
On Evaluating Policies for Robust POMDPs

Merlijn Krale∗
Radboud University

Nijmegen, The Netherlands
merlijn.krale@ru.nl

Eline M. Bovy∗
Radboud University

Nijmegen, The Netherlands
eline.bovy@ru.nl

Maris F. L. Galesloot∗
Radboud University

Nijmegen, The Netherlands
maris.galesloot@ru.nl

Thiago D. Simão
Eindhoven University of Technology

Eindhoven, The Netherlands
t.simao@tue.nl

Nils Jansen
Ruhr-University Bochum & Radboud University
Bochum, Germany & Nijmegen, The Netherlands

n.jansen@rub.de

Abstract

Robust partially observable Markov decision processes (RPOMDPs) model sequen-
tial decision-making problems under partial observability, where an agent must
be robust against a range of dynamics. RPOMDPs can be viewed as a two-player
game between an agent, who selects actions, and nature, who adversarially selects
the dynamics. Evaluating an agent policy requires finding an adversarial nature
policy, which is computationally challenging. In this paper, we advance the eval-
uation of agent policies for RPOMDPs in three ways. First, we discuss suitable
benchmarks. We observe that for some RPOMDPs, an optimal agent policy can be
found by considering only subsets of nature policies, making them easier to solve.
We formalize this concept of solvability and construct three benchmarks that are
only solvable for expressive sets of nature policies. Second, we describe a new
method to evaluate agent policies for RPOMDPs by solving an equivalent MDP.
Third, we lift two well-known upper bounds from POMDPs to RPOMDPs, which
can be used to efficiently approximate the optimality gap of a policy and serve as
baselines. Our experimental evaluation shows that (1) our proposed benchmarks
cannot be solved by assuming naive nature policies, (2) our method of evaluating
policies is accurate, and (3) the upper bounds provide solid baselines for evaluation.

1 Introduction

Partially observable Markov decision processes [POMDPs; 25] are ubiquitous for representing
sequential decision-making problems under partial observability. POMDPs are used to represent
real-world problems, such as robotics [31], infrastructure maintenance [39, 38], and wildlife conser-
vation [13]. Yet, to model such problems, the dynamics of the problem need to be precisely known,
which is often unrealistic [26, 57]. Robust MDPs [RMDP; 23, 43, 55] capture model uncertainty as
a two-player game between the agent, who picks actions, and nature, who adversarially picks the
dynamics of the model. RMDPs can effectively represent model uncertainty arising in reinforcement
learning [54, 11, 37] or from abstraction [1, 2, 32], but do not account for partial observability.
Robust POMDPs [RPOMDPs; 45] extend RMDPs with partial observability, and are thus more
expressive. However, finding and evaluating policies for RPOMDPs is hard: existing solvers must use
an extensive range of approximations to find and evaluate policies within reasonable time [53, 15, 9].

To test such RPOMDP solvers, we require an evaluation pipeline, such as shown in Figure 1. To start,
we need a set of benchmarks that allows us to investigate the limits of the solver. Once the solver

*Joint main authorship.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Algorithm under
evaluation

Baseline algorithms
(Section 5)

Benchmark
models

(Section 3)

Evaluation
method

(Section 4)

Value

Estimated
value

Baseline
values

Policy under
evaluation

Baseline
policies

Figure 1: Visualisation of the evaluation pipeline: benchmarks, an evaluation method, and baselines.

computes a policy for such benchmarks, we need an evaluation method to obtain a value for the
policy. Finally, we compare this value with that of suitable baselines, and, if available, the estimated
value of the policy as provided by the solver. In summary, an evaluation pipeline requires at least
these three parts: benchmarks, an evaluation method, and baselines.

Most existing RPOMDP literature does not address all these parts. Firstly, the benchmarks used are
often existing POMDPs extended with artificial model uncertainty [45, 9, 15, 42, 22], and it is unclear
if such benchmarks are representative of RPOMDPs in general. Secondly, policy evaluation requires
finding a worst-case nature policy, which can be prohibitively expensive. Existing work often either
simplifies the evaluation process or reports the estimated value of the algorithm without explicitly
evaluating the policy. Lastly, there are no readily computable baselines for RPOMDPs, hindering the
efficient assessment of new solvers. In this paper, we aim to address all three parts of the evaluation
pipeline with the following contributions:

(1) We propose novel solvability classes and corresponding benchmark problems (Section 3).
We discuss the problem of defining benchmarks, and argue that suitable benchmarks should test
whether a solver has considered all possible nature policies. Thus, if we can find an optimal agent
policy for an RPOMDP by considering only naive subsets of nature policies, then the RPOMDP is
not a suitable benchmark. We formalize this intuition using the concept of solvability. Based on this
concept, we define three small benchmarks for which we prove that the optimal agent policy cannot
be found against naive subsets of nature policies.

(2) We propose a new robust policy evaluation method (Section 4). To evaluate agent policies, we
propose to compute a best-response nature policy, i.e., the worst-case nature policy against the policy
under evaluation. We show that this evaluation method is less computationally expensive than finding
an optimal nature policy, and we prove that the aforementioned best-response policy is, in fact, the
worst-case evaluation for a fixed agent policy. Lastly, we demonstrate that this evaluation method can
be represented in general as an MDP with continuous state and action spaces, enabling evaluation
with off-the-shelf (approximate) continuous MDP solvers.

(3) We define two new efficient robust baselines (Section 5). We lift two existing POMDP
approximation algorithms, QMDP [33] and the fast informed bound (FIB) [21], to RPOMDPs,
which we denote as robust QMDP (RQMDP) and robust FIB (RFIB), respectively. We prove the
convergence and relative tightness of these approximations and highlight that, under conventional
technical assumptions, both are tractable baselines to compute.

Finally, we conduct an empirical evaluation that (1) shows that the new benchmarks cannot be solved
by assuming naive nature policies, (2) validates the accuracy of our evaluation method, and (3)
demonstrates the applicability of our approximations as baselines. We implement all methods in a
Julia framework (based on POMDPs.jl [12]) to facilitate future research; available on Zenodo [29].

2 Preliminaries: Robust POMDPs

This section gives a comprehensive definition of RPOMDPs. We first introduce some basic notation.
We denote the set of all possible probability distributions over the (countable) set A as ∆(A), and
all elements with non-zero probability in a distribution µ ∈ ∆(A) as supp(µ). For any predicate P ,
the Iverson brackets [P] return 1 if P is true and 0 otherwise. Given a convex set C, we denote the
set of all extreme points as Extremes (C), and the centroid of the set, i.e., the arithmetic mean of all
points in C, as Centroid (C). Lastly, given a function f : X → ∆(Y) and elements x ∈ X , y ∈ Y ,

2

f(y | x) denotes the probability of element y according to f(x), and y ∼ f(x) denotes a randomly
sampled element y from f(x).

Different definitions of RPOMDPs exist, as discussed in [3]. We focus on a variant of their definition,
with some additional assumptions for simplicity.

Definition 1 (RPOMDP). An RPOMDP is a tuple M = ⟨S,A,Ω,U , T ,O, R, b0, γ⟩, with:

• S,A and Ω (finite) sets of states, actions and observations;
• U ⊆ {f : Var → R} = R|Var| the uncertainty set, with Var a finite set of decision variables;
• T : U → (S × A → ∆(S)) the uncertain transition function, which defines a transition

function T : S ×A → ∆(S) for each assignment of decision variables u ∈ U;
• O : U → (S × A × S → ∆(Ω)) the uncertain observation function which defines an

observation function O : S ×A× S → ∆(Ω) for each assignment u ∈ U;
• R : S ×A → R the reward function;1

• b0 ∈ ∆(S) the initial state distribution (or initial belief);
• γ ∈ [0, 1) the discount factor.

For notational convenience, we define the joint uncertain transition-observation function P : U →
(S × A → ∆(S × Ω)), with P(u)(s′, o | s, a) = T (u)(s′ | s, a)O(u)(o | s, a, s′). Note that an
RPOMDP with a singleton uncertainty set is a POMDP, a fully observable RPOMDP is a robust
MDP [RMDP; 23, 43, 55], and an RMDP with a singleton uncertainty set is an MDP [48].

Intuitively, RPOMDPs describe a zero-sum game between an agent and nature, with policies π and θ,
respectively [3]. The game starts in a state s0 ∈ S as sampled from the initial state distribution b0. At
each timestep t ∈ N, the agent picks an action at ∈ A according to its policy π. Then, nature picks a
decision variable assignment ut ∈ U according to policy θ. Next, the environment transitions to a
state st+1 ∼ T (ut)(st, at), and emits an observation ot ∼ O(ut)(st, at, st+1). Lastly, the agent and
nature receive a reward rt = R(st, at), which is not observed.

Policies. Next, we introduce notation for memory-based randomized agent policies. Let X ⊂ RN ,
with N ∈ N, denote a memory space. Possible memory spaces include the set of beliefs (i.e.
X ⊆ ∆(S), as used in [45]) or the set of memory nodes of a finite state controller (as used in [9, 15].
Then, we define the set of agent policies as Π = {⟨σ : X → ∆(A), τ : X × A × Ω → ∆(X)⟩},
where σ denotes the action selection function, and τ the memory update function. Given a policy
π = ⟨σ, τ⟩ ∈ Π and a memory state xt ∈ X , the agent chooses action at ∼ σ(x), and updates it’s
internal memory state to xt+1 ∼ τ(xt, at, ot+1).

The formalization of our nature policies is based on two assumptions. First, we assume dynamic
uncertainty [23] (or zero stickiness [3]), which means nature can choose a different decision variable
assignment when revisiting a state-action pair. In contrast, static uncertainty (or full stickiness) refers
to the setting where nature must always choose the same decision variable assignment. Second, we
assume nature has knowledge of the history of (1) the visited states, (2) the agent’s memory states,
and (3) the agent’s actions.2 Combining these assumptions, the set of nature policies is given as
Θ = {θ : (S ×X ×A)N → U | N ∈ N}. Note that weakening either assumption will yield a more
restrictive set of nature policies; thus, these assumptions provide a lower bound for any such setting.

Structural Assumptions. We make two additional structural assumptions. First, we assume the
uncertainty set is ⟨s, a⟩-rectangular. Intuitively, nature can choose probabilities for any state-action
pair independently. This means we assume that the set of decision variables Var can be partitioned into
smaller sets Vars,a, such that (1) the uncertainty set is U =

Ś

s,a∈S×A{Vars,a → R}, and (2) any
decision variable in Vars,a only influences state-action pair ⟨s, a⟩. This assumption is common
in the RPOMDP literature and, similar to the assumptions above, provides a lower bound for any
non-rectangular setting. Lastly, we assume the set of joint transition-observation functions in P given
the uncertainty set U , i. e., {P(u) | u ∈ U}, is convex, closed, and graph-preserving. Convexity is a
common assumption for tractability reasons, while closedness and graph-preservation are sufficient
to guarantee the existence of an optimal nature policy3 [36], which we define below.

1This definition could trivially be extended to include uncertainty in the reward function [45].
2Nature does not require knowledge of observations, since these only affect the agent’s memory states.
3An RPOMDP given an agent policy induces an infinite action POMDP for nature. Since nature has full

observability, this can alternatively be interpreted as an RMDP with only a single agent action. Thus, Theorem 2
from Meggendorfer et al. [36] applies, and we know optimal agent and nature policies exist.

3

s0

s1

s2

s3

s4

s5

s6

s7

s8

0.
5

0.5

0.5

0.5

1

a

b

b

a

p

1−
p

R = 100

R = 0

R = r?

R = 100

R = 0

R = 0

R = 200

a

b
a

b
a

b

a

bp ∈ [p, p]

Solvability p p r?

