
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

MINI-SEQUENCE TRANSFORMER: Optimizing
Intermediate Memory for Long Sequences Training

Anonymous Authors1

Abstract

We introduce MINI-SEQUENCE TRANSFORMER
(MST), a simple and effective methodology for
highly efficient and accurate LLM training with
extremely long sequences. MST partitions in-
put sequences and iteratively processes mini-
sequences to reduce intermediate memory usage.
Integrated with activation recomputation, it en-
ables significant memory savings in both forward
and backward passes. In experiments with the
Llama3-8B model, with MST, we measure no
degradation in throughput or convergence even
with 12x longer sequences than standard imple-
mentations due to our careful memory optimiza-
tions. MST is fully general, implementation-
agnostic, and requires minimal code changes to
integrate with existing LLM training frameworks.

1. Introduction
The development of Transformer (Vaswani et al., 2017) has
been a remarkable journey, with each iteration pushing the
boundaries of what is possible regarding model size, per-
formance, and efficiency. One of the critical challenges in
this journey has been managing the memory requirements
of these models, particularly during training. As Transform-
ers have significantly grown in size(Chen et al., 2023) and
complexity (Raffel et al., 2020), the memory demand has
increased exponentially, necessitating innovative solutions
to optimize memory usage while maintaining performance.

A significant milestone in this journey was the introduction
of multi-query attention (Shazeer, 2019). This technique
dramatically reduced the size of the KV-cache during infer-
ence, which uses multiple query heads but single key and
value heads. The idea was first adopted in the large-scale
training of PaLM (Chowdhery et al., 2023), then adopted
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and empirically tested in LLaMA (Touvron et al., 2023).
As the field progressed, multi-query attention evolved into
grouped query attention (GQA) (Ainslie et al., 2023), which
relaxes the single key and value head restriction to multiple
heads, and each head is coupled with a group of queries. It
significantly improves the quality and is adopted by Llama2-
70B (Touvron et al., 2023) and Mistral-7B (Jiang et al.,
2023).

To further improve model quality, Llama3 (Meta) introduced
a tokenizer with a vocabulary of 128K tokens, enabling more
efficient language encoding than Llama2’s 32K vocabulary.
Additionally, Llama3 increased its MLP intermediate size
from 11k to 14k. These changes reflect a trend toward
more extensive vocabulary and intermediate sizes for better
quality. Meanwhile, Llama3 maintains its hidden size of
4k for inference efficiency. This trend is also reflected in
the Microsoft development of Phi-3 (Abdin et al., 2024)
compared with Phi-2 (Javaheripi et al., 2023).

These advancements have also brought about new memory
challenges, particularly in the intermediate value of linear
layers of multilayer perception(MLP) and language model-
ing head (LM-Head). The substantial increase in intermedi-
ate variables, which can be nearly ten times larger than the
input variables, has severely limited the network’s ability
to expand sequence length and batch size. This limitation
has made it difficult to train large models without restricting
sequence length to 8K or relying on gradient accumulation
or distributed systems to expand batch size.

Our Approach: Recognizing these challenges, we intro-
duce MINI-SEQUENCE TRANSFORMER (MST), a simple
and effective methodology for enabling highly efficient and
highly accurate LLM training with extremely long sequence
lengths by reducing intermediate memory overhead. MST
introduces a per-layer mini-sequence where the input par-
titions work for each MLP and LM-Head block. MST par-
titions individual samples along the sequence dimension
and iteratively processes each mini-sequence, combining all
mini-sequence results to recover full-sequence outputs for
these blocks. Our work also adopts activation recomputation
(Chen et al., 2016). We find that there is no degradation in
throughput or convergence even with sequences up to 12×
compared to a standard implementation of Llama3-8B, as
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Figure 1: (a) Standard Transformer architecture. MLP’s and LM-Head’s activation sequence length is annotated with S. (b)
MINI-SEQUENCE TRANSFORMER is used to replace MLP blocks and LM-Head block, which splits the input sequence
S into M mini-sequences with sequence length S/M , where M = 2 on this figure. (c) Max sequence size for training
Llama2/Llama3 on A100-80GB GPU, with no degradation of throughput or convergence using our approach.

shown in Figure 1(c).

To summarize, we make the following contributions to ad-
vance the state-of-the-art in long-sequence training:

• MST trains 12x longer sequence lengths than existing
systems on a single A100 GPU with no degradation in
throughput and convergence of training.

• Fully general and implementation agnostic: MST sup-
ports most parameter-efficient training as it works inde-
pendently with attention layers.

