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ABSTRACT

Recently, self-supervised contrastive pre-training has become the de facto regime,
that allows for efficient downstream fine-tuning. Meanwhile, its fairness issues are
barely studied, though they have drawn great attention from the machine learning
community, where structured biases in data can lead to biased predictions against
under-presented groups. Most existing fairness metrics and algorithms focus on
supervised settings, e.g., based on disparities in prediction performance, and they
become inapplicable in the absence of supervision. We are thus interested in
the challenging question: how does the pre-training representation (un)fairness
transfer to the downstream task (un)fairness, and can we define and pursue fairness
in unsupervised pre-training? Firstly, we empirically show that imbalanced groups
in the pre-training data indeed lead to unfairness in the pre-trained representations,
and that cannot be easily fixed by fairness-aware fine-tuning without sacrificing
efficiency. Secondly, motivated by the observation that the majority group of
the pre-training data dominates the learned representations, we design the first
unfairness metric that can be applicable to self-supervised learning, and leverage
that to guide the contrastive pre-training for fairness-aware representations. Our
experiments demonstrate that the underestimated representation disparities strike
over 10% surges on the proposed metric and our algorithm improves 10 out of 13
tasks on the 1%-labeled CelebA dataset. Codes will be released upon acceptance.

1 INTRODUCTION

Supervised learning has achieved remarkable success in a variety of fields thanks to the availability of
massive amount of data and the flexibility of deep models. On the other hand, in many applications
the data annotation process remains expensive and therefore we cannot directly apply supervised
learning. To mitigate this issue, recently many studies investigated self-supervised approaches to
leverage label-free data for pre-training, and learn generalizable representations for downstream
learning tasks. A prominent example is contrastive learning (CL) (Goyal et al., 2019), which
trains between-sample discriminative and transformation invariant representations by self-created
supervisions. Outstandingly, when combined with an efficient linearly fine-tuning (LFT) over
downstream tasks, the overall predictive performance surpasses state-of-the-art supervised learning
in various applications (Chen et al., 2020a; Grill et al., 2020; Tian et al., 2020; Wang & Isola, 2020;
Chen et al., 2020c).

Despite the impressive downstream predictive performance, the potential representation bias in-
troduced by CL datasets is barely studied. Especially when different social groups are involved,
structural biases in data or representations can induce biases in the learned models that are unfair to
under-represented groups. One such example is that people may be predicted as criminals by models
due to their skin colors, simply because of statistical racial bias on skin colors in data (Redmond &
Baveja, 2002). A recent theoretical result in (Dutta et al., 2020) established the connection between
the concerned unfairness and a bad feature space: the group-disparate class separability (the optimal
discrimination in the space) results in an inevitable sacrifice of fairness for accuracy, no matter what
kind of fairness mitigation is applied. The connection suggests that once unfairness is introduced
in the pre-training stage, the cost to mitigate it during the fine-tuning stage can be prohibitive. We
therefore ask the following questions:
(1) Will the pre-training representation unfairness result in downstream unfairness? And if so, (2)

how can we measure and mitigate it early in pre-training?
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Figure 1: Illustration of potential downstream unfairness induced by biased data in pre-training, and
the relationship between unfairness/balanced-accuracy (B-Acc) and pre-training group imbalance.
The unfairness retains even after fair fine-tuning. Unlike the downstream supervised learning, pre-
training does not exhibit a group-biased loss distribution, which introduces challenges for loss-based
unfairness detection and results in a false sense of fairness. In contrast, our proposed metric ∆FD

is feature-based and can successfully predict downstream unfairness (∆EO) as early as in the pre-
training stage.

Our work is the first attempt to address the above questions by a rigorous and comprehensive study.
For the first question, we look for the biases in CL representations that will impact the downstream
fairness even under fairness protected LFT. We show that the biased data in the pre-training stage
induce unfair representations, which carry the unfairness to greatly impact the downstream task.
The fairness issues induced by unfair representations cannot be fixed in downstream tasks, even by
fairness mitigation.

With this positive answer to Q1, it is still challenging to answer the second question, because of the
inconsistent learning goals of CL and supervised LFT. Most existing fairness metrics used disparity
of task losses (or similar accuracy variants) between groups, and therefore cannot be applied in the
pre-training phase, which is task independent. To see such discrepancy, a “hard” sample characterized
by a large loss by the CL stage can have a small classification loss in the LFT stage, and thus disparity
as shown in CL losses may NOT lead to unfairness as measured by LFT losses. For example, given
a cluster of similar samples, they could be of small LFT losses because they likely belong to the
identical downstream class, while of large CL losses because the dissimilarity among them is large.
As such, directly applying existing fairness metrics and algorithms on the CL phase to calibrate its
loss distributions may lead to a false sense of fairness, as illustrated in Fig. 1.

