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ABSTRACT
The success of existing multi-view clustering (MVC) relies on the
assumption that all views are complete. However, samples are usu-
ally partially available due to data corruption or sensor malfunc-
tion, which raises the research of incomplete multi-view clustering
(IMVC). Although several anchor-based IMVC methods have been
proposed to process the large-scale incomplete data, they still suffer
from the following drawbacks: i) Most existing approaches neglect
the inter-view discrepancy and enforce cross-view representation
to be consistent, which would corrupt the representation capability
of the model; ii) Due to the samples disparity between different
views, the learned anchor might be misaligned, which we referred
as the Anchor-Unaligned Problem for Incomplete data (AUP-ID).
Such the AUP-ID would cause inaccurate graph fusion and de-
grades clustering performance. To tackle these issues, we propose
a novel incomplete anchor graph learning framework termed Scal-
able Incomplete Multi-View Clustering with Structure Alignment
(SIMVC-SA). Specially, we construct the view-specific anchor graph
to capture the complementary information from different views. In
order to solve the AUP-ID, we propose a novel structure alignment
module to refine the cross-view anchor correspondence. Mean-
while, the anchor graph construction and alignment are jointly
optimized in our unified framework to enhance clustering quality.
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Through anchor graph construction instead of full graphs, the time
and space complexity of the proposed SIMVC-SA is proven to be
linearly correlated with the number of samples. Extensive experi-
ments on seven incomplete benchmark datasets demonstrate the
effectiveness and efficiency of our proposed method. Our code is
publicly available at https://github.com/wy1019/SIMVC-SA.
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• Computing methodologies → Cluster analysis; • Theory of
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1 INTRODUCTION
Multi-view data, which consists of features extracted from objects
by different sensors, have been massively generated in recent years.
Multi-modal information [21, 25, 27, 35, 43, 45, 67] about the data
can commonly be utilized to enhance the expressive ability of the
model. For instance, the same news can be described from different
views, i.e., textual reports [28] and visual pictures [48, 56, 72, 85]. As
an essential paradigm of multi-view learning, multi-view clustering
(MVC) has drawn substantial attention because of its promising
capability to reveal the intrinsic data structure [2, 22]. In general,
multi-view clustering achieves remarkable performance by learning
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a consensus representation by exploring consistency among diverse
views [17, 53, 83]. For instance, Zhan et al. [79] optimizes the final
consensus graph by imposing low-rank constraints and minimizing
the discrepancies of individual graphs. Zhang et al. [81] reconstruct
samples in the latent space to achieve a more precise and reliable
subspace representation.

Although numerous methods have been proposed to enhance
MVC in diverse ways, most of them assume that all data are fully
available [4, 18, 19, 51, 52, 57, 58, 80, 82]. However, samples are often
partially available in real scenarios due to data corruption or sen-
sor malfunction. For instance, in software traffic detection, people
can’t use all detected software, which leads to the incompleteness
of the samples in the corresponding view. The different sample
absence between views destroys the original cross-view alignment
information and enlarges the difficulty of exploring consensus and
complementary information, causing incomplete multi-view clus-
tering (IMVC) a challenging problem. To tackle these issues, several
IMVC methods have been proposed in previous literature. For in-
stance, Li et al. [23] learn a common potential representation from
incomplete samples by non-negative matrix decomposition and ℓ1
regularization terms. Wen et al. [71] propose a new regularization
term to preserve the local geometric structure and fuse the individ-
ual incomplete graph. Although remarkable success has been made,
the high time complexity hinders their application in large-scale
scenarios[41]. One pioneer work, Liu et al. [36] efficiently reduce
the algorithm complexity by utilizing the anchor graph to capture
the clustering structure with incomplete views.

Although widely applied in large-scale applications, the exist-
ing anchor-based IMVC methods still suffer from the following
drawbacks: Firstly, most approaches neglect the inter-view discrep-
ancy and enforce cross-view representation to be consistent, which
would corrupt the representation capability of the model. Secondly,
as is shown in Fig. 1, the sample distribution of different views
might be biased due to the incomplete multi-view data, which leads
to the potential misalignment between cross-view anchors, which
we referred as the Anchor-Unaligned Problem for Incomplete Data
(AUP-ID). Such AUP-ID would result in inaccurate graph fusion
and suboptimal clustering performance. This issue for complete
data has been demonstrated in [12, 65] and has more significant
implications for IMVC due to the incomplete cross-view alignment
information. Besides, to the best of our knowledge, no generalized
framework for solving AUP-ID has been proposed since generating
the correct cross-view anchor correspondence under incomplete
scenarios would be more difficult due to the variance of the feature
dimension and available sample.

To tackle these challenging issues, we propose a novel incom-
plete anchor graph learning framework termed Scalable Incom-
plete Multi-View Clustering with Structure Alignment (SIMVC-SA).
Specifically, we construct the incomplete anchor graph on each
view to capture the complementary information from different
views. In order to address the AUP-ID, we adopt a novel structure
alignment module to refine the cross-view anchor correspondence
mapping adequately. Meanwhile, the anchor graph construction
and alignment are jointly optimized in our unified framework to
enhance clustering quality. In addition, through the anchor graph
construction rather than a full pairwise graph, the time complex-
ity of the SIMVC-SA is effectively reduced from O(𝑛3) to O(𝑛𝑚).
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Figure 1: An example illustration of AUP-ID. Samples and
representations of different colors represent samples from
different clusters and representations of different anchors,
respectively. With different missing samples and random
anchor initialization, the anchor learned may be unaligned
and leads to inaccurate correspondences.

