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Abstract

Relation extraction is a key task in Natural001
Language Processing (NLP), which aims to ex-002
tract relations between entity pairs from given003
texts. Recently, relation extraction (RE) has004
achieved remarkable progress with the devel-005
opment of deep neural networks. Most existing006
research focuses on constructing explicit struc-007
tured features using external knowledge such008
as knowledge graph and dependency tree. In009
this paper, we propose a novel method to ex-010
tract multi-granularity features based solely on011
the original input sentences. We show that ef-012
fective structured features can be attained even013
without external knowledge. Three kinds of014
features based on the input sentences are fully015
exploited, which are in entity mention level,016
segment level, and sentence level. All the three017
are jointly and hierarchically modeled. We eval-018
uate our method on three public benchmarks:019
SemEval 2010 Task 8, Tacred, and Tacred Re-020
visited. To verify the effectiveness, we apply021
our method to different encoders such as LSTM022
and BERT. Experimental results show that our023
method significantly outperforms existing state-024
of-the-art models that even use external knowl-025
edge. Extensive analyses demonstrate that the026
performance of our model is contributed by the027
capture of multi-granularity features and the028
model of their hierarchical structure.029

1 Introduction030

Relation extraction (RE) is a fundamental task in031

Natural Language Processing (NLP), which aims032

to extract relations between entity pairs from given033

plain texts. RE is the cornerstone of many down-034

stream NLP tasks, such as knowledge base con-035

struction (Ji and Grishman, 2011), question answer-036

ing (Yu et al., 2017), and information extraction037

(Fader et al., 2011).038

Most recent works focus on constructing explicit039

structured features using external knowledge such040

as knowledge graph, entity features and depen-041

dency tree. To infuse prior knowledge from ex-042

isting knowledge graph, recent works (Peters et al., 043

2019a; Wang et al., 2020b,a) proposed some pre- 044

train tasks to help model learn and select proper 045

prior knowledge in the pre-training stage. Bal- 046

dini Soares et al. (2019); Yamada et al. (2020); 047

Peng et al. (2020) force model learning entitiy- 048

related information via well-designed pre-train 049

tasks. Zhang et al. (2018); Guo et al. (2019); Xue 050

et al. (2020); Chen et al. (2020) encode dependency 051

tree with graph neural network (Kipf and Welling, 052

2017) (GNN) to help RE models capture non-local 053

syntactic relation. All of them achieve a remarkable 054

performance via employing external information 055

from different structured features. 056

However, they either need time-consuming pre- 057

training with external knowledge or need an ex- 058

ternal tool to get a dependency tree which may 059

introduce unnecessary noise. In this paper, we aim 060

to attain effective structured features based solely 061

on the original input sentences. To this end, we 062

analyze previous typical works and find that three 063

kinds of features mainly affect the performance 064

of RE models, which are entity mention level1, 065

segment2 level and sentence level features. Sen- 066

tence level and entity mention (Baldini Soares et al., 067

2019; Yamada et al., 2020; Peng et al., 2020) level 068

features were widely used by previous works but 069

segment level feature (Yu et al., 2019; Joshi et al., 070

2020) does not get as much attention as the pre- 071

vious two features. These three level features can 072

provide different granularity information from in- 073

put sentences for relation prediction (Chowdhury 074

and Lavelli, 2012; Kim). However, recent works 075

did not consider them at the same time and ignored 076

the structure and interactive of them. 077

We employ a simple example in Figure 1 to show 078

the hierarchical and joint structure of the previous 079

three granularities features. The hierarchical struc- 080

1entity mentions contain the entity itself and co-references
of it.

