contamination before applying LLMs and
propose practical methods to do so. We present a variety of tests that allow practitioners to
assess whether a given tabular dataset was likely part of the model’s training corpus. We
also release an open-source tool that can automatically perform the proposed tests.

• We demonstrate the efficacy of the proposed tests on multiple datasets, some of which are
publicly available (and thus likely to be in the LLM train sets), as well as on other datasets
that have been discussed publicly in papers but where the data itself has not been publicly
released. The results demonstrate how the tests are able to distinguish between data that has
and has not been seen by LLMs.

• We offer a principled distinction between learning and memorization in LLMs and discuss
the implications of data contamination on downstream prediction tasks.

The paper is organized as follows. We specifying the problem in Section 2. In Section 3, we
begin our investigation with qualitative tests for what the model knows about the data, introduce
the technique of zero-knowledge prompting, and propose a statistical test for whether the model
has learned the conditional distribution of the data. In Section 4, we propose four different tests
that identify memorization. Section 5 presents the implications of learning and memorization for a
downstream prediction task. Section 6 discusses the related work, and Section 7 concludes.

2 Problem Setup

We assume that we have query access to an LLM that we have not trained ourselves. We do not have
access to the training data, model architecture, or the model’s probability distribution over tokens.
We also assume that the model is a chat model, although this assumption is not critical. In short, we
assume that we have API access to a proprietary LLM such as GPT-4 or Claude 2.

We would like to evaluate the LLM on a downstream task with tabular data. For example, we might
want to study the efficacy of different fine-tuning techniques, optimize the prompts used for in-context
learning, or determine the LLMs ability to make accurate statements about the mean, min, max or
standard deviation of columns in the data. Because we do not know what data the LLM was trained
on, we should be worried that any measured performance might not be due to our applied technique,
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Figure 1: Conditional completion on Adult Income and FICO. We give the model all previous feature
values in the dataset as prefix and ask it to complete the next value in the data. The figure depicts the
fraction of correctly completed observations (i.e., an observation exists in the data with that prefix and
completion) for three different methods: (1) completion with GPT-3.5, (2) completion with GPT-4,
and (3) as a baseline, completion with a random draw from the feature’s marginal distribution (i.e.,
with a random sample from the values of the next column). If GPT-3.5 (green) or GPT-4 (blue) are
able to complete rows with true values from the original dataset at a rate higher than the baseline
(yellow), this is evidence that the LLMs have seen the data before and memorized parts of it. We
show this for 8 different features on 2 datasets. The mean and 95% confidence intervals are shown.

but because the LLM has already seen the datasets during training that we are using for evaluation.
In fact, the LLM might even have memorized the datasets verbatim [4].

Problem. How can we test whether an LLM has seen a tabular dataset during it’s training? If there
is evidence that an LLM has seen a dataset, can we assess the degree of contamination?

Datasets. In this study, we use well-known machine learning datasets that are freely avaialable on the
Internet, and also less well-known datasets that are from after the cutoff data of the LLMs training, or
which have never been made available on the Internet. The publicly available datasets are IRIS, Wine,
Kaggle Titanic, OpenML Diabetes [27] Adult Income, California Housing [17], and the diabetes
dataset from scikit-learn [26]. We also use the FICO HELIOCv1 dataset, which is freely available
but guarded by a data usage agreement [9]; the Kaggle Spaceship Titanic dataset which is from 2022;
and Pneumonia, a health care dataset that has never been released on the Internet [11, 7]. Additional
details on the datasets can be found in Supplement B.

Language Models. We conduct all of our experiments with both GPT-3.5 and GPT-4 [25, 24].

3 Testing for Knowledge and Learning

In this section, we begin with quick qualitative tests for whether the LLM knows metadata about the
dataset such as the names, values and formatting of features. We then study conditional completion
to assess if the LLM is able to reproduce statistics of the dataset. We then introduce the technique of
zero-knowledge prompting and show how it can be used to generate new samples from datasets using
only the parametric knowledge of the LLM. This leads us to statistical tests for whether the LLM can
accurately model the dataset’s conditional distribution.

3.1 Basic Metadata

A simple way to assess a chat model’s prior knowledge about a dataset is by asking it. While language
models are prone to hallucinations, and may respond confidently with incorrect information, we can
focus our questions on metadata that is easy to verify externally (for example, through the use of
a datasheet [15]). With many popular datasets, it is possible to extract a fair amount of metadata,
including the names and values of the features, simply by probing the model in an interactive chat.
GPT-4, for example, correctly responds to the question “What possible values can the ‘Occupation’
feature in the Adult Income dataset take?" and is also able to list exemplary observations from this
dataset.
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Figure 2: Zero-knowledge prompting allows us to draw samples from the LLM’s parametric knowl-
edge. Here we ask GPT-3.5 to sample from the California Housing dataset. Zero-knowledge
prompting conditions the model on the task without revealing any information about the dataset being
tested by providing few-shot examples from other datasets. Top: The diversity of the generated
samples depends on the temperature parameter. For small temperatures, the model produces similar
observations concentrated around the mode of data. As temperature increases, the samples become
more diverse and more similar to the distribution of the data. At large temperature some samples lie
outside the support of the data distribution. Bottom: Illustration of the prompt strategy.

While quick qualitative tests in an interactive chat can be a powerful way to assess a chat models basic
knowledge, we have found it important to move beyond this paradigm and design more systematic
tests. In particular, we have found it beneficial to systematically condition the model with few-
shot examples in order to extract information [2]. As a concrete example, GPT-4 will claim in an
interactive chat that it does not know the names of the features of the FICO dataset, because it has
never seen this dataset during training. With proper prompting, we are, however, able to extract the
feature names both from GPT-3.5 and GPT-4 (the prompt is depicted in Supplement Figure 6).

The first two columns of Table 1 depict the result of testing for the knowledge of feature names and
feature values for all the different datasets considered in this study. GPT-3.5 and GPT-4 know the
feature names and feature values on all the datasets except Spaceship Titanic and Pneumonia.2 This
provides some first evidence that the language models are familiar with these datasets, and might
have seen them during training.

3.2 Testing with Conditional Completion

A more systematic way to test a language model’s exposure to a dataset is to ask it to complete
observations from the dataset. In this approach, we sample a row from the dataset, provide the LLM
with the values of the first n features of the row, and then ask it to complete the row as it occurs in the
dataset (the prompt is depicted in Supplement Figure 7).

Conditional completion tests if the model is able to reproduce the statistics in the test dataset.
However, it is important to note that an LLM might be able to offer a valid completion (a) because it
has memorized all the observations in the dataset verbatim, (b) because it has learned the conditional
distribution between the different features in the data from the original dataset, or (c) by using
transfer learning from other datasets with similar features, or (d) more generally because the LLM is
a powerful general-purpose zero-shot predictor.

2On Scikit Diabetes, the model possibly responded with standardized feature values.
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Figure 3: Comparison between the Pearson correlation coefficients in the original dataset and the
zero-knowledge samples drawn from GPT-3.5 and GPT-4. For each dataset, we draw 1000 samples
with temperature 0.7. Figures for all possible combinations of dataset and language model can be
found in the Supplement. The 4 datasets depicted in the Figure were chosen due to their diverse
results in Table 1.