Meanwhile, a convergent five-step alternative algorithm is designed
in this paper to tackle the subsequent optimization problem. We
summarize the contributions as follows:

• In order to solve the Anchor-Unaligned Problem for Incom-
plete Data, a novel alignment module is proposed in this pa-
per to capture the view-specific structure. With the guidance
of structure information, the cross-view anchor correspon-
dence mapping can be refined adequately.

• We design a novel IMVC approach termed Scalable Incom-
plete Multi-View Clustering with Structure Alignment (SIM
VC-SA). Different from the existing fixed anchor strategy,
SIMVC-SA learns the anchor and constructs the respective
anchor graph to enhance the clustering performance.

• Extensive experiments on seven incomplete benchmark datasets
show the effectiveness and efficiency of the proposedmethod.

2 RELATEDWORK
2.1 Incomplete Multi-View Clustering (IMVC)
In real scenarios, samples are often partially available due to data
dropout and sensor corruption, which raises the incomplete multi-
view clustering (IMVC) study [10, 13, 31, 59, 73, 74]. The existing In-
complete Muti-View Clustering (IMVC) approaches can be roughly
divided into three types: Non-negative matrix factorization (NMF)
methods [84], kernel or graph-based methods [8, 49], and deep
neural networks [64, 68, 86].

In general, NMF jointly decomposes the raw matrix of each view
into a coefficient matrix and a basis matrix and learns a consen-
sus matrix from the coefficient matrices with a group of adaptive
view weights. The graph or kernel-based IMVC approach performs
matrix complementation and achieves the desired clustering per-
formance by constructing consensus graphs or kernels [40, 54, 60].
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For example, Wang et al. [62] propose a novel similarity matrix
padding strategy based on matrix perturbation theory. Because of
the capacity to extract high-level information, deep neural networks
often achieve desirable performance for solving IMVC problems
[32, 63, 70]. Lin et al. [33] design a deep IMVC model through the
union of representation and cross-view data recovery.

2.2 Graph-based IMVC Method
Graph structures [14, 16, 29, 34, 42, 44, 46, 61, 76–78], which can
well describe the relationships of pairwise data, are widely adopted
in the field of IMVC. Denoting the indicator vector w(𝑣) ∈ R𝑛𝑣

containing the index for 𝑛𝑣 available samples in the 𝑣-th view, we
define the index matrix H𝑣 ∈ R𝑛×𝑛𝑣 for 𝑣-th view as follows:

h(𝑣)
𝑖 𝑗

=

{
1, if𝑤 (𝑣)

𝑗
= 𝑖,

0, otherwise.

where h(𝑣)
𝑖 𝑗

denotes the element in 𝑖-th row and 𝑗-th column of H𝑣 .
Then, X𝑣H𝑣 ∈ R𝑑𝑣×𝑛𝑣 denotes the existing data matrix of the 𝑣-th
view.

As to the incomplete multi-view data, the subgraphs from each
view may have a few blanks in the respective rows and columns
because of the incomplete setting. Taking this into account, the clas-
sical graph-based IMVC paradigms [24, 37] could be mathematically
represented in two parts:

min
S𝑣 ,S

∥X𝑣H𝑣 − X𝑣H𝑣S𝑣 ∥2F + Ψ
(
H𝑣S𝑣H⊤

𝑣 , S
)
,

s.t. S𝑣 ≥ 0, S⊤𝑣 1 = 1, S ≥ 0, S⊤1 = 1
(1)

where S𝑣 ∈ R𝑛𝑣×𝑛𝑣 is the view-specific subgraph, S indicates the
similarity among all the samples. The Ψ(·) indicates the graph
fusion process. However, O

(
𝑣𝑛2

)
space complexity and O

(
𝑛3

)
time

expenditure prevent this category of algorithms from handling
large-scale incomplete multiview tasks [15].

2.3 Anchor-based IMVC Method
As is shown in Eq.(1), the majority of the classical graph-based
IMVC methods involve the full graph construction, which makes
them suffer from O

(
𝑛3

)
time complexity. To tackle the issues, Li

et al. [20], Liu et al. [36] propose the anchor-based incomplete multi-
view clustering (AIMVC). The complexity of AIMVC is effectively
reduced by merely building the relationship between representative
anchors and samples [11]. The classical AIMVC framework can be
formulated as follows:

min
Z

∥X𝑣H𝑣 − A𝑣ZH𝑣 ∥2F + Ω (Z) ,

s.t. Z ≥ 0, Z⊤1 = 1,
(2)

where A𝑝 ∈ R𝑑𝑣×𝑚 denotes the anchor matrix from the 𝑣-th view,
Z is the consistent anchor graph,𝑚 is the number of anchors, and
Ω is the regularization term.

