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Abstract

Decentralized SGD is an emerging training method for deep learning known for its
much less (thus faster) communication per iteration, which relaxes the averaging
step in parallel SGD to inexact averaging. The less exact the averaging is, however,
the more the total iterations the training needs to take. Therefore, the key to
making decentralized SGD efficient is to realize nearly-exact averaging using little
communication. This requires a skillful choice of communication topology, which
is an under-studied topic in decentralized optimization.

In this paper, we study so-called exponential graphs where every node is con-
nected to O(log(n)) neighbors and 7 is the total number of nodes. This work
proves such graphs can lead to both fast communication and effective averaging
simultaneously. We also discover that a sequence of log(n) one-peer exponential
graphs, in which each node communicates to one single neighbor per iteration,
can together achieve exact averaging. This favorable property enables one-peer
exponential graph to average as effective as its static counterpart but commu-
nicates more efficiently. We apply these exponential graphs in decentralized
(momentum) SGD to obtain the state-of-the-art balance between per-iteration
communication and iteration complexity among all commonly-used topologies.
Experimental results on a variety of tasks and models demonstrate that decen-
tralized (momentum) SGD over exponential graphs promises both fast and high-
quality training. Our code is implemented through BlueFog and available at
https://github.com/Bluefog-Lib/NeurIPS2021-Exponential-Graph.

1 Introduction

Efficient distributed training methods across multiple computing nodes are critical for large-scale
modern deep learning tasks. Parallel stochastic gradient descent (SGD) is a widely-used approach,
which, at each iteration, computes a globally averaged gradient either using Parameter-Server [28]]
or All-Reduce [47]. Such global coordination across all nodes in parallel SGD results in either
significant bandwidth cost or high latency, which can notably hamper the training scalability.

Decentralized SGD [45] |11} 30l [3] based on partial averaging has been one of the promising
alternatives to parallel SGD in distributed deep training. Partial averaging, as opposed to the global
averaging exploited in parallel SGD, only requires each node to compute the locally averaged model
within its neighborhood. Decentralized SGD does not involve any global operations, so it has much
lower communication overhead per iteration. The fewer neighbors each node needs to communicate,
the more efficient the per-iteration communication is in decentralized SGD.
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Table 1: Comparison between decentralized (momentum) SGD over (some) various commonly-used topologes.
The table assumes homogeneous data distributions across all nodes (which is practical for deep training within
a data-center). The comparison for data-heterogeneous scenarios, and with more other topologies, is listed in
Appendix [C] The smaller the transient iteration complexity is, the faster decentralized algorithms will converge.

Topology Ring Grid Rand-Graph Rand-Match  Static Exp  One-peer Exp
Per-iter Comm. Q(2) Q(4) Q3) Q(1) Q(logs(n)) Q(1)
Trans. Iters. Q(n") Q(n°) Q(n?3) — Q(ndlogi(n)) Q(n®logi(n))

The reduced communication in decentralized SGD comes with a cost: slower convergence. While
it can asymptotically achieve the same convergence linear speedup as parallel SGD [30, 3 [25] 164],
i.e., the training speed increases proportionally to the number of computing nodes (see the definition
in Sec.[2), decentralized SGD requires more iterations to reach that stage due to the ineffectiveness
to aggregate information using partial averaging. We refer those iterations before decentralized
SGD reaches its linear speedup stage as transient iterations (see the definition in Sec. [2), which
is an important metric to measure the influence of partial-averaging [48l, [65]] on convergence rate
of decentralized SGD. The less effective the partial averaging is, the more transient iterations
decentralized SGD needs to take. Fig.[T]illustrates the transient iterations of decentralized SGD for
the logistic regression problem. It is observed that decentralized SGD can asymptotically converge as
fast as parallel SGD, but it requires more iterations (i.e., transient iterations) to reach that stage.
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cally successful [3 161} 27, [14}167] but less theoretically understood in deep training. Exponential
graphs have two variants. In a static exponential graph, each node communicates to [logs(n)]
neighbors (see Sec.[3]and Fig.[2). In one-peer exponential graph, however, each node cycles through
all its neighbors, communicating, only, to a single neighbor per iteration (see Sec.d]and Fig. 2)). This
paper will first clarify the connectivity and averaging effectiveness of these exponential graphs, and
then apply them to decentralized momentum SGD to obtain the state-of-the-art balance between
per-iteration communication and transient iteration complexity among all commonly-used topologies.
Our main results (as well as our contributions) are:

* We prove that the spectral gap, which is used to measure the connectivity of the graph (see the
definition in Sec.[2), of the static exponential graph is upper bounded by O(1/log,(n)). Before
us, many literatures (e.g. [27]) claimed its upper bound to be O(1) incorrectly.