We believe it is unlikely that current LLMs are able to offer good completions for all the different
features in a tabular dataset without having seen the dataset during training. The reason for this lies
in the particular structure of tabular datasets. Most tabular datasets contain at least some features that
are uncommon or possess a fairly specific conditional distribution that would be found in few other
places except for the particular dataset. For a concrete example, consider Figure 1, which shows the
result of running a conditional completion test for 8 different features both on Adult Income and
on FICO. The figure depicts the rate of valid conditional completions for GPT-3.5 and GPT-4, in
comparison with the rate of valid completions when drawing from the marginal distribution of the
feature. On Adult Income, the LLMs are able to complete all the different features at least as well as
the marginal distribution, and some features significantly better (t-test for “EduNum”, p < 0.01). On
FICO, the LLMs are also able to offer good completions for some of the features. However, there
are also features where the completions offered by the language models are significantly worse than
draws from the marginal distribution (t-test for “IB”, p < 0.01), suggesting that the LLMs might
have learned very little about these particular features during training.

3.3 Testing with unconditional zero-knowledge samples

In the previous section, we developed a simple testing approach using conditional completions.
In this section, we introduce another approach to test for learning about a dataset: unconditional
zero-knowledge sampling of entire observations. Zero-knowledge prompting, implicitly already
employed in the previous sections, is the solution to the following problem: In order to test the
LLM, we cannot provide the details of the dataset in the prompt to prevent in-context learning. At
the same time, few-shot learning is required in order to appropriately condition the LLMs to the
particular task. The solution is to provide the model with few-shot examples from other datasets
- in particular, datasets we know the model has seen during training. Figure 2 provides a concrete
example of zero-knowledge sampling on California Housing. The top row of Figure 2 compares
the distribution of the zero-knowledge samples with the distribution of the same features in the test
dataset. It is interesting to see how this depends on the temperature used to sample the observations.
For very small temperatures, the samples concentrate around the mode of the data. As we increase
the temperature, the samples become more diverse, and for very large temperatures, they exceed the
support of the original distribution.
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Table 1: Testing for knowledge, learning and memorization of 10 different tabular datasets in GPT-3.5
and GPT-4. The table depicts the result of 8 different tests per dataset where = evidence, =
evidence of absence, = ambiguous result, and - = test cannot be conducted. For a description of the
different tests, see Section 3, Section 4 and Supplement Section D. The Supplement also contains the
quantitative test results. The notation */* means result with GPT-3.5/ GPT-4.
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Feature
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First
Token
Test

Iris / / / / / / -/- /
Wine / / / / / / / -/-
Kaggle Titanic / / / / / / / -/-
OpenML Diabetes / / / / / / / /
Adult Income / / / / / / / /
California Housing / / / / / / / -/-
Scikit Diabetes / / -/- -/- / / / /

FICO / / / / / / / /
Spaceship Titanic / / -/- -/- / / / -/-
Pneumonia / / -/- -/- / / / /

The ability to draw both unconditional (and conditional) samples from a dataset allows us to develop
a variety of tests for distribution learning.3 For example, we can test whether the feature means of the
samples are significantly different from the feature means in the original data. This difference is often
statistically significant, but not very large (e.g. “Age” on Titanic, feature mean = 30.3, samples mean
= 28.8, p = 0.04). Instead of providing a battery of statistical tests, Figure 3 presents a visual and
intuitive approach: Comparing the Pearson correlation coefficients of the unconditional samples with
the correlation coefficients in the original data. Empirically, we find that this serves as a very intuitive
test for whether the LLM models the conditional distribution of the data (formally, we could test for
whether the signs of the Pearson correlation coefficients in the data and the samples are the same). On
California Housing and on Kaggle Titanic, depicted in the top row of Figure 3, the model provides
samples that match the Pearson correlations in the original data remarkably well. On Scikit Diabetes
and FICO, depicted in the bottom row of Figure 3, this is not the case. On FICO, where the model
knows the names of the features and is able to provide correctly formatted observations, the LLM’s
inability to accurately replicate the feature correlations suggests that it may not have memorized (or
even seen) the entire data during its training.

4 Testing for memorization

In the previous section, we discussed different strategies to test for knowledge and learning. In this
section, we introduce four different tests to detect the memorization. In particular, our goal now
is to provide tests that definitively distinguish memorization from learning [4, 6, 8]. All tests rely
on assumptions. One assumption is that the dataset has non-zero entropy (i.e., the dataset is not
comprised of many copies of the same row). For some of the proposed tests, we also assume that
there exists a canonical csv file of the dataset, that the rows in this csv file are ordered at random, or
that there exists a feature in the dataset with highly unique values. The proposed tests are as follows:

1. Header Test. We provide the model with the first couple of rows of the csv file of the dataset
and ask it to complete the next rows, as they occur in the csv file (that is, we ask the model
to complete the ‘header’ of the dataset). We use zero-knowledge prompting to condition a
chat model on this task.

2. Row Completion Test. We provide the model with a number of contiguous rows from a
random position of the csv file of the dataset and ask it to perfectly complete the next row

3We discuss the case when model responses are just copied from the training data in Supplement A.
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in the file. If the rows of the dataset are known to be unordered, we can perform a t-test
between the similarity of model completions with actual vs. random rows [22].

3. Feature Completion Test. If there exists a feature that takes unique values, or almost
unique values, we ask the model to perfectly complete the value of this unique feature, given
all the other features of an observation. Examples of unique features are names and numbers
with many decimal places.

4. First Token Test. We provide the LLM with a number of contiguous rows from a random
position of the csv file and ask it to complete the first token of the next row in the csv. If the
rows of the dataset are known to be random, we compare the accuracy of the completions
to the accuracy of completion with the mode. If the rows are non-random, we heuristically
compare the accuracy of the completions to the test accuracy of a classifier that, given the
values of the observations in the previous rows, predicts the first token of the next row.

It is useful to think of the proposed tests in terms of power and significance. By design, all the
proposed tests are highly significant. This means that any of the tests being positive is strong evidence
of memorization (though not necessarily of the entire dataset). However, the power of the tests is
difficult to estimate because the tests rely on prompting and it is possible that the LLM has memorized
the data but we cannot extract it via prompting.

Table 1 shows the results of the four tests on 10 tabular datasets. For a detailed description of the
datasets, see Supplement B. Table 1 shows the overall results of the tests, i.e., whether a test provides
evidence for memorization or not. For the detailed quantitative test results, see Supplement D. The
header test succeeds for all datasets that are publicly available on the internet. This means that
GPT-3.5 and GPT-4 have memorized the initial rows of these datasets verbatim. On four publicly
available datasets (Iris, Wine, Kaggle Titanic, OpenML Diabetes) the row completion and feature
completion tests also largely succeed. This means that the LLMs have not only memorized the initial
rows, but random rows from the dataset. The same holds true for the first token test. We observe that
the results of the latter three test are overall consistent, with a tendency of GPT-4 to exhibit more
memorization than GPT-3.5. Interestingly, there are 3 datasets (Adult, Housing, Scikit Diabetes)
where the header tests succeeds, but all the other memorization tests fail. This means that the LLMs
have memorized the initial rows of these datasets, but not memorized random rows.4 Finally, the
memorization tests give no evidence of memorization on FICO, Spaceship Titanic and Pneumonia.