2. MINI-SEQUENCE TRANSFORMER (MST)
We present our MINI-SEQUENCE TRANSFORMER (MST)
mechanism with the idea of partitioning the input sequence
into M× mini-sequences. We show how to compute the ex-
act transformer block by storing small intermediate matrices
for the backward pass. Then, we analyze its IO complexity,
showing that our method is throughput-equalized compared
to the standard transformer. We focus here on the forward
pass for ease of exposition;

2.1. Algorithms: Reducing Intermediate Value With
Mini-Sequence Processing

Our idea arises from the observation of large intermediate
values from transformer blocks. Given the inputs X ∈
RN×d in HBM, attention blocks and MLP blocks compute
the output O ∈ RN×d and loss computation block computes
the output loss ∈ R1, N equals to sequence size S here. We
observe that the intermediate values are always larger than
the input X and output O, loss. Attention has intermediate
values Q,K,V ∈ RN×d, which is (1 + 2 × d)/G larger
than input size, where (1 + 2 × d/G = 1.5) in Llama3
setting. MLP has intermediate value Iup, Igate ∈ RN×I ,
where 2 × I/d = 16 in Llama3 setting. LM-Head has
logits ∈ RV×d, where V/d = 32 in Llama3 setting.

As flash attention and group query attention have minimized
the intermediate value of attention, we put our focus on the
MLP block and LM-Head block. Therefore, our implemen-
tation of MST is general enough to work with any attention:
self-attention (Vaswani et al., 2017), cross-attention (Bah-
danau et al., 2014), causal attention (Radford et al., 2018),
their sparse counterparts (Child et al., 2019; Zaheer et al.,
2020; Roy et al., 2021), and their various optimized ker-
nels such as different versions of FlashAttention (Dao et al.,
2022; Dao, 2023). Our implementation adopts FlashAtten-
tion2 (Dao, 2023) for the experiments.
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Algorithm 1 Mini-Sequence MLP

Require: Matrices X ∈ RN×d, Weights Wgate,Wup ∈
Rd×I , Wdown,∈ RI×d

1: Partition matrices X into M blocks X1, . . . , Xm of size
Nm × d, where Nm = N/M

2: for 1 ≤ i ≤ M do
3: Compute I ′i = SiLU((XiWgate) ∗ (XiWup)), Ii ∈

RNm×I

4: Compute O′
i = IiWdown, Oi ∈ RNm×d

5: end for
6: Contact O = {Oi, . . . ,Om} ∈ RN×d

7: Return O.

Algorithm 2 Mini-Sequence LM-Head

Require: Matrices X ∈ RN×d, Labels L ∈ RN , Weights
Wout ∈ Rd×V

1: Partition matrices X into M blocks X1, . . . , Xm of size
Nm × d, where Nm = N/M

2: Partition labels L into M sub-label, L1, . . . , Lm of size
Nm, where Nm = N/M

3: for 1 ≤ i ≤ M do
4: Compute logitsi = XiWout, logitsi ∈ RNm×V

5: Compute if (i − 1) ∗ Nm ≤ Li ≤ (i − 1) ∗ Nm,
Li = Li else Li = −100

6: Compute lossi = crossentropyloss(logitsi, L_)
7: end for
8: Compute loss =

∑M
1 lossi/M

9: Return loss.

Input Partition. We apply the mini-sequence technique
to overcome the technical challenge of large intermediate
values occupying HBM memory. We describe this in Al-
gorithms 1, and 2, which represent MLP blocks and LM-
Head from Llama2 (Touvron et al., 2023) and Llama3(Meta).
Their MLP block consists of three linear layer and SiLU
function (Ramachandran et al., 2017), and their LM-Head
block consists of one linear layer and CrossEntropyLoss
function(Rubinstein, 1999). The corresponding backward
implementations can be referred from Appendix A for more
details. The main idea is partition the input X into mini-
sequence Xi as Algorithm 1 line 1 and Algorithm 2 line
1, then compute the output with respect to those mini-
sequences. We get the exact same result as standard im-
plementation by contacting all mini-sequence outputs.

Gradient Accumulation. One of our goals is to reduce
intermediate values for backward passes. The backward
pass typically requires the matrices X ∈ RN×d, I ∈ RN×I ,
logits ∈ RN×V to compute the gradients with respect to
weights. However, by input partition the X ∈ RNm×d,
we can reduce the intermediate value as I ∈ RNm×I ,
logits ∈ RNm×V by M× in the backward pass in HBM.

With gradient accumulation for all mini-sequences, all gra-
dients are generated in the same way as standard implemen-
tation by introducing more memory loading time.