* Since one-peer exponential graphs are time-varying, it is difficult to derive their spectral gaps.
However, we establish that any log,(n) consecutive sequence of one-peer exponential graphs
can together achieve exact averaging when n is a power of 2.

* With the above results, we establish that one-peer exponential graph, though much sparser
than its static counterpart, surprisingly endows decentralized momentum SGD with the same
convergence rate as static exponential graph in terms of the best-known bounds.

* We derive that exponential graphs achieve Q(lper—iteration communication and Q(nS) tran-
sient iterations, both of which are nearly the best among other known topologies, see Table[I]
The one-peer exponential graph is particularly recommended for decentralized deep training.

* We conduct extensive industry-level experiments across different tasks and models with various
decentralized methods, graphs, and network size to validate our theoretical results.

?Notation Q(-) hides all logarithm factors.



2) (
3) ) (3®
static exp. ,—» iteration kK ———————— iteration k + 1 ————————> iteration k + 2—>|

one-peer exp.: repeat period-wise

Figure 2: Illustration of the static and one-peer exponential graph.
2 Revisit Decentralized Momentum SGD and Related Works

This section reviews basic concepts and existing results on decentralized momentum SGD.

Problem. Suppose n computing nodes cooperate to solve the distributed optimization problem:

r€R4

min f(z) = > file) where fi(x) = Eg,p, F(r; 1), M)
=1

Function f;(x) is local to node ¢, and random variable £; denotes the local data that follows distribution
D;. We do not assume each distribution D; is the same across all nodes.

Network topology and weights. Decentralized methods are based on partial averaging within
neighborhood that is defined by the network topology (see the figure[2[as an example of six nodes).
We assume all computing nodes are connected by a (directed or undirected) network topology. We
define w;;, the weight to scale information flowing from node j to node 7, as follows:

2

> (0 if node j is connected to 7, or i = j;
“1=0 otherwise.

N == {jlw;; > 0} is defined as the set of neighbors of node ¢ which also includes node 1 itself and
the weight matrix W := [w;;]}';_; € R™™" are denoted as a matrix that stacks the weights of all
nodes. This matrix W characterizes the sparsity and connectivity of the underlying network topology.

Decentralized momentum SGD (DmSGD). Algorithm 1 DmSGD
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assumptions to facilitate future analysis:

A.1[SMOOTHNESS] Each f;(x) is L-smooth, i.e., |V fi(x) =V fi(y)|| < L||z—y|| forany x,y € R%.
A.2 [GRADIENT NOISE] The random sample fi(k) is independent of each other for any %k and i. We
also assume E[VF(z;¢;)] = Vfi(z) and E||VF (2;&) — Vfi(z)||? < o2

A.3 [DATA HETEROGENEITY] It holds that 2 3" | ||V f;(z) — V f(z)||* < b* for any x € R%.
A.4 [WEIGHT MATRIX] The weight matrix W *) is doubly-stochastic, i.e. W®* 1 = 1 and

1Tw® =17 1t W = W, we assume p(W) = maxy,w1{|\(W)|} € (0,1), where
Ai(W) is the i—th eigenvalue of the matrix WE]
The quantity 1 — p, which is also referred to as the spectral gap of the weight matrix W, measures

how well the topology is connected [53]]. In the large and sparse topology which is most valuable to
deep training, it typically holds that 1 — p — 0.

3When there is no ambiguity, we simply use p instead of p(W). Throughout the paper we do NOT use p
as spectral radius. Instead, it is the second largest eigenvalue in magnitude. Note we cannot directly sort the
eigenvalues since W is not necessarily symmetric and the eigenvalue can be a complex number.