Table 2: Few-shot binary classification with large language models. The table depicts the predictive
accuracy of GPT-4, GPT-3.5, gradient boosted trees and logistic regression on 6 tabular datasets. The
language models use 20 randomly selected few-shot examples. The traditional learning algorithms
are trained on the entire dataset (excluding the test set). Leave-one-out cross validation is used for
small datasets. 95% confidence intervals in parenthesis.

Kaggle
Titanic

OpenML
Diabetes

Adult
Income FICO Spaceship

Titanic Pneumonia

GPT-4 0.98 0.75 0.82 0.68 0.69 0.81
(0.97, 0.99) (0.72, 0.78) (0.80, 0.85) (0.65, 0.71) (0.66, 0.72) (0.79, 0.83)

GPT-3.5 0.82 0.74 0.79 0.65 0.63 0.54
(0.80, 0.85) (0.70, 0.77) (0.76, 0.81) (0.62, 0.68) (0.59, 0.66) (0.50, 0.56)

Gradient
Boosted Tree

0.84
(0.81, 0.86)

0.75
(0.72, 0.78)

0.87
(0.87, 0.88)

0.72
(0.70, 0.74)

0.80
(0.79, 0.82)

0.90
(0.89, 0.91)

Logistic
Regression

0.79
(0.76, 0.82)

0.78
(0.74, 0.80)

0.85
(0.85, 0.86)

0.72
(0.70, 0.74)

0.77
(0.74, 0.80)

0.90
(0.89, 0.91)

4Why is this the case? We offer the following hypothesis: Jupyter Notebooks on Kaggle and other platforms
frequently employ the pandas function ‘head()’ to print the initial rows of a datasets. As a consequence, web
search for the initial rows of datasets often leads to results, whereas web search for random rows does not. This
likely means that the LLMs see the initial rows more often during training than random rows [6].
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5 Implications for a downstream prediction task

In the previous sections we developed different tests for learning and memorization, and discussed
to what degree GPT-3.5 and GPT-4 have memorized popular tabular datasets. In this section we
study the consequences for a downstream prediction task. We consider the task of using the LLM for
prediction with few-shot learning. We encode the observations of the tabular dataset in textual form,
provide the model with 20 randomly selected few-shot examples and a test case, ask it predict the
label, and measure the predictive accuracy. For prompt details, see Supplement Figure 12.

Table 2 shows the test accuracy of GPT-4, GPT-3.5, a Gradient Boosted Tree and Logistic Regression
for 6 datasets from Table 1. On Kaggle Titanic and OpenML Diabetes, two publicly available dataset
that are highly memorized (Table 1), GPT-4 and GPT-3.5 perform on-par with the traditional learning
algorithms. On Kaggle Titanic, the ‘performance’ of GPT-4 at 98% test accuracy can safely be
attributed to memorization. Moreover, GPT-4 and GPT-3.5 also show good performance on Adult and
FICO. The result on Adult is unsurprising since the LLMs have learned the conditional distribution of
the data (Figure 1). The case of FICO is more interesting, since there is little evidence that the LLMs
have learned or memorized this dataset during training. It might be that this learning task is relatively
simple, that our memorization test are not sensitive enough, or that FICO constitutes a genuine case
of generalization towards an unseen dataset. On Spaceship Titanic and Pneumonia – the two datasets
for which there is no evidence that the LLMs saw them during training (compare Table 1) – we see a
marked drop in predictive accuracy, especially for GPT-3.5.

6 Related Work

Many recent works have demonstrated the capabilities of LLMs on tasks with tabular data [13, 21,
31, 32, 20]. In particular, Borisov et al. [1] and Hegselmann et al. [16] have shown that LLMs can be
fine-tuned to generate and classify tabular data. A consistent gap in the existing literature on LLMs
for tabular data is that none of the aforementioned works attempt to test the LLM for memorization.
At the same time, there is increasing interest in the topic of memorization, especially in LLMs [4, 6].
The topic has been studied in a variety of different contexts, for example, copyright infringement
[18], and also for diffusion models [28]. There has also been an increasing interest in the relationship
between learning and memorization [29], and the literature on membership inference attacks asks
how one can detect if an observation was part of the training data [5, 19]. This literature assumes
access to the probability distribution over tokens, or the ability to re-train the model, whereas we
assume only blackbox API access. Our header- and row completion tests work are closely related to
the memorization tests developed in [4]. The feature completion test is similar to the approach taken
in [8]. [23] also takes a blackbox testing approach for memorization of medical exam questions, but
focuses on the text domain.

7 Discussion

In this work, we developed various tests for assessing language models along the dimensions of
"knowledge", "learning", and "memorization" of tabular datasets. We have seen that some publicly
available datasets are highly memorized, meaning that LLMs can reproduce these datasets verbatim
(Section 4). We have also seen that this can lead to invalid performance estimates on downstream
tasks (Section 5). While some datasets are fully memorized, others are only partially memorized.
For example, an LLM may have memorized the initial rows of some datasets but failed to recognize
the rest of the rows (Section 4). That said, even when there is only partial memorization, we find
evidence that LLMs have still learned the conditional distribution between features, suggesting that
the data might be internal to the LLM in compressed form (Section 3).

Although we specifically study the tabular data domain, we generally observe similar memorization-
related patterns as previous work that analyzed different domains [6]. In particular, we find that (1)
the initial rows of datasets are more likely to be memorized, (2) larger LLMs consistently memorize
more, and (3) it is important to use zero-shot prompting in order to condition chat models on a task.

Of note is that we are able to condition the model to provide samples without revealing any details of
the dataset in question via zero-knowledge prompting. An analysis of the structure of these samples,
in order to assess the relationship between learning and memorization, is provided in Supplement A.
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Table 3: Summary statistics of the zero-knowledge samples for temperature 0.7 (compare Figure 2,
Figure 3, and the Figures in Supplement E).

OpenML Diabetes Adult Income California Housing
GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

Copied observations 52.7% 53.3% 0.0% 11.4% 0.1% 10.4%

Best n-gram match 7.8/9 7.3 / 9 13.3 / 15 13.7 / 15 3.1 / 10 4.4 / 10

Copied feature values 99.90% 99.94% 99.74% 99.79% 99.53% 99.64%

A Learning and Memorization

Here we investigate the structure of the zero-knowledge samples in more detail. This will shed
some light on learning and memorization in LLMs. Table 3 depicts summary statistics of the zero-
knowledge samples of GPT-3.5 and GPT-4. The first row depicts the fraction of the samples that are
copied from the training data. The second row depicts the best n-gram match between a sample and
the training data. An n-gram match of 7.8 out of 9 means that the closest match of a sample in the
training data shares, on average, 7.8 out of 9 feature values. The third row depicts the fraction of the
values of the individual features of the samples that also occur in the training data.

