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Abstract

Adversarially robust optimization (ARO) has
emerged as the de facto standard for training mod-
els that hedge against adversarial attacks in the test
stage. While these models are robust against ad-
versarial attacks, they tend to suffer severely from
overfitting. To address this issue, some success-
ful methods replace the empirical distribution in
the training stage with alternatives including (i) a
worst-case distribution residing in an ambiguity set,
resulting in a distributionally robust (DR) counter-
part of ARO; (ii) a mixture of the empirical distri-
bution with a distribution induced by an auxiliary
(e.g., synthetic, external, out-of-domain) dataset.
Inspired by the former, we study the Wasserstein
DR counterpart of ARO for logistic regression and
show it admits a tractable convex optimization re-
formulation. Adopting the latter setting, we revise
the DR approach by intersecting its ambiguity set
with another ambiguity set built using the auxiliary
dataset, which offers a significant improvement
whenever the Wasserstein distance between the
data generating and auxiliary distributions can be
estimated. We study the underlying optimization
problem, develop efficient solution algorithms, and
demonstrate that the proposed method outperforms
benchmark approaches on standard datasets.

1 INTRODUCTION

Supervised learning traditionally involves access to a train-
ing dataset whose instances are assumed to be independently
sampled from a true data-generating distribution (Bishop,
2006; Hastie et al., 2017). Optimizing an expected loss for
the empirical distribution constructed from such a train-
ing set, also known as empirical risk minimization (ERM),
enjoys several desirable properties in relatively generic set-

tings, including convergence to the true risk minimization
problem as the number of training samples increases (Vap-
nik, 1999, Chapter 2). In real-world applications, however,
various challenges, such as data scarcity and the existence
of adversarial attacks, lead to deteriorated out-of-sample
performance for models trained via ERM.

One of the key limitations of ERM, particularly as it is
designed to minimize an expected loss for the empirical dis-
tribution, emerges from the finite nature of data in practice.
This leads ERM to suffer from the ‘optimism bias’, also
known as overfitting (Murphy, 2022), or the optimizer’s
curse (DeMiguel and Nogales, 2009; Smith and Winkler,
2006), causing deteriorated out-of-sample performance. A
popular approach to prevent this phenomenon, distribution-
ally robust optimization (DRO; Delage and Ye 2010), op-
timizes the expected loss for the worst-case distribution
residing within a pre-specified ambiguity set.

Another key challenge faced by ERM in practice is adver-
sarial attacks, where an adversary perturbs the observed
features during the testing or deployment phase (Szegedy
et al., 2014; Goodfellow et al., 2015), also known as eva-
sion corruption at test time (Biggio et al., 2013). For neural
networks, the paradigm of adversarial training (AT; Madry
et al. 2018) is thus designed to provide adversarial robust-
ness by simulating such attacks in the training stage. Several
successful variants of AT, specialized to different losses
and attacks, have been proposed in the literature to achieve
adversarial robustness without significantly reducing perfor-
mance on training sets (Shafahi et al., 2019; Zhang et al.,
2019; Gao et al., 2019; Pang et al., 2022). Some studies
(Uesato et al., 2018; Carlini et al., 2019; Wu et al., 2020)
investigate the adversarial robustness guarantees of various
training algorithms, leading to a research direction focused
on heuristic improvements to such models (e.g., Rade and
Moosavi-Dezfooli 2022). Our work aligns with another re-
cent line of research (Xing et al., 2022a; Bennouna et al.,
2023) on adversarially robust optimization (ARO), which
constrains ERM to guarantee an exact, pre-specified level of
adversarial robustness while maximizing training accuracy.
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Recently, it has been observed that the two aforementioned
notions of robustness can be at odds, as adversarially robust
(AR) models suffer from severe overfitting (robust over-
fitting; Raghunathan et al. 2019; Yu et al. 2022; Li and
Spratling 2023). Indeed, it is observed that robust overfitting
is even more severe than traditional overfitting (Rice et al.,
2020). To this end, some works address robust overfitting by
revisiting AT algorithms and adding adjustments for better
generalization (Chen et al., 2020; Li and Li, 2023). In a
recent work, Bennouna et al. (2023, Thm 3.2) decompose
the error gap of robust overfitting into the statistical error of
estimating the true data-generating distribution via the em-
pirical distribution and an adversarial error resulting from
the adversarial attacks, hence proposing the simultaneous
adoption of DRO and ARO.

In this work, we study logistic regression (LR) for bi-
nary classification that is adversarially robust against ℓp-
attacks (Croce et al., 2020). To address robust overfitting
faced by the adversarially robust LR model, we employ a
DRO approach where distributional ambiguity is modeled
with the type-1 Wasserstein metric. We base our work on an
observation that the worst-case logistic loss under adversar-
ial attacks can be represented as a Lipschitz continuous and
convex loss function. This allows us to use existing Wasser-
stein DRO machinery for Lipschitz losses, and derive an
exact reformulation of the Wasserstein DR counterpart of
adversarially robust LR as a tractable convex problem.

Our main contribution lies in reducing the size of the Wasser-
stein ambiguity set in the DRO problem mentioned above, in
order to create a less conservative problem while preserving
the same distributional robustness guarantees. To accom-
plish this, we draw inspiration from recent work on ARO
that leverages auxiliary datasets (e.g., Gowal et al. 2021;
Xing et al. 2022a) and revise our DRO problem by intersect-
ing its ambiguity set with another ambiguity set constructed
using an auxiliary dataset. Examples of auxiliary data in-
clude synthetic data generated from a generative model (e.g.,
privacy-preserving data release), data in the presence of dis-
tributional shifts (e.g., different time periods/regions), noisy
data (e.g., measurement errors), or out-of-domain data (e.g.,
different source); any auxiliary dataset is viable as long as
its instances are sampled independently from an underly-
ing data-generating distribution whose Wasserstein distance
to the true data-generating distribution is known or can be
estimated. Figure 1 illustrates our framework.

The paper unfolds as follows. In Section 2, we review re-
lated literature on DRO and ARO, with a focus on their
interactions. We examine the use of auxiliary data in ARO
and the intersection of Wasserstein balls in DRO. We dis-
cuss open questions for LR to motivate our loss function
choice in this work. Section 3 gives preliminaries on ERM,
ARO, and type-1 Wasserstein DRO. In Section 4, we discuss
that the adversarial logistic loss can be reformulated as a
Lipschitz convex function, enabling the use of Wasserstein
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Figure 1: Traditional ARO optimizes the expected adversar-
ial loss over the empirical distribution PN constructed from
N i.i.d. samples of the (unknown) true data-generating dis-
tribution P0. Replacing PN with a worst-case distribution in
the ball Bε(PN ) gives us its DR counterpart. To reduce the
size of this ball, we intersect it with another ball Bε̂(P̂N̂ )
while ensuring P0 is still included with high confidence. The
latter ball is centered at an empirical distribution P̂N con-
structed from N̂ i.i.d. samples of some auxiliary distribution
P̂. Recent works using auxiliary data in ARO propose opti-
mizing the expected adversarial loss over a mixture Qmix

of PN and P̂N̂ ; we show that this distribution resides in
Bε(PN ) ∩Bε̂(P̂N̂ ) under some conditions.

DRO machinery for Lipschitz losses. Our main contribution
(cf. Figure 1) is in Section 5, where we provide an explicit
reformulation of the distributionally and adversarially robust
LR problem over the intersection of two Wasserstein balls,
prove the NP-hardness of this problem, and derive a convex
relaxation of it. Our work is mainly on optimization where
we focus on how to solve the underlying problems upon
cross-validating Wasserstein ball radii, however, in Sec-
tion 6 we discuss some preliminary statistical approaches
to set such radii. We close the paper with numerical exper-
iments on standard benchmark datasets in Section 7. We
borrow the standard notation in DR machine learning, which
is elaborated on in our Appendices.

2 RELATED WORK

Auxiliary data in ARO. The use of auxiliary data appears
in the ARO literature. In particular, it is shown that addi-
tional unlabeled data sampled from the same (Carmon et al.,
2019; Xing et al., 2022b) or different (Deng et al., 2021)
data-generating distributions could provide adversarial ro-
bustness. Sehwag et al. (2022) show that adversarial robust-
ness can be certified even when it is provided for a synthetic
dataset as long as the distance between its generator and the
true data-generating distribution can be quantified. Gowal
et al. (2021) and Xing et al. (2022a) propose optimizing a
weighted combination of ARO over empirical and synthetic
datasets. We show that the latter approach can be recovered
by our model.

DRO-ARO interactions. In this work, we optimize ARO



against worst-case data-generating distributions residing
in an ambiguity set, where the type-1 Wasserstein met-
ric is used for distances since it is arguably the most
common choice in machine learning (ML) with Lipschitz
losses (Shafieezadeh-Abadeh et al., 2019; Gao, 2023). In
the literature, it is shown that standard ARO is equivalent to
the DRO of the original loss function with a type-∞ Wasser-
stein metric (Staib and Jegelka, 2017; Khim and Loh, 2018;
Pydi and Jog, 2021; Regniez et al., 2022; Frank and Niles-
Weed, 2024). In other words, in the absence of adversarial
attacks, training models adversarially with artificial attacks
provide some distributional robustness. Hence, our DR ARO
approach can be interpreted as optimizing the logistic loss
over the worst-case distribution whose 1-Wasserstein dis-
tance is bounded by a pre-specified radius from at least one
distribution residing in an ∞-Wasserstein ball around the
empirical distribution. Conversely, Sinha et al. (2018) dis-
cuss that while DRO over Wasserstein balls is intractable
for generic losses (e.g., neural networks), its Lagrange relax-
ation resembles ARO and thus ARO yields a certain degree
of (relaxed) distributional robustness (Wu et al., 2020; Bui
et al., 2022; Phan et al., 2023). Such literature suggests
that, when there is no concern about the statistical errors
caused by using empirical distributions (e.g., in very high-
data regimes), one can train DR models to obtain adversarial
robustness guarantees. However, as discussed by Bennouna
and Van Parys (2022), when statistical errors exist, then we
need to be simultaneously robust against adversarial attacks
and statistical errors. To the best of our knowledge, there
have not been works optimizing a pre-specified level of type-
1 Wasserstein distributional robustness (that hedges against
overfitting, Kuhn et al. 2019) and adversarial robustness
(that hedges against adversarial attacks, Goodfellow et al.
2015) simultaneously. To our knowledge, the only approach
that considers the exact DR counterpart of ARO is proposed
by Bennouna et al. (2023), who model distributional ambi-
guity with φ-divergences for neural networks.

Intersecting ambiguity sets in DRO. Recent work started
to explore the intersection of ambiguity sets for different
contexts (Awasthi et al., 2022; Wang et al., 2024) or dif-
ferent metrics (Tanoumand et al., 2023). Our idea of in-
tersecting Wasserstein balls is originated from the “Sur-
round, then Intersect” strategy (Taskesen et al., 2021, §5.2)
to train linear regression under sequential domain adaptation
in a non-adversarial setting (see the work of Shafahi et al.
2020 and Song et al. 2019 for robustness in domain adap-
tation/transfer learning). The aforementioned work focuses
on the squared loss function with an ambiguity set using
the Wasserstein metric developed for the first and second
distributional moments. In a recent study, Rychener et al.
(2024) generalize most of the previous results and prove
that DRO problems over the intersection of two Wasserstein
balls admit tractable convex reformulations whenever the
loss function is the maximum of concave functions. They
also discuss why distributions lying in the intersection of

two Wasserstein balls are more natural candidates for the
unknown true distribution than those that are Wasserstein
barycenters or mixture distributions of the empirical and
auxiliary distributions (referred to as heterogeneous data
sources; see Example 1, Proposition 2, and Corollary 1).

Logistic loss in DRO and ARO. Our choice of LR aligns
with the current directions and open questions in the re-
lated literature. In the DRO literature, even in the absence
of adversarial attacks, the aforementioned work of Taskesen
et al. (2021) on the intersection of Wasserstein ambigu-
ity sets is restricted to linear regression. The authors show
that this problem admits a tractable convex optimization
reformulation, and their proof relies on the properties of
the squared loss. Similarly, Rychener et al. (2024) discuss
that the logistic loss fails to satisfy the piece-wise concav-
ity assumption and is inherently difficult to optimize over
the intersection of Wasserstein balls. We contribute to the
DRO literature for adversarial and non-adversarial settings
because we show that such a problem would be NP-hard
for the logistic loss even without adversarial attacks, and
develop specialized approximation techniques. Our prob-
lem recovers DR LR (Shafieezadeh-Abadeh et al., 2015;
Selvi et al., 2022) as a special case in the absence of ad-
versarial attacks and auxiliary data. Answering theoretical
challenges posed by logistic regression has been useful in
answering more general questions in the DRO literature,
such as DR LR (Shafieezadeh-Abadeh et al., 2015) leading
to DR ML (Shafieezadeh-Abadeh et al., 2019) and mixed-
feature DR LR (Selvi et al., 2022) leading to mixed-feature
DR Lipschitz ML (Belbasi et al., 2023). Finally, in the (non-
DR) ARO literature, there are recent theory developments
on understanding the effect of auxiliary data (e.g., Xing et al.
2022a) specifically for squared and logistic loss functions.

Single-step adversarial training and single-shot ARO.
Our work proposes a single-shot convex optimization pro-
cedure to train logistic models that are both adversarially
and distributionally robust. Although the terminology may
resemble the recent work on single-step adversarial train-
ing for neural networks (Wong et al., 2020; Lin et al., 2023,
2024), the two approaches operate differently. Single-step
adversarial training generates adversarial perturbations us-
ing a single gradient computation at each iteration of iter-
ative model training and improves robustness through up-
dates, with performance typically assessed at intermediate
checkpoints. In contrast, our method solves a convex opti-
mization problem once to obtain a model that satisfies both
forms of robustness by design. To enable tractability, this
approach leverages the convexity and Lipschitz continuity
of the loss function under adversarial attacks, which hold
for the logistic loss function. While single-step adversarial
training applies broadly to general classes of models such
as neural networks, our framework offers a complementary,
optimization-based perspective in the logistic regression
model, where structural properties can be fully exploited.