2continuous words in sentence (n-gram)
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Figure 1: An Example for relation extraction which
shows the hierarchical structure between entity mention
level and segment level features.

ture is between mention level and segment level081

features. This example gives sentence and entity082

pairs (“Steven Jobs", “Apple"). We can find that083

the relation “the_CEO_of " of given entity “Apple"084

and entity “Steven Jobs" is built upon the core seg-085

ment “the CEO of " between the entity mention086

“it" (i.e. co-reference of entity “Apple") and entity087

“Steven Jobs". To extract relation from this exam-088

ple, RE models need to first capture mention level089

features of given entities and then catch core seg-090

ment level feature “the CEO of " which is related091

to mention level features. Finally, RE models can092

easily predict the relation with previous two-level093

hierarchical features. Besides, sentence-level se-094

mantic features can assist RE models to predict the095

relation of examples without an explicit pattern of096

entity mentions and segments.097

Following previous intuitive process, we propose098

a novel method which extracts multi-granularity099

features based solely on the original input sen-100

tences. Specifically, we design a hierarchical101

mention-aware segment attention, which employs102

a hierarchical attention mechanism to build associa-103

tion between entity mention level and segment level104

features. Besides, we employ a global semantic at-105

tention to get a deeper understanding of sentence106

level features from input sentence representation.107

Finally, we aggregate previously extracted multi-108

granularity features with a simple fully-connected109

layer to predict the relation.110

To evaluate the effectiveness of our method, we111

combine our method with different text encoders112

(e.g. LSTM and BERT) and results show that our113

method can bring significant improvement for all114

of them. Compared with models without using ex-115

ternal knowledge, SpanBERT with our method can116

achieve a new state-of-the-art result on Semeval117

2010 Task 8, Tacred and Tacred Revisited. It is118

deserved to mention that the performance of our119

model is very competitive with the state-of-the-art120

models, which employ large-scale extra training 121

data or information. We also do many analyses to 122

demonstrate that features from representation of 123

input itself are enough for the sentence-level RE 124

tasks and multi-granularity features with hierarchi- 125

cal structure are crucial for relation prediction. 126

2 Methodology 127

The structure of our model and details of each com- 128

ponent is shown in figure 2. We can see the over- 129

all architecture in the middle. It is divided into 130

three components from bottom to top: 1) A text 131

encoder which is employed to obtain text vector 132

representations; 2) A multi-granularity hierarchi- 133

cal feature extractor which can exploit effective 134

structured features from text representations; 3) A 135

feature aggregation layer which aggregate previous 136

multi-granularity features for relation prediction. 137

In this section, we will introduce details of three 138

components. 139

Firstly, we formalize the relation extraction task. 140

Let x = {x1, x2, ..., xn} be a sequence of input 141

tokens, where x0 = [CLS] and xn = [SEP] are 142

special start and end tokens for BERT-related en- 143

coders. Let s1 = (i, j) and s2 = (k, l) be pairs of 144

entity indices. The indices in s1 and s2 delimit en- 145

tities in x: [xi, . . . , xj−1] and [xk, . . . , xl−1]. Our 146

goal is to learn a function P (r) = fθ(x, s1, s2), 147

where r ∈ R indicates the relation between the 148

entity pairs, which is marked by s1 and s2. R is a 149

pre-defined relation set. 150

2.1 Encoder Layer 151

We first employ a text encoder (e.g. BERT) to map 152

tokens in input sentences into vector representa- 153

tions which can be formalized by Equ. (1). 154

H = {h0, . . . , hn} = fencoder(x0, . . . , xn) (1) 155

Where H = {h0, . . . , hn} is the vector representa- 156

tion of input sentences. 157

Our work is built upon H and does not need any 158

external information. We employ a max-pooling 159

operation to obtain shallow features of entity pairs 160

and input sentences. he1 = Maxpooling(hi:j) and 161

he2 = Maxpooling(hk:l) are the representations 162

of entity pairs. hg = Maxpooling(H) is the vector 163

representation of input sentences which contains 164

global semantic information. 165
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Figure 2: Middle: The structure of our proposed multi-granularity hierarchical feature extractor. Left: Details of
global semantic attention (sentence level feature) and feature aggregation layer. Right: Details of mention attention
(entity mention level feature) and mention-aware segment attention (segment level feature).