On OpenML diabetes (first two columns of Table 3), more than 50% of the ‘samples’ generated by
the LLMs are copied from the dataset. Unsurprisingly, this leads to a very high n-gram match and a
very large fraction of copied feature values from the training data. On Adult Income, interestingly,
GPT-3.5 copies zero exact rows from the training data but still has a very high n-gram match of
13.3/15. Why is this? The cause is the feature fnlwgt which is the weight of an observation in the
US Census data that the dataset is based on. The values of this feature are highly unique, and largely
uncorrelated with the remaining features and LLMs consistently fail to reproduce this feature. We
also note that while the relatively high value of 13.3/15 might suggest memorization, this statistic
might be seen as a reflection of the low entropy of the training data (and hence, as learning). On
Adult Income, the best n-gram match of an average row with the other rows in the dataset is 12.7/15.

The California Housing samples are much more diverse than Adult Income: the average GPT-3.5-
sample shares only 3.1 out of 10 feature values with the training data. This is again a reflection of the
statistics in the training data, where the ratio is 3.07/10. At the same time, on all the datasets, the LLM
only produces feature values that are also present in the training data. This provides an interesting
perspective on learning and memorization in LLMs. While the LLM on California Housing has
apparently learned to build new plausible combinations of the features (the Pearson correlation
coefficients of the generated data match the statistics of the training data in Figure 3), the LLM still
copies the values of the individual features directly from the training data.5

B Datasets

Iris. The Iris flower dataset is a small dataset (150 observations) that is freely available on the Internet,
among others in the UCI repository athttps://archive.ics.uci.edu/dataset/53/iris.

Wine. The UCI Wine dataset is another small dataset from the UCI repository (178 observations).
It is available at https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
wine.data.

Kaggle Titanic. The Kaggle Titanic dataset is a very popular freely available machine learning
dataset https://www.kaggle.com/competitions/titanic. Every observation in the dataset
starts with a unique ID. The dataset also contains the unique feature “Name”.

OpenML Diabetes. The OpenML Diabetes dataset [27] is a popular dataset that is freely avail-
able https://www.openml.org/search?type=data&sort=runs&id=37&status=active as
part of OpenML [30].

5We also observe that GPT-4 repeatedly copies observations from the training data of California Housing and
Adult Income. It turns out that these are largely repeated copies of the first 10 rows of the dataset (the ‘header’),
which the model has memorized (compare Table 1).
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Adult Income. Historically, the Adult Income dataset is one of the most popular machine learn-
ing datasets http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html. Re-
cently, researchers have argued that this dataset should no longer be used [12]. The csv file
of the dataset can still be found at Kaggle https://www.kaggle.com/datasets/wenruliu/
adult-income-dataset and at many other places. Apart from the fact that it is replicated many
times over the Internet, the Adult Income dataset has some properties that make it ideal for our
experiments: (1) the ordering of the rows in the csv file is known to be random, (2) the dataset
contains the (almost) unique feature fnlwgt, and (3) the dataset is not small, consisting of 32561
training observations and an additional 16281 test observations.

California Housing. The California Housing dataset [17] is a freely available and very popular
machine learning dataset with 20640 observations.

Scikit Diabetes. The Scikit Diabetes dataset is available via the popular scikit-
learn python library https://scikit-learn.org/stable/datasets/toy_dataset.html#
diabetes-dataset. We run our experiments with the dataset as it is available via the function
load_diabetes in scikit-learn. We note that there exists another version of the dataset, available at
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt.

FICO. The FICO HELIOCv1 dataset was part of the FICO Explainable Machine Learning
Challenge https://community.fico.com/s/explainable-machine-learning-challenge.
This dataset can be obtained only after signing a data usage agreement and is then available via
Google Drive. This is an example of a dataset that is freely available, but where the canonical csv file
has not been publicly released on the internet, at least not by the creators of the dataset.

Spaceship Titanic. The Spaceship Titanic dataset is available from Kaggle at https://www.
kaggle.com/c/spaceship-titanic. This dataset is part of a Kaggle competition from 2022.
This means that the dataset was made available only after the training data cut-off date of GPT-3.5
and GPT-4.

Pneumonia. The pneumonia dataset was first used in [11] and has since been employed by a variety
of researchers. The dataset has never been publicly released on the Internet.

C Models

Language Models. The experiments were performed with gpt-4-32k-0314, gpt-4-0613,
gpt-3.5-turbo-16k-0613 and gpt-3.5-turbo-0301.

Logistic Regression. We train logistic regression using scikit-learn [26]. We cross-validate the L2

regularization constant.

Gradient Boosted Tree. We train gradient boosted trees using xgboost [10]. We cross-validate the
max_depth of the trees and the L1 and L2 regularization constants, similar to [16].

D Tests

This section gives additional details on the different tests, as well as the quantitative results of the
memorization tests. As a general observation, one might expect the results of the tests to be somewhat
ambiguous, especially the quantitative memorization tests that rely on assumptions. Instead, the
results of the different tests turned out to be surprisingly clear-cut, with only very few ambiguous
cases (and these are mostly small datasets with little entropy, where it can be difficult to distinguish
memorization from prediction).

Zero-Knowledge Sampling. In the tests that use zero-knowledge sampling, we use the following
few-shot datasets to condition the model responses: Iris, Adult Income, Kaggle Titanic, Wine, and
California Housing. When we are testing one of these five datasets, we use OpenML Diabetes for the
few-shot examples instead.

D.1 Feaure Names

The feature names test was conducted using the prompt structure given in Figure 6. In all cases, the
result of this test was unambiguous. The model would either list the names of the different features
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in exactly the same format as it occurs in the csv file of the dataset, or it would offer a completely
different response.

D.2 Feature Values

To test whether the model is able to model the feature values of the data, we draw unconditional
zero-knowledge samples. We then test whether the formatting of the sampled feature values is the
same as the formatting in the training data (similar to the evaluation in the third row of Table 3
in the main paper). For moderate temperature levels, there is no significant effect of the sampling
temperature on the test results.

D.3 Feature Distribution

We use unconditional zero knowledge samples for a small temperature level and compare the mode
of the sampled feature values with the mode of the feature in the dataset. The motivation behind
this comparison is that an autoregressive model that goes over the data sequentially and knows the
ordering of the different features but has not learned any aspect of the conditional distribution between
the different features, should still assign the highest likelihood to the modal value of the feature
(by definition, the mode is the unconditional prediction with the best accuracy). This test is also
motivated by the empirical observation that GPT-3.5 and GPT-4 model the modal feature values of
many publicly available datasets surprisingly well, even if they rarely provide a good model of the
finer details of the feature distribution. The test was unambiguous on all datasets except FICO. The
test can only be conducted if the feature values test succeeds.

D.4 Conditional Distribution

We use unconditional zero knowledge samples with temperature 0.7 and compare the Pearson
correlation coefficients of the samples with the Pearson correlation coefficients in the original dataset
(see Figure 4 and Figure 5).

D.5 Header Test

We split the dataset at random positions in rows 2, 4, 6, and 8 and ask the model to complete the
dataset from the given position. We condition the model on this task with few-shot examples and
consider the best completion. The test result was unambiguous on all datasets (either the model
completed many rows, or not even a single row). The prompt is depicted in Figure 9.
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D.6 Row Completion, Feature completion, and First Token Test

Table 4: Detailed results of the row completion and feature completion tests from Table 1 in the main
paper. For each dataset and each model, the table depicts the number of rows and features that were
correctly completed. The prompts are depicted in Figure 10 and Figure 11.