To tackle this problem, we identify and study an important source of downstream unfairness: the
imbalance of learned features during pre-training, i.e., the majority group activated more discrim-
inative features than the minority group. As an example, because that people with a darker skin
color (minority) can be easily differentiated from those of lighter skin color (majority) by their skin
colors, the representation learning via CL will more focus on such group-discriminative features,
and other features are potentially task-discriminative will be ignored. Such learned representations
will lead to worse downstream performance for minority. As shown in Fig. 1, our fairness metric
∆FD can recognize the downstream unfairness (measured by a widely adopted metric ∆EO) early in
pre-training.

To conclude, our main contributions are as follows. (1) For the first time, we conducted a com-
prehensive investigation on the unfairness transferred from contrastive pre-training to fine-tuning,
and showed that such unfairness cannot be fixed by linear fair fine-tuning. (2) We defined a novel
feature-based fairness metric for task-agnostic CL, Equalized Feature (EF), which is shown to charac-
terize fairness in downstream tasks (e.g., correlate with equalized odds). (3) Following the principle
of EF, we proposed a novel fair representation learning for CL by augmenting the features of the
under-presented group by a simple yet efficient feature masking strategy. (4) Through extensive
experiments, we showed that our method effectively improves fairness in multiple downstream tasks.

2 RELATED WORK

Supervised unfairness mitigation aims to reduce the prediction disparity between two protected
social groups (Luong et al., 2011; Kamishima et al., 2011), for example, higher predicted crime
probability for one race than other races. It can be categorized into three classes according to the
execution periods. (1) Pre-processing methods reduce the group discrimination in datasets by
sampling or re-weighting (Calders et al., 2009; Kamiran & Calders, 2012; Calmon et al., 2017), or

2



Under review as a conference paper at ICLR 2023

learning disentangled representations (Zemel et al., 2013). (2) In-processing methods secure fairness
by introducing constraints that limit correlation between sensitive attributes and labels (Zafar et al.,
2017a;b; Donini et al., 2020), or fairness inequality by a two-player game (Cotter et al., 2019; Donini
et al., 2020; Komiyama et al., 2018). (3) Post-processing methods adjust trained model to ensure
fairness (Hardt et al., 2016; Kim et al., 2019), but are shown to be suboptimal w.r.t. the notion of
equalized odds (Woodworth et al., 2017). Most of these approaches rely on the existence of prediction
labels to measure and ensure fairness. This paper considers a novel problem setting that addresses
unfairness without labels.

Self-supervised contrastive learning. Recently, contrastive learning (CL) (Chen et al., 2020a;c;
van den Oord et al., 2019; He et al., 2020; Chen et al., 2020b) and its variants (Grill et al., 2020;
Tian et al., 2020; Chen & He, 2021) are powerful self-supervised representation learning approaches
without requiring labels. Given a unlabeled sample, CL and its variants train a feature encoder
by maximizing similarity between positive samples (transformations of the same sample) and dis-
similarity between negative ones (transformation of different samples). CL uniformly improves
local discrimination among all samples (Wang & Isola, 2020; Wang & Liu, 2021), and is not biased
toward group-wise or class-wise discrimination. Perhaps due to the property, the learned feature
representations improve the downstream fairness (Ramapuram et al., 2021; Pruksachatkun et al.,
2021). However, it remains unclear when CL learns group-fair representations. Our work shows
that CL can suffer from imbalanced social groups and yield unfair representations. Critically, the
unfairness cannot be trivially measured by losses. Thus, we propose a novel fairness metric based on
feature balance to reveal the overlooked unfairness in pre-training.

Unsupervised fair representation learning. Different from its supervised version (Zemel et al.,
2013), unsupervised fair representation learning aims to learn a fair feature space before supervision
is available. Dutta et al. (2020) showed a surprising result that contradicts common perception of
fairness in literature: given an ideal space, there could be a win-win of fairness and accuracy. Thus,
they propose activate feature collection, which however could be expansive at practice. Park et al.
(2020) leveraged protected and unprotected attributes together to learn representations disentangled
from protected attribute. A similar work is Hwang et al. (2020). Ramapuram et al. (2021) first
showed that self-supervised contrastive learning can benefit downstream fairness. Baldini et al. (2021)
showed varying fairness of language models in downstream tasks and emphasized the importance
of fairness mitigation during fine-tuning. Shen et al. (2021) studied the CL for fair representations
when task attributes are available. Despite these primitive results, so far there is no study on how to
measure and mitigate group unfairness without labels. The challenges are that we can hardly observe
group disparity on in-group discrimination, nor retrieve extra labels in pre-training for group-fair
learning. Our work addressed the two problems by a novel feature-based fairness metric and a novel
fair learning algorithm.