3 PRELIMINARIES

We consider a binary classification problem where an in-
stance is modeled as (x, y) ∈ Ξ := Rn × {−1,+1} and
the labels depend on the features via Prob[y | x] =
[1 + exp(−y · β⊤x)]−1 for some β ∈ Rn; its associated
loss is the logloss ℓβ(x, y) := log(1 + exp (−y · β⊤x)).

Empirical risk minimization. Let P(Ξ) denote the set of
distributions supported on Ξ and P0 ∈ P(Ξ) denote the
true data-generating distribution. One wants to minimize
the expected logloss over P0, that is

inf
β∈Rn

EP0 [ℓβ(x, y)]. (RM)

In practice, P0 is hardly ever known, and one resorts to
the empirical distribution PN = 1

N

∑
i∈[N ] δξi where ξi =

(xi, yi), i ∈ [N ], are i.i.d. samples from P0 and δξ denotes
the Dirac distribution supported on ξ. The empirical risk
minimization (ERM) problem is thus

inf
β∈Rn

EPN
[ℓβ(x, y)]. (ERM)

Distributionally robust optimization. To be able to de-
fine a distance between distributions, we first define the
following feature-label metric on Ξ.

Definition 1. The distance between instances ξ = (x, y) ∈
Ξ and ξ′ = (x′, y′) ∈ Ξ for κ ≥ 0 and q ≥ 1 is

d(ξ, ξ′) = ∥x− x′∥q + κ · 1[y ̸= y′].

Using this metric, we define the Wasserstein distance.

Definition 2. The type-1 Wasserstein distance between dis-
tributions Q,Q′ ∈ P(Ξ) is defined as

W(Q,Q′) = inf
Π∈C(Q,Q′)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
,

where C(Q,Q′) is the set of couplings of Q and Q′.

In finite-data settings, the distance between the true data-
generating distribution and the empirical distribution is
upper-bounded by some ϵ > 0. The Wasserstein DRO prob-
lem is thus defined as

inf
β∈Rn

sup
Q∈Bε(PN )

EQ[ℓβ(x, y)], (DRO)

where Bε(P) := {Q ∈ P(Ξ) : W(Q,P) ≤ ε} denotes the
Wasserstein ball centered at P ∈ P(Ξ) with radius ε. We
refer to Mohajerin Esfahani and Kuhn (2018) and Kuhn et al.
(2019) for the properties of DRO and estimating ε.

Adversarially robust optimization. The goal of adversar-
ial robustness is to provide robustness against adversarial at-
tacks (Goodfellow et al., 2015). An adversarial attack, in the
widely studied ℓp-noise setting (Croce et al., 2020), perturbs
the features of the test instances (x, y) by adding additive
noise z to x. The adversary chooses the noise vector z, sub-
ject to ∥z∥p ≤ α, so as to maximize the loss ℓβ(x+ z, y)
associated with this perturbed test instance. Therefore, ARO
solves the following optimization problem in the training
stage to hedge against adversarial perturbations at the test
stage:

inf
β∈Rn

EPN
[ sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}]. (ARO)

ARO reduces to ERM when α = 0. Note that ARO is
identical to feature robust training (Bertsimas et al., 2019)
which is not motivated by adversarial attacks, but by the
presence of noisy observations in the training set (Ben-Tal
et al., 2009; Gorissen et al., 2015).

DRO-ARO connection. A connection between ARO and
DRO is noted in the literature (Staib and Jegelka 2017,
Proposition 3.1, Khim and Loh 2018, Lemma 22, Pydi and
Jog 2021, Lemma 5.1, Regniez et al. 2022, Proposition 2.1,
Frank and Niles-Weed 2024, Lemma 3, and Bennouna et al.
2023, §3). Namely, problem ARO is equivalent to a DRO
problem

inf
β∈Rn

sup
Q∈B∞

α (PN )

EQ[ℓβ(x, y)], (1)

where the ambiguity set B∞
α (PN ) is a type-∞ Wasserstein

ball (Givens and Shortt, 1984) with radius α. Hence, in non-
adversarial settings, ARO provides robustness with respect
to the type-∞ Wasserstein distance. In the case of adver-
sarial attacks, it suffers from robust overfitting as discussed
earlier. To address this issue, one straightforward approach
is to revisit (1) and replace α with some α′ > α. This ap-
proach, however, does not provide improvements for the
out-of-sample performance since (i) the type-∞ Wasser-
stein distance employed in problem (1) uses a metric on
the feature space, ignoring labels; (ii) type-∞ Wasserstein
distances do not provide strong out-of-sample performances
in ML (unlike, e.g., the type-1 Wasserstein distance) since
the required radii to provide meaningful robustness guaran-
tees are typically too large (Bennouna and Van Parys, 2022,
§1.2.2, and references therein). We thus study the type-1
Wasserstein counterpart of ARO, which we initiate in the
next section.

4 DISTRIBUTIONALLY AND
ADVERSARIALLY ROBUST LR

Here we derive the Wasserstein DR counterpart of ARO that
will set the ground for our main result in the next section.
We impose the following assumption.



Assumption 1. We are given a finite ε > 0 value satisfying
W(P0,PN ) ≤ ε.

The assumption implies that we know an ε > 0 value satisfy-
ing P0 ∈ Bε(PN ). Typically, however, ε is either estimated
through cross-validation or finite sample statistics, with the
assumption then regarded as holding with high confidence
(see §6 for a review of related results we can borrow). The
distributionally and adversarially robust LR problem is thus:

inf
β∈Rn

sup
Q∈Bε(PN )

EQ[ sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}]. (DR-ARO)

By employing a simple duality trick for the inner sup-
problem, as commonly applied in robust optimization (Ben-
Tal et al., 2009; Bertsimas and Den Hertog, 2022), we can
represent DR-ARO as a standard non-adversarial DRO prob-
lem with an updated loss function, which we name the
adversarial loss.

Observation 1. Problem DR-ARO is equivalent to

inf
β∈Rn

sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)],

where the adversarial loss ℓαβ is defined as

ℓαβ(x, y) := log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)),

for p⋆ satisfying 1/p+ 1/p⋆ = 1. The univariate represen-
tation Lα(z) := log(1 + exp(−z + α · ∥β∥p⋆)) of ℓαβ is
convex and has a Lipschitz modulus of 1.

As a corollary of Observation 1, we can directly employ the
techniques proposed by Shafieezadeh-Abadeh et al. (2019)
to dualize the inner sup-problem of DR-ARO and obtain a
tractable reformulation.

Corollary 1. Problem DR-ARO admits the following
tractable convex optimization reformulation:

inf
β,λ,s

ελ+
1

N

N∑
i=1

si

s.t. ℓαβ(x
i, yi) ≤ si ∀i ∈ [N ]

ℓαβ(x
i,−yi)− λκ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ ,

for q⋆ satisfying 1/q + 1/q⋆ = 1.

The constraints of this problem are exponential cone rep-
resentable (derivation is in the appendices) and for q ∈
{1, 2,∞}, the yielding problem can be solved with the ex-
ponential cone solver of MOSEK (MOSEK ApS, 2023) in
polynomial time (Nesterov, 2018).

5 MAIN RESULT

In §4 we discussed the traditional DRO setting where we
have access to an empirical distribution PN constructed
from N i.i.d. samples of the true data-generating distribution
P0, and we are given (or we estimate) some ε so that P0 ∈
Bε(PN ). Recently in DRO literature, it became a key focus
to study the case where we have access to an additional
auxiliary empirical distribution P̂N̂ constructed from N̂ i.i.d.
samples ξ̂j = (x̂j , ŷj), j ∈ [N̂ ], of some other distribution
P̂; given the increasing availability of useful auxiliary data
in the ARO domain, we explore this direction here. We start
with the following assumption.

Assumption 2. We are given finite ε, ε̂ > 0 values satisfying
W(P0,PN ) ≤ ε and W(P0, P̂N̂ ) ≤ ε̂.

The assumption implies that we know ε, ε̂ > 0 values satis-
fying P0 ∈ Bε(PN )∩Bε̂(P̂N̂ ). In practice, this assumption
is ensured to hold with high confidence by estimating the
ε and ε̂ values; methods across various domains which we
can adopt are reviewed in §6. We want to optimize the ad-
versarial loss over the intersection Bε(PN ) ∩Bε̂(P̂N̂ ):

inf
β∈Rn

sup
Q∈Bε(PN )∩Bε̂(P̂N̂

)

EQ[ℓ
α
β(x, y)]. (Inter-ARO)

Note that Assumption 2 implies that ε and ε̂ guarantee that
Bε(PN ) ∩Bε̂(P̂N̂ ) is nonempty, and problem Inter-ARO
is thus feasible. This problem is expected to outperform DR-
ARO as the ambiguity set is smaller while still including P0.
However, problem Inter-ARO is challenging to solve even
in the absence of adversarial attacks (α = 0) as we reviewed
in §2. To address this challenge, we first reformulate Inter-
ARO as a semi-infinite optimization problem with finitely
many variables.

Proposition 1. Inter-ARO is equivalent to:

inf
β,λ,λ̂
s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

s.t. sup
x∈Rn

{ℓαβ(x, l)− λ∥xi − x∥q − λ̂∥x̂j − x∥q}

≤ si +
κ(1− lyi)

2
λ+ ŝj +

κ(1− lŷj)

2
λ̂

∀(i, j, l) ∈ [N ]× [N̂ ]× {−1, 1}
β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN

+ , ŝ ∈ RN̂
+ .

Even though this problem recovers the tractable prob-
lem DR-ARO as ε̂ → ∞, it is NP-hard in the finite radius
settings. We reformulate Inter-ARO as an adjustable robust
optimization problem (Ben-Tal et al., 2004; Yanıkoğlu et al.,
2019), and borrow tools from this literature to obtain the
following result.

Proposition 2. Inter-ARO is equivalent to an adjustable
RO problem with O(N · N̂) two-stage robust constraints,
which is NP-hard even when N = N̂ = 1.



The adjustable RO literature has developed a rich arsenal of
relaxations that can be leveraged for Inter-ARO. We adopt
the ‘static relaxation technique’ (Bertsimas et al., 2015)
to restrict the feasible region of Inter-ARO and obtain a
tractable approximation.

Theorem 1 (main). The following convex optimization prob-
lem is a feasible relaxation of Inter-ARO:

inf
β,λ,λ̂,s,ŝ

z+
ij ,z

−
ij

ελ+ ε̂λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

s.t. Lα(l · β⊤xi + zl⊤
ij (x̂

j − xi))

≤ si +
κ(1− lyi)

2
λ+ ŝj +

κ(1− lŷj)

2
λ̂

∀(i, j, l) ∈ [N ]× [N̂ ]× {−1, 1}

∥lβ − zl
ij∥q⋆ ≤ λ

∀(i, j, l) ∈ [N ]× [N̂ ]× {−1, 1}

∥zl
ij∥q⋆ ≤ λ̂

∀(i, j, l) ∈ [N ]× [N̂ ]× {−1, 1}

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+

zl
ij ∈ Rn, (i, j, l) ∈ [N ]× [N̂ ]× {−1, 1}.

(Inter-ARO⋆)

Similarly to DR-ARO, the constraints of Inter-ARO⋆ are
exponential cone representable (cf. appendices).

Recall that for ε̂ large enough, Inter-ARO reduces to DR-
ARO. The following corollary shows that, despite Inter-
ARO⋆ being a relaxation of Inter-ARO, a similar property
holds. That is, “not learning anything from auxiliary data”
remains feasible: the static relaxation does not force learn-
ing from P̂N̂ , and it learns from auxiliary data only if the
objective improves.

Corollary 2. Feasibility of ignoring auxiliary data: Any
feasible solution (β, λ, s) of DR-ARO can be used to re-
cover a feasible solution (β, λ, λ̂, s, ŝ, z+

ij , z
−
ij) for Inter-

ARO⋆ with λ̂ = 0, ŝ = 0, and z+
ij = z−

ij = 0.
Convergence to Inter-ARO: The optimal value of Inter-
ARO⋆ converges to the optimal value of Inter-ARO, with
the same set of β solutions, as ε̂ → ∞.

In light of Corollary 2, Appendix D.1 discusses that some
simulations in our numerical experiments chose not to in-
corporate the auxiliary data by setting a sufficiently large
ε̂. We close the section by discussing how Inter-ARO can
recover some problems in the DRO and ARO literature.
Firstly, recall that Inter-ARO can ignore the auxiliary data
once ε̂ is set large enough, reducing this problem to DR-
ARO. Moreover, notice that α = 0 reduces ℓαβ to ℓβ, hence
for α = 0 and ε̂ = ∞ Inter-ARO recovers the Wasserstein
LR model of Shafieezadeh-Abadeh et al. (2015). We next

relate Inter-ARO to the problems in the ARO literature that
use auxiliary data. The works in this literature (Gowal et al.,
2021; Xing et al., 2022a) solve the following

inf
β∈Rn

1

N + wN̂

[ ∑
i∈[N ]

sup
zi∈Bp(α)

{ℓβ(xi + zi, yi)}+

w
∑
j∈[N̂ ]

sup
zj∈Bp(α)

{ℓβ(x̂j + zj , ŷj)}
]
,

(2)

for some w > 0, where Bp(α) := {z ∈ Rn : ∥z∥p ≤ α}.
We observe that (2) resembles a variant of ARO that replaces
the empirical distribution PN with its mixture with P̂N̂ :

Observation 2. Problem (2) is equivalent to

inf
β∈Rn

EQmix
[ℓαβ(x, y)] (3)

where Qmix := λ · PN + (1− λ) · P̂N̂ for λ = N

N+wN̂
.