Row Completion Test Feature Completion Test
GPT-3.5 GPT-4 GPT-3.5 GPT-4 Feature Name

Iris 35 / 136 125 / 136 - - -
Wine 16 / 164 84 / 164 77 / 178 131 / 178 malic_acid
Kaggle Titanic 194 / 250 222 / 250 238 / 250 236 / 250 Name
OpenML Diabetes 18 / 250 79 / 250 237 / 250 243 / 250 DiabetesPedigreeFunction
Adult Income 0 / 250 0 / 250 0 / 250 0 / 250 fnlwgt
California Housing 0 / 250 0 / 250 0 / 250 1 / 250 median_income
Scikit Diabetes 0 / 250 0 / 250 1 / 250 1 / 250 S2
FICO 1 / 250 2 / 250 2 / 250 14 / 250 MSinceOldestTradeOpen
Spaceship Titanic 0 / 250 0 / 250 0 / 250 2 / 250 Name
Pneumonia 0 / 250 0 / 50 1 / 250 WBC Count

Table 5: Detailed results of the first token test from Table 1 in the main paper. The table depicts the
number of first tokens that were correctly completed and the overall accuracy of the completions (in
brackets). The last row depicts the completion accuracy that can be reached with traditional predictors
(that is, without memorization). The prompt is depicted in Figure 10.

First Token Test

GPT-3.5 GPT-4 Baseline Accuracy
(Best of Mode, LR and GBT)

Iris 88 / 136 (0.65) 131 / 136 (0.96) 0.50
Wine - - 0.95
Kaggle Titanic - - -
OpenML Diabetes 42 / 250 (0.17) 95 / 250 (0.38) 0.25
Adult Income 59 / 250 (0.24) 68 / 250 (0.27) 0.26
California Housing - - 0.95
Scikit Diabetes 66 / 250 (0.26) 54 / 250 (0.22) 0.40
FICO 119 / 250 (0.48) 78 / 250 (0.31) 0.47
Spaceship Titanic - - -
Pneumonia 0 / 250 (0.0) 11 / 50 (0.22) 0.26
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(d) OpenML Diabetes

Figure 4: Pearson Correlation coefficients for all possible combinations of dataset and language
model. Compare Figure 3 in the main paper. Temperature 0.7. Continued on next page.
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Age fnl EduNumCGain CLoss Hours