Communication overhead. According to [5]], global averaging across n nodes either incurs Q(n)
bandwidth cost via Parameter-Server, or 2(n) latency via Ring-Allreduce. In either way, it takes Q2(n)
per-iteration communication time, which is proportional to the network size n. As to decentralized
methods, we will similarly assume the per-iteration communication time to be 2(maximum degree).

Convergence. Under Assumptions A.1-A.4, DmSGD with static topology will converge at [[64} 25]:

2 no? nb? ) 3)

l - )—((k) 2 _ o
7 L EIVIEY)] —o(m+T(1p)+T(1p)Q

in which z(F) = % S xgk). It is worth noting that no analysis in literature, to our knowledge,
exists for DmSGD over time-varying topologies with non-convex costs.

Linear speedup. When 7 is sufficiently large, the first term 1/v/nT dominates (). This also
applies to parallel SGD. Decentralized and parall SGDs all require T' = §2(1/(ne?)) iterations to
reach a desired accuracy €, which is inversely proportional to n. Therefore, an algorithm is in its
linear-speedup stage at T'th iteration if, for this 7', the term involving n7" is dominating the rate.

Transient iterations. Transient iterations are referred to those iterations before an algorithm reaches
linear-speedup stage, that is when 7' is relatively small so non-n7" terms still dominate the rate (see
illustration in Appendix [C). To reach linear speedup, T" has to satisfy (derivation in Appendix [C)
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which corresponds to the transient iteration complexity in the homo/hetero-geneous data scenarios.

2.1 Related Works

Decentralized deep training. Decentralized optimization originates from the control and signal
processing community. The first decentralized algorithms on general optimization problems include
decentralized gradient descent [435]], diffusion [11}51]] and dual averaging [[18]. In the deep learning
regime, decentralize SGD, which was established in [30] to achieve the same linear speedup as parallel
SGD in convergence rate, has attracted a lot of attentions. Many efforts have been made to extend the
algorithm to directed topologies [3} 142]], time-varying topologies [25} 42]], asynchronous settings [31],
and data-heterogeneous scenarios [57, 162} 132} 167]]. Techniques such as quantization/compression
[2, 18 126} 241 |58, 136]], periodic updates [S5}125] 64], and lazy communication [37, 38}, [13] were also
integrated into decentralized SGD to further reduce communiation overheads.

Topology influence. The influence of network topology on decentralized SGD was extensively
studied in [25} 51} 166, 45] 142, 27]]. All these works indicate that a well-connected topology will
significantly accelerate decentralized SGD. Two directions have been explored to relieve the influence
of network topology. One line of research proposes new algorithms that are less sensitive to topologies.
For example, [66} 23| 165, 157, [1] removed data heterogeneity with bias-correction techniques in
(681291162, 140} 169], and [14} 161} [7, [27]] utilized periodic global averaging or multiple partial averaging
steps. All these methods have improved topology dependence. The other line is to investigate
topologies that enable communication-efficient decentralized optimization. [43}15]] examined various
topologies (such as ring, grid, torus, expander, etc.) on averaging effectiveness, which, however,
are either communication-costly or averaging-ineffective compared to exponential graphs studied
in this paper. [41.16 9} 10] studied random graphs (such as Erdos-Renyi random graph and random
geometric graph) in which each edge is activated randomly. The randomness of the edge activation
can cause a highly unbalanced degrees of each node in the graph, which may significantly affect the
efficiency in per-iteration communication.

Algorithms with time-varying topologies. Many previous works have studied decentralized al-
gorithms with time-varying topologies. [42]] and [44] examined the convergence of decentralized
(deterministic) gradient descent and gradient tracking under convex scenarios. [[17,152] investigated
gradient tracking under non-convex scenarios, but it did not clarify the influence of the time-varying
graphs on convergence rate. In the stochastic scenario, [25]] illustrates how decentralized SGD is
influenced by time-varying topologies in the non-convex scenario. However, its analysis cannot be
directly extended to the decentralized momentum SGD studied in this work.



Another related work is the Matcha method [60] based on disjoint matching decomposition sampling.
While similar to Matcha, decentralized SGD over one-peer exponential graphs has several fundamental
differences. First, one-peer exponential graph is directed while Matcha only supports undirected
and symmetric matching decomposition. Second, the favorable periodic exact-average property of
one-peer exponential graphs only holds when sampled cyclicly. However, Matcha only supports
independent and random matching samples in analysis. For these reasons, Matcha cannot cover
one-peer exponential graphs (especially when momentum is utilized in decentralized SGD).