2.1 PROBLEM SETTING AND PRELIMINARIES

This section elaborates the problem setting of interest. Let X = {(x, a)} denote an unlabeled source
dataset and D = {(x, y, a)} the labeled target dataset, where x is a sample, y is its label, and a is its
protected attribute. We use capital letters to denote random variables.

Unsupervised Pre-training + Supervised Fair Linear Fine-tuning. We study the powerful combi-
nation of unsupervised pre-training and a lightweight linear fine-tuning (PT+LFT). We will propose a
fairness-aware solution that secures a fair feature representation from the pre-training phase, and uses
it with a lightweight fair fine-tuning to generate fair downstream predictions.

Pre-training: minθ E(x,a)∈X ℓCL(fθ(x), a), (1)

Fine-tuning: minθc E(x,y,a)∈Dℓ
fair
CE (ϕθc ◦ fθ(x), y, a), (2)

where ℓCL is a properly-designed CL loss aware of fairness and generalization, a function of the
sample x, protected attribute a and feature encoder parameter fθ, ϕθc denotes the classifier by
equipping the linear prediction head ϕθc , ℓfair

CE is a fairness-aware cross-entropy loss. To ensure the
efficiency of LFT, we use a simple fair scheme of group reweighing (Kamiran & Calders, 2012).

Contrastive learning. We adopt a representative contrastive setting SimCLR (Chen et al., 2020a).
Given a batch of samples {x1, . . . , xb}, features z are extracted by fθ from two augmented views T1
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and T2 as {fθ(T1(x1)), fθ(T2(x2)), . . . , fθ(T1(xb)), fθ(T2(xb))}. The contrastive loss is

ℓCL(zi) =
∑

zj∼P(i)
− log

sτ (zi,zj)∑
k∈N(i) s

τ (zi,zk)
, (3)

where zi = g ◦ f(Ti(x)) is the projected feature under the ith view; similarity function sτ (a, b) =
exp(cos ⟨a, b⟩ /t); zj is from the positive set; N (i) is the set of all views of all images except zi,
2b− 1 in total; P(i) is the positive set which includes different view of the ith sample.

Protect and assess downstream fairness. Regardless of the fairness in representations, downstream
training could still ignore unprivileged groups because samples are under-presented. Therefore,
we evaluate fairness after fair linear fine-tuning (FLFT). To protect fairness, we conduct a simple
reweighing strategy (Kamiran & Calders, 2012):

ℓfair
CE = P (A = a)/P (A = a|Y = y)ℓCE, (4)

where the variable probability can be estimated by statistic frequency. A very marginal complexity
is required by reweighing to compute the group statistics in Eq. (4). Also, reweighing is easy to
implement and does not trade-off hyper-parameters to tune. Therefore, reweighing provide a simple
and efficient evaluation protocol. There are a variety of existing fairness metrics, and hereby we use a
representative metric ∆EO (Equalized Odds) as the fairness metric, whose disparity is defined as:

∆EO ≜
∑

y∈{0,1}

∣∣∣P (Ŷ ̸= Y |A = 0, Y = y) −P (Ŷ ̸= Y |A = 1, Y = y)
∣∣∣ , (5)

where Ŷ is the predicted label, Y is the true label, and A denotes the protected attribute.

Cross-task fairness transferability. CL provides a way to learn representations from massive
unlabeled datasets, which can be later utilized by a set of different downstream learning tasks through
the fine-tuning process. The natural discrepancies between the two stages lead us to investigate
the following challenging yet interesting quesitons: (1) Will CL yield unfair representations for
downstream tasks? (2) If so, how to measure the inherent unfairness rooting from task-agnostic
representation learning? (3) How can we transfer fairness from CL to different downstream tasks?

3 CHALLENGES, METRIC, AND MITIGATION

In this section, we answer the aforementioned questions and organize as follows: the challenges in fair
contrastive learning, fairness metric without labels, and finally a mitigation method via minimizing
the measured disparity. We illustrate the two major solutions in Fig. 2 where we introduce a fairness
metric and a feature-centered mitigation method.

3.1 CHALLENGE: THE FALSE SENSE OF CL FAIRNESS

Though some evidence showed that CL improves downstream fairness (Ramapuram et al., 2021;
Pruksachatkun et al., 2021), it is unclear if CL is immune to unfairness, and its fairness impact on
downstream tasks with commonly-used linear fine-tuning.

Experiment setup for measuring representation fairness. Based on the PT+LFT paradigm in Sec-
tion 2.1, we investigate the fairness impact on downstream classifiers from representations, or
representation fairness. For fair representations, the feature vectors from both groups are similarly
separable or of the similar best accuracy. As such, fair representations may correspond to an ideal
construct space enabling the jointly achievable accuracy and fairness (Dutta et al., 2020). However,
the data or label distribution in downstream tasks can also impact the fairness during the LTF pro-
cedure, and therefore we consider fair LFT instead of standard LFT, such that we can measure the
desired representation unfairness instead of algorithmic unfairness.