Ag
e

fn
l

Ed
uN
um

C
G
ai
n

C
Lo
ss

H
ou
rs

1.00 -0.08 0.03 0.08 0.06 0.07

-0.08 1.00 -0.04 -0.00 -0.00 -0.01

0.03 -0.04 1.00 0.13 0.08 0.14

0.08 -0.00 0.13 1.00 -0.03 0.08

0.06 -0.00 0.08 -0.03 1.00 0.05

0.07 -0.01 0.14 0.08 0.05 1.00

Dataset

Age EduNum CGain CLoss Hours

1.00 0.17 0.01 0.03 0.33

0.17 1.00 0.08 0.04 0.27

0.01 0.08 1.00 -0.00 0.12

0.03 0.04 -0.00 1.00 0.03

0.33 0.27 0.12 0.03 1.00

GPT-3.5

Age fnl EduNumCGain CLoss Hours

1.00 -0.16 0.05 0.09 0.01 -0.01

-0.16 1.00 -0.23 -0.12 0.03 0.01

0.05 -0.23 1.00 0.18 0.07 0.26

0.09 -0.12 0.18 1.00 -0.03 0.07

0.01 0.03 0.07 -0.03 1.00 0.13

-0.01 0.01 0.26 0.07 0.13 1.00

GPT-4

(a) Adult Income

Long Lat MAge NR NBR Pop Hou Inc

Lo
ng

La
t

M
Ag
e

N
R

N
BR

Po
p

H
ou

In
c

1.00 -0.92 -0.11 0.04 0.07 0.10 0.06 -0.02

-0.92 1.00 0.01 -0.04 -0.07 -0.11 -0.07 -0.08

-0.11 0.01 1.00 -0.36 -0.32 -0.30 -0.30 -0.12

0.04 -0.04 -0.36 1.00 0.93 0.86 0.92 0.20

0.07 -0.07 -0.32 0.93 1.00 0.88 0.98 -0.01

0.10 -0.11 -0.30 0.86 0.88 1.00 0.91 0.00

0.06 -0.07 -0.30 0.92 0.98 0.91 1.00 0.01

-0.02 -0.08 -0.12 0.20 -0.01 0.00 0.01 1.00

Dataset

Long Lat MAge NR NBR Pop Hou Inc

1.00 -0.91 -0.05 0.06 0.09 0.14 0.09 0.11

-0.91 1.00 -0.01 -0.08 -0.11 -0.16 -0.12 -0.19

-0.05 -0.01 1.00 -0.18 -0.12 -0.13 -0.12 -0.17

0.06 -0.08 -0.18 1.00 0.93 0.87 0.93 0.16

0.09 -0.11 -0.12 0.93 1.00 0.91 1.00 0.13

0.14 -0.16 -0.13 0.87 0.91 1.00 0.92 0.14

0.09 -0.12 -0.12 0.93 1.00 0.92 1.00 0.13

0.11 -0.19 -0.17 0.16 0.13 0.14 0.13 1.00

GPT-3.5

Long Lat MAge NR NBR Pop Hou Inc

1.00 -0.95 -0.50 0.30 0.40 0.47 0.41 -0.36

-0.95 1.00 0.37 -0.23 -0.33 -0.40 -0.34 0.28

-0.50 0.37 1.00 -0.45 -0.52 -0.56 -0.53 0.40

0.30 -0.23 -0.45 1.00 0.91 0.86 0.91 -0.17

0.40 -0.33 -0.52 0.91 1.00 0.91 0.99 -0.42

0.47 -0.40 -0.56 0.86 0.91 1.00 0.92 -0.41

0.41 -0.34 -0.53 0.91 0.99 0.92 1.00 -0.43

-0.36 0.28 0.40 -0.17 -0.42 -0.41 -0.43 1.00

GPT-4

(b) California Housing

Age Sex bmi bp S1 S2 S3 S4

Ag
e

Se
x

bm
i

bp
S1

S2
S3

S4

1.00 0.17 0.19 0.34 0.26 0.22 -0.08 0.20

0.17 1.00 0.09 0.24 0.04 0.14 -0.38 0.33

0.19 0.09 1.00 0.40 0.25 0.26 -0.37 0.41

0.34 0.24 0.40 1.00 0.24 0.19 -0.18 0.26

0.26 0.04 0.25 0.24 1.00 0.90 0.05 0.54

0.22 0.14 0.26 0.19 0.90 1.00 -0.20 0.66

-0.08 -0.38 -0.37 -0.18 0.05 -0.20 1.00 -0.74

0.20 0.33 0.41 0.26 0.54 0.66 -0.74 1.00

Dataset

Age Sex bmi bp S1 S2 S3 S4

1.00 0.03 0.03 0.01 -0.02 0.04 -0.02 -0.09

0.03 1.00 0.25 0.21 0.30 0.15 0.24 0.92

0.03 0.25 1.00 0.98 0.95 0.89 0.74 0.29

0.01 0.21 0.98 1.00 0.94 0.84 0.76 0.24

-0.02 0.30 0.95 0.94 1.00 0.84 0.69 0.34

0.04 0.15 0.89 0.84 0.84 1.00 0.59 0.17

-0.02 0.24 0.74 0.76 0.69 0.59 1.00 0.29

-0.09 0.92 0.29 0.24 0.34 0.17 0.29 1.00

GPT-3.5

Age Sex bmi bp S1 S2 S3 S4

1.00 0.10 0.29 0.21 -0.23 -0.19 -0.26 0.04

0.10 1.00 -0.01 -0.07 -0.06 -0.02 0.02 -0.10

0.29 -0.01 1.00 0.66 -0.20 -0.23 -0.46 0.23

0.21 -0.07 0.66 1.00 -0.03 -0.06 -0.27 0.18

-0.23 -0.06 -0.20 -0.03 1.00 0.84 0.46 -0.01

-0.19 -0.02 -0.23 -0.06 0.84 1.00 0.41 0.11

-0.26 0.02 -0.46 -0.27 0.46 0.41 1.00 -0.33

0.04 -0.10 0.23 0.18 -0.01 0.11 -0.33 1.00

GPT-4

(c) Scikit Diabetes

ERE MSO MSM AMIF NST NT60 NT90PTND

ER
E

M
SO

M
SM

AM
IF

N
ST

N
T6
0

N
T9
0

PT
N
D

1.00 0.48 0.33 0.58 0.47 0.68 0.74 0.90

0.48 1.00 0.22 0.73 0.41 0.37 0.38 0.40

0.33 0.22 1.00 0.49 -0.03 0.29 0.30 0.24

0.58 0.73 0.49 1.00 0.36 0.47 0.48 0.45

0.47 0.41 -0.03 0.36 1.00 0.42 0.45 0.58

0.68 0.37 0.29 0.47 0.42 1.00 0.98 0.68

0.74 0.38 0.30 0.48 0.45 0.98 1.00 0.75

0.90 0.40 0.24 0.45 0.58 0.68 0.75 1.00

Dataset

ERE MSO MSM AMIF NST NT60 NT90PTND

1.00 -0.01 0.02 0.00 0.02 -0.01 0.00 -0.05

-0.01 1.00 0.00 0.02 -0.00 -0.03 -0.00 0.04

0.02 0.00 1.00 -0.03 0.00 -0.06 -0.04 0.03

0.00 0.02 -0.03 1.00 0.01 -0.01 -0.02 -0.01

0.02 -0.00 0.00 0.01 1.00 -0.02 -0.04 0.11

-0.01 -0.03 -0.06 -0.01 -0.02 1.00 0.85 -0.22

0.00 -0.00 -0.04 -0.02 -0.04 0.85 1.00 -0.23

-0.05 0.04 0.03 -0.01 0.11 -0.22 -0.23 1.00

GPT-3.5

ERE MSO MSM AMIF NST NT60 NT90PTND

1.00 0.25 0.07 0.26 0.35 -0.22 -0.12 0.33

0.25 1.00 0.08 0.52 0.26 -0.04 0.03 0.10

0.07 0.08 1.00 0.05 -0.01 0.01 -0.03 -0.01

0.26 0.52 0.05 1.00 0.27 0.03 -0.02 0.04

0.35 0.26 -0.01 0.27 1.00 0.06 -0.00 0.03

-0.22 -0.04 0.01 0.03 0.06 1.00 0.27 -0.80

-0.12 0.03 -0.03 -0.02 -0.00 0.27 1.00 -0.37

0.33 0.10 -0.01 0.04 0.03 -0.80 -0.37 1.00

GPT-4

(d) FICO

Figure 5: Pearson Correlation coefficients for all possible combinations of dataset and language
model. Compare Figure 3 in the main paper. Temperature 0.7.
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F Prompts

System: You are an expert assistant for tabular datasets. Your task is to list the names of the features
of different datasets. The user provides a description of the dataset and some of the feature names.
You then provide the names of the remaining features.

User: Dataset: IRIS. Feature Names: sepal_length
Assistant: sepal_width, petal_length, petal_width, species

User: Dataset: adult. Feature Names: Age
Assistant: WorkClass, fnlwgt, Education, EducationNum, MaritalStatus, Occupation, Relationship,
Race, Gender, CapitalGain, CapitalLoss, HoursPerWeek, NativeCountry, Income

User: Dataset: titanic-train. Feature Names: PassengerId
Assistant: Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked

User: Dataset: uci-wine. Feature Names: target
Assistant: alcohol, malic_acid, ash, alcalinity_of_ash, magnesium, total_phenols, flavanoids,
nonflavanoid_phenols, proanthocyanins, color_intensity, hue, od280_od315_of_diluted_wines,
proline

User: Dataset: california-housing. Feature Names: longitude
Assistant: latitude, housing_median_age, total_rooms, total_bedrooms, population, households,
median_income, median_house_value, ocean_proximity

User: Dataset: fico. Feature Names: RiskPerformance

Response: ExternalRiskEstimate, MSinceOldestTradeOpen, MSinceMostRecent-
TradeOpen, AverageMInFile, NumSatisfactoryTrades, NumTrades60Ever2DerogPubRec,
NumTrades90Ever2DerogPubRec, PercentTradesNeverDelq, MSinceMostRecentDelq,
MaxDelq2PublicRecLast12M, MaxDelqEver, NumTotalTrades, NumTradesOpeninLast12M,
PercentInstallTrades, MSinceMostRecentInqexcl7days, NumInqLast6M, NumInqLast6Mexcl7days,
NetFractionRevolvingBurden, NetFractionInstallBurden, NumRevolvingTradesWBalance, NumIn-
stallTradesWBalance, NumBank2NatlTradesWHighUtilization, PercentTradesWBalance

Figure 6: Feature Names.
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System: You are a helpful autocomplete bot for tabular datasets. You will be prompted with a
portion of a sample from a machine learning dataset. Your task is to complete the observation
from the dataset. The observations are presented to you in the format "Feature Name = Feature Value".

User: Dataset: IRIS
Feature Names: sepal_length, sepal_width, petal_length, petal_width, species
Feature Values: sepal_length = 6.7, sepal_width = 3.1
Assistant: petal_length = 5.6, petal_width = 2.4, species = Iris-virginica

User: Dataset: titanic-train
Feature Names: PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin,
Embarked
Feature Values: PassengerId = 542, Survived = 0, Pclass = 3, Name = Andersson, Miss. Ingeborg
Constanzia
Assistant: Sex = female, Age = 9.0, SibSp = 4, Parch = 2, Ticket = 347082, Fare = 31.275, Cabin =
nan, Embarked = S

[..]