We give a condition on ε and ε̂ to guarantee that the mixture
distribution introduced in Proposition 2 lives in Bε(PN ) ∩
Bε̂(P̂N̂ ), that is, the distribution Qmix will be feasible in
the sup problem of Inter-ARO.

Proposition 3. For any λ ∈ (0, 1) and Qmix = λ · PN +

(1−λ) · P̂N̂ , we have Qmix ∈ Bε(PN )∩Bε̂(P̂N̂ ) whenever
ε+ ε̂ ≥ W(PN , P̂N̂ ) and ε̂

ε = λ
1−λ .

For λ = N

N+N̂
, if the intersection Bε(PN ) ∩ Bε̂(P̂N̂ ) is

nonempty, Proposition 3 implies that a sufficient condition
for this intersection to include Qmix is ε̂/ε = N/N̂ , which
is intuitive since the radii of Wasserstein ambiguity sets
are chosen inversely proportional to the number of sam-
ples (Kuhn et al., 2019, Theorem 18).

6 SETTING WASSERSTEIN RADII

Thus far, we have assumed knowledge of DRO ball radii ε
and ε̂ that satisfy Assumptions 1 and 2. In this section, we
employ Wasserstein finite-sample statistics techniques to
estimate these values.

Setting ϵ for DR-ARO. In the following theorem, we
present tight characterizations for ε so that the ball Bε(PN )
includes the true distribution P0 with arbitrarily high confi-
dence. We show that for an ε chosen in such a manner, DR-
ARO is well-defined. The full description of this result is
available in our appendices.

Theorem 2 (abridged collection of results from Fournier
and Guillin 2015; Kuhn et al. 2019; Yue et al. 2022). For
light-tailed distribution P0 and ε ≥ O( log(η

−1)
N )1/n for

η ∈ (0, 1), we have: (i) P0 ∈ Bε(PN ) with 1−η confidence;
(ii) DR-ARO overestimates the expected loss for P0 with
1− η confidence; (iii) DR-ARO is asymptotically consistent
P0-a.s.; (iv) worst-case distributions for optimal solutions
of DR-ARO are supported on at most N + 1 outcomes.



We next derive an analogous result for Inter-ARO.

Choosing ϵ and ε̂ in Inter-ARO. Recall that Inter-ARO
revises DR-ARO by intersecting Bε(PN ) with Bε̂(P̂N̂ ).
We need a nonempty intersection for Inter-ARO to be
well-defined. A necessary and sufficient condition follows
from the triangle inequality ε + ε̂ ≥ W(PN , P̂N̂ ), where
W(PN , P̂N̂ ) can be computed with linear optimization as
both distributions are discrete. We also want this intersec-
tion to include P0 with high confidence, in order to satisfy
Assumption 2. We next provide a tight characterization for
such ε, ε̂. The full description of this result is available in
our appendices.

Theorem 3 (abridged). For light-tailed P0 and P̂, if ε ≥
O(

log(η−1
1 )

N )1/n and ε̂ ≥ W(P0, P̂) + O(
log(η−1

2 )

N̂
)1/n for

η1, η2 ∈ (0, 1) with η := η1 + η2 < 1, we have: (i) P0 ∈
Bε(PN ) ∩Bε̂(P̂N̂ ) with 1− η confidence; (ii) Inter-ARO
overestimates true loss with 1− η confidence.

Remark 1. Inter-ARO is not asymptotically consistent,
given that N̂ → ∞ will let ε̂ → W(P0, P̂) due to the
non-zero constant distance between the true distribution P0

and the auxiliary distribution P̂. Inter-ARO is thus not useful
in asymptotic data regimes.

Remark 2. The assumption that true data-generating distri-
butions are light-tailed is satisfied when Ξ is compact, and
it is a common assumption for even simple sample average
approximation techniques (Mohajerin Esfahani and Kuhn,
2018, Assumption 3.3).

Knowledge of W(P0, P̂). In Theorem 3, we use W(P0, P̂)
explicitly. This distance, however, is typically unknown, and
a common approach is to cross-validate it1. This would be
applicable in our setting thanks to Corollary 2, because the
relaxation Inter-ARO⋆ does not force learning from the aux-
iliary data unless it is useful, that is, one can seek evidence
for the usefulness of the auxiliary data via cross-validation.
Moreover, there are several domains where W(P0, P̂) is
known exactly. For some special cases, we can use direct do-
main knowledge (e.g., the “Uber vs Lyft” example of Taske-
sen et al. 2021). A recent example comes from learning
from multi-source data, where P0 is named the target dis-
tribution and P̂ is the source distribution (Rychener et al.,
2024, §1). Another domain is private data release, where
a data holder shares a subset of opt-in data to form PN ,
and generates a privacy-preserving synthetic dataset from
the rest. The (privately generated) synthetic distribution has
a known nonzero Wasserstein distance from the true data-
generating distribution (Dwork and Roth, 2014; Ullman and
Vadhan, 2020). See (Rychener et al., 2024, §5) for more
scenarios that enable quantifying W(P0, P̂). Alternatively,

1In practice, distance between the unknown true and auxiliary
data-generating distributions is also cross-validated in the transfer
learning and domain adaptation literature (Zhong et al., 2010).

one can directly rely on W(PN , P̂) if it is known, especially
when synthetic data generators are trained on the empirical
dataset. By employing Wasserstein GANs, which minimize
the Wasserstein-1 distance, the distance between the gener-
ated distribution and the training distribution is minimized.
This ensures that the synthetic distribution remains within a
radius of the training distribution (Arjovsky et al., 2017).

7 EXPERIMENTS

We conduct a series of experiments, each having a different
source of auxiliary data, to test the proposed DR ARO mod-
els. We use the following abbreviations, where ‘solution’
refers to the optimal β to make decisions:

- ERM: Solution of problem ERM (i.e., naiv̈e LR);

- ARO: Solution of problem ARO (i.e., adversarially ro-
bust LR);

- ARO+Aux: Solution of problem (2) (i.e., replacing the
empirical distribution of ARO with its mixture with
auxiliary data);

- DRO+ARO: Solution of DR-ARO (i.e., the Wasserstein
DR counterpart of ARO);

- DRO+ARO+Aux: Solution of Inter-ARO⋆ (i.e., relax-
ation of Inter-ARO that intersects the ambiguity set
of DR-ARO with an auxiliary Wasserstein ball);

All parameters are 5-fold cross-validated from var-
ious grids. The Wasserstein radii use the grid
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0, 1, 2, 5, 10},
which is sufficient to ensure that the rule-of-thumb
ε = O(1/

√
N) is included around the center of this

grid for all experiments conducted. To ensure that the
intersections of Wasserstein balls are nonempty, we
compute W(PN , P̂N̂ ) once, and discard all combinations
(ε, ε̂) with ε + ε̂ < W(PN , P̂N̂ ). The weight param-
eter ω of ARO+Aux is cross-validated from the grid
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0, 1}. We fix the
norms defining the feature-label metric and the adversarial
attacks to ℓ1- and ℓ2-norms, respectively. The parameter κ
(cf. Definition 1) is cross-validated from the grid {1,

√
n, n},

and since n is the number of features, this grid includes
cases where label uncertainty is equivalent to uncertainty
of a single feature (κ = 1), label uncertainty is equivalent
to uncertainty of all features combined (κ = n), and an
intermediary case (κ =

√
n). The case of ignoring label

uncertainty (κ = ∞) is purposely not included in the grid,
since one of the key reasons behind robust overfitting is that
while ARO is equivalent to a distributionally robust model,
the underlying ambiguity is only around the features (cf.
our discussion in §2). All simulated adversarial attacks are
worst-case ℓp-attacks that are instance-wise at test time, and
the experiments assume we know the strength α and norm
ℓp of the adversarial attacks.



All experiments are conducted in Julia and executed on Intel
Xeon 2.66GHz processors with 16GB memory in single-
core mode. We use MOSEK’s exponential cone optimizer
to solve all problems. To interpret the results accurately, re-
call that DRO+ARO and DRO+ARO+Aux are the DR models
that we propose. Note also that ERM, ARO, and DRO+ARO
do not utilize auxiliary data, while DRO+ARO+Aux and
ARO+Aux have access to the same auxiliary datasets across
all experiments (i.e., we do not sample different auxiliary
distributions for different methods to ensure that our com-
parisons are made ceteris paribus). Moreover, while ARO
does not have access to auxiliary data, one can interpret
ARO+Aux as a generalization of ARO that also has access
to auxiliary datasets since it takes a mixture (with mixture
weight ω) of the empirical dataset with the auxiliary dataset.
For example, ω = 1 would simply revise ARO by appending
the empirical dataset with the auxiliary dataset.

7.1 UCI DATASETS (AUXILIARY DATA IS
SYNTHETICALLY GENERATED)

We compare the out-of-sample error rates of each method on
10 UCI datasets for binary classification (Kelly et al., 2023).
For each dataset, we run 10 simulations as follows: (i) Select
40% of the data as a test set (Nte ∝ 0.4); (ii) Sample 25%
of the remaining to form a training set (N ∝ 0.6 · 0.25);
(iii) The rest (N̂ ∝ 0.6 · 0.75) is used to fit a synthetic
generator Gaussian Copula from the SDV package (Patki
et al., 2016), which is then used to generate auxiliary data.
The mean errors on the test set are reported in Table 1
for ℓ2-attacks of strength α = 0.05. The best error is al-
ways achieved by DRO+ARO+Aux, followed by DRO+ARO,
DRO+Aux, ARO, ERM, respectively. In our appendices, we
report similar results for attack strengths α ∈ {0, 0.05, 0.2},
and share data preprocessing details and standard deviations
of out-of-sample errors.

7.2 MNIST/EMNIST DATASETS (AUXILIARY
DATA IS OUT-OF-DOMAIN)

We use the MNIST digits dataset (LeCun et al., 1998) to
classify whether a digit is 1 or 7. For an auxiliary dataset, we
use the larger EMNIST digits dataset (Cohen et al., 2017),
whose authors summarize that this dataset has additional
samples collected from a different group of individuals (high
school students). Since EMNIST digits include MNIST dig-
its, we remove the latter from the EMNIST dataset. We
simulate the following 25 times: (i) Sample 1,000 instances
from the MNIST dataset as a training set; (ii) The remaining
instances in the MNIST dataset are our test set; (iii) Sample
1,000 instances from the EMNIST dataset as an auxiliary
dataset. Table 2 reports the mean out-of-sample errors in
various adversarial attack regimes. The results are analogous
to the UCI experiments. Additionally, note that in the ab-
sence of adversarial attacks (α = 0), DRO+ARO coincides

with the Wasserstein LR model of Shafieezadeh-Abadeh
et al. (2015), and the results thus imply that even without
adversarial attacks, we can improve the state-of-the-art DR
model by revising its ambiguity set in light of auxiliary data.

7.3 ARTIFICIAL EXPERIMENTS (AUXILIARY
DATA IS PERTURBED)

We generate empirical and auxiliary datasets by control-
ling their data-generating distributions (more details in the
appendices). We simulate 25 cases, each with N = 100
training, N̂ = 200 auxiliary, and Nte = 10, 000 test in-
stances and n = 100 features. The performance of bench-
mark models with varying attacks is available in Figure 2
(left). ERM provides the worst performance, followed by
ARO. The relationship between DRO+ARO and ARO+Aux
is not monotonic: the former works better in larger attack
regimes, conforming to the robust overfitting phenomenon.
Finally, Adv+DRO+Aux always performs the best. We con-
duct a similar simulation for datasets with n = 100, and
gradually increase N = N̂ to report median (50% ± 15%
quantiles shaded) runtimes of each method (cf. Figure 2,
right). The fastest methods is ARO, followed by ERM,
ARO+Aux, DRO+ARO, and DRO+ARO+Aux. The slowest
is DRO+ARO+Aux, but the runtime scales graciously.

8 CONCLUSIONS

We formulate the distributionally robust counterpart of ad-
versarially robust LR. Additionally, we demonstrate how
to effectively utilize appropriately curated auxiliary data
by intersecting Wasserstein balls. We illustrate the superi-
ority of the proposed approach in terms of out-of-sample
performance and confirm its scalability in practical settings.

From a theoretical point of view, it would be natural to ex-
tend our work to more loss functions, as is typical for DRO
studies stemming from LR. To be able to optimize Inter-
ARO⋆ for very large-dimensional datasets, an interesting
future work is to investigate first-order optimization meth-
ods that do not rely on off-the-shelf solvers. We also believe
a cutting-plane method tailored for Inter-ARO⋆ can also
help us scale this problem for large-dimensional problems,
since we would avoid monolithically optimizing a problem
with O(N · N̂) exponential cone constraints.

From a practical perspective, the ability to optimize Inter-
ARO⋆ in high-dimensional settings would also enable fine-
tuning the final layer of a pre-trained neural network for
binary classification, since this corresponds to logistic re-
gression under a sigmoid activation. In our image recogni-
tion experiments, we used the MNIST dataset, as EMNIST
served as a natural choice for auxiliary data. Identifying
a suitable auxiliary dataset for CIFAR (Krizhevsky et al.,
2009) could similarly support new experimental directions.



Table 1: Out-of-sample errors of UCI experiments with ℓ2-attacks of strength α = 0.05.

Data ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

absent 44.02% 38.82% 35.95% 34.22% 32.64%
anneal 18.08% 16.61% 14.97% 13.50% 12.78%
audio 21.43% 21.54% 17.03% 11.76% 9.01%
breast-c 4.74% 4.93% 3.87% 3.06% 2.52%
contrac 44.14% 42.86% 40.98% 40.00% 39.65%
derma 15.97% 16.46% 13.47% 12.78% 10.84%
ecoli 16.30% 14.67% 13.26% 11.11% 9.78%
spam 11.35% 10.23% 10.16% 9.83% 9.81%
spect 33.75% 29.69% 25.78% 25.47% 21.56%
p-tumor 21.84% 20.81% 17.35% 16.18% 14.78%

Table 2: Out-of-sample errors of MNIST/EMNIST experiments with various attacks.