Trivially 0.2 0.6 80
Center 0.1 0.6 80
Entropy 0.1 0.6 80
RMDP 0.1 0.6 80
Stationary 0.1 0.9 80
None of the above 0.1 0.9 70

Figure 2: Example RPOMDP with parameter values for solvability classes. We use TOY∗ to denote
the variant of this RPOMDP with the parameter values from “None of the above”.

Objective. The agent’s objective is to maximize its value, i.e., the infinite-horizon expected cumu-
lative discounted reward. We assume nature is adversarial, meaning it aims to minimize the value.
Let V π,θ := Eπ,θ [

∑∞
t=0 γ

trt | s0 ∼ b0] denote the value of the RPOMDP given policies π ∈ Π and
θ ∈ Θ. We denote the optimal value for the agent and nature as V a = maxπ∈Π minθ∈Θ V π,θ and
V n = minθ∈Θ maxπ∈Π V π,θ, respectively, with corresponding optimal agent- and nature policies
π∗ and θ∗. If V a = V n, then the underlying game has a Nash equilibrium [46], in which case π∗

and θ∗ are called Nash policies. In this paper, we focus on the agent’s objective V a, that is, finding
and evaluating agent policies with respect to their worst-case nature policies. We note that this is
related to the notion of Stackelberg equilibria [46]. As for POMDPs [35], solving infinite-horizon
discounted RPOMDPs is undecidable. Thus, in general, agent policies can be ε-optimal at best.

3 Solvability Classes and Benchmark Models

In this section, we first propose the concept of solvability to analyze the complexity of an RPOMDP.
Next, we introduce three small RPOMDP benchmarks that are complex according to our definition.
In Section 6, we provide an empirical evaluation of the complexity of these benchmarks, which we
compare to standard POMDPs extended with artificial uncertainty sets.

We introduce the TOY environment (Figure 2, left). Throughout this section, we will use variants of
this model with different choices for the reward r? and uncertainty set [p, p] (Figure 2, right). For
notational convenience, we assume γ = 1. Intuitively, the agent needs to make two decisions. Firstly,
in the states, the agent must choose between the safe action b, which will always yield a value r?,
and the more risky action a. If a is selected, the agent must make another choice between a and b in
the states. Which action is optimal in the and states depends both on the history up to that
point, as this indicates in which states the agent can be, as well as the nature policy.

We highlight two different agent policies for this environment. The safe policy π∗
s picks the safe

action b in the states regardless of the previous observation, which yields a guaranteed value of r?.
In contrast, the risky policy π∗

r picks the riskier action a in the states if the previous observation
was , and the safe action b otherwise. Furthermore, π∗

r picks action b in the states. For r? = 80,
π∗
s is optimal if p ≤ 0.6 ≤ p̄, and π∗

r is optimal if p ≤ 0.6 and 0.2 ≤ p ≤ 0.6. Similarly, for r? = 70,
π∗
s is optimal if p ≤ 0.4 and 0.65 ≤ p̄. We provide a proof in Appendix A.1.

3.1 Solvability and Θ-solvable

We define the concept of solvability as follows:

Definition 2. Recall that Θ and Π denote the sets of all nature- and agent policies. Define ΠΘ as the
set of agent policies that are optimal against both Θ, as well as a subset of nature policies Θ ⊆ Θ:

ΠΘ = argmax
π∈Π

min
θ∈Θ

V π,θ ∩ argmax
π∈Π

min
θ∈Θ

V π,θ. (1)

Then, a model M is Θ-solvable if ΠΘ ̸= ∅.

Intuitively, a model is Θ-solvable if there exists at least one optimal agent policy against the subset of
nature policies Θ that is also optimal against all nature policies Θ. For such models, solvers that are

4

only robust against Θ could still find optimal agent policies. For some subsets Θ, this property may
be undesirable for benchmarks, as we will discuss below. Note that Θ-solvability does not imply that
θ∗ ∈ Θ, nor that the value against these sets is equal. Below, we define different solvability classes
based on whether a model is solvable for a particular Θ.

Trivial solvability. We first consider the most extreme case. A model is trivially solvable if it is
solvable for any set Θ. Such models are unsuitable as benchmarks, since they do not adequately test
whether a solver has considered all possible nature policies.

Example 1. TOY with uncertainty set p ∈ [0.2, 0.6] and reward r? = 80 is trivially solvable, since
π∗
r is optimal for any choice of θ.

Naive solvability. Next, we consider models where the optimal value does depend on the choice of
the nature policy θ, but where a naive choice of θ suffices. Such models are not adequate to show
the capabilities of solvers to be robust against all possible nature policies, and are thus unsuitable as
benchmarks. We define the following three nature policies that induce a naive solvability class:

• θCenter, which picks decision variables such that P(u) = Centroid ({P(u) | u ∈ U}). For
RPOMDPs constructed by extending a POMDP with model uncertainty, this nature policy
often corresponds to the original POMDP.

• θEnt, which picks decision variables to maximize the entropy of the probability distribution
of each transition. This nature policy generally results in high uncertainty for the agent.

• θRMDP, which picks decision variables that are optimal in the underlying RMDP, i. e., optimal
against a fully observing agent policy. In particular, this nature policy is good if partial
observability has little effect on the optimal agent policy.

Thus, we call a model naively solvable if it is either {θCenter}-, {θEnt}-, or {θRMDP}-solvable. This list
is not exhaustive; additional solvability classes can be defined as naive if so desired.

Example 2. TOY with p ∈ [0.1, 0.6] and r? = 80 is not trivially solvable, since π∗
r is optimal against

Θ, but is not optimal for each individual θ. For example, if θ(·) = {p 7→ 0.1}, the agent can gain a
higher value by choosing the risky action a in the states and action b in the states, regardless of
the observation history. However, π∗

r is optimal against all the naive policies θCenter(·) = {p 7→ 0.35},
θEnt(·) = {p 7→ 0.5}, and θRMDP(·) = {p 7→ 0.6}, which means the model is naively solvable.

Stationary solvability. Lastly, a model is stationary solvable if it is solvable for the set of stationary
nature policies ΘSta. A stationary nature policy chooses the same variable assignment for all histories,
and can therefore be respresented by a single variable assignment: ΘSta = U . Intuitively, an RPOMDP
with a stationary nature policy induces a POMDP with the same state space as the RPOMDP. In
contrast to the previous solvability classes, the set of nature policies remains continuous. We are not
aware of a way to exploit the stationary solvability of a model to solve it. Thus, we do not consider
stationary solvable models unsuitable benchmarks.

Example 3. Consider TOY with p ∈ [0.1, 0.9] and r? = 80. Using similar logic as above, against all
naive nature policies θ ∈ {θCenter, θEnt, θRMDP}, it is optimal for the agent to take the risky action a in
the states for one of the possible observation histories. However, for any agent policy that takes a
risky action in , there exists a stationary nature policy that yields a lower value than r?. Thus, π∗

s
is the only optimal policy against both ΘSta and Θ, meaning the model is stationary solvable and
not naively solvable. In contrast, if we use the same uncertainty set with r? = 70, taking the risky
action a in is optimal against all stationary nature policies, while π∗

s is optimal against the set of
non-stationary policies. Therefore, the model is not stationary solvable.

3.2 Benchmarks

We introduce three novel benchmark environments that, according to our classification above, require
solving against expressive nature policies. The first, denoted TOY∗, is the variant of the TOY
RPOMDP (Figure 2) that does not fall within any of our solvability classes, i.e., with parameter
values from “None of the above”. In the following, we provide two more benchmarks.

ECHO. The ECHO environment (Figure 3, left) is inspired by predictive maintenance problems.
Starting in one of two distinguishable states x or y, the agent picks an action ai with i ∈ {x, y}.
Based on this action, the agent transitions to the state ni, and can then take the echo (e) action to
transition to state i. However, the machine has a probability δ to transition to the broken states x′ or

5

n′

nx

ny

x

y

x′

y′

r,−1

r,−1

r,−1

0.5

0.5

e p

1− p

e, 11− δ δ

e, 11− δ δ

ax

ay

ax

ay

ax, ay

ax, ay

r = repair, e = echo

s0 s1 s2 s3 s4 . . .Even EvenOdd Odd

Odd, s-Odd
Odd, s-Odd Odd, s-Odd

Even, s-Even

Even, s-Even

s-Even

p1 p2 p3
s-Even s-Evens-Odd s-Odd

Figure 3: Visualizations of the ECHO environment (left) and PARITY environment (right).

y′ instead, which return the same observations as x and y. From these, the agent always transitions to
state n′, where the outcome of the echo action is determined by a parameter p ∈ [p, p̄]. The agent
receives a reward of 1 for taking the echo action in nx or ny , but none in n′. Alternatively, they may
take a repair (r) action in any of these states at a cost of −1, which returns the agent to nx or ny with
probability 0.5. We make the following claim about this environment:

Theorem 1. ECHO, with p = 0.01, p̄ = 0.99, δ = 0.1 and γ = 0.95, is not in any of the solvability
classes defined in Section 3.1.

We give a more general formulation of this theorem, as well as a proof, in Appendix A.2.1. Intuitively,
a non-stationary nature policy can pick p depending on whether the agent previously played ax or ay ,
while a stationary nature cannot. Thus, the optimal policy will sometimes repair even if it is uncertain
whether the machine is broken, while this is always suboptimal against a stationary nature policy.

PARITY. Lastly, we consider an abstract chain environment called PARITY(N), parameterized with
N ∈ N>0, as visualized in Figure 3 (right). The environment consists of a chain of indistinguishable
states s0 to sN , and the agent receives a reward when reaching sN . To do so, the agent can guess
the parity of its current state si, and can choose actions with either deterministic (Even, Odd) or
stochastic (s-Even, s-Odd) outcome. When correctly guessing the parity in state si, the agent moves
to state si+1 when choosing deterministic actions, and to states si+1, si+2 or si+3 with probabilities
p1 ∈ P1, p2 ∈ P2, p3 ∈ P3 otherwise. However, the agent moves to state si−2 for incorrect guesses.
Stochastic actions take the agent further on average, but make it harder to guess correctly in the future.
In addition to finite-length chains, we consider a chain of infinite length with the same dynamics,
denoted PARITY(∞), where the agent receives an immediate reward equal to the number of steps
they take. We show this problem can be reduced to a 9-state model in Appendix A.2.2. For this
environment, we show the following with regard to solvability:

Theorem 2. PARITY(∞), with P1 = {0.2}, P2 = [0.1, 0.7], P3 = [0.1, 0.7], and γ ≥ 0.73̄, is not
naively solvable.

We provide a proof in Appendix A.2.2. Intuitively, our proof shows that optimal policies for naive
subsets of nature policies take the riskier stochastic actions, which is suboptimal in the worst
case. We empirically show in Section 6 that PARITY(10), with with P1 = {0.1}, P2 = [0.5, 0.8],
P3 = [0.1, 0.4], and γ = 0.95 is also not naively solvable.

4 Evaluating Agent Policies in RPOMDPs

In this section, we consider the problem of policy evaluation for RPOMDPs. To evaluate an agent
policy π = ⟨σ, τ⟩ ∈ Π, we must consider against which nature policy to evaluate. One choice is, if it
exists, to evaluate against the optimal nature policy θ∗, the worst-case nature policy when considering
all possible agent policies. However, reasoning over all possible agent policies is often intractable,
and is unnecessary if we will only use θ∗ to evaluate a single policy. Moreover, there might be
alternative nature policies that yield lower values, as the following example illustrates.

Example 4. Consider an agent policy in the TOY∗ environment (Figure 2) that always picks action a
in the states, then b in the states. This policy achieves a close-to-optimal value of 66 2

3 against θ∗,
but is highly exploitable by a nature policy that chooses p = 0, achieving a value of 0.