User: Dataset: california-housing
Feature Names: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population,
households, median_income, median_house_value, ocean_proximity
Feature Values: longitude = -118.03, latitude = 33.87, housing_median_age = 16.0, total_rooms =
2306.0
Assistant: total_bedrooms = 393.0, population = 1368.0, households = 387.0, median_income =
5.93, median_house_value = 277600.0, ocean_proximity = <1H OCEAN

User: Dataset: adult
Feature Names: Age, WorkClass, fnlwgt, Education, EducationNum, MaritalStatus, Occupation,
Relationship, Race, Gender, CapitalGain, CapitalLoss, HoursPerWeek, NativeCountry, Income
Feature Values: Age = 51, WorkClass = Private, fnlwgt = 243361, Education = Some-college,
EducationNum = 10, MaritalStatus = Widowed
Response: Occupation = Adm-clerical, [...]

Figure 7: Conditional Completion. See Figure 1 in the main paper.
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System: You are an expert assistant for tabular datasets. You provide random samples from different
datasets. The user provides the name of the dataset and the names of the features. You then provide a
sample from the dataset.

User: Dataset: IRIS
Feature Names: sepal_length, sepal_width, petal_length, petal_width, species
Assistant: sepal_length = 5.1, sepal_width = 3.5, petal_length = 1.4, petal_width = 0.3, species =
Iris-setosa

User: Dataset: adult
Feature Names: Age, WorkClass, fnlwgt, Education, EducationNum, MaritalStatus, Occupation,
Relationship, Race, Gender, CapitalGain, CapitalLoss, HoursPerWeek, NativeCountry, Income
Feature Names: Age, WorkClass, fnlwgt, Education, EducationNum, MaritalStatus, Occupation,
Relationship, Race, Gender, CapitalGain, CapitalLoss, HoursPerWeek, NativeCountry, Income
Assistant: Age = 43, WorkClass = Self-emp-inc, fnlwgt = 196945, Education = HS-grad,
EducationNum = 9, MaritalStatus = Married-civ-spouse, Occupation = Other-service, Relationship
= Husband, Race = Asian-Pac-Islander, Gender = Male, CapitalGain = 0, CapitalLoss = 0,
HoursPerWeek = 78, NativeCountry = Thailand, Income = <= 50K

User: Dataset: openml-diabetes
Feature Names: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedi-
greeFunction, Age, Outcome
Assistant: Pregnancies = 1, Glucose = 95, BloodPressure = 74, SkinThickness = 21, Insulin = 73,
BMI = 25.9, DiabetesPedigreeFunction = 0.673, Age = 36, Outcome = 0

User: Dataset: uci-wine
Feature Names: target, alcohol, malic_acid, ash, alcalinity_of_ash, magnesium, to-
tal_phenols, flavanoids, nonflavanoid_phenols, proanthocyanins, color_intensity, hue,
od280_od315_of_diluted_wines, proline
Assistant: target = 1, alcohol = 13.24, malic_acid = 2.59, ash = 2.87, alcalinity_of_ash =
21.0, magnesium = 118, total_phenols = 2.8, flavanoids = 2.69, nonflavanoid_phenols = 0.39,
proanthocyanins = 1.82, color_intensity = 4.32, hue = 1.04, od280_od315_of_diluted_wines = 2.93,
proline = 735

User: Dataset: california-housing
Feature Names: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population,
households, median_income, median_house_value, ocean_proximity
Assistant: longitude = -122.12, latitude = 37.68, housing_median_age = 45.0, total_rooms = 2179.0,
total_bedrooms = 401.0, population = 1159.0, households = 399.0, median_income = 3.4839,
median_house_value = 180600.0, ocean_proximity = NEAR BAY

User: Dataset: titanic-train
Feature Names: PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin,
Embarked

Response: PassengerId = 746, Survived = 0, Pclass = 3, Name = Abbott, Mr. Rossmore Edward, Sex
= male, Age = 16.0, SibSp = 1, Parch = 1, Ticket = C.A. 2673, Fare = 20.25, Cabin = NaN, Embarked
= S

Figure 8: Zero-Knowledge Sampling.
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System: You are an autocomplete bot for tabular datasets. You will be prompted with parts of a
tabular dataset. Your task is to complete the dataset.

User: sepal_length,sepal_width,petal_length,petal_width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
[...]
4.8,3,1.4,0.1,Iris-setosa
4.3,3,1.1,0.1,Iris-setosa
5.8,4,1.2,0.2,Iris-s
Assistant: etosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
[...]

User: longitude,latitude,housing_median_age,[...],ocean_proximity
-122.23,37.88,41.0,880.0,129.0,322.0,126.0,8.3252,452600.0,NEAR BAY
-122.22,37.86,21.0,7099.0,1106.0,2401.0,1138.0,8.3014,358500.0,NEAR BAY
-122.24,37.85,52.0,1467.0,190.0,496.0,177.0,7.2574,352100.0,NEAR BAY
-122.25,37.85,52.0,1274.0,235.0,558.0,219.0,5.6431,341300.0,NEAR BAY
-122.25,37.85,52.0,1627.0,280.0,565.0,259.0,3.
Assistant: 8462,342200.0,NEAR BAY
-122.25,37.85,52.0,919.0,213.0,413.0,193.0,4.0368,269700.0,NEAR BAY
-122.25,37.84,52.0,2535.0,489.0,1094.0,514.0,3.6591,299200.0,NEAR BAY
-122.25,37.84,52.0,3104.0,687.0,1157.0,647.0,3.12,241400.0,NEAR BAY
-122.26,37.84,42.0,2555.0,665.0,1206.0,595.0,2.0804,226700.0,NEAR BAY
-122.25,37.84,52.0,3549.0,707.0,1551.0,714.0,3.6912,261100.0,NEAR BAY
-122.26,37.85,52.0,2202.0,434.0,910.0,402.0,3.2031,281500.0,NEAR BAY
-122.26,37.85,52.0,3503.0,752.0,1504.0,734.0,3.2705,241800.0,N

User: Age,WorkClass,fnlwgt,Education,[...],Income
39, State-gov,77516, Bachelors,13, Never-married, [...],0,40, United-States, <=50K
50, Self-emp-not-inc,83311, Bachelors,13, Married-civ-spouse, [...],0,13, United-States, <=50K
38, Private,215646, HS-grad,9, Divorced, Handlers-cleane

Response: rs, Not-in-family, White, Male,0,0,40, United-States, <=50K
53, Private,234721, 11th,7, Married-civ-spouse, [...],0,40, United-States, <=50K
28, Private,338409, Bachelors,13, Married-civ-spouse, [...],0,40, Cuba, <=50K
37, Private,284582, Masters,14, Married-civ-spouse, [...],0,40, United-States, <=50K
49, Private,160187, 9th,5, Married-spouse-absent, [...],0,16, Jamaica, <=50K
52, Self-emp-not-inc,209642, HS-grad,9, Married-civ-spouse, [...],0,45, United-States, >50K
[...]

Figure 9: Header Test.
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System: You are a helpful autocomplete bot for tabular datasets. Your task is to provide rows as they
are contained in tabular datasets. The user provides a number of contiguous rows from a tabular
dataset. You then provide the next row from the dataset.