2.2 Multi-Granularity Hierarchical Feature166

Extractor167

The multi-granularity hierarchical feature extrac-168

tor is the core component of our method and it169

consists of three attention mechanism for different170

granularity features extraction: 1) mention atten-171

tion which is designed to entity mention features of172

given entity pairs; 2) mention-aware segment atten-173

tion which is based on the entity mention features174

from previous mention attention and aim to extract175

core segment level feature which is related to en-176

tity mentions; 3) global semantic attention which177

focuses on the sentence level feature.178

2.2.1 Mention Attention179

The structure of mention attention is shown in the180

right bottom of Figure 2. To capture more infor-181

mation about given entity pairs from input sen-182

tences, we extract entity mention level features by183

modeling the co-references (mentions) of entities184

implicitly. We employ a mention attention to cap-185

ture information about entity 1 and 2 respectively.186

Specifically, we can use the representation of an en-187

tity as a query to obtain the entity mention feature188

from H by Equ. (2).189

h′e1 = Softmax(
H · he1√

d
) ·H

h′e2 = Softmax(
H · he2√

d
) ·H

(2)190

Where d is the dimension of vector representation 191

and used to normalize vectors. Then, h′e1 and h′e2 192

model the mentions of given entity pairs implicitly 193

and contain more entity semantic information than 194

he1 and he2 . 195

2.2.2 Mention-Aware Segment Attention 196

The structure of mention-aware segment attention 197

is shown in the right top of Figure 2. And the 198

mention-aware segment attention is a hierarchical 199

structure based on the entity mention features h′e1 200

and h′e2 from mention attention. 201

Before introducing mention-aware segments at- 202

tention, we first introduce how to get the repre- 203

sentations of segments. We employ convolutional 204

neural networks (CNN) with different kernel sizes 205

to obtain all n-gram segments in texts, which can 206

effectively capture local n-gram information with 207

Equ. (3). 208

Ht = CNNt(H), t ∈ {1, 2, 3} (3) 209

Where t is the kernel size of CNN and is empiri- 210

cally set as t ∈ {1, 2, 3} which means extract 1- 211

gram, 2-gram ,and 3-gram segment level features. 212

Intuitively, the valuable segments should be 213

highly related to given entity pairs, which can help 214

the model to decide the relation of given entity 215

pairs. Entity mention features h′e1 and h′e2 contain 216

comprehensive information of given entity pairs 217
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and Ht contain 1,2,3-gram segment level features.218

We can extract mention-aware segment level fea-219

tures by simply linking them with attention mecha-220

nisms by Equ. (4).221

htm = Softmax(
Ht · (Wm[h′e1 ;h

′
e2 ])√

d
) ·Ht (4)222

Then, we get {htm}t=1,2,3 which capture different223

granularity segments features.224

2.2.3 Global Semantic Attention225

The structure of global semantic attention is shown226

in the left bottom of Figure 2. Previous works227

always directly concatenate vector representation228

[he1 ;he2 ;hg] as the global semantic feature of in-229

put text. We argue this is not enough to help model230

capture deeper sentence level semantic informa-231

tion for RE. Different from them, to obtain better232

global sentence-level semantic feature, we employ233

an attention operation called global semantic atten-234

tion which use the concatenation of [he1 ;he2 ;hg]235

as query to capture deeper semantic feature from236

context representation H by Equ. (5).237

hs = Softmax(
H · (Ws[he1 ;he2 ;hg])√

d
) ·H (5)238

Where Ws ∈ Rd×3d is a linear transform matrix,239

and d is a hidden dimension of vectors. The con-240

catenation of [he1 ;he2 ;hg] is used as a query of the241

attention operation, which can force the extracted242

global semantic representation hs contain entity243

mention related sentence level feature.244

2.3 Feature Aggregation Layer245

The structure of the feature aggregation layer is246

shown in the left top of Figure 2. We aggregate247

previous multi-granularity features by Equ. (6).248

ho = ReLU(Wa[hs;h
′
e1 ;h

′
e1 ;h

1
m; ;h2m; ;h3m])