6

Since evaluation against θ∗ does not always give a good indication of the robustness of a policy,
we propose to evaluate the policy π against its own worst-case nature, which we denote as the best-
response policy θ∗π ∈ argminθ∈Θ V π,θ. In practice, finding (approximations of) θ∗π is computationally
cheaper than finding θ∗. In particular, we show that for ⟨s, a⟩-rectangular and dynamic uncertainty
models, the policy type of θ∗π is typically simpler than that of θ∗, which suggests that it is easier to
find. Recalling P and Extremes (·) from the preliminaries, we state this as follows:
Theorem 3. For any agent policy π ∈ Π there exists a best-response nature policy θ∗π : X → U such
that ∀x ∈ X : P

(
θ∗π(x)

)
∈ Extremes ({P(u) | u ∈ U}).

We provide a full proof in Appendix B. Intuitively, nature does not need to consider the whole history
since, due to ⟨s, a⟩-rectangularity, it can pick variable assignments that are optimal for any visited
state-action pair. However, nature’s decision should still be based on what the agent will do in the
future, which depends on the agent’s current memory state x ∈ X , as the agent policy is stationary
over X and the memory update τ is fixed for a policy π = ⟨σ, τ⟩ ∈ Π. Moreover, since the agent
policy is fixed, nature enjoys more expressive power in the variable assignments it chooses. Therefore,
nature only needs to consider a subset of the policy class Θ to select the best-response actions.

Now, using Theorem 3, we propose a method for finding θ∗π. In particular, since θ∗π is Markovian
in X , we can represent our problem as a (possibly continuous-space) nature MDP with state space
Sn = X , action space An ⊂ U , and dynamics that represent both the underlying RPOMDP and the
memory update of the agent. To simplify our notation, we use an expanded state space that explicitly
includes the current state and agent action. In that case, we define the nature MDP as follows:
Definition 3 (Nature MDP). Assume we have an RPOMDP M = ⟨S,A,Ω,U , T ,O, R, b0, γ⟩ and
an agent policy tuple π = ⟨σ, τ⟩ ∈ Π that uses a (possibly continuous) memory space X . Then, the
corresponding nature MDP Mπ

n is defined as Mπ
n = ⟨Sn, An, Tn, Rn, µn, γ⟩, with:

• Sn = S ×X ×A the state space;
• An = {u ∈ U | P(u) ∈ Extremes ({P(u) | u ∈ U})} the action space.
• Tn : Sn ×An → ∆(Sn) the transition function, defined as:

Tn(⟨s′, x′, a′⟩ | ⟨s, x, a⟩, an) = σ(a′ | x′)
∑

o∈Ω P(an)(s
′, o | s, a)τ(x′ | x, a, o).

• Rn : Sn → R the state-based reward function, with Rn(⟨s, x, a⟩) = R(s, a).
• µn ∈ ∆(Sn) the initial state distribution, with µn(⟨s, x, a⟩) = σ(a | x)[x = x0]b0(s),

where x0 ∈ X is the initial memory for policy π, i.e. x0 = b0 if the policy is belief-based.
Remark 1. For any nature state sn = ⟨s, x, a⟩ ∈ Sn, transitions only depend on decision variables
in the set Vars,a. Thus, in practice, the action space An in the nature MDP Mπ

n can be represented
using state-dependent action sets An(sn) of much smaller size, i.e., |An(sn)| ≪ |An|.
The action space An of the nature MDP Mπ

n is a subset of the action space of nature in the corre-
sponding RPOMDP M. Therefore, the set of policies for Mπ

n , denoted Θπ
n := {θ : Sn → An}, are

also valid nature policies for M. Let V π,θ
n denote the expected reward of policy θ ∈ Θπ

n in the nature
MDP Mπ

n . Then, by construction, the following holds:
Lemma 1. Given an agent policy π ∈ Π and nature policy θ ∈ Θπ

n . Then, the value of θ in the
nature MDP equals the value of θ against π in the RPOMDP, i.e., V π,θ

n = V π,θ.

Corollary 1. There exists a best-response nature policy θ∗π ∈ argminθ∈Θπ
n
V π,θ
n .

Corollary 1 follows from the observation that valid policies in Mπ
n exactly overlap with the set of

policies described in Theorem 3. This implies we can find θ∗π by solving, i.e., finding the optimal
policy for, the nature MDP Mπ

n . The construction of the nature MDP generalizes the robust Markov
chain construction of Galesloot et al. [15] to arbitrary memorization schemes τ of the agent. We note
that An is finite if P is a convex polytope4, and Sn is discrete if X is discrete. Both conditions hold
for the setting of Galesloot et al. [15], which is why their robust policy evaluation scales to relatively
large state spaces. However, the state-space of Mπ

n is continuous for belief-based policies, the action
space is continuous in general, and the resulting value function of Mπ

n can be discontinuous and
non-convex. Thus, in practice, we may have to resort to an off-the-shelf approximation method for
solving Mπ

n , incurring an approximation error. We note that the quality of the approximation and the
scalability of solving the nature MDP directly connect to advances in solving continuous-state MDPs.

4This is commonly the case if the uncertainty set is comprised of probability intervals or the ℓ1 norm, but
generally not for uncertainty sets based on the ℓ2 norm or the Kullback-Leibler divergence.

7

5 Efficient Approximations for Robust Agent Policies

In this section, we lift two value approximation methods from POMDPs to their robust counterparts
in RPOMDP. These approximations are helpful in multiple ways. Many existing POMDP algorithms,
both online [59] and offline [52], use approximations as upper bounds to guide exploration and
initialize value estimates. While any choice for θ ∈ Θ is a valid upper bound, using tighter upper
bounds often leads to better results more quickly [30]. Furthermore, these approximations are ideal
candidates to serve as baselines and provide sanity checks in an evaluation, such as the one we
conduct in Section 6, as they provide reasonable bounds on performance that are efficient to compute.

Recall b ∈ ∆(S) is an agent belief. Let bs be the unit belief with b(s) = 1, and BS = {bs | s ∈ S} ⊂
∆(S) be the set of all such beliefs. Then, we define robust variants of the QMDP-bound [34] and the
fast informed bound [FIB; 21], namely robust QMDP (RQMDP) and robust FIB (RFIB), as:
Definition 4. QRMDP and QRFIB are the fixed point of the operators HRQMDP and HRFIB, defined as:

HRQMDPQ(b, a) =
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
s′∈S

T (u)(s′ | s, a)max
a′∈A

Q(bs′ , a
′)
]
, and (2)

HRFIBQ(b, a) =
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]
. (3)

We prove both these operators are contraction mappings in Appendix C of the supplemental material,
guaranteeing the existence and uniqueness of these fixed points. Intuitively, RFIB corresponds to the
worst-case value under the assumption that the agent observes the current and future states from the
next timestep onwards with a one-step delay, while RQMDP corresponds to the same assumption
with no delay. This matches their POMDP variants. Let QRPOMDP be the fixed point of the robust
Bellman equation for RPOMDPs [45]. We highlight the following property:
Theorem 4. Regarding tightness, the following inequalities on the fixed points hold:

∀b ∈ ∆(S),∀a ∈ A : QRMDP(b, a) ≥ QRFIB(b, a) ≥ QRPOMDP(b, a).

We provide a proof in Appendix C of the supplemental material. Intuitively, the theorem follows from
the fact that the operators are contraction mappings and unequal. As for their non-robust variants,
both QRMDP and QRFIB depend only on the Q-values for state-action pairs. Thus, precomputing the
(approximate) fixed point for beliefs bs ∈ BS allows computing the bounds for any belief b efficiently.
Whether or not this precomputation is tractable depends on the uncertainty sets. Both are convex
optimization problems for convex uncertainty sets. In particular, the inner supremum of Equation (2)
is solvable with a linear program, or by using an efficient bisection method [43, Section 7.2] if the
uncertainty sets are convex polytopes, while for Equation (3) it is solvable via a linear relaxation of a
mixed-integer program, which means both require polynomial time.

6 Experimental Evaluation

We empirically evaluate our benchmarks and evaluation pipeline via the following questions:

(Q1) Evaluation pipeline. How accurate is our pipeline in evaluating policies?
(Q2) Benchmarks. Can our proposed benchmarks be solved using a naive nature heuristic, or

one of our efficient approximations? How does this compare to other benchmarks?
(Q3) Approximations. How do our approximations perform as baselines?

We first provide a brief overview of our experimental setup, and then address (Q1)-(Q3). We include
more details in Appendix D, and provide the code to reproduce the experiments on Zenodo [29].

6.1 Experimental Setup

Implementation and algorithms. We implement our evaluation method in the Julia programming
language, using a variant of the POMDPs.jl framework [12] for RPOMDPs with interval uncertainty
sets. To solve these RPOMDPs, we use three separate algorithms: a variant of RHSVI [45] — with
minor alterations, as described in Appendix D.1 — as well as our approximate solvers RQMDP and
RFIB from Section 5. With RHSVI, we compute both robust policies on the RPOMDP M, as well as

8

−0.5 0.0 0.5
Relative value gap (Vgap)

Toy∗

Machine

Parity(∞)

Parity(10)

Tiger

HeavenOrHell(5)

HeavenOrHell(10)

MiniHallway

Aloha(10)

Replacement

HealthDetection

M
MCenter

MEnt

MRMDP

−0.5 0.0 0.5
Relative value gap (Vgap)

RHSVI

RQMDP

RFIB

Figure 4: The relative value gap Vgap(π) = V π,θ∗π−Ṽ/|Ṽ |, for each policy π, where V π,θ∗
π is obtained

by (approximately) solving the nature MDP Mπ
n . On the left, policies π are computed using RHSVI

on the RPOMDP model M or on the naive POMDP models MCenter,MEnt, and MRMDP. On the right,
policies π are computed using different RPOMDP algorithms. Arrows denote outliers.

non-robust POMDP policies for the simplified models MCenter,MEnt and MRMDP, which correspond
to the naive nature policies θCenter, θEnt, θRMDP in Section 3. Given an agent policy, we construct a
nature MDP in the POMDPs.jl framework, and solve it using the native Julia implementation of
Monte Carlo tree search (MCTS) for continuous-state MDPs [8]. For evaluation, we run MCTS five
times and report the lowest value; unnormalized values and standard deviation are in Appendix D.2.

Metric. We test our evaluation pipeline on the abovementioned algorithms to compute the value V π,θ∗
π

for each policy π by solving the nature MDP. From these policy evaluations, we compute a relative
value gap: Vgap(π) = V π,θ∗π−Ṽ

|Ṽ | , where Ṽ denotes the (approximate) value of the RPOMDP M
computed using RHSVI. A negative value gap indicates that our pipeline has determined a policy is
suboptimal. In contrast, a positive value gap means our pipeline could not compute the worst-case
value, i.e., due to the error incurred from the approximation method used to solve the nature MDP.

Benchmarks. We test our evaluation pipeline on three sets of benchmarks. Firstly, we use our novel
benchmarks as introduced in Section 3: TOY∗ and ECHO, as well as the finite- and infinite chain
environments PARITY(10) and PARITY(∞). Secondly, we lift several POMDPs from the literature
into RPOMDPs: TIGER [6], MINIHALLWAY [33], and ALOHA [24], as well as an expanded variant
of HEAVENORHELL [4] (also used in [45]). We construct these RPOMDPs such that for any T (u),
any transition probability is less than 0.5 times higher or lower than the nominal POMDP, with
no alterations to the observation function. Lastly, we add partial observability to two benchmarks
from the RMDP literature: HEALTHDETECTION [16] and REPLACEMENT [10]. The former can be
interpreted as an RPOMDP with little changes. For the latter, we add partial observability by adding
measuring actions that reveal the state at the cost of incurring a negative reward [28]. Appendix D.2
provides detailed descriptions of the environments and their dimensions.