Matched contrastive loss does not imply fair representations. We note a critical challenge
here is that a straightforward investigation of the CL loss may create an illusion that CL is always
fair. In Fig. 1, we show that CL loss distributes similarly between two groups, which suggests
the the representation should be fair according to the conventional wisdom from existing studies.
However, our study demonstrated a surprising result that group imbalance in CL pretraining result in
downstream unfairness, even when existing fairness measures over CL loss suggested otherwise. We
conduct experiments on the CelebA dataset and measure the group-balanced accuracy (B-Accuracy),
i.e., the average of group accuracy, and fairness ∆EO, under different group ratios (male/female).
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Figure 2: Illustration of unfair features
in male/female groups and the mitiga-
tion. (1) The potential downstream clas-
sification unfairness can be exposed by
the imbalanced influential features in fe-
male and male groups. (2) Re-augment
unprivileged group features and arrive at
fair representations.

In Fig. 3, we show that fairness degrades when the group
ratio in training CL gets increasingly imbalanced, while
accuracy remains similar.

3.2 METRIC: FEATURE DISPARITY

Recall the goal of CL is to learn features versatile for mul-
tiple downstream supervised tasks. We conjecture that,
the reason that a group performs worse than the other in
a downstream task, is because the group learns fewer dis-
criminative features, and therefore the downstream super-
vised learning cannot find a capable linear decision bound-
ary on such feature space. For example, in a learning task
the male group may have fewer samples of long hairs and
CL ignores the hair features, resulting in poor recognition
of the length of hairs. Consistent with the conjecture, an
existing theoretical result has shown that collecting more
task-dependent features for the under-presented group is
in favor of the fairness or fairness-accuracy trade-off (The-
orem 3 in (Dutta et al., 2020)).
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Figure 3: Unfairness induced by imbal-
anced pre-training. Results are averaged
over multiple tasks of CelebA.

Therefore, we believe that the feature sufficiency could
be closely related to the downstream performance and
therefore task-specific fairness. Without the awareness of
tasks, we characterize the unfairness by a novel principle:

Unfairness ≜ ∆(#Mastered Features), (6)
where ∆(n) describe the group difference of n, and a fea-
ture is mastered if it contributes significantly to lowering
the loss values, and therefore is critical in the sense of self-
supervised discrimination. Let M ∈ [0, 1]C be a mask
vector where C is the dimension of a feature vector z. We
define the feature influence by the approximated loss perturbation on removal:

Ii(z) ≜
∣∣ℓ(1\i ◦ z)− ℓ(1 ◦ z)

∣∣ ≈ ∣∣∣∂ℓ(M◦z)
∂Mi (0−Mi)

∣∣∣
M=1

=
∣∣∣zi ∂ℓ(z)∂zi

∣∣∣ , (7)

where 1\i is all-one vector except dimension i. Eq. (7) has two factors: (1) discrimination: The
gradient reflects the influence of the feature on local discrimination by the definition of the contrastive
loss. (2) activation: numerical scale of the feature indicates the activation influence. If an image is
not discriminative from others, for example, all females do not have beard, then the feature will not
activated. Instead, if all male and most female activate the big eye feature, then the feature will be
activated but not discriminative. In both cases, the feature is less important and of quantitively minor
Ii. When a feature is always important in a data set, then feature is significantly learned. Therefore,
for a group a ∈ {0, 1} with a distribution P , we define its group feature influence by:

Ii(PA=a) = Ex∼P (x|A=a)[I
i(z)].

With the definition of group feature influence, we define a group feature to be ϵ-influential if
Ii(PA=a) > ϵ given a threshold ϵ. Then we empirically show the feature disparity in Fig. 4. The
under-presented group (male) has 98% fewer samples and learns 24% (122) fewer influential features
than the dominant group.

To quantify Eq. (6) without parameterization of ϵ, we consider the maximal disparity of the influential-
feature ratios between groups and therefore conclude our metric in Definition 3.1 following the
principle of Eq. (6).
Definition 3.1 (Feature Disparity). A self-supervised representation is considered to be fair if the
maximal disparity of features, as computed below, is small:

∆FD = max
ϵ

∣∣P [I(PA=0) > ϵ]− P [I(PA=1) > ϵ]
∣∣,

where P(x) = 1
C

∑C
i=1 I(xi). Meanwhile, a group 0 is considered to be unprivileged if

P [I(PA=0) > ϵ] < P [I(PA=1) > ϵ] .
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The definition can be easily extended to multiple group cases by using the most disparate groups, i.e.,

max
ϵ

{
max

a
P [I(PA=a) > ϵ]−min

a
P [I(PA=a) > ϵ]

}
.