(6)249

Where Wa ∈ R6d×d is a linear transform matrix250

and ReLU is a nonlinear activation function.251

2.4 Classification252

Finally, we employ a softmax function to output253

the probability of each relation label as follows:254

P (r|x, s1, s2) = Softmax(Woho) (7)255

The whole model is trained with cross entropy loss256

function. We call the multi-granularity hierarchical257

feature extractor: SMS (relation extraction with258

Sentence level, Mention level and mention-aware259

Segment level features).260

Tacred Semeval
lr 3e-5 2e-5
warmup steps 300 0
batch size 64 32
V100 GPU 4x 1x
epochs 4 10
max length 128 128

Table 1: Hyper-parameters used in training.

3 Experiments 261

3.1 Datasets 262

We evaluate the performance of our method on 263

Semeval 2010 Task 8, Tacred and Tacred Revisited 264

datasets. 265

SemEval 2010 Task 8 (Hendrickx et al., 2010) 266

is a public dataset which contains 10,717 instances 267

with 9 relations. The training/validation/test set 268

contains 7,000/1,000/2,717 instances respectively. 269

Tacred3 is one of the largest, most widely used 270

crowd-sourced datasets for Relation Extraction 271

(RE), which is introduced by (Zhang et al., 2017), 272

with 106,264 examples built over newswire and 273

web text from the corpus used in the yearly TAC 274

Knowledge Base Population (TAC KBP) chal- 275

lenges. The training/validation/test set contains 276

68,124/22,631/15,509 instances respectively. It 277

covers 42 relation types including 41 relation types 278

and a no_relation type and contains longer sen- 279

tences with an average sentence length of 36.4. 280

Tacred Revisited4 was proposed by (Alt et al., 281

2020) which aims to improve the accuracy and re- 282

liability of future RE method evaluations. They 283

validate the most challenging 5K examples in the 284

development and test sets using trained annotators 285

and find that label errors account for 8% absolute 286

F1 test error, and that more than 50% of the exam- 287

ples need to be relabeled. Then, they relabeled the 288

test set and released the Tacred Revisited dataset. 289

3.2 Settings 290

The setting of hyper-parameters is shown in table 1. 291

Following the implementation details mentioned in 292

(Zhang et al., 2017), we employ the “entity mask” 293

strategy and the “multi-channel” strategy during 294

experiments. The former means replacing each 295

subject entity (and object entity similarly) in the 296

original sentence with a special [SUBJ-⟨NER⟩] 297

token. All of our reported results are the mean 298

of 5 results with different seeds, which are ran- 299

3https://nlp.stanford.edu/projects/tacred/
4https://github.com/DFKI-NLP/tacrev
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Model Tacred Tacred Revisited
P(∆P ) R(∆R) F1(∆F1) P(∆P ) R(∆R) F1(∆F1)

1

LSTM 62.5 63.4 62.9 67.7 73.1 70.3
PA-LSTM* 65.7 64.5 65.1 73.6 72.8 73.2
SA-LSTM 68.1 65.7 66.9 78.3 72.5 75.4
C-GCN* 69.9 63.3 66.4 76.8 71.4 74.1
C-AGGCN* 71.9 63.4 67.5 78.2 70.5 74.3

2

TRE - - 67.4 - - 75.3
BERT-base 68.1 67.7 67.9 69.4 75.8 72.6
BERT-large 69.2 69.4 69.3 75.1 74.8 75.0
BERT+LSTM 73.3 63.1 67.8 74.1 73.9 74.0
SpanBERT-base 67.6 68.6 68.1 69.1 78.2 73.7
SpanBERT-large 70.8 70.9 70.8 77.8 78.3 78.0
DG-SpanBERT-large* 71.4 71.6 71.5 79.2 78.6 78.9

3

MTB† - - 71.5 - - -
KnowBERT-W+W‡ 71.6 71.4 71.5 79.0 79.6 79.3
KEPLER‡ 70.4 73.0 71.7 - - -
K-Adapter‡ 70.1 74.0 72.0 - - -
LUKE† 70.4 75.1 72.7 79.7 80.6 80.2