Attack ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

No attack (α = 0) 1.55% 1.55% 1.19% 0.64% 0.53%
ℓ1 (α = 68/255) 2.17% 1.84% 1.33% 0.66% 0.57%
ℓ2 (α = 128/255) 99.93% 3.36% 2.54% 2.40% 2.12%
ℓ∞ (α = 8/255) 100.00% 2.60% 2.38% 2.20% 1.95%

Figure 2: Out-of-sample errors under varying attack strengths (left) and runtimes under varying numbers of empirical and
auxiliary instances (right) of artificial experiments.

Finally, recent breakthroughs in foundation models naturally
pose the question of whether our ideas in this work apply
to these models. For example, Ye et al. (2022) use a pre-
trained language model (PLM) to generate synthetic pairs
of text sequences and labels which are then used to train
downstream models. It would be interesting to adapt our
ideas to the text domain to explore robustness in the presence
of two PLMs.

Acknowledgements

Aras Selvi’s work was done during an internship at JP Mor-
gan AI Research. The authors gratefully acknowledge the
detailed and constructive feedback provided by the anony-
mous reviewers and the anonymous area chair. Revising the
paper has substantially improved the quality of this work.

DISCLAIMER

This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase &
Co. and its affiliates (“JP Morgan”) and is not a product of
the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or reliability
of the information contained herein. This document is not
intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.



Bibliography

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Inter-
national Conference on Machine Learning, 2017.

Pranjal Awasthi, Christopher Jung, and Jamie Morgenstern.
Distributionally robust data join. arXiv:2202.05797,
2022.

Reza Belbasi, Aras Selvi, and Wolfram Wiesemann. It’s
all in the mix: Wasserstein machine learning with mixed
features. arXiv:2312.12230, 2023.

Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer,
and Arkadi Nemirovski. Adjustable robust solutions of
uncertain linear programs. Mathematical Programming,
99(2):351–376, 2004.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Ne-
mirovski. Robust Optimization. Princeton University
Press, 2009.

Amine Bennouna and Bart Van Parys. Holistic robust data-
driven decisions. arXiv:2207.09560, 2022.

Amine Bennouna, Ryan Lucas, and Bart Van Parys. Certi-
fied robust neural networks: Generalization and corrup-
tion resistance. In International Conference on Machine
Learning, 2023.

Dimitris Bertsimas and Dick Den Hertog. Robust and Adap-
tive Optimization. Dynamic Ideas, 2022.

Dimitris Bertsimas, Vineet Goyal, and Brian Y. Lu. A tight
characterization of the performance of static solutions in
two-stage adjustable robust linear optimization. Mathe-
matical Programming, 150(2):281–319, 2015.

Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, and
Ying Daisy Zhuo. Robust classification. INFORMS Jour-
nal on Optimization, 1(1):2–34, 2019.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-
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A NOTATION

Throughout the paper, bold lowercase letters denote vectors, while standard lowercase letters are reserved for scalars.
A generic data instance is modeled as ξ = (x, y) ∈ Ξ := Rn × {−1,+1}. For any p > 0, ∥x∥p denotes the p-norm
(
∑n

i=1|xi|p)
1/p and ∥x∥p⋆ is its dual norm where 1/p + 1/p⋆ = 1 with the convention of 1/1 + 1/∞ = 1. The set of

probability distributions supported on Ξ is denoted by P(Ξ). The Dirac measure supported on ξ is denoted by δξ. The
logloss is defined as ℓβ(x, y) = log(1 + exp(−y · β⊤x)) and its associated univariate loss is L(z) = log(1 + exp(−z))
so that L(y · β⊤x) = ℓβ(x, y). The exponential cone is denoted by Kexp = cl({ω ∈ R3 : ω1 ≥ ω2 · exp(ω3/ω2), ω1 >
0, ω2 > 0}) where cl is the closure operator. The Lipschitz modulus of a univariate function f is defined as Lip(f) :=
supz,z′∈R {|f(z)− f(z′)|/|z − z′| : z ̸= z} whereas its effective domain is dom(f) = {z : f(z) < +∞}. For a function
f : Rn 7→ R, its convex conjugate is f∗(z) = supx∈Rn z⊤x − f(x). We reserve α ≥ 0 for the radii of the norms of
adversarial attacks on the features and ε ≥ 0 for the radii of distributional ambiguity sets.

B MISSING PROOFS

B.1 PROOF OF OBSERVATION 1

For any β ∈ Rn, with standard robust optimization arguments (Ben-Tal et al., 2009; Bertsimas and Den Hertog, 2022), we
can show that

sup
z:∥z∥p≤α

{ℓβ(x+ z, y)}

⇐⇒ sup
z:∥z∥p≤α

{log(1 + exp(−y · β⊤(x+ z)))}

⇐⇒ log

(
1 + exp

(
sup

z:∥z∥p≤α

{−y · β⊤(x+ z)}

))

⇐⇒ log

(
1 + exp

(
−y · β⊤x+ α · sup

z:∥z∥p≤1

{−y · β⊤z}

))
⇐⇒ log(1 + exp(−y · β⊤x+ α · ∥−y · β∥p⋆))

⇐⇒ log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)),

where the first step follows from the definition of logloss, the second step follows from the fact that log and exp are
increasing functions, the third step takes the constant terms out of the sup problem and exploits the fact that the optimal
solution of maximizing a linear function will be at an extreme point of the ℓp-ball, the fourth step uses the definition of dual
norm, and finally, the redundant −y ∈ {−1,+1} is omitted from the dual norm. We can therefore define the adversarial loss
ℓαβ(x, y) := log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) where α models the strength of the adversary, β is the decision vector,
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and (x, y) is an instance. Replacing supz:∥z∥p≤α{ℓβ(x+ z, y)} in DR-ARO with ℓαβ(x, y) concludes the equivalence of
the optimization problem.

Furthermore, to see Lip(Lα) = 1, firstly note that since Lα(z) = log(1+exp(−z+α ·∥β∥p⋆)) is differentiable everywhere
in z and its gradient Lα′ is bounded everywhere, we have that Lip(Lα) is equal to supz∈R{|Lα′(z)|}. We thus have:

Lα′(z) =
− exp(−z + α · ∥β∥p⋆)

1 + exp(−z + α · ∥β∥p⋆)
=

−1

1 + exp(z − α · ∥β∥p⋆)
∈ (−1, 0)

and |Lα′(z)| = [1 + exp(z − α · ∥β∥p⋆)]
−1 −→ 1 as z −→ −∞.

B.2 PROOF OF COROLLARY 1

Observation 1 lets us represent DR-ARO as the DR counterpart of empirical minimization of ℓαβ:

minimize
β

sup
Q∈Bε(PN )

EQ
[
ℓαβ(x, y)

]
subject to β ∈ Rn.

(4)

Since the univariate loss Lα(z) := log(1 + exp(−z + α · ∥β∥p⋆)) satisfying the identity Lα(⟨y · x,β⟩) = ℓαβ(x, y) is
Lipschitz continuous, Theorem 14 (ii) of Shafieezadeh-Abadeh et al. (2019) is immediately applicable. We can therefore
rewrite (4) as:

minimize
β, λ, s

λ · ε+ 1

N

∑
i∈[N ]

si

subject to Lα(⟨yi · x,β⟩) ≤ si ∀i ∈ [N ]
Lα(⟨−yi · x,β⟩)− λ · κ ≤ si ∀i ∈ [N ]
Lip(Lα) · ∥β∥q⋆ ≤ λ
β ∈ Rn, λ ≥ 0, s ∈ RN .

Replacing Lip(Lα) = 1 and substituting the definition of Lα concludes the proof.

B.3 PROOF OF PROPOSITION 1

We prove Proposition 1 by constructing the optimization problem in its statement. We will thus dualize the inner sup-problem
of Inter-ARO for fixed β. To this end, we present a sequence of reformulations to the inner problem and then exploit strong
semi-infinite duality.

By interchanging ξ = (x, y), we first rewrite the inner problem as

maximize
Q,Π,Π̂

∫
ξ∈Ξ

ℓαβ(ξ)Q(dξ)

subject to

∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε∫
ξ∈Ξ

Π(dξ,dξ′) = PN (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π̂(dξ,dξ′) ≤ ε̂∫
ξ∈Ξ

Π̂(dξ,dξ′) = P̂N̂ (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π̂(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ

Q ∈ P(Ξ), Π ∈ P(Ξ2), Π̂ ∈ P(Ξ2).



Here, the first three constraints specify that Q and PN have a Wasserstein distance bounded by ε from each other, modeled
via their coupling Π. The latter three constraints similarly specify that Q and P̂N̂ are at most ε̂ away from each other,
modeled via their coupling Π̂. As Q lies in the intersection of two Wasserstein balls in Inter-ARO, the marginal Q is shared
between Π and Π̂. We can now substitute the third constraint into the objective and the last constraint and obtain:

maximize
Π,Π̂

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′)

subject to

∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε∫
ξ∈Ξ

Π(dξ,dξ′) = PN (dξ′) ∀ξ′ ∈ Ξ∫
ξ,ξ′∈Ξ2

d(ξ, ξ′)Π̂(dξ,dξ′) ≤ ε̂∫
ξ∈Ξ

Π̂(dξ,dξ′) = P̂N̂ (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π̂(dξ,dξ′) =

∫
ξ′∈Ξ

Π(dξ,dξ′) ∀ξ ∈ Ξ

Π ∈ P(Ξ2), Π̂ ∈ P(Ξ2).

Denoting by Qi(dξ) := Π(dξ | ξi) the conditional distribution of Π upon the realization of ξ′ = ξi and exploiting the fact
that PN is a discrete distribution supported on the N data points {ξi}i∈[N ], we can use the marginalized representation
Π(dξ,dξ′) = 1

N

∑N
i=1 δξi(dξ′)Qi(dξ). Similarly, we can introduce Q̂i(dξ) := Π̂(dξ | ξ̂i) for {ξ̂i}i∈[N̂ ] to exploit the

marginalized representation Π̂(dξ,dξ′) = 1

N̂

∑N̂
j=1 δξ̂j (dξ

′)Q̂j(dξ). By using this marginalization representation, we can
use the following simplification for the objective function:

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′) =
1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)

∫
ξ′∈Ξ

δξi(dξ′)Qi(dξ) =
1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)Qi(dξ).

Applying analogous reformulations to the constraints leads to the following reformulation of the inner sup problem
of Inter-ARO:

maximize
Q,Q̂

1

N

N∑
i=1

∫
ξ∈Ξ

ℓαβ(ξ)Qi(dξ)

subject to
1

N

N∑
i=1

∫
ξ∈Ξ

d(ξ, ξi)Qi(dξ) ≤ ε

1

N̂

N̂∑
j=1

∫
ξ∈Ξ

d(ξ, ξ̂j)Q̂j(dξ) ≤ ε̂

1

N

N∑
i=1

Qi(dξ) =
1

N̂

N̂∑
j=1

Q̂j(dξ) ∀ξ ∈ Ξ

Qi ∈ P(Ξ), Q̂j ∈ P(Ξ) ∀i ∈ [N ], ∀j ∈ [N̂ ].

We now decompose each Qi into two measures corresponding to y = ±1, so that Qi(d(x, y)) = Qi
+1(dx) for y = +1

and Qi(d(x, y)) = Qi
−1(dx) for y = −1. We similarly represent each Q̂j via Q̂j

+1 and Q̂j
−1 depending on y. Note that

these new measures are not probability measures as they do not integrate to 1, but non-negative measures supported on Rn



(denoted ∈ P+(Rn)). We get:

maximize
Q±1,Q̂±1

1

N

N∑
i=1

∫
x∈Rn

[ℓαβ(x,+1)Qi
+1(dx) + ℓαβ(x,−1)Qi

−1(dx)]

subject to
1

N

N∑
i=1

∫
x∈Rn

[d((x,+1), ξi)Qi
+1(dx) + d((x,−1), ξi)Qi

−1(dx)] ≤ ε

1

N̂

N̂∑
j=1

∫
x∈Rn

[d((x,+1), ξ̂j)Q̂j
+1(dx) + d((x,−1), ξ̂j)Q̂j

−1(dx)] ≤ ε̂∫
x∈Rn

Qi
+1(dx) +Qi

−1(dx) = 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) = 1 ∀j ∈ [N̂ ]

1

N

N∑
i=1

Qi
+1(dx) =

1

N̂

N̂∑
j=1

Q̂j
+1(dx) ∀x ∈ Rn

1

N

N∑
i=1

Qi
−1(dx) =

1

N̂

N̂∑
j=1

Q̂j
−1(dx) ∀x ∈ Rn

Qi
±1 ∈ P+(Rn), Q̂j

±1 ∈ P+(Rn) ∀i ∈ [N ], j ∈ [N̂ ].

Next, we explicitly write the definition of the metric d(·, ·) in the first two constraints as well as use auxiliary measures
A±1 ∈ P+(Rn) to break down the last two equality constraints:



maximize
A±1,Q±1,Q̂±1

1

N

N∑
i=1

∫
x∈Rn

[ℓαβ(x,+1)Qi
+1(dx) + ℓαβ(x,−1)Qi

−1(dx)]

subject to
1

N

∫
x∈Rn

[
κ ·

∑
i∈[N ]:yi=−1

Qi
+1(dx) + κ ·

∑
i∈[N ]:yi=+1

Qi
−1(dx)+

N∑
i=1

∥x− xi∥q · [Qi
+1(dx) +Qi

−1(dx)]
]
≤ ε

1

N̂

∫
x∈Rn

[
κ ·

∑
j∈[N ]:ŷj=−1

Q̂j
+1(dx) + κ ·

∑
j∈[N ]:ŷj=+1

Q̂j
−1(dx)+

N̂∑
j=1

∥x− x̂j∥q · [Q̂j
+1(dx) + Q̂j

−1(dx)]
]
≤ ε̂∫

x∈Rn

Qi
+1(dx) +Qi

−1(dx) = 1 ∀i ∈ [N ]∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) = 1 ∀j ∈ [N̂ ]

1

N

N∑
i=1

Qi
+1(dx) = A+1(dx) ∀x ∈ Rn

1

N̂

N̂∑
j=1

Q̂j
+1(dx) = A+1(dx) ∀x ∈ Rn

1

N

N∑
i=1

Qi
−1(dx) = A−1(dx) ∀x ∈ Rn

1

N̂

N̂∑
j=1

Q̂j
−1(dx) = A−1(dx) ∀x ∈ Rn

A±1 ∈ P+(Rn), Qi
±1 ∈ P+(Rn), Q̂j

±1 ∈ P+(Rn) ∀i ∈ [N ], j ∈ [N̂ ].