6.2 Results & Analysis

We aggregate our results in two separate plots (Figure 4), which we analyze below:

(Q1): Our evaluation pipeline is accurate for smaller environments. For the smaller environments
(MINIHALLWAY and above), our evaluation of RHSVI achieves a value gap close to zero, and the
value gaps for all approximation methods are less than or equal to zero. Thus, for these environ-
ments, our evaluation pipeline is likely accurate. However, for larger environments (ALOHA and
HEALTHDETECTION), some policies achieve positive value gaps. In these cases, MCTS fails to find
an accurate solution for the nature MDP, leading to inaccurate policy evaluation.

9

(Q2): Our novel benchmarks cannot be solved naively. For TOY∗, ECHO, and PARITY(∞), all the
policies computed with naive nature heuristics have significant value gaps. Moreover, while RFIB
yields an optimal policy for both variants of PARITY, it does not solve TOY∗ or ECHO, despite their
relatively small state spaces. In contrast, for all other benchmarks, at least one policy computed from
a naive nature heuristic performs on par with the policy computed with RHSVI on the RPOMDP M.

(Q3): RFIB is an adequate baseline. RFIB outperforms all naive nature heuristics for TOY∗,
ECHO, and both variants of PARITY, on which it also is optimal. This confirms RFIB is useful as a
computationally inexpensive baseline for RPOMDPs. However, as we see for the other benchmarks,
RFIB is not guaranteed to perform well on all benchmarks. In contrast to RFIB, RQMDP performs
worse in general, but is still a valuable baseline for models where RFIB is too expensive to compute.

7 Related Work

RPOMDP evaluation. No prior work exists that explicitly tackles the evaluation problem for
RPOMDPs. However, methods that aim to solve RPOMDPs often make implicit assumptions about
evaluation. Most notably, Galesloot et al. [15] proposes a pessimistic iterative planning framework
that uses an evaluation method similar to the one used here. However, this work focuses on finding and
evaluating finite state controllers for stationary nature policies only, while our evaluation method is
more generic. More broadly, RPOMDP solvers exist that compute belief-based policies [45], history-
based policies [22, 41] or policies represented as finite state controllers [9, 15]. In all these works,
the benchmarks consist of POMDPs with ϵ-uncertainty around the original transition and observation
functions, and include no discussion on why these benchmarks are picked. In particular, such variants
of both TIGER and HEAVENORHELL have been used as RPOMDP benchmarks [22, 41, 45], while
our work shows that both are naively solvable.

Related settings. Prior work has evaluated policies by sampling POMDPs from the uncertainty
set [5], which, in contrast to our evaluation method, does not guarantee finding the worst-case value.
Furthermore, related settings include policy optimization and evaluation for finite sets of POMDPs,
where model uncertainty is static and not rectangular [14], value iteration with side information under
distributional robustness [40], and value iteration under varying pessimism levels [49]. Alternative
settings include robustifying POMDP policies against observation perturbations [7] and robust active
measuring [28]. Lastly, we note that solver evaluation has been studied in different fields, including
for MDPs [20] and reinforcement learning, both in general [44, 18] and for RMDPs in particular [60].

8 Conclusion & Discussion

In this paper, we consider three understudied components of the RPOMDP evaluation pipeline:
(1) identifying suitable benchmarks, (2) robust policy evaluation, and (3) efficient baseline algorithms.
We introduce novel methods to tackle all three problems, and empirically confirm that the resulting
pipeline is sound. Future work could use our approximations to guide RPOMDP solvers, or introduce
more specific approximations of the nature MDP to increase scalability.

Limitations. As shown in section 6, approximation errors in solving the nature MDP may result
in incorrect values. Thus, care should be taken in deciding which approximation method to use
and assessing the resulting values. Furthermore, our methods and analysis in this paper are re-
stricted to ⟨s, a⟩-rectangular and convex uncertainty sets. Yet, these are common assumptions for
RPOMDPs [45, 15], and any non-rectangular problem can be overapproximated (conservatively)
by assuming rectangularity. We note that identifying less conservative cases of rectangularity while
maintaining tractability is still an open problem in RMDPs [58, 17].

Practical recommendations. For future research on RPOMDPs, we have two practical recommen-
dations. Firstly, RPOMDP solvers should be tested on benchmarks that are not naively solvable,
which can be tested theoretically (as done in Section 3) or empirically (as done in Section 6). Sec-
ondly, RPOMDP solvers should be evaluated using a robust policy evaluation method that finds the
worst-case value from a full range of possible nature policies, such as the one proposed in Section 4.

10

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their useful comments. This work has been
partially funded by the ERC Starting Grant DEUCE (101077178).

References
[1] Thom S. Badings, Alessandro Abate, Nils Jansen, David Parker, Hasan A. Poonawala, and

Mariëlle Stoelinga. Sampling-based robust control of autonomous systems with non-gaussian
noise. In AAAI, pages 9669–9678. AAAI Press, 2022.

[2] Thom S. Badings, Licio Romao, Alessandro Abate, David Parker, Hasan A. Poonawala, Mariëlle
Stoelinga, and Nils Jansen. Robust control for dynamical systems with non-gaussian noise via
formal abstractions. J. Artif. Intell. Res., 76:341–391, 2023.

[3] Eline M. Bovy, Marnix Suilen, Sebastian Junges, and Nils Jansen. Imprecise probabilities
meet partial observability: Game semantics for robust POMDPs. In IJCAI, pages 6697–6706.
ijcai.org, 2024.

[4] Darius Braziunas and Craig Boutilier. Stochastic local search for POMDP controllers. In AAAI,
pages 690–696. AAAI Press / The MIT Press, 2004.

[5] Brendan Burns and Oliver Brock. Sampling-based motion planning with sensing uncertainty.
In ICRA, pages 3313–3318. IEEE, 2007.

[6] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in
partially observable stochastic domains. In AAAI, pages 1023–1028. AAAI Press / The MIT
Press, 1994.

[7] Mahmoud El Chamie and Hala Mostafa. Robust action selection in partially observable Markov
decision processes with model uncertainty. In CDC, pages 5586–5591. IEEE, 2018.

[8] Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas
Bonnard. Continuous upper confidence trees. In LION, volume 6683 of Lecture Notes in
Computer Science, pages 433–445. Springer, 2011.

[9] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmadreza Marandi, Marnix Suilen, and Ufuk
Topcu. Robust finite-state controllers for uncertain POMDPs. In AAAI, pages 11792–11800.
AAAI Press, 2021.

[10] Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with
parameter uncertainty. Oper. Res., 58(1):203–213, 2010.

[11] Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. A bayesian approach
to robust reinforcement learning. In UAI, volume 115 of Proceedings of Machine Learning
Research, pages 648–658. AUAI Press, 2019.

[12] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim Allan Wheeler, Jayesh K. Gupta,
and Mykel J. Kochenderfer. POMDPs.jl: A framework for sequential decision making under
uncertainty. J. Mach. Learn. Res., 18:26:1–26:5, 2017.

[13] Paul L. Fackler and Robert G. Haight. Monitoring as a partially observable decision problem.
Resource and Energy Economics, 37:226–241, 2014.

[14] Maris F. L. Galesloot, Roman Andriushchenko, Milan Češka, Sebastian Junges, and Nils Jansen.
Robust finite-memory policy gradients for hidden-model POMDPs. In IJCAI, pages 8518–8526.
ijcai.org, 2025.

[15] Maris F. L. Galesloot, Marnix Suilen, Thiago D. Simão, Steven Carr, Matthijs T. J. Spaan, Ufuk
Topcu, and Nils Jansen. Pessimistic iterative planning with RNNs for robust POMDPs. In
ECAI, volume 413 of Frontiers in Artificial Intelligence and Applications, pages 4823–4831.
IOS Press, 2025.

11

[16] Joel Goh, Mohsen Bayati, Stefanos A. Zenios, Sundeep Singh, and David Moore. Data
uncertainty in Markov chains: Application to cost-effectiveness analyses of medical innovations.
Oper. Res., 66(3):697–715, 2018.

[17] Vineet Goyal and Julien Grand-Clément. Robust markov decision processes: Beyond rectangu-
larity. Math. Oper. Res., 48(1):203–226, 2023.

[18] Shangding Gu, Laixi Shi, Muning Wen, Ming Jin, Eric Mazumdar, Yuejie Chi, Adam Wier-
man, and Costas J. Spanos. Robust gymnasium: A unified modular benchmark for robust
reinforcement learning. In ICLR. OpenReview.net, 2025.

[19] Eric A. Hansen. Cost-effective sensing during plan execution. In AAAI, pages 1029–1035.
AAAI Press / The MIT Press, 1994.

[20] Arnd Hartmanns, Sebastian Junges, Tim Quatmann, and Maximilian Weininger. The revised
practitioner’s guide to MDP model checking algorithms. International Journal on Software
Tools for Technology Transfer, 2025.

[21] Milos Hauskrecht. Value-function approximations for partially observable markov decision
processes. J. Artif. Intell. Res., 13:33–94, 2000.

[22] Hideaki Itoh and Kiyohiko Nakamura. Partially observable Markov decision processes with
imprecise parameters. Artif. Intell., 171(8-9):453–490, 2007.

[23] Garud N. Iyengar. Robust dynamic programming. Math. Oper. Res., 30(2):257–280, 2005.

[24] Wha Sook Jeon, Seung Beom Seo, and Dong Geun Jeong. POMDP-based contention resolution
for framed slotted-ALOHA protocol in machine-type communications. IEEE Internet Things J.,
9(15):13511–13523, 2022.

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

[26] Suresh Kalyanasundaram, Edwin K. P. Chong, and Ness B. Shroff. Markov decision processes
with uncertain transition rates: sensitivity and robust control. In CDC, pages 3799–3804. IEEE,
2002.

[27] Merlijn Krale, Thiago D. Simão, and Nils Jansen. Act-then-measure: Reinforcement learning
for partially observable environments with active measuring. In ICAPS, pages 212–220. AAAI
Press, 2023.

[28] Merlijn Krale, Thiago D. Simão, Jana Tumova, and Nils Jansen. Robust active measuring under
model uncertainty. In AAAI, pages 21276–21284. AAAI Press, 2024.

[29] Merlijn Krale, Eline Bovy, Maris F. L. Galesloot, Thiago D. Simão, and Nils Jansen. Code
for "On Evaluating Policies for Robust POMDPs", 2025. URL https://doi.org/10.5281/
zenodo.17424409.

[30] Merlijn Krale, Wietze Koops, Sebastian Junges, Thiago D. Simão, and Nils Jansen. Tighter
value-function approximations for pomdps. In AAMAS, pages 1200–1208. International Foun-
dation for Autonomous Agents and Multiagent Systems / ACM, 2025.

[31] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: efficient point-based POMDP
planning by approximating optimally reachable belief spaces. In Robotics: Science and Systems.
The MIT Press, 2008.

[32] Abolfazl Lavaei, Sadegh Soudjani, Emilio Frazzoli, and Majid Zamani. Constructing MDP
abstractions using data with formal guarantees. IEEE Control. Syst. Lett., 7:460–465, 2023.

[33] Michael L. Littman, Anthony R. Cassandra, and Leslie P. Kaelbling. Learning policies for
partially observable environments: Scaling up. In ICML, pages 362–370. Morgan Kaufmann,
1995.

[34] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complexity of solving
markov decision problems. In UAI, pages 394–402. Morgan Kaufmann, 1995.

12

https://doi.org/10.5281/zenodo.17424409
https://doi.org/10.5281/zenodo.17424409

[35] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.

[36] Tobias Meggendorfer, Maximilian Weininger, and Patrick Wienhöft. Solving robust Markov
decision processes: Generic, reliable, efficient. In AAAI, pages 26631–26641. AAAI Press,
2025.