4

LSTM+SMS 72.8(+10.3) 64.6(1.2) 68.4(+5.5) 80.8(+3.1) 72.2(-0.9) 75.9(+5.6)
SpanBERT-base+SMS 72.6(+5.0) 68.4(-0.2) 70.5(+2.4) 79.1(+10.0) 77.7(-0.5) 78.3(+4.6)
SpanBERT-large+SMS 72.2(+1.4) 71.6(+0.7) 71.9(+1.1) 79.3(+1.5) 80.4(+2.1) 79.8(+1.8)
BERT-base+SMS 69.4(+1.3) 70.2(+2.5) 69.7(+1.8) 77.0(+7.6) 80.1(+4.3) 78.5(+5.9)
BERT-large+SMS 70.7(+1.5) 69.1(-0.3) 69.9(+0.6) 78.9(+3.8) 79.2(+4.4) 79.1(+4.1)

Table 2: Results on Tacred and Tacred Revisited. Bold means the best results in each block. Underline means the
best results in block 1, 2, and 4. * means that the model employs dependency tree information. †means that the
model employs extra training data to pre-train the model. ‡means the model employs knowledge graphs.

domly selected. We evaluate the models on Ta-300

cred with the official script5 in terms of the Macro-301

F1 score and on Semeval with the official script302

semeval2010_task8_scorer-v1.2.pl.303

When employing LSTM as the encoder, we em-304

ploy a single-layer bidirectional LSTM with the305

hidden dimension size set to 200, we set dropout306

after the input layer and before the output layer307

with p = 0.5. We use stochastic gradient de-308

scent (SGD) with epochs of 30, learning rate of309

1.0, decay weight of 0.5 and batch sizes of 50 to310

train the model. The latter is to augment the in-311

put by concatenating it with part-of-speech (POS)312

and named entity recognition (NER) embeddings.313

Glove (Pennington et al., 2014) embedding with314

300-dimension is used for initializing word embed-315

ding layers in LSTM+SMS. NER embedding, POS316

embedding and position embedding are randomly317

initialized with 30-dimension vectors from uniform318

distribution.319

3.3 Comparison Models320

We mainly compare with models which are based321

on pre-trained language models (e.g. BERT). We322

reproduce the results of BERT and SpanBERT323

to evaluate the improvement of our method. We324

also compared other models with pre-trained lan-325

5https://github.com/yuhaozhang/tacred-relation

guage models. TRE (Alt et al., 2019), which 326

uses the unidirectional OpenAI Generative Pre- 327

Trained Transformer (GPT) (Radford et al., 2019). 328

BERT-LSTM (Shi and Lin, 2019), which stacks 329

bidirectional LSTM layer to BERT encoder. DG- 330

SpanBERT, which replaced the encoder of C- 331

GCN (Zhang et al., 2018) with SpanBERT and 332

achieved the new state-of-the-art result without ex- 333

tra training data. MTB (Baldini Soares et al., 2019), 334

which incorporates an intermediate “matching the 335

blanks” pre-training on the entity-linked text based 336

on English Wikipedia. KnowBERT-W+W (Peters 337

et al., 2019b), which is an an advanced version 338

of KnowBERT. KEPLER (Wang et al., 2020b), 339

which integrates factual knowledge with the su- 340

pervision of the knowledge embedding objective. 341

K-Adapter (Wang et al., 2020a), which consists of 342

a RoBERTa model and an adapter to select adaptive 343

knowledge. LUKE (Yamada et al., 2020), which 344

is trained with a new pre-training task which in- 345

volves predicting randomly masked words and en- 346

tities in a large entity-annotated corpus retrieved 347

from Wikipedia and introduce a new entity-aware 348

attention mechanism. 349

In order to further prove the effectiveness of our 350

SMS, we use bi-directional LSTM as encoder, and 351

compare with models which do not use pre-trained 352

language models. We choose two sequence-based 353

models. PA-LSTM (Zhang et al., 2017), which 354
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employ Bi-LSTM to encoder the plain text and355