The following semi-infinite optimization problem, obtained by standard algebraic duality, is a strong dual to the above
problem since ε, ε̂ > 0 (Shapiro, 2001).



minimize
λ,λ̂,s,ŝ,p±1,p̂±1

1

N

Nελ+ N̂ ε̂λ̂+

N∑
i=1

si +

N̂∑
j=1

ŝj


subject to κ

1− yi

2
λ+ λ∥xi − x∥q + si +

p+1(x)

N
≥ ℓαβ(x,+1) ∀i ∈ [N ], ∀x ∈ Rn

κ
1− ŷj

2
λ̂+ λ̂∥x̂j − x∥q + ŝj +

p̂+1(x)

N̂
≥ 0 ∀j ∈ [N̂ ], ∀x ∈ Rn

κ
1 + yi

2
λ+ λ∥xi − x∥q + si +

p−1(x)

N
≥ ℓαβ(x,−1) ∀i ∈ [N ], ∀x ∈ Rn

κ
1 + ŷj

2
λ̂+ λ̂∥x̂j − x∥q + ŝj +

p̂−1(x)

N̂
≥ 0 ∀j ∈ [N̂ ], ∀x ∈ Rn

p+1(x) + p̂+1(x) ≤ 0

p−1(x) + p̂−1(x) ≤ 0

λ ∈ R+, λ̂ ∈ R+, s ∈ RN , ŝ ∈ RN̂

p±1 : Rn 7→ R, p̂±1 : Rn 7→ R.

To eliminate the (function) variables p+1 and p̂+1, we first summarize the constraints they appear
p+1(x) ≥ N ·

[
ℓαβ(x,+1)− si − λ∥xi − x∥q − κ

1− yi

2
λ

]
∀i ∈ [N ], ∀x ∈ Rn

p̂+1(x) ≥ N̂ ·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1− ŷj

2
λ̂

]
∀j ∈ [N̂ ], ∀x ∈ Rn

p+1(x) + p̂+1(x) ≤ 0 ∀x ∈ Rn,

and notice that this system is equivalent to the epigraph-based reformulation of the following constraint

ℓαβ(x,+1)− si − λ∥xi − x∥q − κ
1− yi

2
λ+

N̂

N
·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1− ŷj

2
λ̂

]
≤ 0

∀i ∈ [N ], ∀j ∈ [N̂ ], ∀x ∈ Rn.

We can therefore eliminate p+1 and p̂+1. We can also eliminate p−1 and p̂−1 since we similarly have:
p−1(x) ≥ N ·

[
ℓαβ(x,−1)− si − λ∥xi − x∥q − κ

1 + yi

2
λ

]
∀i ∈ [N ], ∀x ∈ Rn

p̂−1(x) ≥ N̂ ·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1 + ŷj

2
λ̂

]
∀j ∈ [N̂ ], ∀x ∈ Rn

p−1(x) + p̂−1(x) ≤ 0 ∀x ∈ Rn

⇐⇒ ℓαβ(x,−1)− si − λ∥xi − x∥q − κ
1 + yi

2
λ+

N̂

N
·
[
−ŝj − λ̂∥x̂j − x∥q − κ

1 + ŷj

2
λ̂

]
≤ 0

∀i ∈ [N ], ∀j ∈ [N̂ ], ∀x ∈ Rn.

This trick of eliminating p±1, p̂±1 is due to the auxiliary distributions A±1 that we introduced; without them, the dual



problem is substantially harder to work with. We therefore obtain the following reformulation of the dual problem

minimize
λ,λ̂,s,ŝ

1

N

Nελ+ N̂ ε̂λ̂+

N∑
i=1

si +

N̂∑
j=1

ŝj


subject to sup

x∈Rn

{ℓαβ(x,+1)− λ∥xi − x∥q −
N̂

N
λ̂∥x̂j − x∥q} ≤

si + κ
1− yi

2
λ+

N̂

N
·
[
ŝj + κ

1− ŷj

2
λ̂

]
∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ∥xi − x∥q −
N̂

N
λ̂∥x̂j − x∥q} ≤

si + κ
1 + yi

2
λ+

N̂

N
·
[
ŝj + κ

1 + ŷj

2
λ̂

]
∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ,

where we replaced the ∀x ∈ Rn with the worst case realizations by taking the suprema of the constraints over x. We also
added non-negativity on the definition of s and ŝ which is without loss of generality since this is implied by the first two
constraints, which is due to the fact that in the primal reformulation the “integrates to 1” constraints (whose associated dual
variables are s and ŝ) can be written as∫

x∈Rn

Qi
+1(dx) +Qi

−1(dx) ≤ 1 ∀i ∈ [N ],∫
x∈Rn

Q̂j
+1(dx) + Q̂j

−1(dx) ≤ 1 ∀j ∈ [N̂ ],

due to the objective pressure. Relabeling
N̂

N
λ̂ as λ̂ and

N̂

N
ŝj as ŝj simplifies the problem to:

minimize
λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
i=1

si +
1

N̂

N̂∑
i=1

ŝj

subject to sup
x∈Rn

{ℓαβ(x,+1)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{ℓαβ(x,−1)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Combining all the sup-constraints with the help of an an auxiliary parameter l ∈ {−1, 1} and replacing this problem with
the inner problem of Inter-ARO concludes the proof.

B.4 PROOF OF PROPOSITION 2

We first present a technical lemma that will allow us to rewrite a specific type of difference of convex functions (DC)
maximization problem that appears in the constraints of Inter-ARO. Rewriting such DC maximization problems is one
of the key steps in reformulating Wasserstein DRO problems, and our lemma is inspired from Shafieezadeh-Abadeh et al.
(2019, Lemma 47), Shafieezadeh-Abadeh et al. (2023, Theorem 3.8), and Belbasi et al. (2023, Lemma 1) who reformulate
maximizing the difference of a convex function and a norm. Our DRO problem Inter-ARO, however, comprises two
ambiguity sets, hence the DC term that we investigate will be the difference between a convex function and the sum of two
norms. This requires a new analysis and we will see that Inter-ARO is NP-hard due to this additional difficulty.



Lemma 1. Suppose that L : R 7→ R is a closed convex function, and ∥·∥q is a norm. For vectors ω,a, â ∈ Rn and scalars
λ, λ̂ > 0, we have:

sup
x∈Rn

{L(ω⊤x)− λ∥a− x∥q − λ̂∥â− x∥q}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · ω⊤a+ θ · inf
z∈Rn

{z⊤(â− a) : |θ| · ∥ω − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂}

Proof. We denote by fω(x) = ω⊤x and by g the convex function g(x) = g1(x) + g2(x) where g1(x) := λ∥a− x∥q and
g2(x) := λ̂∥â− x∥q , and reformulate the sup problem as

sup
x∈Rn

L(ω⊤x)− g(x) = sup
x∈Rn

(L ◦ fω)(x)− g(x) = sup
z∈Rn

g∗(z)− (L ◦ fω)∗(z),

where the first identity follows from the definition of composition and the second identity employs Toland’s duality (Toland,
1978) to rewrite difference of convex functions optimization.

By using infimal convolutions (Rockafellar, 1997, Theorem 16.4), we can reformulate g∗:

g∗(z) = inf
z1,z2

{g∗1(z1) + g∗2(z2) : z1 + z2 = z}

= inf
z1,z2

{z⊤
1 a+ z⊤

2 â : z1 + z2 = z, ∥z1∥q⋆ ≤ λ, ∥z2∥q⋆ ≤ λ̂},

where the second step uses the definitions of g∗1(z1) and g∗2(z2). Moreover, we show

(L ◦ fω)∗(z) = sup
x∈Rn

z⊤x− L(ω⊤x)

= sup
t∈R, x∈Rn

{z⊤x− L(t) : t = ω⊤x}

= inf
θ∈R

sup
t∈R, x∈Rn

z⊤x− L(t)− θ · (ω⊤x− t)

= inf
θ∈R

sup
t∈R

sup
x∈Rn

(z − θ · ω)⊤x− L(t) + θ · t

= inf
θ∈R

sup
t∈R

{
−L(t) + θ · t if θ · ω = z

+∞ otherwise.

= inf
θ∈R

{
L∗(θ) if θ · ω = z

+∞ otherwise.

= inf
θ∈dom(L∗)

{L∗(θ) : θ · ω = z},

where the first identity follows from the definition of the convex conjugate, the second identity introduces an additional
variable to make this an equality-constrained optimization problem, the third identity takes the Lagrange dual (which is a
strong dual since the problem maximizes a concave objective with a single equality constraint), the fourth identity rearranges
the expressions, the fifth identity exploits unboundedness of x, the sixth identity uses the definition of convex conjugates and
the final identity replaces the feasible set θ ∈ R with the domain of L⋆ without loss of generality as this is an inf-problem.

Replacing the conjugates allows us to conclude that the maximization problem equals

sup
z∈Rn

g∗(z) + sup
θ∈dom(L∗)

{−L∗(θ) : θ · ω = z}

= sup
z∈Rn, θ∈dom(L∗)

{g∗(z)− L∗(θ) : θ · ω = z}

= sup
θ∈dom(L∗)

g∗(θ · ω)− L∗(θ)

= sup
θ∈dom(L∗)

− L∗(θ) + inf
z1,z2∈Rn

{z⊤
1 a+ z⊤

2 â : z1 + z2 = θ · ω, ∥z1∥q⋆ ≤ λ, ∥z2∥q⋆ ≤ λ̂}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · inf
z1,z2∈Rn

{z⊤
1 a+ z⊤

2 â : z1 + z2 = ω, |θ| · ∥z1∥q⋆ ≤ λ, |θ| · ∥z2∥q⋆ ≤ λ̂}

= sup
θ∈dom(L∗)

− L∗(θ) + θ · ω⊤a+ θ · inf
z∈Rn

{z⊤(â− a) : |θ| · ∥ω − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂}.



Here, the first identity follows from writing the problem as a single maximization problem, the second identity follows
from the equality constraint, the third identity follows from the definition of the conjugate g∗, the fourth identity is due to
relabeling z1 = θ · z1 and z2 = θ · z2, and the fifth identity is due to a variable change (z1 = ω − z2 relabeled as z).

DC maximization terms similar to the one dealt by Lemma 1 appear on the left-hand side of the constraints of Inter-ARO
(cf. formulation in Proposition 1). These constraints would admit a tractable reformulation for the case without auxiliary
data because the inf-term in the reformulation presented in Lemma 1 does not appear in such cases. To see this, eliminate
the second norm (the one associated with auxiliary data) by taking λ̂ = 0, which will cause the constraint |θ| · ∥z∥q⋆ ≤ λ̂ to
force z = 0, and the alternative formulation will thus be: sup

θ∈dom(L∗)

{−L∗(θ) + θ · ω⊤a} if supθ∈dom(L∗){|θ|} · ∥z∥q⋆ ≤ λ

+∞ otherwise

=

{
L(ω⊤a) if Lip(L) · ∥z∥q⋆ ≤ λ

+∞ otherwise,

where we used the fact that L = L∗∗ and supθ∈dom(L)|θ| = Lip(L) since L is closed convex (Rockafellar, 1997, Corollary
13.3.3). Hence, the DC maximization can be represented with a convex function with an additional convex inequality, making
the constraints tractable for the case without auxiliary data. For the case with auxiliary data, however, the supθ infz structure
makes these constraints equivalent to two-stage robust constraints (with uncertain parameter θ and adjustable variable z),
bringing an adjustable robust optimization (Ben-Tal et al., 2004; Yanıkoğlu et al., 2019) perspective to Inter-ARO. By using
the univariate representation ℓαβ(x, y) = Lα(y · β⊤x), Inter-ARO can be written as

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
j=1

sj +
1

N̂

N̂∑
i=1

ŝi

subject to sup
x∈Rn

{Lα(β⊤x)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
x∈Rn

{Lα(−β⊤x)− λ∥xi − x∥q − λ̂∥x̂j − x∥q} ≤

si + κ
1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ,

and applying Lemma 1 to the left-hand side of the constraints gives:

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
j=1

sj +
1

N̂

N̂∑
i=1

ŝi

subject to sup
θ∈dom(L∗)

− Lα∗(θ) + θ · β⊤xi + θ · inf
z∈Rn

{z⊤(x̂j − xi) : |θ| · ∥β − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂} ≤

si + κ
1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

sup
θ∈dom(L∗)

− Lα∗(θ)− θ · β⊤xi + θ · inf
z∈Rn

{z⊤(x̂j − xi) : |θ| · ∥−β − z∥q⋆ ≤ λ, |θ| · ∥z∥q⋆ ≤ λ̂} ≤

si + κ
1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂ ∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .
(5)



Which, equivalently, can be written as the following problem with 2N · N̂ two-stage robust constraints:

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+
1

N

N∑
j=1

sj +
1

N̂

N̂∑
i=1

ŝi

subject to

∀θ ∈ dom(L∗), ∃z ∈ Rn :


−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

|θ| · ∥β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂


∀i ∈ [N ], ∀j ∈ [N̂ ]

∀θ ∈ dom(L∗), ∃z ∈ Rn :


−Lα∗(θ)− θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1 + yi

2
λ+ ŝj + κ

1 + ŷj

2
λ̂

|θ| · ∥−β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂


∀i ∈ [N ], ∀j ∈ [N̂ ]

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ . (Inter-adjustable)

By using adjustable robust optimization theory, we show that this problem is NP-hard even in the simplest setting. To this
end, take N = N̂ = 1 as well as κ = 0; the formulation presented in Proposition 1 reduces to:

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+ s+ ŝ

subject to sup
x∈Rn

{ℓαβ(x, l)− λ∥x1 − x∥q − λ̂∥x̂1 − x∥q} ≤ s1 + ŝ1 ∀l ∈ {−1, 1}

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ≥ 0, ŝ ≥ 0.