[37] Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters.
Robust reinforcement learning: A review of foundations and recent advances. Mach. Learn.
Knowl. Extr., 4(1):276–315, 2022.

[38] Pablo G. Morato, Konstantinos G. Papakonstantinou, Charalampos P. Andriotis, Jannie Søn-
derkær Nielsen, and Philippe Rigo. Optimal inspection and maintenance planning for deteriorat-
ing structural components through dynamic Bayesian networks and Markov decision processes.
Structural Safety, 94:102140, 2022.

[39] Pablo G. Morato, Konstantinos G. Papakonstantinou, Charalampos P. Andriotis, and Philippe
Rigo. Managing offshore wind turbines through Markov decision processes and dynamic
Bayesian networks. In 13th International Conference on Structural Safety & Reliability (ICOS-
SAR), 2022.

[40] Hideaki Nakao, Ruiwei Jiang, and Siqian Shen. Distributionally robust partially observable
Markov decision process with moment-based ambiguity. SIAM J. Optim., 31(1):461–488, 2021.

[41] Yaodong Ni and Zhi-Qiang Liu. Bounded-parameter partially observable Markov decision
processes. In ICAPS, pages 240–247. AAAI Press, 2008.

[42] Yaodong Ni and Zhi-Qiang Liu. Bounded-parameter partially observable Markov decision
processes: Framework and algorithm. Int. J. Uncertain. Fuzziness Knowl. Based Syst., 21(6):
821–864, 2013.

[43] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with
uncertain transition matrices. Oper. Res., 53(5):780–798, 2005.

[44] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy, Richard S.
Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In
ICLR. OpenReview.net, 2020.

[45] Takayuki Osogami. Robust partially observable markov decision process. In ICML, volume 37
of JMLR Workshop and Conference Proceedings, pages 106–115. JMLR.org, 2015.

[46] Hans Peters. Game theory: A Multi-leveled approach. Springer, 2015.

[47] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In IJCAI, pages 1025–1032. Morgan Kaufmann, 2003.

[48] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994.

[49] Soroush Saghafian. Ambiguous partially observable Markov decision processes: Structural
results and applications. J. Econ. Theory, 178:1–35, 2018.

[50] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Oper. Res., 21(5):1071–1088, 1973.

[51] Trey Smith and Reid G. Simmons. Heuristic search value iteration for POMDPs. In UAI, pages
520–527. AUAI Press, 2004.

[52] Trey Smith and Reid G. Simmons. Point-based POMDP algorithms: Improved analysis and
implementation. In UAI, pages 542–547, 2005.

[53] Marnix Suilen, Nils Jansen, Murat Cubuktepe, and Ufuk Topcu. Robust policy synthesis for
uncertain POMDPs via convex optimization. In IJCAI, pages 4113–4120. ijcai.org, 2020.

13

[54] Marnix Suilen, Thiago D. Simão, David Parker, and Nils Jansen. Robust anytime learning of
Markov decision processes. In NeurIPS, 2022.

[55] Marnix Suilen, Thom S. Badings, Eline M. Bovy, David Parker, and Nils Jansen. Robust Markov
decision processes: A place where AI and formal methods meet. In Principles of Verification
(3), volume 15262 of Lecture Notes in Computer Science, pages 126–154. Springer, 2024.

[56] Ole Tange. GNU parallel 20241222 (’bashar’) [stable], December 2024. URL https://doi.
org/10.5281/zenodo.14550073.

[57] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Intelligent robotics
and autonomous agents. MIT Press, 2005.

[58] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes.
Math. Oper. Res., 38(1):153–183, 2013.

[59] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. DESPOT: online POMDP planning
with regularization. J. Artif. Intell. Res., 58:231–266, 2017.

[60] Adil Zouitine, David Bertoin, Pierre Clavier, Matthieu Geist, and Emmanuel Rachelson. RRLS:
robust reinforcement learning suite. CoRR, abs/2406.08406, 2024.

14

https://doi.org/10.5281/zenodo.14550073
https://doi.org/10.5281/zenodo.14550073

A Solvability Classes and Benchmark Models

This section contains all proofs related to Section 3 of the main paper.

A.1 Solvability proofs

First, we show the correctness of the policies used in section Section 3 to explain the solvability
classes. We restate the RPOMDP used in Section 3.1.

s0

s1

s2

s3

s4

s5

s6

s7

s8

0.
5

0.5

0.5

0.5

1

a

b

b

a

p

1−
p

R = 100

R = 0

R = r?

R = 100

R = 0

R = 0

R = 200

a

b
a

b
a

b

a

bp ∈ [p, p]

Solvability p p r?

Trivially 0.2 0.6 80
Center 0.1 0.6 80
Entropy 0.1 0.6 80
RMDP 0.1 0.6 80
Stationary 0.1 0.9 80
None of the above 0.1 0.9 70

Figure 5: Example RPOMDP with parameter values for solvability classes. We use TOY∗ to denote
the model with the parameter values from the bottom line.

Let h = , h = , h = a , and h = a denote the histories for which
the agent or nature need to make non-singleton choices. Given agent and nature policies π and θ, the
value function of the RPOMDP in fig. 5 can be expressed by the following function:

V π,θ = 0.5 · 0.5 · π(h)(a) · π(h)(a) · 100
+ 0.5 · 0.5 · π(h)(b) · r?
+ 0.5 · 0.5 · π(h)(b) · r?
+ 0.5 · 0.5 · π(h)(a) · θ(h , a)(p) · π(h)(a) · 100
+ 0.5 · 0.5 · π(h)(a) · (1− θ(h , a)(p)) · π(h)(b) · 200
+ 0.5 · π(h)(b) · r?
+ 0.5 · π(h)(a) · θ(h , a)(p) · π(h)(a) · 100
+ 0.5 · π(h)(a) · (1− θ(h , a)(p)) · π(h)(b) · 200

We simplify and rewrite this function to remove the b terms:

= 25 · π(h)(a) · π(h)(a)

+ 0.5 · r? · (1− π(h)(a))

+ 25 · π(h)(a) · θ(h , a)(p) · π(h)(a)

+ 50 · π(h)(a) · (1− θ(h , a)(p)) · (1− π(h)(a))

+ 0.5 · r? · (1− π(h)(a))

+ 50 · π(h)(a) · θ(h , a)(p) · π(h)(a)

+ 100 · π(h)(a) · (1− θ(h , a)(p)) · (1− π(h)(a))

15

We can now further simplify the notation with a = π(h)(a), a = π(h)(a), a =
π(h)(a), a = π(h)(a) and p = θ(h , a)(p), p = θ(h , a)(p).

= 25a a

+ 0.5r?(1− a)

+ 25a p a

+ 50a (1− p)(1− a)

+ 0.5r?(1− a)

+ 50a p a

+ 100a (1− p)(1− a)

= 25a a

+ 0.5r? − 0.5r?a

+ 25a p a

+ 50a − 50a p − 50a a + 50a p a

+ 0.5r? − 0.5r?a

+ 50a p a

+ 100a − 100a p − 100a a + 100a p a

= r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a

Recall the optimal value for the agent V a = maxπ∈Π minθ∈Θ V π,θ and nature V n =
minθ∈Θ maxπ∈Π V π,θ with corresponding optimal agent and nature policies π∗ and θ∗. If V a = V n,
then the underlying game has a Nash equilibrium [46] in which case π∗ and θ∗ are called Nash
policies. We can therefore show that an agent policy is optimal if it can guarantee the same value as a
nature policy can guarantee, and vice versa. Using this logic, we consider the following two agent
policies.

First, the safe policy π∗
s always picks the safe action b in the states, so regardless of the previous

observation, which yields a guaranteed value of r?. The action in the states does not matter after
the safe action b.

∀θ ∈ Θ : V π∗
s ,θ = r? + (50− 0.5r?) · 0− 50 · 0 · p − 25 · 0 · a + 75 · 0 · p a

+ (100− 0.5r?) · 0− 100 · 0 · p − 100 · 0 · a + 150 · 0 · p a

= r? + 0− 0− 0 + 0 + 0− 0− 0 + 0

= r?

Next, the risky policy π∗
r picks the riskier action a in these states if it’s previous observation was ,

and the safe action b otherwise. Furthermore, π∗
r picks action b in the states. The value that π∗

r can
guarantee depends on the bounds on p.

∀θ ∈ Θ : V π∗
r ,θ = r? + (50− 0.5r?) · 0− 50 · 0 · p − 25 · 0 · a + 75 · 0 · p a

+ (100− 0.5r?) · 1− 100 · 1 · p − 100 · 1 · 0 + 150 · 1 · p · 0
= r? + 0− 0− 0 + 0 + 100− 0.5r? − 100p − 0 + 0

= 0.5r? + 100− 100p

Similarly, we can look at the value certain nature policies can guarantee.

We find that nature can ensure a value of at most r? when choosing p and p within certain intervals.

∀π ∈ Π : V π,θ = r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a

a , a , and p are independent of a , a , and p , so ∀π ∈ Π : V π,θ ≤ r? iff:

∀π ∈ Π : (50− 0.5r?)a − 50a p − 25a a + 75a p a ≤ 0

16

and

∀π ∈ Π : (100− 0.5r?)a − 100a p − 100a a + 150a p a ≤ 0

Given arbitrary a , a ∈ [0, 1], we first compute the interval for p :

(50− 0.5r?)a − 50a p − 25a a + 75a p a ≤ 0

a (50− 0.5r? − 50p − 25a + 75p a) ≤ 0

a ∈ [0, 1], so the inequality above holds for all π ∈ Π iff:

50− 0.5r? − 50p − 25a + 75p a ≤ 0

50− 0.5r? − 50p ≤ 25a − 75p a

50− 0.5r? − 50p ≤ a (25− 75p)

a ∈ [0, 1], so the inequality above holds for all π ∈ Π iff:

50− 0.5r? − 50p ≤ 0 ∧ 50− 0.5r? − 50p ≤ 25− 75p

50− 0.5r? ≤ 50p ∧ 25p ≤ 0.5r? − 25

1− 0.01r? ≤ p ∧ p ≤ 0.02r? − 1

So we get our first interval p ∈ [1 − 0.01r?, 0.02r? − 1]. Given arbitrary a , a ∈ [0, 1], we
continue with the interval for p :

(100− 0.5r?)a − 100a p − 100a a + 150a p a ≤ 0

a (100− 0.5r? − 100p − 100a + 150p a) ≤ 0

a ∈ [0, 1], so the inequality above holds for all π ∈ Π iff:

100− 0.5r? − 100p − 100a + 150p a ≤ 0

100− 0.5r? − 100p ≤ 100a − 150p a

100− 0.5r? − 100p ≤ a (100− 150p)

a ∈ [0, 1], so the inequality above holds for all π ∈ Π iff:

100− 0.5r? − 100p ≤ 0 ∧ 100− 0.5r? − 100p ≤ 100− 150p

100− 0.5r? ≤ 100p ∧ 50p ≤ 0.5r?

1− 0.005r? ≤ p ∧ p ≤ 0.01r?