Note. This paper considers deep training within high-performance data-center clusters, in which
all GPUs are connected with high-bandwidth channels and the network topology can be fully
controlled. It is not for the wireless network setting in which the topology cannot be changed freely.

3 Spectral Gap of Static Exponential Graph

As discussed above, the graph maximum degree decides the per-iteration communication cost while
the spectral gap determines the transient iteration complexity (see ([@)). It is critical to seek topologies
that are both sparse and with large spectral gap 1 — p simultaneously. In this section, we will establish
that the static exponential graph, which was first introduced in [3} 30, is one of such topologies.

In a static exponential graph, each node is assigned an index from 0 to n» — 1 and will communicate
to neighbors that are 20,2, - - ., 2l082(n=1)] hops away. The left plot in Fig.[2)illustrates a directed
6-node exponential network topology. With maximum degree [log,(n)] neighbors, partial averaging
over the static exponential graph will take 2(log,(n)) communication time per iteration. However, it
remains unclear what the spectral gap is for this topology.

Weight matrix associated with static exponential graph is defined as follows:
1 . . . . . s
WP = {ﬂogz(nﬂﬂ if log2<mod(j —i,m)) is an integer or { = j (5)
0 otherwise.
An example weight matrix associated with the static exponential graph in Fig. [2]is in Appendix [A.T]
The following proposition evaluates the spectral gap 1 — p for weight matrix in ().

Proposition 1 (SPECTRAL GAP OF STATIC EXPO) The spectral gap of matrix (3), which can also
be interpreted as the second largest magnitude of eigenvalues, satisfies (Proof is in Appendix[A.2))

2

= ————, when nis even number
1+ [logy(n)]
2

<T T
1+ [logy(n)]
In addition, we have ||WoP — L1173 = p(WP).

- (W) ©

when n is odd number

Remark 1 For a general non-symmetric matrix W, it typically holds that |W — 117 || # p(W).
Propositionestablishes [Wexe — L1017 ||y = p(WP) for exponential graph.

Remark 2 The hypercube graph is established in [59, Chapter 16] to have the spectral gap as
1 — p(WHyperCubey — 9 /(1 4 log,(n)). While such spectral gap is on the same order as the
exponential graph, there are two fundamental differences between these two graphs: (a) the hypercube
graph has to be undirected and the corresponding W' is symmetric; (b) the number of vertices of
hypercube must be a power of 2, i.e., n = 27 for some positive integer T. In comparision, the
exponential graph is more flexible in the size of the graph structure.

Remark 3 Proposition|l|clarifies the spectral gap of the static exponential graph. Many literatures
before this work (such as [27]) claimed the spectral gap to be O(1), which is not accurate.

The theoretical analysis of Proposition [I]is non-trivial. To evaluate the spectral gap, for any network
size n, we have to derive the analytical expression for each eigenvalue using Fourier transform and
calculate the magnitudes. The most tricky part is to assert which eigenvalue expression attains the
second largest value.



We now numerically validate the established spectral gap.
The second largest magnitude of eigenvalue

In Fig.[3] we plotted the spectral gap of the static exponen-

tial graph with n ranging from 4 to 290. It is observed that

the derived gap p = 1 — 2/(1 + [logy(n)]) is very tight o.s

(see the black dashed line). In fact, it exactly matches the

numerical spectral gap when n is even. Moreover, itis ¢

also observed the spectral gap of static exponential graph

is much smaller than that of ring or grid. e —— Static Exp.
Finally, we compare the spectral gap and maximum de- %2 e 2‘:;3

gree of the static exponential graph with all other common ---- Theoratical Bound
graphs in Appendix [A.3] It is observed that static exponen- 0 50 100 150 200 250 300
tial graph, while with a sightly larger maximum degree, Number of nodes

has a significantly smaller spectral gap than ring and grid. Figure 3: Spectral gap of some topologies.