The worst case realization of l ∈ {−1, 1} will always make ℓαβ(x, l) = log(1 + exp(−l · β⊤x + α · ∥β∥p⋆)) equal to
ςαβ (x) = log(1+ exp(|l ·β⊤x|+α · ∥β∥p⋆)), where ς inherits similar properties from ℓ: it is convex in β and its univariate
representation Sα has the same Lipschitz constant with Lα. We can thus represent the above problem as

minimize
β,λ,λ̂,s,ŝ

ελ+ ε̂λ̂+ s+ ŝ

subject to sup
x∈Rn

{Sα(β⊤x)− λ∥x1 − x∥q − λ̂∥x̂1 − x∥q} ≤ s+ ŝ

β ∈ Rn, λ ≥ 0, λ̂ ≥ 0, s ≥ 0, ŝ ≥ 0.

Substituting s+ ŝ into the objective (due to the objective pressure) allows us to reformulate the above problem as

minimize
β,λ,λ̂

ελ+ ε̂λ̂+ sup
x∈Rn

{Sα(β⊤x)− λ∥x1 − x∥q − λ̂∥x̂1 − x∥q}

subject to β ∈ Rn, λ ≥ 0, λ̂ ≥ 0,
(6)

and an application of Lemma 1 leads us to the following reformulation:

inf
β∈Rn

λ≥0,λ̂≥0

sup
θ∈dom(S∗)

inf
z∈Rn

ελ+ ε̂λ̂− Sα∗(θ) + θ · β⊤x1 + θ · z⊤(x̂1 − x1)︸ ︷︷ ︸
(1)

: |θ| · ∥β − z∥q⋆ ≤ λ︸ ︷︷ ︸
(2)

, |θ| · ∥z∥q⋆ ≤ λ̂

 .

The objective term (1) has a product of the uncertain parameter θ and the adjustable variable z, and even when (2) is linear
such as in the case of q = 1 the product of the uncertain parameter with both the decision variable β and the adjustable
variable z still appear since:

|θ| · ∥β − z∥∞ ≤ λ ⇐⇒ −λ ≤ θβ − θz ≤ λ.

This reduces problem (6) to a generic two-stage robust optimization problem with random recourse (Subramanyam et al.,
2020, Problem 1) which is proven to be NP-hard even if Sα∗ was constant (Guslitser, 2002).



B.5 PROOF OF THEOREM 1

Consider the reformulation Inter-adjustable of Inter-ARO that we introduced in the proof of Proposition 2. For any i ∈ [N ]

and j ∈ [N̂ ], the corresponding constraint in the first group of ‘adjustable robust’ (∀, ∃) constraints will be:

∀θ ∈ dom(L∗),∃z ∈ Rn :


−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

|θ| · ∥β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

By changing the order of ∀ and ∃, we obtain:

∃z ∈ Rn,∀θ ∈ dom(L∗) :


−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

|θ| · ∥β − z∥q⋆ ≤ λ

|θ| · ∥z∥q⋆ ≤ λ̂.

Notice that this is a safe approximation, since any fixed z satisfying the latter system is a feasible static solution in the
former system, meaning that for every realization of θ in the first system, the inner ∃z can always ‘play’ the same z that is
feasible in the latter system (hence the latter is named the static relaxation, Bertsimas et al. 2015). In the relaxed system, we
can drop ∀θ and keep its worst-case realization instead:

∃z ∈ Rn :


supθ∈dom(L∗){−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi)} ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

supθ∈dom(L∗){|θ|} · ∥β − z∥q⋆ ≤ λ

supθ∈dom(L∗){|θ|} · ∥z∥q⋆ ≤ λ̂.

The term supθ∈dom(L∗){−Lα∗(θ) + θ · β⊤xi + θ · z⊤(x̂j − xi)} is the definition of the biconjugate Lα∗∗(β⊤xi +

z⊤(x̂j − xi)). Since Lα is a closed convex function, we have Lα∗∗ = Lα (Rockafellar, 1997, Corollary 12.2.1). Moreover,
supθ∈dom(L∗){|θ|} is an alternative representation of the Lipschitz constant of the function Lα (Rockafellar, 1997, Corollary
13.3.3), which is equal to 1 as we showed earlier. The adjustable robust constraint thus reduces to:

∃z ∈ Rn :


Lα(β⊤xi + z⊤(x̂j − xi)) ≤ si + κ

1− yi

2
λ+ ŝj + κ

1− ŷj

2
λ̂

∥β − z∥q⋆ ≤ λ

∥z∥q⋆ ≤ λ̂

as a result of the static relaxation. This relaxed reformulation applies to all i ∈ [N ] and j ∈ [N̂ ] as well as to the second
group of adjustable robust constraints analogously. Replacing each constraint of Inter-adjustable with this system concludes
the proof.

B.6 PROOF OF COROLLARY 2

To prove the first statement, take λ̂ = 0 and observe the constraint ∥zl
ij∥q⋆ ≤ λ̂ implies zl

ij = 0 for all l ∈ {−1, 1}, i ∈
[N ], j ∈ [N̂ ]. The optimization problem can thus be written without those variables:

minimize
β,λ,s,ŝ

ελ+
1

N

N∑
i=1

si +
1

N̂

N̂∑
j=1

ŝj

subject to Lα(lβ⊤xi) ≤ si + κ
1− lyi

2
λ+ ŝj ∀l ∈ {−1, 1}, ∀i ∈ [N ], ∀j ∈ [N̂ ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ .

Notice that optimal solutions should satisfy ŝj = ŝj′ for all j, j′ ∈ [N ]. To see this, assume for contradiction that ∃j, j′ ∈ [N ]
such that ŝj < ŝj′ . If a constraint indexed with (l, i, j) for arbitrary l ∈ {−1, 1} and i ∈ [N ] is feasible, it means the



consraint indexed with (l, i, j′) cannot be tight given that these constraints are identical except for the ŝj or ŝj′ appearing
on the right hand side. Hence, such a solution cannot be optimal as this is a minimization problem, and updating ŝj′ as ŝj
preserves the feasibility of the problem while decreasing the objective value. We can thus use a single variable τ ∈ R+ and
rewrite the problem as

minimize
β,λ,s,ŝ

ελ+
1

N

N∑
i=1

(si + τ)

subject to Lα(β⊤xi) ≤ si + κ
1− yi

2
λ+ τ ∀i ∈ [N ]

Lα(−β⊤xi) ≤ si + κ
1 + yi

2
λ+ τ ∀i ∈ [N ]

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN
+ , ŝ ∈ RN̂

+ ,

where we also eliminated the index l ∈ {−1, 1} by writing the constraints explicitly. Since si and τ both appear as si + τ in
this problem, we can use a variable change where we relabel si + τ as si (or, equivalently set τ = 0 without any optimality
loss). Moreover, the constraints with index i ∈ [N ] are

{
Lα(β⊤xi) ≤ si + τ

Lα(−β⊤xi) ≤ si + κλ+ τ
=

{
Lα(yi · β⊤xi) ≤ si + τ

Lα(−yi · β⊤xi) ≤ si + κλ+ τ

if yi = 1, and similarly they are

{
Lα(β⊤xi) ≤ si + κλ+ τ

Lα(−β⊤xi) ≤ si + τ
=

{
Lα(−yi · β⊤xi) ≤ si + κλ+ τ

Lα(yi · β⊤xi) ≤ si + τ

if yi = −1. Since these are identical, the problem can finally be written as

minimize
β,λ,s

ελ+
1

N

N∑
i=1

si

subject to log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si ∀i ∈ [N ]

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λκ ≤ si ∀i ∈ [N ]

∥β∥q⋆ ≤ λ
β ∈ Rn, λ ≥ 0, s ∈ RN

+ ,

where we also used the definition of Lα. This problem is identical to DR-ARO, which means that feasible solutions
of DR-ARO are feasible for Inter-ARO⋆ if the additional variables (λ̂, ŝ, zl

ij) are set to zero, concluding the first statement
of the corollary.

The second statement is immediate since ε̂ → ∞ forces λ̂ = 0 due to the term ε̂λ̂ in the objective of Inter-ARO⋆, and
this proof shows in such a case Inter-ARO⋆ reduces to DR-ARO (which is identical to Inter-ARO when ε → ∞ by
definition).



B.7 PROOF OF OBSERVATION 2

By standard linearity arguments and from the definition of Qmix, we have

EQmix

[
sup

z∈Bp(α)

{ℓβ(x+ z, y)}

]

⇐⇒
∫
(x,y)∈Rn×{−1,+1}

sup
z∈Bp(α)

{ℓβ(x+ z, y)} dQmix((x, y))

⇐⇒ N

N + wN̂

∫
(x,y)∈Rn×{−1,+1}

sup
z∈Bp(α)

{ℓβ(x+ z, y)} dPN ((x, y))+

wN̂

N + wN̂

∫
(x,y)∈Rn×{−1,+1}

sup
z∈Bp(α)

{ℓβ(x+ z, y)} dP̂N̂ ((x, y))

⇐⇒ N

N + wN̂
· 1

N

∑
i∈[N ]

sup
zi∈Bp(α)

{ℓβ(xi + zi, yi)}+ wN̂

N + wN̂
· 1

N̂

∑
j∈[N̂ ]

sup
zj∈Bp(α)

{ℓβ(x̂j + zj , ŷj)}

⇐⇒ 1

N + wN̂

∑
i∈[N ]

sup
zi∈Bp(α)

{ℓβ(xi + zi, yi)}+ w ·
∑
j∈[N̂ ]

sup
zj∈Bp(α)

{ℓβ(x̂j + zj , ŷj)}

 ,

which coincides with the objective function of (2). Since we have

EQmix

[
sup

z∈Bp(α)

{ℓβ(x+ z, y)}

]
= EQmix

[ℓαβ(x, y)]

we can conclude the proof.

B.8 PROOF OF PROPOSITION 3

We first prove auxiliary results on mixture distributions. To this end, denote by C(Q,P) ⊆ P(Ξ× Ξ) the set of couplings of
the distributions Q ∈ P(Ξ) and P ∈ P(Ξ).

Lemma 2. Let Q,P1,P2 ∈ P(Ξ) be probability distributions. If Π1 ∈ C(Q,P1) and Π2 ∈ C(Q,P2), then, λ ·Π1 + (1−
λ) ·Π2 ∈ C(Q, λ · P1 + (1− λ) · P2) for all λ ∈ (0, 1).

Proof. Let Π = λ · Π1 + (1− λ) · Π2 and P = λ · P1 + (1− λ) · P2. To have Π ∈ C(Q,P) we need Π(dξ,Ξ) = Q(dξ)
and Π(Ξ,dξ′) = P(dξ′). To this end, observe that

Π(dξ,Ξ) = λ ·Π1(dξ,Ξ) + (1− λ) ·Π2(dξ,Ξ)

= λ ·Q+ (1− λ) ·Q = Q

where the second identity uses the fact that Π1 ∈ C(Q,P1). Similarly, we can show:

Π(Ξ,dξ) = λ ·Π1(Ξ,dξ) + (1− λ) ·Π2(Ξ,dξ)

= λ · P1 + (1− λ) · P2 = P,

which concludes the proof.

We further prove the following intermediary result.

Lemma 3. Let Q,P1,P2 ∈ P(Ξ) and P = λ · P1 + (1− λ) · P2 for some λ ∈ (0, 1). We have:

W(Q,P) ≤ λ ·W(Q,P1) + (1− λ) ·W(Q,P2).



Proof. The Wasserstein distance between Q,Q′ ∈ P(Ξ) can be written as:

W(Q,Q′) = min
Π∈C(Q,Q′)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
,

and since d is a feature-label metric (cf. Definition 1) the minimum is well-defined (Villani, 2009, Theorem 4.1). We name
the optimal solutions to the above problem the optimal couplings. Let Π1 be an optimal coupling of W(Q,P1) and let Π2 be
an optimal coupling of W(Q,P2) and define Πc = λ ·Π1 + (1− λ) ·Π2. We have

W(Q,P) = min
Π∈C(Q,P)

{∫
Ξ×Ξ

d(ξ, ξ′)Π(dξ,dξ′)

}
≤
∫
Ξ×Ξ

d(ξ, ξ′)Πc(dξ,dξ′)

= λ ·
∫
Ξ×Ξ

d(ξ, ξ′)Π1(dξ,dξ′) + (1− λ) ·
∫
Ξ×Ξ

d(ξ, ξ′)Π2(dξ,dξ′)

= λ ·W(Q,P1) + (1− λ) ·W(Q,P2),

where the first identity uses the definition of the Wasserstein metric, the inequality is due to Lemma 2 as Πc is a feasible
coupling (not necessarily optimal), the equality that follows uses the definition of Πc and the linearity of integrals, and the
final identity uses the fact that Π1 and Π2 were constructed to be the optimal couplings.