The complexity of maximization in ∆FD is O(C logC) which can be done by sorting the influences
and traversing ϵ over all Ii.

Figure 4: Feature influence differs by
group on imbalance CelebA with a
SimCLR-trained model. The x-axis rep-
resents the indexes of features sorted ac-
cording by their influence. The red line
shows the threshold maximizing the fea-
ture disparity, above which the female
group has more significant features than
the male group. Features are attributed to
the original images by GradCAM when
the target channel is kept and others are
masked out (Selvaraju et al., 2016).

To clarify the precautionary unfairness related with the
proposed Equalized Feature, we provide the following
remark.
Remark 3.1. If ∆FD is sufficiently greater than zero, then
there exist downstream tasks which are unfair in the notion
of ∆EO.

The remark is based on the intuition: every downstream
task is dependent on a subset of the learned features and
a non-zero ∆FD implies that a group may lacks features
in the subset. On the other hand, it is worth to mention
that ∆FD = 0 does not imply downstream fairness. A
counter-fact is that when each group has mastered the
same number of features yet without overlapping, then
∆FD is zero but unfair in downstream tasks.

3.3 METHOD: RE-AUGMENT FEATURES (REAUG)

As ∆FD in Definition 3.1 is non-differentiable, we provide
a practical method to reduce ∆FD. The major idea is to
encourage the unprivileged group to learn more features to mitigate the disparity.

Feature augmentation by masked training. Masked training has been developed for improving the
generalization of supervised (Huang et al., 2020) or self-supervised learning (Mo et al., 2021). Both
methods mask out high-influential features iteratively for each sample and minimize losses on the
rest features. However, they cannot be directly applied to optimize the proposed metric due to the
group nature of ∆FD. To this end, we propose a group-wise masking strategy to optimize the loss
over masked features, following the proposed equalized feature principle:

Lmask = Ex,A[I(A = 0)ℓCL(MA=0 ◦ fθ(x)) + I(A = 1)ℓCL(MA=1 ◦ fθ(x))], (8)

where M ∈ [0, 1]C . To see how the strategy works, let us suppose group 1 is the unprivileged one,
suggesting that group 1 mastered ∆FD × 100%-fewer features by Definition 3.1. In order to protect
group 1, the strategy drops its most influential ∆FD × 100% features and maintains all features of
the other group:

M i
A=1 = I

[
Ii
A=1 < Iq

A=1

]
, M i

A=0 = 1, (9)

where Iq
A=1 is the largest Ii

A=1 such that P[Ii
A=1 < Iq

A=1] ≤ ∆FD and q = ∆FD.

One issue of this group-wise masking strategy is that it may hardly learn new features for minority
groups. It is easy to see that group-wise masking increases the dissimilarity of two different samples,
i.e., sτ (M i

A=0 ◦ zi,M i
A=1 ◦ zk) < sτ (M i

A=0 ◦ zi,M i
A=1 ◦ zi) if (1−M i

A=1) ◦ zi > 0. As a result,
the retained features will not learn new discrimination knowledge by contrasting inter-group samples
but intra-group samples. But the sample insufficiency of the minority group makes it difficult to
develop new features.

Global masking to enhance feature transfer. To introduce new information for the minority, we
propose a global masking: setting M i

A=0 equal M i
A=1. First, by masking most of the minority’s

interest, we encourage the minority samples to learn more discriminative features not only from
intra- but also inter-group negative samples. Second, the majority group will also pay attention to
discriminate samples by the selected features and therefore the influence of these features will be
augmented. Last, a byproduct of the global masking is the removal of the potentially over-learned
inter-group discrimination. In a contrastive loss, a minority-group sample will naturally have more
contrastive samples from the majority group than the minority one. Due to the scarcity of the minority
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samples and a variety of different features between the two groups, the discriminative learning will
quickly learn few influential features that simplify the functional for discriminating groups. Therefore,
the global masking biased toward the minority helps the group to get rid of such inter-group features.

Efficient group feature influence estimation. Estimating feature influence requires going through
all samples and computing gradient (at least a forwarding-time complexity), which doubles the
training time. To reduce the overhead, we propose to use momentum to estimate the feature influence,
which is almost as efficient as standard CL:

Îi
t+1 = (1− β)Îi

t + βEx∼B[I
i(z)], (10)

where β is the momentum parameter (0.1 if not specified).

Delayed feature-masking. The feature masking relies on the assumption that a group has a stable
influence. Crafting masking at random initialization or an early learning stage could lead to unwanted
masking or random masking, which prevents the training to learn features. Therefore, we first train
an encoder with SimCLR (Chen et al., 2020a) and fine-tune the features with masking.