On the basis of the above paradigm, many methods adopt differ-
ent regularization terms to enhance clustering performance [7, 36].
However, most existing approaches overlook the inter-view dis-
crepancy and enforce cross-view representation to be consistent,
which would corrupt the representation capability of the model.
Moreover, the potential Anchor-Unaligned Problem for Incomplete
Data has not been discussed in previous research. Such AUP-ID

would result in inaccurate graph fusion and suboptimal clustering
performance. In the next section, we will propose SIMVC-SA to
tackle these issues.

3 METHODS
3.1 Problem Formulation
As mentioned before, the main challenge for solving AUP-ID is
the variation of the feature dimension and available sample, which
results in the anchors from different views being under different
metric spaces, and we can’t directly measure the distance of cross-
view anchors. As a result, a question worth considering: how to
effectively refine the cross-view anchor correspondence un-
der the incomplete scenario?

An intuitive method [36] to implicitly avoid anchor correspon-
dence is to enforce cross-view anchor and the respective graph
to be consistent. While such a strategy overlooks the inter-view
discrepancy and corrupts the representation capability of the model.
Inspired by [12, 65], we consider such principle: the correspondence
probability of the anchors should be high if their corresponding
structure is similar. Therefore, the original anchor correspondence
problem can be transferred to the structure alignment problem, as
depicted in Fig. 1. In this paper, we introduce the alignment matrix
P𝑣 that satisfies P⊤𝑣 P𝑣 = I𝑚 to efficiently tackle the problem. Denot-
ing the fusion representation as F, and the anchor graph alignment
problem can be addressed as follow:

min
P𝑣

∥P𝑣Z𝑣 − F∥2𝐹 , s.t. P⊤𝑣 P𝑣 = I𝑚, (3)

where Z𝑣 ∈ R𝑚×𝑛 is the view-specific anchor graph.
Moreover, considering the traditional fixed anchor strategy relies

on the quality of anchors initialization and introduces unnecessary
time overhead, we adopt the anchor learning strategy to enhance
our clustering performance in this paper. In summary, the pro-
posed Scalable Incomplete Multi-View Clustering with Structure
Alignment (SIMVC-SA) can be formulated as follows:

min
𝜸 ,{A𝑣 }𝑉𝑣=1,
{Z𝑣 }𝑉𝑣=1,P,F

𝑉∑︁
𝑣=1

𝛾2𝑣 ∥X𝑣H𝑣 − A𝑣Z𝑣H𝑣 ∥2𝐹

+ 𝜆

𝑉∑︁
𝑣=1

∥P𝑣Z𝑣 − F∥2𝐹 + 𝜇

𝑉∑︁
𝑣=1

∥Z𝑣 ∥2𝐹

s.t.𝜸⊤1 = 1,A⊤
𝑣 A𝑣 = I𝑚, P⊤𝑣 P𝑣 = I𝑚,Z𝑣 ≥ 0,

Z⊤𝑣 1𝑚 = 1𝑛, FF⊤ = I𝑚,

(4)

where Z𝑣H𝑣 can be considered as the similarities between𝑚 an-
chors and 𝑛𝑣 available samples of the 𝑣-th view. For the sake of
making the learned anchors A𝑣 and consistent representation F
more discriminative, we impose orthogonal constraints into them
that A⊤

𝑣 A𝑣 = I𝑚, FF⊤ = I𝑚 . The learned bipartite graph Z𝑣 should
satisfy Z𝑣 ≥ 0 and Z⊤𝑣 1 = 1. The𝜸 ∈ R𝑉 captures the weight contri-
bution of every single view to all. 𝜆 is the trade-off to balancing the
influence between anchor graph generation and alignment term. 𝜇
is the hyperparameter of the regularization term. The framework
of our SIMVC-SA is shown in Fig. 2.
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Figure 2: The framework of traditional anchor-based IMVC methods (left) and the proposed SIMVC-SA (right). Different from
traditional IMVC methods, the proposed SIMVC-SA proposes a novel structure alignment module and adopts the anchor
learning strategy to efficiently enhance the clustering performance.

Although the Eq.(4) appears to be simple, we emphasize the
superiority of SIMVC-SA as follows:

(1) Joint Optimization Model. Unlike the existing two-stage
"aligning then clustering" strategy [65], we propose a joint
alignment-clustering framework where the consistent represen-
tation F and the alignment matrix P𝑣 can be joint optimized to
enhance the final clustering performance in our model.

(2) Flexible Model with No Reference View. Different from the
FMVACC [65], which selects the first view for reference (all
views align to the first view) and MvCLN [75] iteratively selects
the reference view, we set a consistent representation F for
alignment and optimize it adaptively in our mode which avoids
catastrophic performance degradation when the reference view
has poor quality[6, 30].

(3) Soft Alignment Correspondence. The strict one-to-one map-
ping proposed in [65] neglects the relationship between the
different anchors and brings higher time expenses. Besides, it
is too harsh and unreasonable to completely push away the dif-
ferent anchors. Recent work CLIP [5] also noticed this problem.
In the proposed method, we relax the original strict constraint
to an orthogonal constraint to achieve a soft assignment while
effectively reducing the time complexity of the alignment.