We now prove the proposition (we refer to Qmix in the statement of this lemma simply as Q). To prove Q ∈ Bε(PN ) ∩
Bε̂(P̂N̂ ), it is sufficient to show that W(PN ,Q) ≤ ε and W(P̂N̂ ,Q) ≤ ε̂ jointly hold. By using Lemma 3, we can derive
the following inequalities:

W(PN ,Q) ≤ λ ·W(PN ,PN )︸ ︷︷ ︸
=0

+(1− λ) ·W(PN , P̂N̂ )

W(P̂N̂ ,Q) ≤ λ ·W(PN , P̂N̂ ) + (1− λ) ·W(P̂N̂ , P̂N̂ )︸ ︷︷ ︸
=0

.

Therefore, sufficient conditions on W(PN ,Q) ≤ ε and W(P̂N̂ ,Q) ≤ ε̂ would be:{
(1− λ) ·W(PN , P̂N̂ ) ≤ ε

λ ·W(PN , P̂N̂ ) ≤ ε̂.

Moreover, given that ε+ ε̂ ≥ W(PN , P̂N̂ ), the sufficient conditions further simplify to{
(1− λ) · ε̂ ≤ λ · ε
λ · ε ≤ (1− λ) · ε̂.

⇐⇒ λ · ε = (1− λ) · ε̂,

which is implied when
λ

1− λ
=

ε̂

ε
, concluding the proof.

B.9 PROOF OF THEOREM 2

Since each result in the statement of this theorem is abridged, we will present these results sequentially as separate results.
We review the existing literature to characterize Bε(PN ), in a similar fashion with the results presented in (Selvi et al.,
2022, Appendix A) for the logistic loss, by revising them to the adversarial loss whenever necessary. The N -fold product
distribution of P0 from which the training set PN is constructed is denoted below by [P0]N .

Theorem 4. Assume there exist a > 1 and A > 0 such that EP0 [exp(∥ξ∥a)] ≤ A for a norm ∥·∥ on Rn. Then, there are
constants c1, c2 > 0 that only depend on P0 through a, A, and n, such that [P0]N (P0 ∈ Bε(PN )) ≥ 1− η holds for any
confidence level η ∈ (0, 1) as long as the Wasserstein ball radius satisfies the following optimal characterization

ε ≥


(
log(c1/η)

c2 ·N

)1/max{n,2}

if N ≥ log(c1/η)

c2(
log(c1/η)

c2 ·N

)1/a

otherwise.



Proof. The statement follows from Theorem 18 of Kuhn et al. (2019). The presented decay rate O(N−1/n) of ε as N
increases is optimal (Fournier and Guillin, 2015).

Now that we gave a confidence for the unknown radius ε satisfying P0 ∈ Bε(PN ), we analyze the underlying optimization
problems. Most of the theory is well-established for logistic loss function, and in the following we show that similar results
follow for the adversarial loss function. For convenience, we state DR-ARO again by using the adversarial loss function as
defined in Observation 1:

minimize
β

sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)]

subject to β ∈ Rn.
(DR-ARO)

Theorem 5. If the assumptions of Theorem 4 are satisfied and ε is chosen as in the statement of Theorem 4, then

[P0]N

(
EP0 [ℓαβ⋆(x, y)] ≤ sup

Q∈Bε(PN )

EQ[ℓ
α
β⋆(x, y)]

)
≥ 1− η

holds for all η ∈ (0, 1) and all optimizers β⋆ of DR-ARO.

Proof. The statement follows from Theorem 19 of Kuhn et al. (2019) given that ℓαβ is a finite-valued continuous loss
function.

Theorem 5 states that the optimal value of DR-ARO overestimates the true loss with arbitrarily high confidence 1 − η.
Despite the desired overestimation of the true loss, we show that DR-ARO is still asymptotically consistent if we restrict the
set of admissible β to a bounded set1.

Theorem 6. If we restrict the hypotheses β to a bounded set H ⊆ Rn, and parameterize ε as εN to show its dependency to
the sample size, then, under the assumptions of Theorem 4, we have

sup
Q∈BεN

(PN )

EQ[ℓ
α
β⋆(x, y)] −→

N→∞
EP0 [ℓαβ⋆(x, y)] P0-almost surely,

whenever εN is set as specified in Theorem 4 along with its finite-sample confidence ηN , and they satisfy
∑

N∈N ηN < ∞
and limN→∞ εN = 0.

Proof. If we show that there exists ξ0 ∈ Ξ and C > 0 such that ℓαβ(x, y) ≤ C(1+ d(ξ, ξ0)) holds for all β ∈ H and ξ ∈ Ξ
(that is, the adversarial loss satisfies a growth condition), the statement will follow immediately from Theorem 20 of (Kuhn
et al., 2019).

To see that the growth condition is satisfied, we first substitute the definition of ℓαβ and d explicitly, and note that we would
like to show there exists ξ0 ∈ Ξ and C > 0 such that

log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) ≤ C(1 + ∥x− x0∥q + κ · 1[y ̸= y0])

holds for all β ∈ H and ξ ∈ Ξ. We take ξ0 = (0, y0) and show that the right-hand side of the inequality can be lower
bounded as:

C(1 + ∥x− x0∥q + κ · 1[y ̸= y0]) = C(1 + ∥x∥q + κ · 1[y ̸= y0])

≥ C(1 + ∥x∥q).

Moreover, the left-hand side of the inequality can be upper bounded for any β ∈ H ⊆ [−M,M ]n (for some M > 0) and

1Note that, this is without loss of generality given that we can normalize the decision boundary of linear classifiers.



ξ = (x, y) ∈ Ξ as:

log(1 + exp(−y · β⊤x+ α · ∥β∥p⋆)) ≤ log(1 + exp(|β⊤x|+ α · ∥β∥p⋆))

≤ log(2 · exp(|β⊤x|+ α · ∥β∥p⋆))

= log(2) + |β⊤x|+ α · ∥β∥p⋆

≤ log(2) + sup
β∈[−M,M ]n

{|β⊤x|}+ α · sup
β∈[−M,M ]n

{∥β∥p⋆}

= log(2) +M · ∥x∥1 +M · α
≤ log(2) +M · n(q−1)/q · ∥x∥1 +M · α

where the final inequality uses Hölder’s inequality to bound the 1-norm with the q-norm. Thus, it suffices to show that we
have

log(2) +M · n(q−1)/q · ∥x∥1 +M · α ≤ C(1 + ∥x∥q) ∀ξ ∈ Ξ,

which is satisfied for any C ≥ max{log(2) + M · α, M · n(q−1)/q}. This completes the proof by showing the growth
condition is satisfied.

So far, we reviewed tight characterizations for ε so that the ball Bε(PN ) includes the true distribution P0 with arbitrarily
high confidence, proved that the DRO problem DR-ARO overestimates the true loss, while converging to the true problem
asymptotically as the confidence 1 − η increases and the radius ε decreases simultaneously. Finally, we discuss that for
optimal solutions β⋆ to DR-ARO, there are worst case distributions Q⋆ ∈ Bε(PN ) of nature’s problem that are supported
on at most N + 1 outcomes.

Theorem 7. If we restrict the hypotheses β to a bounded set H ⊆ Rn, then there are distributions Q⋆ ∈ Bε(PN ) that are
supported on at most N + 1 outcomes and satisfy:

EQ⋆ [ℓαβ(x, y)] = sup
Q∈Bε(PN )

EQ[ℓ
α
β(x, y)].

Proof. The proof follows from (Yue et al., 2022).

See the proof of Selvi et al. (2022, Theorem 8) and the discussion that follows for insights and further analysis on these
results presented.

B.10 PROOF OF THEOREM 3

Firstly, since P̂N̂ is constructed from i.i.d. samples of P̂, we can overestimate the distance ε̂1 = W(P̂N̂ , P̂) analogously by
applying Theorem 4, mutatis mutandis. This leads us to the following result where the joint (independent) N -fold product
distribution of P0 and the N̂ -fold product distribution of P̂ is denoted below by [P0 × P̂]N×N̂ .

Theorem 8. Assume that there exist a > 1 and A > 0 such that EP0 [exp(∥ξ∥a)] ≤ A, and there exist â > 1 and
Â > 0 such that EP̂[exp(∥ξ∥

â)] ≤ Â for a norm ∥·∥ on Rn. Then, there are constants c1, c2 > 0 that only depends on P0

through a, A, and n, and constants ĉ1, ĉ2 > 0 that only depends on P̂ through â, Â, and n such that [P0 × P̂]N×N̂ (P0 ∈
Bε(PN ) ∩Bε̂(P̂N̂ )) ≥ 1 − η holds for any confidence level η ∈ (0, 1) as long as the Wasserstein ball radii satisfy the
following characterization

ε ≥


(
log(c1/η1)

c2 ·N

)1/max{n,2}

if N ≥ log(c1/η1)

c2(
log(c1/η1)

c2 ·N

)1/a

otherwise

ε̂ ≥ W(P0, P̂) +


(
log(ĉ1/η2)

ĉ2 · N̂

)1/max{n,2}

if N̂ ≥ log(ĉ1/η2)

ĉ2(
log(ĉ1/η2)

ĉ2 · N̂

)1/â

otherwise



for some η1, η2 > 0 satisfying η1 + η2 = η.

Proof. It immediately follows from Theorem 4 that [P0]N (P0 ∈ Bε(PN )) ≥ 1− η1 holds. If we take ε̂1 > 0 as

ε̂1 ≥


(
log(ĉ1/η2)

ĉ2 · N̂

)1/max{n,2}

if N̂ ≥ log(ĉ1/η2)

ĉ2(
log(ĉ1/η2)

ĉ2 · N̂

)1/â

otherwise,

then, we similarly have [P̂]N̂ (P̂ ∈ Bε̂1(P̂N̂ )) ≥ 1− η2. Since the following implication follows from the triangle inequality:

P̂ ∈ Bε̂1(P̂N̂ ) =⇒ P0 ∈ Bε̂1+W(P0,P̂)(P̂N̂ ),

we have that [P̂]N̂ (P0 ∈ Bε(P̂N̂ )) ≥ 1− η2. These results, along with the facts that P̂N̂ and PN are independently sampled
from their true distributions, imply:

[P0 × P̂]N×N̂ (P0 ̸∈ Bε(PN ) ∨ P0 ̸∈ Bε̂(P̂N̂ ))

≤[P0 × P̂]N×N̂ (P0 ̸∈ Bε(PN )) + [P0 × P̂]N×N̂ (P0 ̸∈ Bε̂(P̂N̂ ))

=[P0]N (P0 ̸∈ Bε(PN )) + [P̂]N̂ (P0 ̸∈ Bε̂(P̂N̂ )) < η1 + η2

implying the desired result [P0 × P̂]N×N̂ (P0 ∈ Bε(PN ) ∩Bε̂(P̂N̂ )) ≥ 1− η.

The second statement immediately follows under the assumptions of Theorem 8: Inter-ARO overestimates the true loss
analogously as Theorem 5 with an identical proof.

C EXPONENTIAL CONIC REFORMULATION OF DR-ARO

For any i ∈ [N ], the constraints of DR-ARO are{
log(1 + exp(−yi · β⊤xi + α · ∥β∥p⋆)) ≤ si

log(1 + exp(yi · β⊤xi + α · ∥β∥p⋆))− λ · κ ≤ si,

which, by using an auxiliary variable u, can be written as
log(1 + exp(−yi · β⊤xi + u)) ≤ si

log(1 + exp(yi · β⊤xi + u))− λ · κ ≤ si

α · ∥β∥p⋆ ≤ u.

Following the conic modeling guidelines of MOSEK ApS (2023), for new variables v+i , w
+
i ∈ R, the first constraint can be

written as {
v+i + w+

i ≤ 1, (v+i , 1, [−u+ yi · β⊤xi)− si] ∈ Kexp, (w
+
i , 1,−si) ∈ Kexp,

by using the definition of the exponential cone Kexp. Similarly, for new variables v−i , w
−
i ∈ R, the second constraint can be

written as {
v−i + w−

i ≤ 1, (v−i , 1, [−u− yi · β⊤xi]− si − λ · κ) ∈ Kexp, (w
−
i , 1,−si − λ · κ) ∈ Kexp.



Applying this for all i ∈ [N ] concludes that the following is the conic formulation of DR-ARO:

minimize
β, λ, s, u

v+,w+,v−,w−

λ · ε+ 1

N

∑
i∈[N ]

si

subject to v+i + w+
i ≤ 1 ∀i ∈ [N ]

(v+i , 1, [−u+ yi · β⊤xi]− si) ∈ Kexp, (w
+
i , 1,−si) ∈ Kexp ∀i ∈ [N ]

v−i + w−
i ≤ 1 ∀i ∈ [N ]

(v−i , 1, [−u− yi · β⊤xi]− si − λ · κ) ∈ Kexp, (w
−
i , 1,−si − λ · κ) ∈ Kexp ∀i ∈ [N ]

α · ∥β∥p⋆ ≤ u

∥β∥q⋆ ≤ λ

β ∈ Rn, λ ≥ 0, s ∈ RN , u ∈ R, v+,w+,v−,w− ∈ RN .

D FURTHER DETAILS ON NUMERICAL EXPERIMENTS

D.1 UCI EXPERIMENTS

Preprocessing UCI datasets. We experiment on 10 UCI datasets (Kelly et al., 2023) (cf. Table 3). We use Python 3 for
preprocessing these datasets. Classification problems with more than two classes are converted to binary classification
problems (most frequent class/others). For all datasets, numerical features are standardized, the ordinal categorical features
are left as they are, and the nominal categorical features are processed via one-hot encoding. As mentioned in the main
paper, we obtain auxiliary (synthetic) datasets via SDV, which is also implemented in Python 3.

Table 3: Size of the UCI datasets.