combine with position-aware attention mechanism356

to extract relation. PA-SLTM is the benchmark of357

Tacred. SA-LSTM (Yu et al., 2019), which employ358

CRF to learn segment-level attention and is the best359

sequence-based model of Tacred.360

We also compare our model with two other361

dependency-based models which make use of GCN362

(Kipf and Welling, 2017) to capture semantic infor-363

mation from the dependency tree. C-GCN (Zhang364

et al., 2018), which applies pruning strategy and365

GCN to extract features from tree structure for re-366

lation extraction. C-AGGCN (Guo et al., 2019),367

which introduces self-attention to build a soft ad-368

jacent matrix as input of Dense GCN to learn tree369

structure features.370

3.4 Results on Tacred and Tacred Revisited371

We first report the results or our model on Tacred372

and Tacred Revisited on Table 2. Compared models373

are divided into three categories: 1) models with374

Bi-LSTM encoder in block 1; 2) models with pre-375

trained models in block 2; 3) models with external376

knowledge in block 3. The results of our model377

are reported in block 4. We use * to mark models378

with dependency trees which are obtained with379

external tools. We use †to mark models which use380

external training data to pre-train the model and381

‡to mark models which employ knowledge graphs382

to pre-train or fine-tune the model. Models with383

†and ‡require external data and we do not directly384

compare them.385

3.4.1 Compare with Pre-trained models386

We can see that our SMS can bring at least 0.6 and387

up to 5.5 F1 score improvement for the original388

encoder on Tacred dataset. On the Tacred Revis-389

ited dataset, our SMS can bring at least 1.8 and up390

to 5.9 F1 score improvement for the original en-391

coder. Overall, different encoders with SMS all can392

obtain remarkable improvement on both datasets.393

This proves that our SMS really captures effective394

features from input sentence representations, which395

can not get directly from the representations. Com-396

pared with models which employ pre-trained mod-397

els without external knowledge (i.e. training data398

or knowledge graph) in block 2, pretrained models399

with our SMS in block 4 overall perform better and400

SpanBERT-large+SMS achieve new state-of-the art401

results on both datasets. In addition, we can see402

that the performance of SpanBERT-large+SMS is403

better than MTB, KnowBERT-W+W, and KEPLER404

Models SemEval
F1(∆F1)

LSTM 82.7
LSTM+Attention 84.0
TRE 87.1
BERT-base 87.9
BERT-large 88.8
SpanBERT-base 88.2
SpanBERT-large 89.4
R-BERT (Wu and He, 2019a) 89.3
MTB † 89.5
KnowBert-W+W ‡ 89.1
LSTM+SMS 86.8(+4.1)
BERT-base+SMS 88.4(+0.5)
BERT-large+SMS 89.8(+1.0)
SpanBERT-base+SMS 88.5(+0.3)
SpanBERT-large+SMS 90.3(+0.9)

Table 3: Results on SemEval 2010 task8. †means that
the model employs external knowledge to pre-train the
model. ‡means the model employs a knowledge base.

in block 3 and is competitive with K-Adapter and 405

LUKE. 406

The increase of F1 score is more conspicuous on 407

Tacred Revisited compared with Tacred. This phe- 408

nomenon is further evidence that existing models 409

have neared the upper limit of Tacred, which have 410

many mislabeled examples. Besides, we can see 411

that models based on SpanBERT all have a pretty 412

good performance. This phenomenon proves the 413

importance of segment level features. 414

3.4.2 Compare with LSTM-based models 415

To further evaluate the effectiveness of our method 416

SMS, we specially combine SMS with LSTM en- 417

coder. We can observe that our model also outper- 418

forms the model with LSTM encoder in block 1. 419

Dependency-based models with graph neural net- 420

works (C-GCN and C-AGGCN) have a remarkable 421

performance on Tacred and models which focus on 422

segments (SA-LSTM) have a better performance 423

on Tacred Revisited. This phenomenon means that 424

directly modeling the segment level feature can 425

not effectively overcome the noise from mislabeled 426

examples and the introduction of graph structure 427

with dependency trees can help models tackle some 428

influence from wrong examples in the dataset itself. 429

However, our LSTM+SMS can outperform them 430

on both datasets due to our mention-aware segment 431

attention can alleviate influence from mislabeled 432

entity pairs via modeling entity mention level fea- 433

ture and hierarchical structure. 434
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F1(∆F1)
SpanBERT-large 78.0