3.2 Optimization
The optimization problem in Eq.(4) is a non-convex problem when
taking all variables into account. To solve this problem in the sec-
tion, we develop an iterative optimization algorithm to address
it. For the sake of simplifying the optimization procedure, we
have that X𝑣H𝑣H⊤

𝑣 = X𝑣 ⊙ R𝑣 , where R𝑣 = 1𝑑𝑣 r
(𝑣) ∈ R𝑑𝑣×𝑛 ,

r(𝑣) = [𝑟 (𝑣)1 , · · · , 𝑟 (𝑣)𝑛 ], where 𝑟 (𝑣)
𝑖

=
∑𝑛𝑣

𝑗=1 H
(𝑣)
𝑖 𝑗

, ⊙ represents the

Hadamard product. With this transformation, the space complexity
drops from O(𝑣𝑛2) to O(𝑑𝑛).

3.2.1 Optimization of Anchor Matrices {A𝑣}𝑉𝑣=1. When {Z𝑣}𝑉𝑣=1,
{P𝑣}𝑉𝑣=1, 𝜸 and F are fixed, the optimization for {A𝑣}𝑉𝑣=1 can be
written as follows:

min
{A𝑣 }𝑉𝑣=1

𝑉∑︁
𝑣=1

𝛾2𝑣 ∥X𝑣H𝑣 − A𝑣Z𝑣H𝑣 ∥2𝐹 ,

s.t. A⊤
𝑣 A𝑣 = I𝑚 .

(5)

Considering the optimization of each A𝑣 is independent of the
corresponding view. Therefore, we extend the Frobenius norm with
traces and remove the irrelevant item, Eq.(5) can be formulated as:

max
A𝑣

Tr
(
A⊤
𝑣 M𝑣

)
, s.t. A⊤

𝑣 A𝑣 = I𝑚, (6)

where M𝑣 = X𝑣H𝑣H⊤
𝑣 Z⊤

𝑣 = (X𝑣 ⊙ R𝑣) Z⊤
𝑣 . According to [66], the

optimal solution for A𝑣 is U𝑚V⊤𝑚 , where U𝑚 and V𝑚 represent the
matrices which comprise the first𝑚 left singular vectors and right
singular vectors of M𝑣 , correspondingly. Their time overhead is
O(𝑛𝑚𝑑+𝑚2𝑑) to obtain all the optimal {A𝑣}𝑉𝑣=1, where𝑑 =

∑𝑉
𝑣=1 𝑑𝑣 .

3.2.2 Optimization of Anchor Graphs {Z𝑣}𝑉𝑣=1. When {A𝑣}𝑉𝑣=1,
{P𝑣}𝑉𝑣=1, 𝜸 and F are fixed, the optimization of {Z𝑣}𝑉𝑣=1 can be
written as follows:

min
{Z𝑣 }𝑉𝑣=1

𝑉∑︁
𝑣=1

𝛾2𝑣 ∥X𝑣H𝑣 − A𝑣Z𝑣H𝑣 ∥2𝐹

+ 𝜆

𝑉∑︁
𝑣=1

∥P𝑣Z𝑣 − F∥2𝐹 + 𝜇

𝑉∑︁
𝑣=1

∥Z𝑣 ∥2𝐹 ,

s.t. Z𝑣 ≥ 0,Z⊤𝑣 1𝑚 = 1𝑛 .

(7)
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Algorithm 1 Scalable Incomplete Multi-View Clustering with
Structure Alignment (SIMVC-SA)

Input: 𝑣 views incomplete dataset {X𝑣 }𝑉𝑣=1, the missing index {H𝑣 }𝑉𝑣=1,
and the number of cluster 𝑘 .

1: Initialize {Z𝑣 }𝑉𝑣=1, {P𝑣 }
𝑉
𝑣=1, 𝜸 .

2: repeat
3: Obtain {A𝑣 }𝑉𝑣=1 with Eq. (5).
4: Obtain F with Eq. (10).
5: Obtain {Z𝑣 }𝑉𝑣=1 with Eq. (7).
6: Obtain {P𝑣 }𝑉𝑣=1 with Eq. (11).
7: Obtain 𝜸 with Eq. (12).
8: until converged
9: Obtain U by performing SVD on F

Output: Perform k-means on U to obtain discrete labels.

By removing the irrelevant items, the Eq.(7) can be rewrited as:

min
Z𝑣

Tr
(
Z⊤𝑣 Z𝑣

(
𝛾2𝑣H𝑣H⊤

𝑣 + (𝜆 + 𝜇) I
))

− 2 Tr
(
Z⊤𝑣

(
𝛾2𝑣A

⊤
𝑣 X𝑣H𝑣H⊤

𝑣 + 𝜆P⊤𝑣 F
))

s.t. Z𝑣 ≥ 0, Z⊤𝑣 1𝑚 = 1𝑛,

(8)

with X𝑣H𝑣H𝑣
⊤ = X𝑣 ⊙R𝑣 . Denoting z

(𝑣)
𝑗

as the 𝑗-th column vector
of Z𝑣 , we have

min
z(𝑣)
𝑗

1
2




z(𝑣)𝑗
− f (𝑣)

𝑗




2
𝐹
, s.t.z(𝑣)