4 One-Peer Exponential Graph Achieves Periodic Exact-Averaging

Static exponential graph incurs Q(log,(n)) communication overhead per iteration. To overcome this
issue, [3]] proposes to decompose the static exponential graph into a sequence of one-peer graphs,
in which each node cycles through all its neighbors, communicating, only, to a single neighbor per
iteration, see the right plot in Fig.[2l Apparently, each one-peer realization incurs 2(1) communication
cost, which matches with ring or grid. Since each realization is sparser than the static graph, one may
expect DmSGD with one-peer exponential graphs are less effective in aggregating information. In
the following, we will establish an interesting result: one-peer is very effective in averaging.

Time-varying weight matrix. We let 7 = [log,(n)]. The weight matrix at iteration k is

1 iflogy(mod(j —i,n)) = mod(k, )
wi) =41

iti—j )
0 otherwise.
The weight matrix for each realization of the one-peer exponential graphs in Fig. [2]is in Appendix
Since each node communicates to one single neighbor per iteration, the resulting weight matrix
is very sparse, with only one non-zero element in the non-diagonal positions per row and column.

no

Periodic exact-averaging. The periodic exact-averaging property, which was observed by [3]
without theoretical justifications, is fundamental to clarify the averaging effectiveness of one-peer
exponential graphs. The following lemma proves that the property holds when n is a power of 2.

Lemma 1 (PERIODIC EXACT AVERAGING) Suppose T = log,(n) is a positive integer. If W) is

the weight matrix generated by over the one-peer exponential graphs, it then holds that each
W) g doubly-stochastic, i.e. W M =1 and 1TWE) = 1T, Furthermore, it holds that

WO (k+e=1) kD (k) — l]l]lT (8)
n
for any integer k > 0 and £ > 7. And equivalently, the consensus residue form holds that
1 ) 1 ) 1
(WO — —17) (W=D — —117) . (W) — Z117) =0 )
n n n

(Proof is in Appendix[B.2).

Remark 4 The assumption that log,(n) is a positive integer seems necessary. We numerically tested
various one-peer exponential graphs with non-integer log,(n). None of them is endowed with the
periodic exact-average property.

Remark 5 When log,(n) is a positive integer and each realization of the one-peer exponential
graph is sampled without replacement, it is easy to verify that the periodic exact-averaging property
still holds. However, if each realization is sampled with replacement, the periodic exact-averaging
property generally does not hold unless all realizations are occasionally sampled without repeating.

Remark 6 It is worth noting that an one-peer variant of the hypercube graph is established to
achieve exact averaging with T = log,, (n) steps [54]. Such one-peer hypercube is undirected and
symmetric, which is different from the one-peer exponential graph which is directed and asymmetric.
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Figure 4: Illustration of how consensus
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graphs. O.E. and S.E. denote one-peer and
With the derived property in Sec. 3] and [} this section ~Static exponential graphs, and R.M. denotes

. . . . bipartite random match graph.

will examine the convergence of DmSGD with static and
one-peer exponential graphs.

DmSGD with static exponential graph. Based on Proposition[I] we can achieve the convergence
rate and transient iterations, by following analysis in [[64], of DmSGD with static exponential graph.

Corollary 1 Under Assumptions A.1-A.4, if v = 7”715;’8)3 DmSGD (Algorithm will converge at

2

1y 2 o nlogy(n)(1—B)o* _ n(1—B)b* log}(n)
T;Ellw(x W=0| o=z i + 7 (10)

Furthermore, the transient iteration complexity of DmSGD over static exponential graph is
O(n?loga(n)) for data-homogeneous scenario and O(n®logs(n)) for data-heterogeneous scenario.

DmSGD with one-peer exponential graph. With each realization being sparser than its static
counterpart, one-peer exponential graph is believed to converge slower. However, the periodic exact-
averaging property can help DmSGD achieve the same convergence rate as its static counterpart.
Note that DmSGD with one-peer exponential graph is an one-loop algorithm, see Algorithm[I] The
DmSGD updates start immediately after sampling one weight matrix.

Theorem 1 We assume 7 = log,(n) is a positive integer, and the time-varying weight matrix is

Vn(1-p)3

generated by ([/)) over one-peer exponential graphs. Under Assumptions A.1-A.4 and v = N

DmSGD (Algorithm|[I)) will converge at (Proof is in Appendix|D.I{D.3).