So we get our second interval p ∈ [1− 0.005r?, 0.01r?]. We can conclude that ∀π ∈ Π : V π,θ ≤
r? ⇐⇒ p ∈ [1− 0.01r?, 0.02r? − 1] ∧ p ∈ [1− 0.005r?, 0.01r?]. We consider two values for r?
in our example, i. e., 70 and 80, so we get the following intervals for p and p :

r? = 70 : p ∈ [0.3, 0.4], p ∈ [0.65, 0.7]

r? = 80 : p ∈ [0.2, 0.6], p ∈ [0.6, 0.8]

A.1.1 Trivially solvable

Since the trivially solvable model in fig. 5 has r? = 80 and bounds p ∈ [0.2, 0.6], we know that
nature can guarantee a value of 80 by playing p = p = 0.6. We therefore know that any agent
policy that can guarentee a value of 80 is optimal as well. In particular, we know that π∗

r is optimal,
since:

∀θ ∈ Θ : V π∗
r ,θ = 0.5r? + 100− 100p

= 0.5 · 80 + 100− 100p

= 140− 100p

≥ 140− 100 · 0.6
= 80

17

To show that this model is trivially solvable, we show that π∗
r is optimal for any θ ∈ Θ. In other

words, for all nature policies in the set of nature policies, there is no agent policy π′ that achieves a
higher reward than π∗

r against that particular nature policies.

Given an arbitrary θ ∈ Θ, we construct the optimal agent policy π′ by maximizing over the value
function:

π′ = argmax
π∈Π

V π,θ

= argmax
π∈Π

(
r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a
)

= argmax
π∈Π

(
80 + (50− 0.5 · 80)a − 50a p − 25a a + 75a p a

+ (100− 0.5 · 80)a − 100a p − 100a a + 150a p a
)

= argmax
π∈Π

(
80 + 10a − 50a p − 25a a + 75a p a

+ 60a − 100a p − 100a a + 150a p a
)

= argmax
π∈Π

(
10a − 50a p − 25a a + 75a p a

+ 60a − 100a p − 100a a + 150a p a
)

a , a , and p are independent of a , a , and p , so we can compute two parts of the agent policy
seprately:

= argmax
a ,a

(
10a − 50a p − 25a a + 75a p a

)
× argmax

a ,a

(
60a − 100a p − 100a a + 150a p a

)
We begin with a and a :

argmax
a ,a

(
10a − 50a p − 25a a + 75a p a

)
= argmax

a ,a

(
a (10− 50p − a (25− 75p))

)
As we are maximizing, we know that a should be 1 if 10− 50p − a (25− 75p) > 0 and we can
set it to 0 otherwise. We show 10− 50p − a (25− 75p) ≤ 0 regardless of a :

10− 50p − a (25− 75p) ≤ 0

10− 50p ≤ a (25− 75p)

a ∈ [0, 1], so the inequality above holds for all a iff:

10− 50p ≤ 0 ∧ 10− 50p ≤ 25− 75p

10 ≤ 50p ∧ 25p ≤ 15

0.2 ≤ p ∧ p ≤ 0.6

Since ∀θ ∈ Θ : p ∈ [0.2, 0.6], we have that choosing a = 0 is optimal.

We continue with a and a :

argmax
a ,a

(
60a − 100a p − 100a a + 150a p a

)
= argmax

a ,a

(
a (60− 100p − a (100− 150p))

)
As we are maximizing, we know that a should be 1 if 60− 100p − a (100− 150p) ≥ 0 and we
can set it to 0 otherwise. We know 60− 100p ≥ 0 regardless of p :

60− 100p ≥ 60− 100 · 0.6
= 0

18

Since we can set a to 0, we already know that 60− 100p − a (100− 150p) ≥ 0, so we set a
to 1. Finally, we determine the optimal a .

a (100− 150p) ≥ a (100− 150 · 0.6)
= a · 0
= 0

Since we subtract with a (100− 150p) ≥ 0, it is optimal to set a to 0.

The agent policy that we constructed π′ with a = 0, a = 1, and a = 0 is optimal against all
θ ∈ Θ, and this policy is exactly π∗

r . Since the agent policy we compute against any nature policy
θ ∈ Θ is optimal against the entire set of nature polcies Θ, we conclude that our trivially solvable
model in fig. 5 is indeed trivially solvable.

A.1.2 Naively solvable

Like in the trivially solvable model in fig. 5, nature can guarantee a value of 80 in the center, entropy,
and RMDP solvable models in fig. 5 by playing p = p = 0.6. We therefore also know π∗

r is again
optimal, since it can guarantee a value of 80.

The naive nature policies in the center, entropy, and RMDP solvable models are:

• θCenter assigns p = p = 0.35, as Centroid (p) = 0.35.
• θEnt assigns p = p = 0.5, as this creates the maximum entropy between states s7 and s8,

namely {s7 7→ 0.5, s8 7→ 0.5}.
• θRMDP assigns p = p = 0.6, as in the fully observable model, it is always optimal for

nature to minimize the chance of reaching state s8, and therefore to maximize p.

All three of these naive nature policies are contained in the set of policies of the trivially solvable
model, for which we have shown that π∗

r is optimal.

Since the agent policies we compute against θCenter, θEnt, and θRMDP are optimal against the entire set
of nature polcies Θ, we conclude that our center, entropy and RMDP solvable models in fig. 5 are
indeed center, entropy, and RMDP solvable.

We also note that the center, entropy, and RMDP solvable models in fig. 5 are not trivially solvable.
For example, π∗

r is not optimal against the nature policy θ′ with p = p = 0.1. We again construct
the optimal agent policy π′ by maximizing over the value function:

π′ = argmax
π∈Π

V π,θ′

= argmax
π∈Π

(
80 + 10a − 50a · 0.1− 25a a + 75a · 0.1 · a

+ 60a − 100a · 0.1− 100a a + 150a · 0.1 · a
)

= argmax
π∈Π

(
80 + 10a − 5a − 25a a + 7.5a a

+ 60a − 10a − 100a a + 15a a
)

= argmax
π∈Π

(
80 + 5a − 17.5a a + 50a − 85a a

)
Since we are maximizing, it is optimal to set a and a to 1 and a and a to 0. This π′ results in
value V π′,θ′

= 80 + 5 + 50 = 135, whereas π∗
r results in value V π∗

r ,θ
′
= 80 + 50 = 130.

Since the optimal agent policy π′ for nature policy θ′ ∈ Θ is not optimal against the entire set of
nature policies Θ, the center, entropy, and RMDP solvable models in fig. 5 are not trivially solvable.

A.1.3 Stationary solvable

Since the stationary solvable model in fig. 5 has r? = 80 and bounds p ∈ [0.1, 0.9], we know that
nature can guarantee a value of 80 by playing any policy with p ∈ [0.2, 0.6] and p ∈ [0.6, 0.8]. We
therefore know that any agent policy that can guarentee a value of 80 is optimal as well. In particular,
we know that π∗

s is optimal, since this policy always results in a value of r? = 80.

19

To show that this model is stationary solvable, we show that π∗
s is also optimal against the set of

stationary nature policies ΘSta. Since π∗
s guarantees a value of 80, this agent policy is optimal if there

is stationary nature policy that can also guarentee a value of 80. We know that the stationary nature
policy p = p = 0.6 guarantees a value of 80, so we can conclude that the stationary solvable model
in fig. 5 is indeed stationary solvable.

We also note that the stationary solvable model in fig. 5 is not trivially or naively solvable, as the
optimal agent policies against the nature policies θCenter, θEnt, and θRMDP cannot guarantee a value of
80 against the entire set of nature policies.

The naive policies in the stationary solvable models are:

• θCenter assigns p = p = 0.5, as Centroid (p) = 0.5.
• θEnt assigns p = p = 0.5, as this creates the maximum entropy between states s7 and s8,

namely {s7 7→ 0.5, s8 7→ 0.5}.
• θRMDP assigns p = p = 0.9, as in the fully observable model, it is always optimal for

nature to minimize the chance of reaching state s8, and therefore to maximize p.

As shown in appendix A.1.2, we know that π∗
r is optimal against θCenter and θEnt. However, π∗

r is not
optimal against the entire set of nature policies, as nature can achieve a value < 80 when playing a
nature policy θ′ with p > 0.6:

V π∗
r ,θ

′
= 0.5 · r? + 100− 100p

= 0.5 · 80 + 100− 100p

= 140− 100p

< 140− 100 · 0.6
= 140− 60

= 80

Next, we show the stationary solvable model is not RMDP solvable by constructing the optimal agent
policy π′ against θRMDP and showing that this agent policy cannot guarantee a value of 80 against the
entire set of nature policies Θ.

π′ = argmax
π∈Π

V π,θRMDP

= argmax
π∈Π

(
80 + 10a − 50a · 0.9− 25a a + 75a · 0.9 · a

+ 60a − 100a · 0.9− 100a a + 150a · 0.9 · a
)

= argmax
π∈Π

(
80 + 10a − 45a − 25a a + 67.5a a

+ 60a − 90a − 100a a + 135a a
)

= argmax
π∈Π

(
80− 35a + 42.5a a +−30a + 35a a

)

Since we are maximizing, it is optimal to set a , a , a , and a all to 1. This π′ results in value
V π′,θRMDP = 80−35+42.5−30+35 = 92.5, whereas π∗

s results in value V π∗
s ,θRMDP = 80. However,

π′ is not optimal against the entire set of nature policies Θ, as nature can achieve a value of < 80

20

when playing a nature policy θ′ with p + 2p < 1.8:

V π′,θ′
= 80 + 10a − 50a p − 25a a + 75a p a

+ 60a − 100a p − 100a a + 150a p a

= 80 + 10 · 1− 50 · 1 · p − 25 · 1 · 1 + 75 · 1 · p · 1
+ 60 · 1− 100 · 1 · p − 100 · 1 · 1 + 150 · 1 · p · 1

= 80 + 10− 50p − 25 + 75p + 60− 100p − 100 + 150p

= 35 + 25p + 50p

= 35 + 25(p + 2p)

< 35 + 25 · 1.8
= 35 + 45

= 80

Since the stationary solvable model in fig. 5 is not center, entropy, or RMDP solvable, we can
conclude it is not trivially or naively solvable.

A.1.4 Not stationary solvable

Finally, we show that when we change r? to 70 and keep the bounds on p ∈ [0.1, 0.9] the same for
the stationary solvable model in fig. 5, we end up with a model (the None of the above model in fig. 5)
that is neither stationary, nor naively, nor trivially solvable. We know that nature can guarantee a
value of r? = 70 by playing p ∈ [0.3, 0.4] and p ∈ [0.65, 0.7]. We therefore know that any agent
policy that can guarantee a value of 70 is optimal as well. In particular, we know that π∗

s is optimal,
since this policy always results in a value of r? = 70.

We again identify the three naive nature policies:

• θCenter assigns p = p = 0.5, as Centroid (p) = 0.5.
• θEnt assigns p = p = 0.5, as this creates the maximum entropy between states s7 and s8,

namely {s7 7→ 0.5, s8 7→ 0.5}.
• θRMDP assigns p = p = 0.9, as in the fully observable model, it is always optimal for

nature to minimize the chance of reaching state s8, and therefore to maximize p.

We first construct the optimal agent policy π′ against the center and entropy nature policies, which
are the same:

π′ = argmax
π∈Π

V π,θCenter

= argmax
π∈Π

(
r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a
)

= argmax
π∈Π

(
70 + (50− 0.5 · 70)a − 50a · 0.5− 25a a + 75a · 0.5 · a

+ (100− 0.5 · 70)a − 100a · 0.5 · −100a a + 150a · 0.5 · a
)

= argmax
π∈Π

(
70 + 15a − 25a − 25a a + 37.5a a

+ 65a − 50a − 100a a + 75a a
)

= argmax
π∈Π

(
70− 10a + 12.5a a + 15a − 25a a

)
Since we are maximizing, it is optimal to set a , a , and a to 1 and a to 0. This π′ results in value
V π′,θCenter = 70− 10 + 12.5 + 15− 0 = 87.5, whereas π∗

s results in value V π∗
s ,θCenter = 70. However,

π′ is not optimal against the entire set of nature policies Θ, as nature can achieve a value of < 70

21

when playing a nature policy θ′ with 4p − p > 2.2:

V π′,θ′
= 70 + 15a − 50a p − 25a a + 75a p a

+ 65a − 100a p − 100a a + 150a p a

= 70 + 15 · 1− 50 · 1 · p − 25 · 1 · 1 + 75 · 1 · p · 1
+ 65 · 1− 100 · 1 · p − 100 · 1 · 0 + 150 · 1 · p · 0

= 70 + 15− 50p − 25 + 75p + 65− 100p − 0 + 0

= 125 + 25p − 100p

= 125− 25(4p − p)

< 125− 25 · 2.2
= 125− 55

= 70

The optimal agent policy π′ against the center and entropy policies cannot guarantee a value of 70
against the entire set of nature policies Θ, hence we can conclude that π′ is not an optimal agent
policy in the None of the above model in fig. 5 and that this model is not center or entropy solvable,
nor trivially solvable.