In summary, our proposed method includes a new masked feature loss and a three-stage training
algorithm, as described in Algorithm 1. The overall complexity of masking and updating parameters,
e.g., by gradient descent, is O(dBC2 + C logC). The major component of complexity is gradient
computation, approximately as O(dBC2) given batch size B, feature size C and a d-layer equal-
width MLP projection head (for computing CL loss). Thanks to the shallow structure of the contrastive
projection head, the gradient is not too expensive. The second term in the complexity is of an efficient
implementation, e.g., of searching for the maximal ϵ in the feature influence array.

Algorithm 1 Three-stage Training
1: Input: Unlabeled dataset and few-labeled dataset
2: Stage 1: Train fθ by SimCLR.
3: Stage 2: Iteratively update feature influence by Eq. (10) and train fθ by masked CL loss Eq. (8).
4: Stage 3: Fairly fine-tune linear classifier over frozen fθ.
5: Output: A fair classifier and a fair encoder.

4 EMPIRICAL RESULTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of the proposed
method and metric from two folds. (1) Quantitative studies include cross-task fairness transfer-
ability, cross-dataset fairness transferability, and fairness against different levels of group imbalance.
(2) Qualitative studies includes the analysis of contrastive loss distributions to understand the effects
of ReAug and how the proposed unsupervised fairness metric ∆FD serves as a predictive metric for
downstream fairness.

Experiment setup. We evaluate the representation fairness through two metrics over fair linear
fine-tuning (FLFT): (1) Fairness metric ∆EO where a smaller value indicates a fairer model. (2)
Balanced accuracy (B-Acc) computes the mean of group-wise accuracy which avoids ignoring a
minority group at test time. We compare our method with a standard CL algorithm, SimCLR. We
evaluate methods on multiple face datasets with sensitive attributes: CelebA (Liu et al., 2015), UTK
(Zhang et al., 2017), FairFace (Karkkainen & Joo, 2021). We use CelebA for pre-training and conduct
FLFT evaluation on labeled CelebA, FairFace, and UTKFace predicting binary attributes. As stated in
Section 2.1, we use the simple and efficient reweighing (Kamiran & Calders, 2012) as the unfairness
mitigation. LAFTR (Madras et al., 2018) is also used in the binary prediction task on CelebA.

Training. During pre-training, we train a ResNet18 model (He et al., 2016) by SimCLR (Chen et al.,
2020a) for 1000 epochs and continue to train for extra 1000 epochs with or without ReAug. Following
the common practice, we use a two-layer equal-width projection network upon the representations,
before computing the CL loss. Per iteration, we use a batch of 1024 samples to compute the gradient,
and the learning rate is decreased by cosine-annealing from 10−3 to zero. With the gradient, Adam
(Kingma & Ba, 2015) with 10−5 weight decay is utilized for both optimizing contrastive losses and
linear fine-tuning. During fine-tuning, we freeze feature extractor layers (e.g., all convolutional layers
of ResNet), and fine-tune the last linear layer for 30 epochs with a batch of size 128 and the same
learning rate schedule as pre-training. The trade-off parameter of LAFTR is set as 5 for more fairness.
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Table 1: CelebA FLFT cross-task evaluation with 1% and 100% FLFT data with reweighing and
LAFTR mitigation.

Mitigation Reweighting LAFTR

∆EO(%) ↓ B-Acc (%) ↑ ∆EO(%) ↓ B-Acc (%) ↑
Task SimCLR +ReAug SimCLR +ReAug SimCLR +ReAug SimCLR +ReAug

1% FLFT
Attractive 15.5 14.1(-1.4) 73.5 73.9(+0.5) 80.5 77.4(-3.1) 75.3 76.3(+1.0)
Big Lips 9.5 10.6(+1.0) 53.4 53.4(+0.0) 23.4 8.1(-15.3) 85.4 85.2(-0.2)

Black Hair 9.3 7.7(-1.6) 75.4 75.1(-0.3) 5.1 6.3(+1.2) 86.7 85.9(-0.8)
Brown Hair 13.8 11.6(-2.2) 56.8 56.4(-0.4) 30.4 38.6(+8.2) 81.7 81.6(-0.1)

High Cheekbones 12.3 11.0(-1.3) 82.2 82.4(+0.2) 21.7 18.2(-3.5) 84.4 83.5(-0.9)
Mouth Slightly Open 7.7 7.2(-0.5) 77.7 78.5(+0.7) 13.9 10.2(-3.7) 78.6 78.4(-0.2)

Narrow Eyes 0.2 0.2(+0.0) 50.1 50.1(-0.0) 2.2 2.9(+0.7) 92.4 92.4(+0.0)
Oval Face 14.9 10.1(-4.9) 56.0 55.6(-0.4) 33.0 31.5(-1.5) 73.5 73.8(+0.3)