+ sentence level 78.6(+0.6)
+ mention level 78.8(+0.8)
+ segment level 79.4(+1.4)
+ all 79.8(+1.8)

Table 4: Ablation study on Tacred Revisited test set.

3.5 Results on SemEval 2010 Task 8435

We also evaluate our SMS with different encoders436

on SemEval 2010 Task 8 dataset and results are re-437

ported in Tab. 3. We can observe that our SMS still438

brings remarkable improvement for different en-439

coders, especially for LSTM encoders. SpanBERT-440

large+SMS outperforms all compared to strong441

baselines. Besides, SpanBERT-large+SMS can442

beat models with external knowledge due to this443

dataset being simpler than Tacred which only has444

9 relations and shorter input sentences. These rea-445

sons reduce the gain from the introduction of exter-446

nal knowledge.447

We also can see that the improvement of LSTM448

with SMS is up to 4.1% F1 score. We guess that449

pre-trained models contain a lot of semantic infor-450

mation from pre-training data which is similar to451

features from our SMS. However, LSTM only cap-452

tures features from the plain texts and can achieve453

more improvement from our proposed SMS.454

4 Discussion455

4.1 Ablation Study456

To evaluate the contribution of each component of457

our SMS, we do an ablation study and results are458

shown in Tab. 4. We can observe that segment level459

features contribute the most for the F1 score, which460

are extracted by the mention-aware segment atten-461

tion. This means the hierarchical structure between462

entity mention level and segment level feature re-463

ally play a vital role for relation prediction. In the464

future works, segment features need more attention.465

We also can see that all three granularity features466

influence the performance obviously. This proves467

the capture of these three granularity features are468

proper for relation extraction tasks.469

4.2 Analysis with N-gram Segments470

We show the performance on the Tacred Revisited471

test set with different n-gram segments features472

in Figure 3. Number n in the x-axis means the473

model uses 1− n-gram segment features. We can474

observe that the model with 1,2,3-gram segment475

Figure 3: Performance on Tacred Revisited test set with
different n-gram segments features. Number n in x-axis
means the model use n-gram segment features.

features achieves the best performance. Longer 476

segment features can not bring improvement and 477

may bring noise to the performance of the model. 478

So we employ 1,2,3-gram segment level features 479

in our paper. 480

4.3 Case Study 481

As shown in Figure 4, we visualized the attention 482

of our SMS with two examples which are sam- 483

pled from Tacred test set. In the first example, 484

our method successfully pays more attention to en- 485

tity mentions: “she”, “her”, “he”, and “his”. All 486

of them are key entity mentions for the predicted 487

relation. We also can observe that the mention- 488

aware segment attention of our SMS can focus 489

on the core segment “her dad”, which is highly 490

related to given entity pairs and matches the pre- 491

dicted label “per:children”. From the second ex- 492

ample, we can see that the model learns additional 493

information which is similar to target relation. The 494

model not only successfully pays attention on en- 495

tity mention “SUBJ-PER” and core segment “COO 496

of ”, but also captures similar entity mention “Sally 497

Strebel” and segment “CEO of ” simultaneously. 498

The case study proves that the mention attention 499

and mention-aware segment attention do capture 500

crucial entity mention level and segment level fea- 501

tures. 502

5 Related Works 503

5.1 RE with Neural Networks 504

In recent years, neural networks have been large- 505

scale used in relation extraction (RE). Zeng et al. 506

(2014); Nguyen and Grishman (2015); Wang 507

et al. (2016) employ convolutional neural networks 508

(CNN) to extract lexical and sentence level fea- 509

tures for RE. Zhang and Wang (2015) employs 510

7



Figure 4: Two examples which are sampled from Tacred Revisited test set. The shade of the color represents how
much attention is allocated. For the sake of perception, we did not color words with very low attention values.