We continue with the RMDP nature policy θRMDP. We again construct the optimal agent policy π′:

π′ = argmax
π∈Π

V π,θRMDP

= argmax
π∈Π

(
r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a
)

= argmax
π∈Π

(
70 + (50− 0.5 · 70)a − 50a · 0.9− 25a a + 75a · 0.9 · a

+ (100− 0.5 · 70)a − 100a · 0.9 · −100a a + 150a · 0.9 · a
)

= argmax
π∈Π

(
70 + 15a − 45a − 25a a + 67.5a a

+ 65a − 90a − 100a a + 135a a
)

= argmax
π∈Π

(
70− 30a + 42.5a a − 25a + 35a a

)
Since we are maximizing, it is optimal to set a , a , a , and a all to 1. This π′ results in value
V π′,θCenter = 70− 30+42.5− 25+35 = 92.5, whereas π∗

s results in value V π∗
s ,θCenter = 70. However,

π′ is not optimal against the entire set of nature policies Θ, as nature can achieve a value of < 70
when playing a nature policy θ′ with p + 2p < 1.8:

V π′,θ′
= 70 + 15a − 50a p − 25a a + 75a p a

+ 65a − 100a p − 100a a + 150a p a

= 70 + 15 · 1− 50 · 1 · p − 25 · 1 · 1 + 75 · 1 · p · 1
+ 65 · 1− 100 · 1 · p − 100 · 1 · 1 + 150 · 1 · p · 1

= 70 + 15− 50p − 25 + 75p + 65− 100p − 100 + 150p

= 25 + 25p + 50p

= 25 + 25(p + 2p)

< 25 + 25 · 1.8
= 25 + 45

= 70

The optimal agent policy π′ against the RMDP nature policies cannot guarantee a value of 70 against
the entire set of nature policies Θ, hence we can conclude that π′ is not an optimal agent policy in the
None of the above model in fig. 5 and that this model is RMDP solvable.

22

Finally, we show the None of the above model in fig. 5 is not stationary solvable. We therefore
construct an agent policy π′ that guarantees a value of 75 against the set of stationary nature policies,
which is better than the value π∗

s achieves, therefore we can conclude that π∗
s is not optimal against

the set of stationary nature policies.

Let π′ assign 1 to a , a , and a , and assign 0.5 to a . We get the following value:

∀θ ∈ ΘSta : V π′,θ = r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a

= 70 + (50− 0.5 · 70) · 1− 50 · 1 · p − 25 · 1 · 1 + 75 · 1 · p · 1
+ (100− 0.5 · 70) · 1− 100 · 1 · p − 100 · 1 · 0.5 + 150 · 1 · p · 0.5

= 70 + 15− 50p − 25 + 75 · p
+ 65− 100 · p − 50 + 75p

= 75 + 25p − 25p

= 75

Where the last step follows from the restriction to stationary nature policies. π′ hence guarantees a
higher value than π∗

s against the set of stationary nature policies, so π∗
s is not optimal against the set

of stationary nature policies.

Next we show that π∗
s is the only agent policy that can guarantee a value of 70 against the entire set

of nature policies. Let π′′ be an agent policy with a , a ∈ (0, 1], then we get:

∀θ ∈ Θ : V π′′,θ = r? + (50− 0.5r?)a − 50a p − 25a a + 75a p a

+ (100− 0.5r?)a − 100a p − 100a a + 150a p a

= 70 + (50− 0.5 · 70)a − 50a p − 25a a + 75a p a

+ (100− 0.5 · 70)a − 100a p − 100a a + 150a p a

= 70 + 15a − 50a p − 25a a + 75a p a

+ 65a − 100a p − 100a a + 150a p a

= 70 + a (15− 50p − 25a + 75p a)

+ a (65− 100p − 100a + 150p a)

Since a , a > 0, the agent can only guarantee a of 70 if at least ∀θ ∈ Θ:
15− 50p − 25a + 75p a ≥ 0 ∨ 65− 100p − 100a + 150p a ≥ 0

However, when p ∈ (0.3, 0.4) and p ∈ (0.65, 0.7) this requitement does not hold, for example
when p = 0.35 and p = 2

3 :

15− 50p − 25a + 75p a = 15− 50 · 0.35− 25a + 75 · 0.35 · a
= 15− 17.5− 25a + 26.25 · a
= −2.5 + 1.25a

< 0

Where the last step follows from a ∈ [0, 1]. And similarly:

65− 100p − 100a + 150p a = 65− 100 · 2
3
− 100a + 150 · 2

3
· a

= 65− 66
2

3
− 100a + 100 · a

= −1
2

3
< 0

Hence, an agent policy can only guarantee a value of 70 by playing a , a = 0

Since π∗
s cannot be found by considering the subset of stationary nature policies, while it is the only

optimal policy against the entire set of nature policies, we can conclude that the None of the above
model in fig. 5 is not stationary solvable.

23

A.2 Benchmarks

Next, we provide proofs for the theorems related to our proposed benchmarks.

A.2.1 Echo machine

Let us first restate the theorem in the main text:

Theorem 1. ECHO, with p = 0.01, p̄ = 0.99, δ = 0.1 and γ = 0.95, is not in any of the solvability
classes defined in Section 3.1.

To prove the theorem in the main text, we first prove two helping lemmas:

Lemma 2. If 0.5 ∈ P , then the optimal adversarial stationary policy θ∗S picks p = 0.5.

Proof. Let Θdelayed denote the set of nature policies that is not stationary, but for which the choice
of p only applies with a delay of 1 timestep, which means each θ ∈ Θdelayed must pick p for step
t based on history ht−1 = (..., at−2, ot) and previous state s1−t. We show that the Nash-optimal
policy in this class always picks 0.5, which means it is stationary. Moreover, since Θdelayed contains
all stationary policies, this proves this policy is also the Nash-optimal stationary policy.

To do so, we first notice that the choice of any policy θ ∈ Θdelayed only has an impact at histories where
the agent is in state x′ but the agent has some belief over x and x′, or similarly with y′ and y. Let ht

be such a history, and assume st = x′. In that case, denote θ(ht, x) = p, ha∈{x,y} = (ht, a,⊥) and
ha∈{x,y},i∈{x,y} = (ht, a,⊥, g, oi). Furthermore, let V π(h, s) denote the value of policy π against θ
given history h and state s. In that case, the agent has the following value function for history ht

V π(ht, x
′) =

1

2
π(x | ht)π(r | hx)

(
V π

(
(hx, r,⊥), nx

)
+ V π

(
(hx, r,⊥), ny

))
+

1

2
π(y | ht)π(r | hy)

(
V π

(
(hy, r,⊥), nx

)
+ V π

(
(hy, r,⊥), xy

))
+ π(x | ht)π(g | hx)

[
pV π(hxx, x

′) + (1− p)V π(hxy, y
′)

]

+ π(y | ht)π(g | hy)

[
pV π(hy,x, x

′) + (1− p)V π(hy,y, y
′)

]
We simplify this formula in three ways. Firstly, we collect all values that do not directly depend on
the choice of p (i.e., the top two lines) into a constant Cπ. Secondly, using symmetry of the model,
we define V (hx,x, x

′) = V (hy,y, y
′) := Vsame and V (hx,y, y

′) = V (hy,x, x
′) := Vdiff. Lastly, we

denote denote π(x | ht) = πx, and since no new information is contained in hx or hy we may assume
π(g | hx) = π(g | hy) := πg . Then, our formula simplifies as follows:

V π(ht, x
′) = Cπ + πg

(
πx

(
pVsame + (1− p)Vdiff

)
+ (1− πx)

(
(1− p)Vsame + pVdiff

))
We compute the partial derivatives of this function (with constant factor πg remove for readability)
as:

∂V π(ht, x
′)

∂πx
= pVsame + (1− p)Vdiff − (1− p)Vsame − pVdiff

= (1− 2p)(Vdiff − Vsame)

∂V π(ht, x
′)

∂p
= πxVsame − πxVdiff − (1− πx)(Vdiff − Vsame)

= (1− 2πx)(Vdiff − Vsame)

We find that there exists a saddle point at πx = p = 0.5. Thus, for any history ht leading to x′, we
find that θ∗delayed(ht, x) = 0.5, and the same holds for y′ via symmetry of the model. Lastly, we note
that the choice of p is only relevant in these two states, which means the choice of p = 0.5 (or any
other arbitrary choice) is optimal for other states. Thus, always picking p = 0.5 is Nash-optimal for
our policy class Θdelayed, which proves our lemma.

24

Lemma 3. For any history ht, let τa, a ∈ A denote the highest t at which the agent has picked action
a. Then, the following history-based nature policy is optimal:

θ∗(ht, s) =

{
sup(P) if τx > τy
inf(P) otherwise.

(4)

Corollary 2. Let ht denote some history such that the st ∈ {x, y, x′, y′}. Then, the optimal agent
policy is as follows:

π∗(ht) =

{
x if 1− sup(P) > inf(P)

y otherwise

Proof. The choice of θ only matters if s = n′, in which case either τx = t − 1 or τy = t − 1. We
can denote the two value function for these cases as follows:

V π(hx, n
′) = π(r | hx)C

π + γπ(g | hx)
(
pV π(hx,x, x

′) + (1− p)V π(hx,y, y
′)
)

V π(hy, n
′) = π(r | hy)C

π + γπ(g | hy)
(
pV π(hy,x, x

′) + (1− p)V π(hy,y, y
′)
)

Since x′ and y′ have the same successor states and immediate rewards, the difference between
V π(hx,x, x

′) and V π(hx,y, y
′) depends only on the history. We see that history hx,y (and hy,x) give

the agent strictly more information than hx,x (and hy,y): for the former we know we are in x′ (and y′),
while for the latter we could be in either x or x′ (and y or y′) with non-zero probability. Since more
information can only allow the agent to pick better actions, we conclude V π(hx,x, x

′) ≤ V π(hx,y, y
′)

(and V π(hy,y, y
′) ≤ V π(hy,x, x

′)), and thus that the value is minimized for p = 1 − sup(P) for
history hx (and for p = inf(P) for history hy). The corollary holds via the same argument.