User: 267,0,3,”Panula, Mr. Ernesti Arvid”,male,16,4,1,3101295,39.6875„S
268,1,3,”Persson, Mr. Ernst Ulrik”,male,25,1,0,347083,7.775„S
269,1,1,”Graham, Mrs. William Thompson (Edith Junkins)”,female,58,0,1,PC
17582,153.4625,C125,S
[...]
279,0,3,”Rice, Master. Eric”,male,7,4,1,382652,29.125„Q
280,1,3,”Abbott, Mrs. Stanton (Rosa Hunt)”,female,35,1,1,C.A. 2673,20.25„S
281,0,3,”Duane, Mr. Frank”,male,65,0,0,336439,7.75„Q
Assistant: 282,0,3,”Olsson, Mr. Nils Johan Goransson”,male,28,0,0,347464,7.8542„S

[...]

User: 142,1,3,”Nysten, Miss. Anna Sofia”,female,22,0,0,347081,7.75„S
143,1,3,”Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)”,female,24,1,0,STON/O2.
3101279,15.85„S
144,0,3,”Burke, Mr. Jeremiah”,male,19,0,0,365222,6.75„Q
145,0,2,”Andrew, Mr. Edgardo Samuel”,male,18,0,0,231945,11.5„S
[...]
154,0,3,”van Billiard, Mr. Austin Blyler”,male,40.5,0,2,A/5. 851,14.5„S
155,0,3,”Olsen, Mr. Ole Martin”,male„0,0,Fa 265302,7.3125„S
156,0,1,”Williams, Mr. Charles Duane”,male,51,0,1,PC 17597,61.3792„C
Assistant: 157,1,3,”Gilnagh, Miss. Katherine ””Katie”””,female,16,0,0,35851,7.7333„Q

User: 613,1,3,”Murphy, Miss. Margaret Jane”,female„1,0,367230,15.5„Q
614,0,3,”Horgan, Mr. John”,male„0,0,370377,7.75„Q
615,0,3,”Brocklebank, Mr. William Alfred”,male,35,0,0,364512,8.05„S
616,1,2,”Herman, Miss. Alice”,female,24,1,2,220845,65„S
617,0,3,”Danbom, Mr. Ernst Gilbert”,male,34,1,1,347080,14.4„S
618,0,3,”Lobb, Mrs. William Arthur (Cordelia K Stanlick)”,female,26,1,0,A/5. 3336,16.1„S
619,1,2,”Becker, Miss. Marion Louise”,female,4,2,1,230136,39,F4,S
620,0,2,”Gavey, Mr. Lawrence”,male,26,0,0,31028,10.5„S
621,0,3,”Yasbeck, Mr. Antoni”,male,27,1,0,2659,14.4542„C
622,1,1,”Kimball, Mr. Edwin Nelson Jr”,male,42,1,0,11753,52.5542,D19,S
623,1,3,”Nakid, Mr. Sahid”,male,20,1,1,2653,15.7417„C
624,0,3,”Hansen, Mr. Henry Damsgaard”,male,21,0,0,350029,7.8542„S
625,0,3,”Bowen, Mr. David John ””Dai”””,male,21,0,0,54636,16.1„S
626,0,1,”Sutton, Mr. Frederick”,male,61,0,0,36963,32.3208,D50,S
627,0,2,”Kirkland, Rev. Charles Leonard”,male,57,0,0,219533,12.35„Q

Response: 628,0,3,”Bostandyeff, Mr. Guentcho”,male,26,0,0,349224,7.8958„S

Figure 10: Row Completion and First Token Test.
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System: You are a helpful autocomplete bot for tabular datasets. You will be prompted with a
portion of a sample from a machine learning dataset. Your task is to complete the observation
from the dataset. The observations are presented to you in the format "Feature Name = Feature Value".

User: Age = 22, WorkClass = ?, Education = Some-college, EducationNum = 10, MaritalStatus =
Divorced, Occupation = ?, Relationship = Not-in-family, Race = White, Gender = Female, Capi-
talGain = 0, CapitalLoss = 0, HoursPerWeek = 35, NativeCountry = United-States, Income = <= 50K

Assistant: fnlwgt = 376277

User: Age = 78, WorkClass = Self-emp-inc, Education = Bachelors, EducationNum = 13,
MaritalStatus = Married-civ-spouse, Occupation = Exec-managerial, Relationship = Husband, Race
= White, Gender = Male, CapitalGain = 0, CapitalLoss = 2392, HoursPerWeek = 40, NativeCountry
= United-States, Income = > 50K

Assistant: fnlwgt = 188044

User: Age = 32, WorkClass = Federal-gov, Education = Some-college, EducationNum = 10,
MaritalStatus = Divorced, Occupation = Adm-clerical, Relationship = Unmarried, Race = White,
Gender = Female, CapitalGain = 0, CapitalLoss = 0, HoursPerWeek = 40, NativeCountry =
United-States, Income = <= 50K

Assistant: fnlwgt = 566117

User: Age = 35, WorkClass = Private, Education = Bachelors, EducationNum = 13, MaritalStatus =
Never-married, Occupation = Prof-specialty, Relationship = Not-in-family, Race = White, Gender
= Male, CapitalGain = 0, CapitalLoss = 0, HoursPerWeek = 50, NativeCountry = United-States,
Income = > 50K

Assistant: fnlwgt = 377798

User: Age = 32, WorkClass = Private, Education = Some-college, EducationNum = 10, MaritalStatus
= Divorced, Occupation = Other-service, Relationship = Other-relative, Race = White, Gender =
Male, CapitalGain = 0, CapitalLoss = 0, HoursPerWeek = 40, NativeCountry = Nicaragua, Income =
<= 50K

Assistant: fnlwgt = 160362

User: Age = 28, WorkClass = Federal-gov, Education = HS-grad, EducationNum = 9, MaritalStatus
= Never-married, Occupation = Craft-repair, Relationship = Not-in-family, Race = White, Gender
= Male, CapitalGain = 0, CapitalLoss = 0, HoursPerWeek = 40, NativeCountry = United-States,
Income = <= 50K

Response: fnlwgt = 183175

Figure 11: Feature Completion Test.
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System: You are a helpful statistician, data scientist, and board-certified medical doctor with
expertise in treating diabetes.

You help to make predictions on the openml diabetes dataset. This dataset contains the following
features: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunc-
tion, and Age.

Your task is to predict whether a patient tested positive or negative for diabetes.

The user provides you with the data of different individuals. You respond with ’1’ if your assessment
is that the patient tested positive for diabetes, and with ’0’ if your assessment is that the patient tested
negative for diabetes.

Read all the provided inputs carefully and provide your best overall assessment.

User: IF Pregnancies = 5.0, Glucose = 136.0, BloodPressure = 82.0, SkinThickness = 0.0, Insulin =
0.0, BMI = 0.0, DiabetesPedigreeFunction = 0.64, Age = 69.0, THEN
Assistant: 0

[...]

User: IF Pregnancies = 5.0, Glucose = 115.0, BloodPressure = 76.0, SkinThickness = 0.0, Insulin =
0.0, BMI = 31.2, DiabetesPedigreeFunction = 0.343, Age = 44.0, THEN
Assistant: 1

User: IF Pregnancies = 6.0, Glucose = 148.0, BloodPressure = 72.0, SkinThickness = 35.0, Insulin =
0.0, BMI = 33.6, DiabetesPedigreeFunction = 0.627, Age = 50.0, THEN

Response: 1

Figure 12: Prompt structure for the prediction task in Table 2 in the main paper.
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