bidirectional recurrent neural networks (RNN) to511

learn long-term features to tackle long-term rela-512

tion problems in RE. And many models with dif-513

ferent attention mechanisms were proposed (Zhou514

et al., 2016; Zhang et al., 2017; Xiao and Liu, 2016;515

Wang et al., 2016; Yu et al., 2019). Vu et al. (2016);516

Nayak and Ng (2019) combine CNN and RNN to517

extract multi-types features from input sentences.518

Recently, Verga et al. (2018); Liu et al. (2020) em-519

ploy new neural structure transformer to extract520

features for RE, which is based on self-attention521

and is robust and powerful.522

Different from previous sequence-based mod-523

els, dependency-based models employ dependency524

parsing of input sentences to capture non-local syn-525

tactic relations. The use of dependency trees has526

been a trend in relation extraction (Xu et al., 2015;527

Cai et al., 2016; Miwa and Bansal, 2016; Song528

et al., 2018). Peng et al. (2017) split the dependency529

graph into two directed graphs, then extended the530

tree LSTM model (Tai et al., 2015) based on these531

two graphs to learn the structure of syntax depen-532

dency. Zhang et al. (2018) first introduced graph533

neural network (Kipf and Welling, 2017) (GNN)534

into RE model for encoding featrues from depen-535

dency tree and proposed a pruning strategy to re-536

move unnecessary components of dependency tree.537

Guo et al. (2019) also proposed a model with a soft-538

pruning approach that can automatically learn how539

to selectively attend to the relevant sub-structures540

useful for relation extraction.541

5.2 RE with Pretrained Models542

With the development of pre-trained language mod-543

els (Devlin et al., 2019), the performance of relation544

extraction has been highly improved. After that,545

many researches based on BERT were carried out.546

Most of these works employ pre-trained language547

models in three ways for relation extraction: 1)548

design task-related tasks in pre-training stage to549

improve prior pattern (Zhang et al., 2019; Joshi 550

et al., 2020; Baldini Soares et al., 2019; Li and 551

Tian, 2020; Peng et al., 2020; Yamada et al., 2020); 552

2) introduce external knowledge (e.g. knowledge 553

graph and wiki data) into fine-tuning or pre-training 554

stages (Peters et al., 2019a; Baldini Soares et al., 555

2019; Wang et al., 2020b,a; Yamada et al., 2020); 3) 556

employ representation from pre-trained language 557

models and stack some neural structure over it (Tao 558

et al., 2019; Alt et al., 2019; Wang et al., 2019; 559

Wu and He, 2019b; Shi and Lin, 2019; Zhao et al., 560

2019; Xue et al., 2020; Chen et al., 2020). There 561

are also some special methods with pre-trained lan- 562

guage models (Li et al., 2019; Zhao et al., 2020). 563

They convert relation classification tasks into ma- 564

chine reading comprehension tasks. However, most 565

of them is time-consuming or resource-consuming 566

due to the require of external knowledge and the 567

pre-train stage. 568

6 Conclusion and Limitations 569

In this paper, we analyze previous typical works 570

and empirically focus on three granularity features: 571

entity mention level, segment level and sentence 572

level. Based on the hierarchical structure between 573

entity mention level and segment level feature, we 574

propose a multi-granularity hierarchical feature ex- 575

tractor for relation extraction, which does not need 576

any external knowledge or tools. We evaluate our 577

method with different encoders and results on three 578

public benchmarks show that our method can bring 579

outstanding improvement for them. 580

The structure of our model make it not easy to 581

apply on multi-relation extraction tasks. In the 582

future, we will focus on how to extend our method 583

to longer input tasks and multi-relation extraction 584

tasks (e.g. Document Level Relation Extraction). 585

Besides, we will also investigate what makes graph 586

structure effective in relation extraction tasks and 587

why our method can obtain better results than them. 588
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