𝑗
≥ 0, z(𝑣)⊤

𝑗
1𝑚 = 1, (9)

where f (𝑣)
𝑖 𝑗

=
𝛾2
𝑣 [A⊤

𝑣 (X𝑣⊙R𝑣 )]𝑖 𝑗+𝜆[P⊤𝑣 F]𝑖 𝑗
𝛾2
𝑣𝑟

(𝑣)
𝑗

+𝜆+𝜇
,
[
P⊤𝑣 F

]
𝑖 𝑗

denotes the ele-

ment of the 𝑖-th row and 𝑗-th column of P⊤𝑣 F.
We write the Lagrangian function of Eq.(9) as

L
(
z(𝑣)
𝑗

, 𝛼 𝑗 ,𝜼 𝑗

)
=

1
2




z(𝑣)𝑗
− f (𝑣)

𝑗




2
𝐹
− 𝛼 𝑗

(
z(𝑣)⊤
𝑗

1𝑚 − 1
)
− 𝜼⊤

𝑗 z
(𝑣)
𝑗

,

where 𝛼 𝑗 and 𝜼 𝑗 represent the respective Lagrange multipliers.
Their Kahn-Kuhn-Tucker (KKT) conditions can write as{

z(𝑣)
𝑗

− f (𝑣)
𝑗

− 𝛼 𝑗1𝑚 − 𝜼 𝑗 = 0,
𝜼 𝑗 ⊙ z(𝑣)

𝑗
= 0.

Together with z(𝑣)⊤
𝑗

1𝑚 = 1, we can derive the equation below:

z(𝑣)
𝑗

= max
(
f (𝑣)
𝑗

+ 𝛼 𝑗1𝑚, 0
)
,

where 𝛼 𝑗 could be addressed by Newton’s method effectively. The
time complexity of optimizing {Z𝑣}𝑉𝑣=1 is O(𝑛𝑚𝑑).

3.2.3 Optimization of Consistent Representation F. When {A𝑣}𝑉𝑣=1,
{P𝑣}𝑉𝑣=1, {Z𝑣}𝑉𝑣=1 and 𝜸 are fixed, the optimization for Z can be
written as follows:

max
F

Tr (FQ) , s.t.FF⊤ = I𝑚, (10)

where Q =
∑𝑉

𝑣=1 Z
⊤
𝑣 P⊤𝑣 , the optimal solution of F is 𝚿𝑚𝚺

⊤
𝑚 , where

𝚺𝑚 and 𝚿𝑚 indicate the matrices which comprise the first𝑚 left
singular vectors and the first𝑚 right singular vectors of W𝑣 , corre-
spondingly. It costs O(𝑛𝑚2𝑉 ) time.

Table 1: Incompete Multiview Datasets in our Experments

Dataset Size Clusters Views Dimensionality

ORL 400 40 3 4096/3304/6750
ProteinFold 694 27 12 27/27/.../27/27/27

BDGP 2500 5 3 1000/500/250
SUNRGBD 10335 45 2 4096/4096

NUSWIDEOBJ 30000 31 5 65/226/145/74/129
Cifar10 50000 10 3 512/2048/1024
MNIST 60000 10 3 342/1024/64

3.2.4 Optimization of Alignment Matrices {P𝑣}𝑉𝑣=1. When {A𝑣}𝑉𝑣=1,
{Z𝑣}𝑉𝑣=1, 𝜸 and F are fixed, the optimization for {P𝑣}𝑉𝑣=1 can be
written as follows:

max
P𝑣

Tr
(
P⊤𝑣 W𝑣

)
, s.t.P⊤𝑣 P𝑣 = I𝑚, (11)

whereW𝑣 = FZ⊤𝑣 , Similar to Eq. (10), this problem can be efficiently
solved by rank-k truncated SVD.

3.2.5 Optimization of View Weight 𝜸 . When {A𝑣}𝑉𝑣=1, {P𝑣}
𝑉
𝑣=1,

{Z𝑣}𝑉𝑣=1 and Z are fixed, the optimization for 𝜸 can be written
as follows:

min
𝜸

𝑉∑︁
𝑣=1

𝛾2𝑣𝜏𝑣, s.t.𝜸⊤1𝑉 = 1,𝜸 ≥ 0, (12)

where 𝜏𝑣 = ∥X𝑣H𝑣 − A𝑣Z𝑣H𝑣 ∥2𝐹 . By Cauchy–Schwarz inequality,
the view weight 𝜸 can be acquired by

𝛾𝑣 =
1/𝜏𝑣∑𝑉
𝑣=1 1/𝜏𝑣

. (13)

It consumes O(𝑛𝑚𝑑) time. Algorithm 1 summarises the entire
optimization procedure for addressing Eq.(4).

3.3 Discussions
3.3.1 Convergence. As the iterations proceed, five variables of the
above optimization procedure will be separately addressed. As each
sub-optimization problem reaches the global optimum, the objective
value monotonically decreases until the convergence condition is
attained [1]. Furthermore, because it is easy to prove that the lower
boundary of the objective function is zero, our proposed SIMVC-SA
can converge to the local optimum.