1« _ o2 n(l—p)o%r  n(l— B2
il B)\[12 —
T,;:lEHVf(X ]l —O< (1—6)nT+ T + T .an

Furthermore, the transient iteration complexity of DmSGD over one-peer exponential graph is
O(n?logi(n)) for data-homogeneous scenario and O(n®logy(n)) for data-heterogeneous scenario.

Remark 7 Comparing (T1)) with (10), and noting that T = log,(n), we conclude that DmSGD with
one-peer graphs converge exactly as fast as with the static counterpart in terms of the established
rate bounds. In addition, both graphs endow DmSGD with the same transient iteration complexity.

Remark 8 We can also achieve the convergence rate for decentralized SGD (i.e., DSGD without
momentum acceleration) with one-peer exponential graph by setting 3 = 0. It is easy to verify that
DSGD with one-peer graphs can also converge as fast as with the static exponential graph.

Remark 9 The convergence rate and transient iteration complexity of DSGD with general mixing
matrices sampling strategy are also studied in [25|]. However, the results in reference [25)] does
not cover the scenario with momentum acceleration. As we show in the proof details, it is highly
non-trivial to handle momentum.



It is worth noting that the analysis for the above theorem is non-trivial. While it targets on the one-peer
exponential graph, the analysis techniques can be extended to the general time-varying topologies.
To our best knowledge, it establishes the first result for DSGD with momentum acceleration, over the
time-varying topologies, and in the non-convex settings. Existing analysis either focuses on DSGD
without momentum [25]], or DmSGD with static topologies [[64]]. In addition, the last two terms in
(TT), actually, can be further tightened by the spectral gap of one-peer exponential graphs. Since the
tightened terms are rather complicated, we leave them to the discussion in Appendix [D.4]

State-of-the-art balance between communication and convergence. Table |1| (and tables in Ap-
pendix summarize the per-iteration communication time and transient iteration complexity for
all commonly-used topologies. When n is sufficiently large, the term log,(n) can be ignored. In this
scenario, the exponential graphs (including both static and one-peer variants) achieve state-of-the-art
(1) per-iteration communication and 2(n3) transient iterations, in which Q(-) hides all logarithm
factors. In Appendix [D.5] we numerically validate that exponential graphs have smaller transient
iteration complexity than ring or grid graph as predicted in Table|l} The comparison between ex-
ponential graph with random graphs [411 16l 9} [10] (such as the Erdos-Renyi graph and geometric
random graph) is discussed in Appendix

One-peer exponential graph is recommended for decentralized deep training. It is because one-
peer exponential graph endows DmSGD with the same convergence rate as its static counterpart, but
incurs strictly less communication overhead per iteration.

6 Experiments

This section will validate our theoretical results by extensive deep learning experiments. First, we
evaluate how DmSGD with exponential graphs perform against other commonly-used graphs with
varying network size. Second, we examine whether one-peer exponential graphs achieve the same
convergence rate and accuracy as its static counterpart across different tasks, models, and algorithms.

Metrics. Training time and validation accuracy are two critical metrics to examine the effectiveness
of a distributed training algorithm in deep learning. These two metrics are typically evaluated after
the algorithm completes a fixed number of epochs (say, 90 epochs). Training time can reflect the
communication efficiency while accuracy, though might not be precise, can roughly measure the
convergence rate (or iteration complexity). These two metrics are used in most of our experiments.

6.1 Setup

We implement all decentralized algorithms with PyTorch [46] 1.8.0 using NCCL 2.8.3 (CUDA 10.1)
as the communication backend. For parallel SGD, we used PyTorch’s native Distributed Data Parallel
(DDP) module. For the implementation of decentralized methods, we utilize BlueFog [63]], which is
a high-performance decentralized deep training framework, to facilitate the topology organization,
weight matrix generation, and efficient partial averaging. We also follow DDP’s design to enable
computation and communication overlap. Each server contains 8 V100 GPUs in our cluster and is
treated as one node. The inter-node network fabrics are 25 Gbps TCP as default, which is a common
distributed training platform setting.

6.2 Exponential graphs enable efficient and high-quality training

In this subsection we evaluate how DmSGD with exponential graphs perform against other commonly-
used topologies in the task of image classification.