Pointy Nose 2.3 1.5(-0.8) 55.9 55.5(-0.4) 35.2 32.5(+0.3) 73.1 73.4(+0.3)
Smiling 7.7 6.8(-0.9) 88.3 89.1(+0.8) 12.6 7.2(-5.4) 88.1 88.1(+0.0)

Straight Hair 7.3 5.8(-1.5) 54.2 53.2(-1.1) 9.2 14.1(+4.9) 80.8 81.2(+0.4)
Wavy Hair 23.9 20.9(-3.0) 69.8 69.4(-0.4) 49.2 57.5(+8.3) 81.1 82.5(+1.4)

Young 5.4 8.5(+3.0) 62.5 63.5(+0.9) 42.2 34.0(-8.2) 83.0 82.2(-0.8)

Average 10.0 8.9(-1.1) 65.8 65.8(+0.0) 27.6 26.0(-1.6) 81.9 81.9(+0.0)

100% FLFT
Attractive 8.6 7.7(-0.9) 75.6 75.6(-0.1) 79.0 76.2(-2.8) 75.3 76.6(+1.3)
Big Lips 17.9 18.5(+0.6) 54.2 54.2(+0.0) 23.3 6.3(-17) 85.3 85.1(-0.2)

Black Hair 7.9 6.0(-1.9) 79.8 80.8(+1.0) 4.0 6.1(+2.1) 86.8 85.6(-1.2)
Brown Hair 22.2 19.1(-3.1) 72.3 73.3(+1.1) 30.5 39.3(+8.8) 81.6 81.5(-0.1)

High Cheekbones 12.4 10.9(-1.5) 83.4 83.8(+0.3) 21.4 19.1(-2.3) 84.4 83.4(-1.0)
Mouth Slightly Open 8.6 7.5(-1.1) 79.6 79.9(+0.3) 14.1 10.5(-3.6) 78.8 78.6(-0.2)

Narrow Eyes 4.3 4.7(+0.4) 51.6 52.0(+0.4) 2.0 3.0(+1.05) 92.4 92.4(+0.0)
Oval Face 15.6 17.1(+1.6) 57.6 57.9(+0.3) 34.9 31.4(-3.5) 73.5 73.8(+0.3)

Pointy Nose 4.0 2.8(-1.1) 58.5 58.2(-0.3) 36.1 32.9(-3.2) 73.2 73.5(-0.3)
Smiling 7.4 6.3(-1.1) 90.0 90.2(+0.2) 13.0 7.7(-5.3) 88.1 88.1(+0.0)

Straight Hair 20.3 20.9(+0.6) 60.9 60.9(+0.0) 8.7 14.0(+5.3) 80.8 81.2(+0.4)
Wavy Hair 23.9 16.8(-7.1) 75.4 75.6(+0.2) 49.8 57.4(+7.6) 80.7 82.4(+1.7)

Young 1.7 1.4(-0.2) 67.2 68.4(+1.2) 41.0 33.2(-7.8) 82.9 82.2(-0.7)

Average 11.9 10.7(-1.1) 69.7 70.1(+0.4) 27.5 25.9(-1.6) 81.8 81.9(+0.1)

4.1 QUANTITATIVE RESULTS

In this subsection, we compare the fairness of representations in two scenarios: fine-tune the model
on labeled pre-training dataset (cross-task), and on labeled unseen dataset (cross-dataset). The former
evaluates how well the fairness can transfer from the unsupervised task to different supervised ones.
The latter considers a general case when a pre-trained large model is used for fast adaptation to
a target dataset. In addition, we re-sample the CelebA dataset to have 1% Male and 99% female
to exacerbate the unfairness risk in pre-training and thus we can evaluate pre-training algorithms
in a more challenging setting. Such an extreme imbalance is in fact rather common in practice.
For example, most states in the United States have less than 1% Non-Hispanic American Indian,
according to U.S. Census in 2017. Therefore when using medical records to study diseases and
treatments, we are very likely to encounter extreme imbalance. Then the FLFT evaluation protocol is
conducted on a 1% balanced downstream dataset where we resample the dataset to make the groups
are balanced, and a 100% naturally imbalanced same dataset. The few-sample setting is commonly
considered for adaptation to data-insufficient domains. For example, a home-located sensor may not
have enough data during early deployment.

Table 2: CelebA cross-dataset evaluation with 1% or 100%
FLFT data for FLFT. We use gender as the sensitive attribute.