3.3.2 Time Complexity. The time overhead of SIMVC-SA is com-
posed of five optimization processes, as previously mentioned. The
time overhead of updating {A𝑣}𝑉𝑣=1 is O

(
𝑛𝑚𝑑 +𝑚2𝑑

)
. When up-

dating {Z𝑣}𝑉𝑣=1 and 𝜸 need O (𝑛𝑚𝑑). When analytically obtaining
{P𝑣}𝑉𝑣=1, it costsO((𝑛𝑚2+𝑚3)𝑉 ) for all columns. The time overhead
of calculating F is O(𝑛𝑚2𝑉 ). As a result, the total time overhead
of the optimization procedure is O

(
𝑛
(
𝑚𝑑 +𝑚2𝑉

)
+𝑚3𝑉 +𝑚2𝑑

)
.

Consequently, the computational complexity of SIMVC-SA is O(𝑛),
which is linearly related to the number of samples.

4 EXPERIMENT
4.1 Datasets
Seven wide-used datasets are adopted to evaluate the effective-
ness of the proposed algorithm, including ORL, ProteinFold, BDGP,
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Table 2: Empirical evaluation and comparison of SIMVC-SA with twelve baseline methods on seven benchmark datasets.

Methods BSV MIC MKKM-IK AWP DAIMC APMC UEAF MKKM-IK-MKC EEIMVC FLSD V3H FIMVC-VIA Proposed
ACC (%)

ORL 24.32±0.89 37.56±1.66 59.80±2.44 68.69±0.00 68.03±2.32 65.58±1.91 60.25±2.50 64.95±2.62 73.24±2.54 48.09±1.85 67.03±1.45 76.36±2.79 76.06±2.36
ProteinFold 22.25±0.53 15.99±0.78 26.03±1.06 28.00±0.00 28.65±1.65 N/A 28.72±1.53 17.99±0.83 27.75±1.67 25.98±1.33 17.33±0.48 28.15±1.26 30.17±1.23

BDGP 34.96±1.06 25.37±0.61 32.17±0.24 23.62±0.00 28.12±0.01 28.12±0.01 44.88±0.02 40.77±0.20 44.00±0.05 42.96±0.03 43.63±0.75 39.84±0.16 48.11±0.21
SUNRGBD 6.14±0.08 14.61±0.54 11.35±0.31 17.01±0.00 17.03±0.65 17.34±0.57 15.35±0.41 16.81±0.49 16.74±0.49 14.42±0.34 N/A 16.88±0.48 17.18±0.48

NUSWIDEOBJ 12.05±0.03 N/A N/A N/A 13.79±0.37 N/A N/A N/A 12.73±0.16 N/A N/A 12.96±0.12 15.40±0.32
Cifar10 N/A N/A N/A N/A 95.81±0.45 N/A N/A N/A N/A N/A N/A 96.16±0.00 96.32±0.22
MNIST N/A N/A N/A N/A 97.57±0.31 N/A N/A N/A N/A N/A N/A 98.16±0.01 98.40±0.04

NMI (%)
ORL 48.49±0.90 56.44±1.00 75.95±1.33 83.79±0.00 82.89±1.06 80.20±0.82 76.16±1.25 79.76±1.41 85.37±1.32 67.91±1.28 81.05±0.61 88.08±1.31 87.53±1.25

ProteinFold 27.60±0.59 16.64±1.02 33.70±0.84 36.17±0.00 37.67±1.08 N/A 38.18±0.88 24.88±0.84 36.03±0.98 35.66±0.79 22.75±0.53 36.22±0.96 37.72±0.98
BDGP 12.88±0.94 4.47±0.70 7.41±0.16 4.68±0.00 8.68±0.01 8.68±0.01 23.55±0.04 16.35±0.13 19.91±0.09 18.95±0.06 24.15±0.40 15.11±0.10 23.67±0.14

SUNRGBD 3.27±0.08 21.27±0.35 15.27±0.25 23.60±0.00 21.53±0.43 22.46±0.25 21.72±0.22 20.48±0.28 20.84±0.28 20.82±0.17 N/A 21.48±0.33 22.52±0.23
NUSWIDEOBJ 2.68±0.03 N/A N/A N/A 11.70±0.36 N/A N/A N/A 10.31±0.16 N/A N/A 10.27±0.07 11.78±0.11

Cifar10 N/A N/A N/A N/A 90.47±0.35 N/A N/A N/A N/A N/A N/A 91.18±0.00 91.21±0.18
MNIST N/A N/A N/A N/A 93.89±0.53 N/A N/A N/A N/A N/A N/A 95.76±0.02 95.58±0.00

Purity (%)
ORL 26.80±0.92 40.81±1.40 62.79±2.11 70.42±0.00 71.82±1.79 69.24±1.48 63.90±1.90 67.68±2.34 76.09±2.19 50.88±1.72 70.22±1.09 78.59±2.29 78.79±2.08

ProteinFold 25.89±0.60 19.78±0.84 30.91±1.04 31.97±0.00 34.99±1.54 N/A 35.47±1.16 22.73±0.87 33.13±1.30 32.82±0.97 22.24±0.51 33.67±1.12 35.97±1.14
BDGP 36.75±0.89 25.67±0.59 33.42±0.18 24.02±0.00 28.46±0.01 28.46±0.01 45.92±0.01 41.10±0.13 46.40±0.05 44.41±0.03 45.38±0.50 40.12±0.15 49.05±0.19