Implementation. We conduct a series of image classification experiments with the ImageNet-1K
[L6], which consists of 1,281,167 training images and 50,000 validation images in 1000 classes. We
train classification models with different topologies and numbers of nodes to verify our theoretical
findings. The training protocol in [21]] is used. In details, we train total 90 epochs. The learning
rate is warmed up in the first 5 epochs and is decayed by a factor of 10 at 30, 60 and 80-th epoch.
The momentum SGD optimizer is used with linear learning rate scaling by default. Experiments are
trained in the mixed precision using Pytorch native amp module. We implement DmSGD with all
graphs listed in Table[T] The details of each graph is described in Appendix[E} For each graph, we test
the training time and validation accuracy for DmSGD with GPU numbers ranging from 32 to 256.

Experiment results. The comparison between different graphs (with varying size) in top-1 validation
accuracy and training time after 90 epochs is listed in Table|2] Major observations are:



Table 2: Comparison of top-1 validation accuracy(%) and training time (hours) with different topologies.

NODES 4(4x8 GPUs) 8(8x8 GPUs) 16(16x8 GPUs) 32(32x8 GPUs)
TOPOLOGY ACC. TIME ACC. TIME ACC. TIME ACC. TIME

RING 76.13£0.023 11.6 76.07 £0.013 6.5 76.08 £0.026 3.3 75.58 £0.021 1.8

GRID 76.08 £0.007 11.6 76.35+0.037 6.7 75.88+0.011 3.4 75.76+0.022 2.0

BI-RAND. MATCH. 75.96 £0.032 11.1 76.26 £0.027 5.7 76.07 £0.012 2.8 75.83+0.029 1.5
RANDOM GRAPH 75.97 +0.028 11.5 76.01 £0.033 7.1 76.18+0.008 6.7 76.24 +0.018 4.7
STATIC EXP. 76.21+£0.028 11.6 76.32+0.037 6.9 76.30+0.007 4.1 76.28 £0.020 2.5
ONE-PEER EXP.  76.28 £0.063 11.1 76.47 +0.035 5.7 76.42+0.030 2.8 76.30+0.062 1.5

[1] All graphs (except the random graph) endows DmSGD with training time linear speedup. Among
them, bipartite random matching and one-peer exponential graphs achieve the best linear speedup due
to their efficient per-iteration communication. However, the accuracy of the matching graph cannot
match one-peer exponential graph. The random graph fails to achieve linear speedup because of its
extremely expensive communication overheads.

[2] In the 32 x 8 GPUs scenario, the training time to finish all 90 epochs can be sorted as follows:
one-peer ~ Bi-RandMatch < Ring < Grid < static exponential < random graph, which coincides
with the per-iteration communication time listed in Table[T]

[3] In the 32 x 8 GPUs scenario, the training accuracy achieved by each graph after 90 epochs is
sorted as follows: random graph ~ static exponential ~ one-peer > Bi-RandMatch > Grid > Ring,
which coincides with the transient iteration complexity listed in Table[I} Note that the random graph
is rather dense (see the detail in Appendix [A.3.T)) so it has good accuracy but consumes significant
wall-clock time in training.

With the second and third observations, we can find exponential graphs (especially the one-peer
exponential graph) can enable both fast and high-quality training performance. We also examined the
performance of exponential graphs when n is not a power of 2, see Appendix [E.2}

6.3 One-peer exponential graph v.s. static exponential graph

In this subsection we will focus on the two exponential graphs studied in this paper. In particular, we
will validate that one-peer exponential graph endows DmSGD with the same convergence rate as its
static counterpart (i.e., the conclusion in Remark across different tasks, models, and algorithms.

Comparison across models and algorithms. Now we compare one-peer and static exponential
graphs with different neural network architectures and algorithms. The task is image classification
and the setting is the same as in Sec.[6.2] We test both graphs for ResNet [22], MobileNetv2 [50] and
EfficientNet [56], which are widely-used models in industry. In addition to the DmSGD algorithm
(Algorithm [T) studied in this paper, we also examine how exponential graphs perform with other
commonly-used decentralized momentum method: the vanilla DmSGD [3]] which does not exchange
momentum between neighbors, and QG-DmSGD [32] which adds a quasi-global momentum to
relieve the influence of data heterogeneity. We do not examine DecentLaM [67] and D2 [57] because
both methods require symmetric weight matrix during the training process which exponential graphs
cannot provide. We also list the performance of parallel SGD using global averaging as one baseline.