∆EO(%) ↓ B-Acc (%) ↑
Data Task SimCLR +ReAug SimCLR +ReAug

1% FLFT
FairFace Young 26.4 25.7(-0.6) 68.3 69.3(+1.0)
UTKFace Young 17.8 12.0(-5.8) 48.4 49.1(+0.7)

100% FLFT
FairFace Young 33.9 26.2(-7.7) 71.1 72.5(+1.4)
UTKFace Young 19.2 11.9(-7.3) 48.3 48.2(-0.0)

Cross-task results. In Table 1, we
present the cross-task evaluation re-
sults on CelebA, where 13 tasks are se-
lected to enclose enough samples for
testing (if not so, we may get biased
evaluation). When only 1% data are
available for fine-tuning, the proposed
learning method improves SimCLR in
10 out of 13 tasks, when balanced ac-
curacy (B-Accuracy) is not explicitly
degraded. The improvement is more significant with severer downstream unfairness. For example, the
top-two improvement happens in Oval Face and Wavy Hair tasks, where +ReAug improves SimCLR
by 4.9% and 3% ∆EO, respectively. As more data are available for FLFT, the fairness gain from
ReAug is less significant than in the former case but ReAug improves the accuracy in more cases.
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Different unfairness mitigation approaches have different influences on performance improvement.
With 1 % LAFTR mitigation, Big Lips and Smiling have the most distinguish improvement, where
∆EO has been improved by 15.3% and 5.4%, respectively. While there is less improvement in
accuracy under LAFTR, fairness improvement is enhanced compared with reweighing mitigation.

Cross-dataset results. Table 2 presents the results of fairness transfer from CelebA dataset to
FairFace or UTKFace datasets. We use CelebA as the pre-training dataset which does not utilize
labels. We fine-tune the model on a small subset (1%) or full set (100%) of FLFT datasets to evaluate
the fairness of the representations. Gender is used as the sensitive attribute and Young (for ages lower
than 30) is the task attribute. In all FLFT datasets, our method consistently improves classification
fairness. The largest improvement occurs with the FairFace by 7.7%∆EO when accuracy is improved,
as well.

4.2 QUALITATIVE RESULTS
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Figure 5: The pre-training (∆FD) and
fine-tuning (∆EO) disparity versus the
ratio of male in pre-training. A smaller
ratio of male indicates higher degree of
imbalance.

We provide qualitative studies to understand the proposed
method. All results are done with pre-training on CelebA
and fine-tuning on 1% labeled CelebA dataset including
previously discussed results in Figs. 1 and 3.

ReAug masking implicitly upweighs minority losses.
We are interested in seeing how the proposed ReAug
method affects the sample losses in CL. Instead of us-
ing q = ∆FD in Eq. (9), we temporarily consider q as a
variable that serves as the drop rate of features. We define
the loss disparity as:

{Ex[L(x)|A = 1]− Ex[L(x)|A = 0]} /Ex[L(x)],

where group 1 is assumed to be the unprivileged group (male in our experiments). The result is
depicted in Fig. 6. Though not intently designed, we find that the proposed ReAug method implicitly
changes the losses from different groups and augments the disparity of losses between minority and
majority groups, when masking out more features. In the beginning, because the masking removes
the most important male features, losses for the male group increase faster than that for the female
group. When too many features are masked out, the loss disparity tends to vanish w.r.t. q, because
fewer influential features are maintained. Note that our method is not a trivial reweighing solution,
and the masking strategy resembles the dropout to help generalization. On the other hand, an explicit
reweighing method would encourage the model to overfit the minority group and therefore would not
generalize, especially when the minority group is trained as well as the majority group in CL.
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Figure 6: CL loss disparity versus fea-
ture drop rate q. Masking implicitly aug-
ments the overlooked disparity in losses.
spr denotes the sensitive positive rate
whose small value indicates an imbal-
ance dataset.

∆FD predicts the unfairness in downstream. To exam-
ine the relation between CL ∆FD and downstream ∆EO,
we select tasks that have severe fairness degradation (∆EO

is larger than 0.1 after imbalance pre-training) and show
how the degradation is related to pre-training data and fea-
tures. In Fig. 5, task-averaged ∆EO is plotted versus the
ratio of minority group varying from 1% (very unbalanced)
to 50% (balanced). Consistent with our intuition, dispar-
ity both in features (∆FD) and downstream tasks (∆EO)
decreases as the imbalance degree vanishes. The result
motivates us to exploit feature disparity in pre-training in
favor of downstream fairness.

5 CONCLUSION AND DISCUSSIONS

In this paper, we first showed the underestimated unfairness caused by group imbalance in the
pre-training phase, and proposed an unsupervised fairness metric to detect such bias early before
supervisions are available. To our best knowledge, our work is the first attempt to measure and
address precautious fairness in pre-training. With the growing importance of large pre-training models
and the rising concerns of fairness, our work provides a practical solution that can benefit multiple
application areas. One future direction is to extend the feature-based metric and mitigation to the
natural language processing area in which large pre-training models are in demand.
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