SUNRGBD 13.06±0.16 32.36±0.59 27.06±0.45 37.56±0.00 34.39±0.59 33.19±0.47 33.37±0.48 32.92±0.50 33.58±0.48 32.41±0.39 N/A 34.34±0.61 34.51±0.51
NUSWIDEOBJ 13.72±0.04 N/A N/A N/A 23.41±0.63 N/A N/A N/A 21.83±0.21 N/A N/A 21.97±0.12 23.71±0.27

Cifar10 N/A N/A N/A N/A 95.81±0.45 N/A N/A N/A N/A N/A N/A 96.23±0.00 96.29±0.25
MNIST N/A N/A N/A N/A 97.57±0.31 N/A N/A N/A N/A N/A N/A 98.24±0.02 98.42±0.05

Fscore (%)
ORL 9.01±0.69 17.30±1.18 46.32±2.50 58.73±0.00 56.84±2.87 50.70±2.55 42.53±2.74 53.30±2.91 63.67±2.85 31.17±2.00 54.27±1.40 68.25±3.25 67.62±2.85

ProteinFold 12.30±0.08 10.35±0.38 14.35±0.81 12.38±0.00 16.97±1.09 N/A 16.31±1.22 8.92±0.48 15.62±1.19 14.57±1.02 10.33±0.13 15.53±1.00 16.81±1.04
BDGP 28.76±0.61 29.88±0.06 25.25±0.08 32.53±0.00 31.21±0.00 31.21±0.00 33.69±0.03 30.15±0.10 32.93±0.04 34.29±0.01 35.31±0.24 31.65±0.10 35.40±0.12

SUNRGBD 6.89±0.01 9.45±0.24 7.10±0.14 11.58±0.00 10.71±0.35 10.96±0.25 10.20±0.16 10.06±0.21 10.20±0.20 12.09±0.00 N/A 10.33±0.24 11.74±0.10
NUSWIDEOBJ 10.95±0.00 N/A N/A N/A 8.58±0.19 N/A N/A N/A 7.81±0.08 N/A N/A 7.87±0.07 11.77±0.12

Cifar10 N/A N/A N/A N/A 92.16±0.68 N/A N/A N/A N/A N/A N/A 92.79±0.00 92.90±0.19
MNIST N/A N/A N/A N/A 95.28±0.57 N/A N/A N/A N/A N/A N/A 96.66±0.00 96.92±0.00

SUNRGBD, NUSWIDEOBJ, Cifar10, and MNIST. The elaborate in-
formation of these datasets is listed in Tab. 1. For the above datasets,
we remove samples randomly on each view to obtain its incom-
plete version. Specifically, according to [26], with the principle that
each sample appears in at least one view, we generate incomplete
datasets at 0.1 intervals from 0.1 to 0.9.

4.2 Compared Methods and Setting
Along with our proposed SIMVC-SA, we run twelve state-of-the-art
incomplete multi-view clustering methods for comparison, includ-
ing Best Single View (BSV) [47], MICViews Clustering viaWeighted
NMF With ℓ2,1 Regularization (MIC) [55], Multiple Kernel k-Means
With Incomplete Kernels (MKKM-IK) [39], Multiview Clustering
via Adaptively Weighted Procrustes (AWP) [50], Doubly Aligned In-
complete Multi-view Clustering (DAIMC) [9], Anchor-based partial
multi-view clustering (APMC) [7], Unified Embedding Alignment
With Missing Views Inferring for Incomplete Multiview Clustering
(UEAF) [69], Multiple Kernel k k-Means With Incomplete Kernels
and Multiple Kernel Clustering (MKKM-IK-MKC) [40], Efficient and
Effective Regularized Incomplete Multiview Clustering (EEIMVC)
[38], Generalized IMVC With Flexible locality Structure Diffusion
(FLSD) [71], View Variation and View Heredity for Incomplete
Multiview Clustering (V3H) [3] and Fast Incomplete Multi-View
Clustering With View Independent Anchors (FIMVC-VIA) [36].

For all the algorithms mentioned above, we set their parameters
as their recommended range. In the proposed method, we adjusted
𝜆 to [10−4, 10−2, 1, 102, 104], 𝜇 to [0, 10−4, 10−2, 1, 102, 104], and the
anchor numbers of [k, 2k, 5k] using a mesh search scheme. In

addition, we repeated each experiment 10 cycles to calculate the
average performance and standard bias. To assess the clustering per-
formance, we employ four well-used criteria consisting of accuracy
(ACC), normalized mutual information (NMI), Purity, and Fscore.
All experiments were conducted on a desktop computer with Intel
core i9-10900X CPU and 64G RAM, MATLAB 2020b (64-bit).
4.3 Experimental Results
Tab. 2 reports the clustering results on seven benchmark datasets.
The best results are marked in red, while the second-best results
are marked in blue. "N/A" indicates the unavailable results due to
time-out or out-of-memory errors. Besides, we compare the ACC
of all methods with different missing rates in Fig. 3. According to
the results, we have the following conclusions:

(1) Compared with existing IMVC methods, our proposed algo-
rithm demonstrates the best performance in most datasets. The
recently proposed FIMVC-VIA method shows better perfor-
mance than other methods, which demonstrates its superior-
ity in incomplete datasets. In terms of ACC, our SIMVC-SA
achieves better performance than FIMVC-VIA on the Protein-
Fold, BDGP, SUNRGBD, NUSWIDEOBJ, and Cifar10 datasets,
i.e., 2.02%, 8.27%, 0.3%, 2.44%, and 0.16%, which demonstrates
the effectiveness of view-specific representation and cross-view
alignment strategy.