DataSet N N̂ Nte n

absent 111 333 296 74
annealing 134 404 360 41
audiology 33 102 91 102
breast-cancer 102 307 274 90
contraceptive 220 663 590 23
dermatology 53 161 144 99
ecoli 50 151 135 9
spambase 690 2,070 1,841 58
spect 24 72 64 23
prim-tumor 50 153 136 32

Detailed misclassification results on the UCI datasets. Table 4 contains detailed results on the out-of-sample error rates
of each method on 10 UCI datasets for classification. All parameters are 5-fold cross-validated: Wasserstein radii from the
grid {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0, 1, 2, 5, 10}, κ from the grid {1,

√
n, n} the weight parameter of ARO+Aux

from grid {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0, 1}. We fix the norm defining the feature-label metric to the ℓ1-norm,
and test ℓ2-attacks, but other choices with analogous results are also implemented.

Finally, we demonstrate that our theory, especially DRO+ARO+Aux, contributes to the DRO literature even without
adversarial attacks. In this case of α = 0, ERM and ARO would be equivalent, and DRO+ARO would reduce to the traditional
DR LR model (Shafieezadeh-Abadeh et al., 2015). ARO+Aux would be interpreted as revising the empirical distribution of
ERM to a mixture (mixture weight cross-validated) of the empirical and auxiliary distributions. DRO+ARO+Aux, on the
other hand, can be interpreted as DRO over a carefully reduced ambiguity set (intersection of the empirical and auxiliary
Wasserstein balls). The results are in Table 5. Analogous results follow as before (that is, DRO+ARO+Aux is the ‘winning’
approach, DRO+ARO and ARO+Aux alternate for the ‘second’ approach), with the exception of the dataset contraceptive,
where ARO+Aux outperforms others.



Table 4: Mean (± std) out-of-sample errors of UCI datasets, each with 10 simulations. Results for adversarial (ℓ2-)attack
strengths α = 0.05 and α = 0.2 are shared.

Data α ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

absent 0.05 44.02% (± 2.89) 38.82% (± 2.86) 35.95% (± 3.78) 34.22% (± 2.70) 32.64% (± 2.54)
0.20 73.65% (± 4.14) 51.49% (± 3.39) 49.56% (± 3.80) 45.61% (± 2.32) 44.90% (± 2.30)

annealing 0.05 18.08% (± 1.89) 16.61% (± 2.16) 14.97% (± 1.39) 13.50% (± 2.98) 12.78% (± 2.78)
0.20 37.31% (± 3.92) 23.08% (± 2.82) 21.30% (± 1.93) 20.70% (± 1.32) 19.53% (± 1.42)

audiology 0.05 21.43% (± 3.64) 21.54% (± 3.92) 17.03% (± 2.90) 11.76% (± 3.28) 9.01% (± 3.54)
0.20 37.91% (± 6.78) 29.34% (± 5.89) 20.44% (± 2.75) 20.00% (± 3.01) 17.91% (± 3.28)

breast-cancer 0.05 4.74% (± 1.26) 4.93% (± 1.75) 3.87% (± 1.17) 3.06% (± 0.79) 2.52% (± 0.50)
0.20 9.93% (± 1.73) 8.14% (± 2.01) 6.09% (± 1.79) 5.04% (± 1.11) 4.67% (± 0.99)

contraceptive 0.05 44.14% (± 2.80) 42.86% (± 2.59) 40.98% (± 0.95) 40.00% (± 1.33) 39.65% (± 1.15)
0.20 66.19% (± 5.97) 43.49% (± 2.24) 42.71% (± 1.47) 42.71% (± 1.47) 42.71% (± 1.47)

dermatology 0.05 15.97% (± 2.64) 16.46% (± 1.67) 13.47% (± 1.97) 12.78% (± 1.61) 10.84% (± 1.24)
0.20 30.07% (± 4.24) 28.54% (± 3.25) 21.53% (± 2.17) 22.64% (± 2.15) 20.21% (± 1.58)

ecoli 0.05 16.30% (± 4.42) 14.67% (± 5.13) 13.26% (± 3.07) 11.11% (± 5.52) 9.78% (± 2.61)
0.20 51.41% (± 3.37) 42.67% (± 2.91) 41.85% (± 2.95) 39.70% (± 2.68) 38.89% (± 2.57)

spambase 0.05 11.35% (± 0.77) 10.23% (± 0.54) 10.16% (± 0.56) 9.83% (± 0.37) 9.81% (± 0.38)
0.20 27.32% (± 2.11) 15.83% (± 0.77) 15.70% (± 0.76) 15.67% (± 0.72) 15.50% (± 0.68)

spect 0.05 33.75% (± 5.17) 29.69% (± 5.46) 25.78% (± 3.06) 25.47% (± 3.38) 21.56% (± 2.74)
0.20 54.22% (± 9.88) 37.5% (± 3.53) 35.16% (± 2.47) 33.75% (± 2.68) 30.16% (± 3.61)

prim-tumor 0.05 21.84% (± 4.55) 20.81% (± 3.97) 17.35% (± 3.59) 16.18% (± 3.83) 14.78% (± 2.89)
0.20 34.19% (± 6.17) 25.37% (± 4.58) 21.62% (± 3.45) 21.84% (± 3.34) 19.63% (± 2.71)

Table 5: Mean out-of-sample errors of UCI experiments without adversarial attacks.

Data ERM ARO ARO+Aux DRO+ARO DRO+ARO+Aux

absent 36.28% 36.28% 31.86% 28.31% 27.74%
annealing 10.61% 10.61% 7.64% 7.14% 7.14%
audiology 14.94% 14.94% 12.97% 10.11% 7.69%
breast-cancer 6.64% 6.64% 5.22% 2.55% 2.15%
contraceptive 35.00% 35.00% 33.75% 34.56% 33.85%
dermatology 16.04% 16.04% 11.60% 9.93% 8.06%
ecoli 6.74% 6.74% 4.96% 5.19% 4.37%
spambase 8.95% 8.95% 8.52% 8.34% 8.16%
spect 30.74% 30.74% 24.69% 22.35% 18.75%
prim-tumor 22.79% 22.79% 17.28% 15.07% 13.97%

Cross-validated Wasserstein radii. In Corollary 2, we discussed the feasibility of ignoring the auxiliary data when its
data-generating distribution is distant from the true data-generating distribution. To examine whether large values of ε̂ are
selected via cross-validation in our experiments, we investigated their histograms and observed that this indeed occurs
frequently. For example, as shown in Table 5, when there are no adversarial attacks, DRO+ARO and DRO+ARO+Aux yield
identical errors on the ‘annealing’ dataset. This is because the two models become equivalent: DRO+ARO+Aux selects a
large ε̂ (either 5 or 10), which ensures that the intersection of the Wasserstein balls reduces to the empirical distribution.
With α = 0.05, DRO+ARO+Aux selects a large ε̂ in 7 out of 10 simulations, while in the remaining 3 it selects a smaller
value, resulting in a nontrivial intersection and, in turn, improved performance over DRO+ARO. We conclude that our method
selects a nontrivial ε̂ only when there is evidence that the auxiliary data is useful, that is, when its data-generating distribution
is sufficiently close to the true one. For instance, on the ‘absent’ dataset, we always have ε̂ ∈ {10−2, 10−1}. We also revised
our numerical experiments by modifying the Gaussian copula synthesizer to enforce uniform marginals (which results in
significant information loss), and in this setting, our models consistently selected large ε̂ values.

Different training/auxiliary dataset ratio. Recall that in the UCI experiments, we sampled 15% of the original dataset
as the training set, and used 45% to generate a synthetic auxiliary dataset. This setup was chosen to simulate scenarios



Table 6: Additional MNIST/EMNIST Benchmark.

Attack ERM ARO ARO+Aux DRO++ DRO+ARO DRO+ARO+Aux

No attack (α = 0) 1.55% 1.55% 1.19% 0.72% 0.64% 0.53%
ℓ1 (α = 68/255) 2.17% 1.84% 1.33% 1.40% 0.66% 0.57%
ℓ2 (α = 128/255) 99.93% 3.36% 2.54% 2.72% 2.40% 2.12%
ℓ∞ (α = 8/255) 100.00% 2.60% 2.38% 2.31% 2.20% 1.95%

with limited training data, where overfitting is a particular concern. If we reverse these proportions and use 45% of
the original dataset for training and 15% for generating auxiliary data instead, we find that the best-performing method
remains DRO+ARO+Aux, and the relative ranking among the models remains qualitatively similar. One notable difference is
that the improvement of the auxiliary-data-oblivious DRO+ARO method over the non-DR ARO+Aux model becomes less
significant, and is even reversed in the case of α = 0.05 on the ‘ecoli’ dataset: ERM (14.59%), ARO (11.41%), ARO+Aux
(9.04%), DRO+ARO (9.41%), DRO+ARO+Aux (8.89%). As expected, since more data is drawn from the true data-generating
distribution, all methods exhibit improved out-of-sample performance compared to the original setup. However, in this case,
DRO+ARO no longer outperforms ARO+Aux.

D.2 MNIST/EMNIST EXPERIMENTS

The setting in the MNIST/EMNIST experiments is similar to that in the UCI experiments. However, for auxiliary data, we
use the EMNIST dataset which we accessed via the MLDatasets package of Julia.

Moreover, in §2 we reviewed the literature showing that when statistical error is not a concern, that is, when optimizing
over the empirical distribution cannot cause overfitting (e.g., in high-data regimes), then adversarial training is equivalent
to a type-∞ Wasserstein DRO problem with radius ε = α. Hence, a natural question is whether increasing the value of ε
further also provides distributional robustness. To this end, in Table 6, we revise Table 2 and add an additional benchmark
DRO++. Here, we take ε = α+ ε′, and cross-validate ε′ from the same grid that we cross-validated ε for methods DRO+ARO
and DRO+ARO+Aux. We observe that DRO++ does not improve over DRO+ARO, which is expected given that type-∞
Wasserstein DRO does not provide better generalizations, unlike type-1 Wasserstein DRO (cf. the discussion at the end of
§3). Yet, this method improves over ARO in all cases, and even over ARO+Aux in the no-attack or ℓ∞-attack settings.

D.3 ARTIFICIAL EXPERIMENTS

Data generation. We sample a ‘true’ β from a unit ℓ2-ball, and generate data as summarized in Algorithm 1. Such a
dataset generation gives N instances from the same true data-generating distribution. In order to obtain N̂ auxiliary dataset
instances, we perturb the probabilities pi with standard random normal noise which is equivalent to sampling i.i.d. from a
perturbed distribution. Testing is always done on true data, that is, the test set is sampled according to Algorithm 1.

Algorithm 1 Data from a ground truth logistic classifier
Input: set of feature vectors xi, i ∈ [N ]; vector β

for i ∈ {1, . . . , N} do
Find the probability pi =

[
1 + exp(−β⊤x)

]−1
.

Sample u = U(0, 1)
if pi ≥ u then
yi = +1

else
yi = −1

end if
end for

Output: (xi, yi), i ∈ [N ].



Table 7: Mean w in problem (2) and ε/ε̂ in problem Inter-ARO across 25 simulations of cross-validating ω, ε, and ε̂.

Attack ARO+Aux (cross-validated w) DRO+ARO+Aux (cross-validated ε/ε̂)

α = 0 0.002 0.0120
α = 0.1 0.046 0.172
α = 0.25 0.086 0.232
α = 0.5 0.290 0.241

Strength of the attack and importance of auxiliary data. In the main paper we discussed how the strength of an attack
determines whether using auxiliary data in ARO (ARO+Aux) or considering distributional ambiguity (DRO+ARO) is more
effective, and observed that unifying them to obtain DRO+ARO+Aux yields the best results in all attack regimes. Now we
focus on the methods that rely on auxiliary data, namely ARO+Aux and DRO+ARO+Aux and explore the importance of
auxiliary data P̂N̂ in comparison to its empirical counterpart PN . Table 7 shows the average values of w for problem (2)
obtained via cross-validation. We see that the greater the attack strength is the more we should use the auxiliary data in
ARO+Aux. The same relationship holds for the average of ε/ε̂ obtained via cross-validation in Inter-ARO, which means that
the relative size of the Wasserstein ball built around the empirical distribution gets larger compared to the same ball around
the auxiliary data, that is, ambiguity around the auxiliary data is smaller than the ambiguity around the empirical data. We
highlight as a possible future research direction exploring when a larger attack per se implies the intersection will move
towards the auxiliary data distribution.

More results on scalability. We further simulate 25 cases with an ℓ2-attack strength of α = 0.2, N = 200 instances in
the training dataset, N̂ = 200 instances in the auxiliary dataset, and we vary the number of features n. We report the median
(50%± 15% quantiles shaded) runtimes of each method in Figure 3. The fastest methods are ERM and ARO among which
the faster one depends on n (as the adversarial loss includes a regularizer of β), followed by ARO+Aux, DRO+ARO, and
DRO+ARO+Aux, respectively. DRO+ARO+Aux is the slowest, which is expected given that DRO+ARO is its special for large
ε̂. The runtime however scales graciously.

Figure 3: Runtimes under a varying number of features in the artificially generated empirical and auxiliary datasets.

Finally, we focus further on DRO+ARO+Aux which solves problem Inter-ARO with O(n ·N · N̂) variables and exponential
cone constraints. For n = 1, 000 and N = N̂ = 10, 000, we observe that the runtimes vary between 134 to 232 seconds
across 25 simulations.


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	DISTRIBUTIONALLY AND ADVERSARIALLY ROBUST LR
	MAIN RESULT
	SETTING WASSERSTEIN RADII
	EXPERIMENTS
	UCI Datasets (Auxiliary Data is Synthetically Generated)
	MNIST/EMNIST Datasets (Auxiliary Data is Out-of-Domain)
	Artificial Experiments (Auxiliary Data is Perturbed)

	CONCLUSIONS
	NOTATION
	MISSING PROOFS
	Proof of Observation 1
	Proof of Corollary 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Observation 2
	Proof of Proposition 3
	Proof of Theorem 2
	Proof of Theorem 3

	EXPONENTIAL CONIC REFORMULATION OF DR-ARO
	FURTHER DETAILS ON NUMERICAL EXPERIMENTS
	UCI Experiments
	MNIST/EMNIST Experiments
	Artificial Experiments