Table [3] lists the top-1 valida-
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curves in training loss and ac- Figure 5: Convergence curves on the ImageNet (ResNet-50) in terms of

curacy 'for DmSGD with both training loss and validation top-1 accuracy . Network size is 8 x 8 GPUs.
graphs in Fig.[5] It shows both

curves evolve closely to each other, indicating that one-peer exponential graph enables DmSGD with
the same convergence rate as its static counterpart. This is consistent with Theorem [I]and Remark
Since one-peer is more communication-efficient than static exponential graph (see Table[2), it is
recommended to utilize one-peer exponential graph in decentralized deep training. In addition, we
observe that decentralized methods, while utilizing partial-averaging during training process, has no



Table 3: Top-1 validation accuracy and wall-clock time (in hours) comparison with different models and
algorithms on ImageNet dataset over static/one-peer exponential graphs (8x8 GPUs).

MODEL RESNET-50 MOBILENET-V2 EFFICIENTNET
TOPOLOGY STATIC ONE-PEER STATIC ONE-PEER STATIC ONE-PEER

PARALLEL SGD 76.21 (7.0) - 70.12 (5.8) - 77.63 (9.0) -
VANILLA DMSGD 76.14 (6.6) 76.06 (5.5) 69.98 (5.6) 69.81 (4.6) 77.62 (8.4) 77.48 (6.9)
DMSGD 76.50 (6.9) 76.52(5.7) 69.62 (5.7) 69.98 (4.8) 77.44 (8.7) 77.51(7.1)

QG-DMSGD 76.43 (6.6) 76.35(5.6) 69.83 (5.6) 69.81(4.6) 77.60(8.4) 77.72(6.9)

significant accuracy degradation compared parallel SGD. Decentralized SGD can even be superior
sometimes.

Comparison across different tasks. We next compare the aforementioned algorithms with one-
peer and static exponential graphs in another well-known task: object detection. We will test the
following widely-used models: Faster-RCNN [49]] and RetinaNet [34] on popular PASCAL VOC
[19] and COCO [35]] datasets. We adopt the MMDetection [[12] framework as the building blocks
and utilize ResNet-50 with FPN [33] as the backbone network. We choose mean Average Precision
(mAP) as the evaluation metric for both datesets. We used 8 GPUs (which are connected by the static
or dynamic exponential topology) and set the total batch size as 64 in all detection experiments.

Table ] compares the performance of decentralized training across different object detection models
and datasets. Similar to the above experiment, it is observed that both graphs enable decentralized
algorithms with almost the same performance in each scenario. This again illustrates the value of
one-peer exponential graph in deep learning tasks - it endows decentralized deep training with both
fast training speed and satisfactory accuracy.

Table 4: Comparison of different methods and models on PASCAL VOC and COCO datasets.

DATASET PASCAL VOC COCO
MODEL RETINANET FASTER RCNN RETINANET FASTER RCNN
TOPOLOGY STATIC ONE-PEER STATIC ONE-PEER STATIC ONE-PEER STATIC ONE-PEER
PARALLEL SGD 79.0 - 80.3 - 36.2 - 37.2 -
VANILLA DMSGD  79.0 79.1 80.7 80.5 36.3 36.1 37.3 37.2
DMSGD 79.1 79.0 80.4 80.5 36.4 36.4 37.1 37.0

QG-DMSGD 79.2 79.1 80.8 80.4 36.3 36.2 37.2 37.1

7 Conclusion and Future Works

In this paper, we establish the spectral gap of static exponential graph and prove that any log,(n)
consecutive one-peer exponential graphs can together achieve exact averaging when n is a power
of 2. With these results, we reveal that one-peer exponential graphs endow DmSGD with the same
convergence rate as their static counterpart. We also establish that exponential graphs achieve nearly
minimum per-iteration communication time and transient iteration complexity simultaneously when
n is large. All conclusions are thoroughly examined with industrial-standard benchmarks. As the
future work, we will investigate symmetric time-varying graphs that can perform as well as one-peer
exponential graph. Symmetric graphs are critical for D? and DecentLaM algorithms.
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