(2) Compared to traditional subspace-based IMVC methods, our
anchor-based method achieves the best performance in most
cases and is applicable to various large-scale datasets.

(3) As shown in Fig. 3, we can observe that most IMVC methods
show greater fluctuations in performance with the missing
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Figure 3: Clustering performance of SIMVC-SA on benchmark datasets with different missing ratio.

Figure 4: Time Comparison of Different IMVC Methods on Seven Incomplete Datasets

Figure 5: The ablation study of our structural alignment strategy on five benchmark datasets. "Unaligned" indicates without
our structural alignment strategy.

rate rising, while our method is more stable. We conjecture
that this is because the alignment of the representations well
complements the missing information of different views.

4.4 Running Time Comparison
To validate the computational efficiency of the proposed SIMVC-SA,
we plot the average running time of each algorithm on seven bench-
mark datasets in Fig. 4. The results of some compared algorithms

on large-scale datasets are not reported due to memory overflow
errors. As shown in the Fig. 4, we can observe that

(1) Compared to full graph-based clustering methods, the proposed
SIMVC-SA significantly reduces run time through the construc-
tion of anchor graphs.

(2) Compared to the anchor-based IMVC approach, i.e., FIMVC-
VIA, the proposed SIMVC-SA requires more time consump-
tion, mainly due to our view-specific representation and struc-
ture alignment strategy, the extra computational complexity
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Figure 6: The ablation study of our anchor learning strategy.

Figure 7: Objectives of the proposed method.

increases with the number of views, which is most obvious
in NUSWIDEOBJ (5 views). General, the extra time spent is
worthwhile since our proposed SIMVC-SA demonstrates its
superiority over FIMVC-VIA in most datasets.

4.5 Ablation Study

Structural Alignment Strategy. The structural alignment strat-
egy is the main contribution of this paper. To further demonstrate
the effectiveness of this strategy, we present the experimental re-
sults of the ablation study in Fig. 5, where "Unaligned" indicates
not using our structural alignment strategy. In our experimental
setting, we fixed the alignment matrix P in the optimization pro-
cess to obtain the final clustering result. The effectiveness of the
proposed strategy can be clearly demonstrated in Fig. 5. In terms
of ACC, the proposed structural alignment strategy improves the
algorithm performance on the ORL, ProteinFold, BDGP, Cifar10,
and MNIST datasets by 18.46%,11.16%, 6.43%, 23.38%, and 28.55%
respectively, which demonstrates the effectiveness of our strategy.

Anchor Learning Strategy. We conducted ablation experiments
with the proposed anchor learning strategy, as shown in Fig. 7.
"Fixed" indicates initializing anchors by k-means without updating
during the optimization process. Compared to the above methods,
our approach significantly improves the clustering performance
and avoids the high time expenditure of k-means.

4.6 Convergence and Sensitivity
We conducted several experiments to exhibit the convergence of
the proposed SIMVC-SA. As shown in Fig. 6, the objective value of
our algorithm is monotonically decreasing in each iteration. These
results clearly verify the convergence of our proposed algorithm.

To investigate the sensitivity of SIMVC-SA to the number of an-
chors m, we investigated how our performance shifts for different
numbers of anchors. As shown in Fig. 8, the number of anchors has
little effect on the performance of our algorithm. Moreover, two

Figure 8: Sensitivity analysis of anchor number m of out
method on two benchmark datasets.

Figure 9: Sensitivity analysis of 𝝀 and 𝝁 of out method on
two benchmark datasets.

hyperparameters, 𝜆, and 𝜇, are used in our method, 𝜆 is the struc-
tural alignment parameter, and 𝜇 is the coefficient of the sparsity
regularization term. As is shown in Fig. 9, we conducted compara-
tive experiments to indicate the effect of these two parameters on
performance.

5 CONCLUSION
In this paper, we propose a novel incomplete anchor graph learn-
ing framework termed Scalable Incomplete Multi-View Clustering
with Structure Alignment (SIMVC-SA). Specially, we construct the
incomplete anchor graph on each view in terms of the unaligned
anchor. Besides, a novel structure alignment module is proposed
to refine the cross-view anchor correspondence. Meanwhile, the
anchor graph construction and alignment are jointly optimized in
our unified framework to enhance clustering quality. Through an-
chor graph construction instead of full graphs, the time and space
complexity of our proposed SIMVC-SA is proven to be linearly
related to the number of samples. Extensive experiments on seven
incomplete benchmark datasets demonstrate the effectiveness and
efficiency of our proposed method. In the future, we will explore
more flexible alignment strategies. For example, how to align the
anchor with different numbers.
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