2.2. Analysis: IO Complexity of MINI-SEQUENCE
TRANSFORMER (MST)

We analyze the IO complexity of MST, compared with con-
sistent compute complexity, which can affect its compute-
bound or memory-bound performance characteristics.
Theorem 2.1. Let S be the sequence length, d be the hid-
den dimension, I be the intermediate size, and V be the
voice size. Standard MLP returns O = act((XWgate) ∗
(XiWup)) ∗Wdown with O(SdI) FLOPS and MST MLP
returns O(SdI/M ∗ M) = O(SdI) FLOPS. Standard
LM-Loss returns loss = crossentropyloss(XW,L) with
O(SdV + SV ) FLOPS, and MST LM-Loss returns
O((SdV + SV )/M ∗M) = O(SdV + SV ) FLOPS.
Theorem 2.2. Standard MLP requires Θ(Sd + SI + dI)
HBM accesses, while MST (1) requires Θ(Sd+SI+dIM)
HBM accesses. Standard LM-Head requires Θ(Sd+ SV +
dV ) HBM accesses, while MST (2) requires Θ(Sd+ SV +
dVM) HBM accesses.

For Llama3 values of d (4096), I (14336) and V (128256),
SI , Sv is many time larger than Sd. For long sequence
cases like S = 100k, S >> d, the compute complexity
and IO complexity are dominated by SI and SV , where
MST is close to standard implementation. In this scenario,
the intermediate value can be saved by M× while main-
taining the same throughput performance. However, for
small sequence cases where S << d, the compute complex-
ity and IO complexity are dominated by dI and dV while
MST needs dIM and dVM . Therefore, MST would cause
throughput downgrades.

3. Experiment
We evaluate the impact of using MINI-SEQUENCE TRANS-
FORMER (MST) on Llama3(Meta), a state-of-the-art model
for many NLP tasks. We validate our claims about scal-
ing sequence length, reporting training time, and memory
overhead.

• Maximun Sequence Length. MST scales transformer to
longer sequences. MST can train Llama3-8B with context
length 60k and Llama3-7B with context length 84k on
a single A100 GPU. MST outperforms the activation re-
computation sequence length by 1.8−4× for Llama3-8B,
Llama2-7B and Llama2-13b, and it achieves 12 − 20×
than standard implementation.

• Training throughput. MST maintains the same train-
ing throughput compared with standard long-sequence
training.
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3.1. Longer Sequence Length with MINI-SEQUENCE
TRANSFORMER (MST)

Llama3. We train a Llama3-8B(Meta) MST by exploring
the sequence length on a single A100 GPU with lossless
training strategies, such as activation recomputation and
MST. Lossy strategies like sliding windows (Dai et al.,
2019) and LoRA (Hu et al., 2021) are not included in our
experiments. Table 1 compares our maximum sequence
and training time to the PyTorch standard implementation
and Huggingface PEFT with activation recomputation. Our
implementation trains 4× longer sequence compared with
activation recomputation and 12× longer sequence com-
pared with standard implementation.
Table 1: Maximum sequence length of Llama3-8B, running
on single A100 80G GPU.

Llama3-8B-hf Implementation Maximum Sequence Length (K)
vanilla 5

Activation Recomputation 14
MST 60

Llama2. We also train Llama2 models(Radford et al.,
2019) with MST, in order to compare the performance
of NaT on different models. Table 2 compares our max-
imum sequence to the PyTorch standard implementation
and Huggingface PEFT with activation recomputation. Our
implementation trains 1.8× longer sequence compared with
activation recomputation and 12× longer sequence com-
pared with standard implementation.
Table 2: Maximum sequence length of Llama2 models,
running on single A100 80G GPU.

Model Implementation Maximum Sequence Length (K)
Vanilla 7

Activation Recomputation 45
MST 84

Vanilla 2
Activation Recomputation 25

MST 40

Combination with gradient accumulation. Gradient Ac-
cumulation has been used during training Llama2 and
Llama3, which helps them train larger batch sizes given
limited available GPU memory. However, in Gradient Ac-
cumulation, instead of updating the model parameters after
processing each batch of training data, the gradients are
accumulated over multiple batches before updating. This
means that the memory usage for gradients would occupy
the memory used for activation. Therefore, using gradient
accumulation during training would significantly constrain
the maximum sequence size.

Table 3 summarizes the maximum sequence length with
gradient accumulation. The activation recomputation tech-
nology can train up to 8K sequences, which happens to be
the default setting of Llama3 training. Then MST can train

up to 30k sequence length, which is 3.75× longer sequence
length compared with activation recomputation plus gradi-
ent accumulation. MST can also scale 1.3× sequence for
Llama2-7B’s training

Table 3: Maximum sequence length training on single A100
80G GPU with gradient accumulation.

Llama3-8B-hf Implementation Maximum Sequence Length (K)
Activation recomputation 8

MST 30
Activation recomputation 38

MST 52

3.2. Faster Long Sequence Training with
MINI-SEQUENCE TRANSFORMER (MST)

We evaluate the training performance of MST on Llama3-
8B and Llama2-7B models using a single A100 80G GPU.
Table 4 compares the training time per step and TFLOPS
achieved by MST with the vanilla PyTorch implementation
and activation recomputation technique from Hugging Face
PEFT.

Table 4: Training performance using MST on single A100
80G GPU.

Model Implementation Batch Size TFLOPS
Llama3-8B-hf vanilla 1 OOM

Llama3-8B-hf activation recomputation 2 3271.42
Llama3-8B-hf MST 2 2825.12
Llama3-8B-hf MST 8 3336.14

Llama2-7B-hf vanilla 1 3290.88
Llama2-7B-hf activation recomputation 8 3703.48

Llama2-7B-hf MST 8 3452.19
Llama2-7B-hf MST 16 3639.93

For Llama3-8B, the vanilla implementation runs out of
memory (OOM) with a batch size of 1. Activation recom-
putation allows training with a batch size of 2, achieving
3271.42 TFLOPS and a training time of 5.01 seconds per
step. MST, with the same batch size of 2, achieves a com-
parable 2825.12 TFLOPS with a slightly longer training
time of 5.80 seconds per step. However, MST’s memory
efficiency allows scaling the batch size to 8, resulting in an
improved 3336.14 TFLOPS and a training time of 19.64
seconds per step.

In the case of Llama2-7B, the vanilla implementation can
train with a batch size of 1, achieving 3290.88 TFLOPS
and a training time of 1.24 seconds per step. Activation
recomputation enables a batch size of 8, yielding 3703.48
TFLOPS and a training time of 8.85 seconds per step. MST
further increases the batch size to 16, maintaining a similar
3639.93 TFLOPS with a training time of 18.00 seconds per
step.
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A. Algorithm Details
We describe the full details of MINI-SEQUENCE TRANSFORMER (MST) backward pass. Algorithm 3 shows the MLP
backward, and Algorithm 4 shows the LM-Head backward.

Algorithm 3 Mini-Sequence MLP Backward

Require: Gradients of output ∇O ∈ RN×d, Matrices X ∈ RN×d, Activations I ∈ RN×I , Weights Wgate,Wup ∈ Rd×I ,
Wdown ∈ RI×d

1: Partition matrices ∇O into M blocks ∇O1, . . . ,∇Om of size Nm × d, where Nm = N/M
2: for 1 ≤ i ≤ M do
3: Compute ∇Ii = ∇OiW

T
down, ∇Ii ∈ RNm×I

4: Compute ∇Wdown+ = ITi ∇Oi

5: Compute ∇I ′i = ∇Ii ⊙ δ(Ii), where δ is the activation function derivative of SiLU
6: Compute ∇X ′i = ∇I ′iWT

up, ∇X ′′
i = ∇I ′iW

T
gate, ∇X ′

i,∇X ′′
i ∈ RNm×d

7: Compute ∇Wup+ = XT
i ∇I ′i , ∇Wgate+ = XT

i ∇I ′i
8: Compute ∇Xi = ∇X ′

i +∇X ′′
i , ∇Xi ∈ RNm×d

9: end for
10: Concatenate ∇X = ∇X1, . . . ,∇Xm ∈ RN×d

11: Return ∇X , ∇Wgate, ∇Wup, ∇Wdown.

Algorithm 4 Mini-Sequence LM-Head Backward

Require: Loss gradients ∇loss ∈ R1, Logits ∈ RN×V , Labels L ∈ RN , Weights Wout ∈ Rd×V

1: Partition labels L into M sub-labels L1, . . . , Lm of size N
m , where N

m = N
M

2: Each mini-sequence forward
3: for 1 ≤ i ≤ M do
4: Compute ∇logitsi = CrossEntropyLossBackward(Logitsi, Li)
5: Delete logitsi
6: Compute ∇Xi = ∇logitsiW

T
out, ∇Xi ∈ RN

m×d

7: Compute ∇Wout+ = XT
i ∇logitsi

8: end for
9: Each mini-sequence backward

10: for 1 ≤ i ≤ M do
11: Compute ∇Xi = ∇Xi ⊙∇loss
12: Compute ∇Wout = ∇Wout ⊙∇loss
13: end for
14: Concatenate ∇X = ∇X1, . . . ,∇Xm ∈ RN×d

15: Return ∇X , ∇Wout.

We now observe about MST backward pass that when computing the gradients of MLP and LM-Head, we do not need to
use full input and intermediates data. Instead, we can use 1/M reduced data with mini-sequence, significantly reducing the
intermediate value memory overhead.
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