Next, we show that the optimal policy is suboptimal against all stationary policies. More precisely,
we give conditions for which, against the worst-case nature policy, it is only optimal to repair if the
agent has detected that the machine is broken, i.e., if it takes action ax but observes y two timesteps
later, or similarly for sy and x. In contrast, we give a similar condition such that, for the worst-case
non-stationary policy, repair is optimal without detecting that the machine is broken. We formalize
this logic as follows:
Theorem 5. In the maintenance benchmark, let θ be any stationary nature policy, and ht be any
history such that the agent has some some non-zero probability < 1 to be in state n′. Then, the
optimal policy against θ chooses action π(ht) = g as long as:

(1− δ)

1− 0.5γ2
+

1− γ2δ

1− γ2(1 + γδ − δ)

[
0.5γ2

1− 0.5γ2
− 1

]
> 0. (5)

Proof. Via our lemma above, we may assume p = 0.5, in which case our problem is a standard
POMDP for which we can talk about beliefs. (Note that if p /∈ P , then the agent can always get
strictly more information, and thus has less incentive to repair without seeing a malfunction.) We first
note that if the agent has detected the machine is broken since it’s last repair, then no history exists
such that the probability of being in state n′ lies between 0 and 1. In that case, we may denote the
two most ’extreme’ beliefs possible as follows. b⊤ denotes any belief such that b(nx) + b(ny) = 1
(due to symmetry, these states are interchangeable for both nature and the agent), and b⊥ denotes
the belief such that b(n′) is maximized. In particular, let n denote the number of number of times
the agent has observed x or y since the last repair action, or the beginning of the episode if no repair
action has yet occured. Then, we calculate the probability of being in state n′ as follows:

b⊥(n
′) = δ

∑
n=1

0.5n ≤ 0.5δ

1− 0.5
= δ, (6)

We remark that if repairing is optimal for any belief ht, then it must be optimal in b⊥. Thus, we
consider the values for both actions g and r in b⊥:

Q(b⊥, g) := Qg = (1− δ) + γ2
[
0.5Qg + 0.5Qr

]
=

(1− δ) + 0.5γ2Qr

1− 0.5γ2

Q(b⊥, r) := Qr = −1 + γQ(b⊤, g)

25

To determine when measuring is optimal, we may look at the difference between these two values. In
particular, action g is optimal as long as the following holds:

Qg −Qr =
(1− δ)

1− 0.5γ2
+Qr

[
0.5γ2

1− 0.5γ2
− 1

]
≥ 0 (7)

(8)

We note that 0.5γ2

1−0.5γ2 < 1 for all γ. Thus, we can use an upper bound for Qr to find an overapproxi-
mation of when measuring is optimal. For this, we use the expected value given the fully observable
setting, which we denote as VRMDP. We note that our theorem is trivially true if repairing is not worth
it in the fully observable case, thus we may assume that VRMDP(n

′) = γVRMDP(nx)− 1. Then, we
get:

VRMDP(nx) = VRMDP(ny) = 1 + γ2
(
δVRMDP(n

′) + (1− δ)VRMDP(nx)
)

= 1 + γ2
(
δ(γVRMDP(nx)− 1) + (1− δ)VRMDP(nx)

)
= 1− γ2δ + γ2VRMDP(nx)

(
1 + δγ − δ

)
=

1− γ2δ

1− γ2(1 + γδ − δ)

≥ Qr

Filling this in for Qr, we find that:

Qg −Qr ≤ (1− δ)

1− 0.5γ2
+

1− γ2δ

1− γ2(1 + γδ − δ)

[
0.5γ2

1− 0.5γ2
− 1

]
Action g is only optimal as long as this value is ≥ 0, which gives us our bound.

Theorem 6. In the maintenance benchmark, let θ∗ be the optimal history-based nature policy, and
define q := 1−min

(
inf(P), 1− sup(P)

)
Then, there exists a history ht such that the agent has a

non-zero, but < 1, probability of being in state n′ but π(ht) = r, as long as:

1

1− γ(1− δ)

[
1− (1− q)γ2

1− qγ2

]
− (1− δ)

1− qγ2
≥ 0 (9)

Proof. Without loss of generality, assume 1 − sup(P) ≥ inf(P), in which case lemma 3 and
it’s corollarary state π∗ always picks action x and θ∗ chooses p = sup(P) := q. (The proof for
1− sup(P) ≤ inf(P) follows via symmetry of the model.) In that case, following the same logic
used in the proof of theorem 5, we define the belief with the highest probability to be in state n′ as

b⊥(n
′) = δ

∑
n=1

qn ≤ qδ

1− q

We define Qg and Qr as before, which yields the following condition:

Qr −Qg = Qr

[
1− (1− q)γ2

1− qγ2

]
− (1− δ)

1− qγ2
≥ 0

Since ∀g, γ ∈ (0, 1) : (1−q)γ2

1−qγ2 < 1, we can use a lower bound on Qr to find a sufficient condition.
One such lower bound is given by taking an agent policy that never measures, in which case

Qr ≥
∑
n=0

(
γ(1− δ))2n =

1

1− γ(1− δ)
,

which yields the condition given in the theorem.

Lastly, the proof of theorem 1 follows from the fact that the parameters satisfy the conditions of both
theorem 5 and theorem 6.

26

A.2.2 Parity

We start by restating our theorem for convenience.
Theorem 2. PARITY(∞), with P1 = {0.2}, P2 = [0.1, 0.7], P3 = [0.1, 0.7], and γ ≥ 0.73̄, is not
naively solvable.

Proof. We assume that the agent always picks an action according to its current most likely parity,
which is clearly optimal. Thus, we can summarize the agent’s uncertainty as the using the even-odd
ratio e = max(Pr(even),Pr(odd)). Since the agent never receives any information in PARITY, it
follows that any optimal policy must be cyclic. More precisely, let πn denote a policy that repeatedly
takes n s-actions, then a normal action which resets e to 1. Then, any optimal policy must be
representable as πn, for some n ∈ N.

We show that the value of π0 is higher than that of any other πn. First, the value of π0 is given as:

V π0 =
∑
n=0

γn =
1

1− γ
(10)

If we can find any choice of probabilities for which any policy πn̸=0 has a lower value, then we are
done. We start with π1, for which we pick p1 = 0.2, p2 = 0.5 and p3 = 0.3. In that case:

V π1 ≤
(
p1(1 + γ) + p2(2− 2γ) + p3(3 + γ)

)∑
n=0

γ2n

=
2.1− 0.5γ

1− γ2

(11)

This value is smaller than that of π0 for γ > 11
15 = 0.73̄. For larger values of n, we assume that the

adversary starts off with the choice above, then picks p′1 = 0.1, p′2 = 0.1, p′3 = 0.7 as long at the
agent keeps taking stochastic actions. We claim that under the second set of dynamics, e converges to
the value of 10

19 ≈ 0.526. To prove this, we invoke Banach’s fixed point theorem [48]. Denote e′ as
the even-odd ratio after a single step under the dynamics above, then e′ = −0.9e+ 1. Using the L∞

distance, we find the following:

|e′ − 10

19
| = | − 0.9e+ 1− 10

19
| = 0.9|e− 10

19
| ≤ |e− 10

19
| (12)

Thus, using Banachs theorem, e converges to 10
19 . In particular, this means that the maximum e that

will be reached is given as emax = 0.5 + |0.5− 11
19 | = 11

19 ≈ 0.579. Next, we note that the expected
immediate return for the stochastic actions can be given as follows:

E[r|e] = 2.1e− 2(1− e) = 4.1e− 2. (13)

For our maximum value of e, this yields an immediate return of 71
190 ≈ 0.37. Thus, for any n > 1, we

write the value function as follows:

V πn ≤
[∞∑

t=0

γnt+t · 2.1 +
[n−1∑
t′=1

γnt+t′ 71

190

]
+ γ(n+1)t(3e− 2)

]
< V π0 (14)

Thus, π0 is optimal.

Next, we show that the expected value for π1 is higher than that of π0 for all naive nature policies,
which implies that π0 is not the policy with the highest value. Starting with θCenter and θEnt, we find
that both pick parameters p1 = 0.2, p2 = p3 = 0.4, in which case:

V π1,θCenter = V π1,θEnt =
2.2− 0.2γ

1− γ
(15)

For θRMDP, we find the parameters p1 = 0.2, p2 = 0.7, p3 = 0.1. In contrast to the other policies,
this means the most likely parity does not change after a stochastic step, and the expected value is
given as:

V π1,θRMDP =
2.1 + 0.2γ

1− γ
(16)

Both values are strictly larger than 1
1−γ for any γ ∈ [0, 1], which proves the model is not naively

solvable.

27

B Evaluating Agent Policies in RPOMDPs

In this appendix, we provide proof for theorem 3, which we restate for convenience:
Theorem 3. For any agent policy π ∈ Π there exists a best-response nature policy θ∗π : X → U such
that ∀x ∈ X : P

(
θ∗π(x)

)
∈ Extremes ({P(u) | u ∈ U}).

Proof. We first write out the value function for a policy π against an optimal nature policy θ∗π:

V π,θ∗
π (ht, s, x) =

∑
a∈A

σ(a | x) inf
u∈U

[
R(s, a)

+ γ
(∑

s′∈S

∑
o∈Ω

P(u)(s′, o | s, a)
∑
x′∈X

τ(x′ | x, o, a)V π,θ∗
π
(
(ht, a, o), s

′, x′))]
We notice that none of the terms in this formula depend on ht (except recursively via V π,θ), which
means we can remove this dependency. With that, we rewrite the value function with simplified
notation as follows:

V π,θ∗
π (s, x) =

∑
a∈A

π(a | x)Qπ,θ∗
π
(
s, a, x, θ∗π(s, a, x)

)
Qπ,θ∗

π (s, a, x, u) = R(s, a) + γ
∑
s′∈S

∑
o∈Ω

P(u)(s′, o | s, a)
∑
x′∈X

τ(x′ | x, o, a)V π,θ∗
π
(
s′, x′)

θ∗π(s, a, x) = arg inf
u∈U

Qπ,θ∗
π
(
s, a, x, u

)
Given this formula, we first show that an optimal nature policy exists with signature θ : X → U . We
start by defining the following nature policy:

θX(x) = arg inf
u∈U

∑
s∈S

∑
a∈A

Qπ,θ∗
π,X (s, a, x, u) (17)

Recall our model assumes (s, a)-rectangularity, which implies U can be expressed such that every
(s, a) pair has a unique set of decision variables. Thus, there exists an u ∈ U that minimizes eq. (17)
for each (s, a) independently.

We prove that this choice is optimal, using proof by contradiction. If θX(x) is suboptimal for x ∈ X ,
then there must exist some history h where its choice of u is suboptimal. In particular, let x be
the first memory state reached where θX makes a suboptimal choice, i.e. where choosing decision
variables according to θX and then following θ∗π would lead to a higher value. In that case, there
must be at least one state-action pair sdiff, adiff ∈ S ×A where the following holds:

Qπ,θ∗
π
(
sdiff, adiff, x, θ

∗
π(sdiff, adiff, x)

)
−Qπ,θX

(
sdiff, adiff, x, θX(x)

)
< 0

Since our model is (s, a)-rectangular, there exists a distinct set of decision variables that affect any
state-action pair P(·, · | s, a), which we denote as Vars,a. Then, denoting p ∈ Var as a decision
variable, we define the following memory-based nature policy:

θ′X(x)(p) =

{
θ∗π(x)(p) if p ∈ Varsdiff,adiff

θX(x)(p) otherwise.

Looking at eq. (17), we see that θ′X achieves the same same Q-values as θX for all state-action tuples
(s, a) ̸= (sdiff, adiff), but achieves a lower value for (sdiff, adiff). However, we had defined θX as the
function that minimizes eq. (17), so we have a contradiction. This means no state-action tuple can
exist where θX is suboptimal, in which case θX can never make a first suboptimal choice as compared
to θ∗π Thus, θX is optimal.

Next, we need only show that an optimal policy exists such that ∀x : θ∗π(x) ∈ Extremes (P). This
immidiately follows from the definition of Qπ,θ∗

π with the observation that, if π is fixed, V π,θ∗
π is only

dependent on the current choice u via it’s arguments s′ and τ(x, o, a). Thus, a variable assignment u
that greedily maximizes the probabilities of reaching tuples (s′, o) with low expected values is both
optimal and complies with our condition.

28

C Efficient Approximations for Robust Agent Policies

Here, we provide extended analysis and proofs of the theoretical results in section 5. Let B ⊂ ∆(S)
be the finite set of reachable beliefs.

First, we introduce the HRPOMDP operator [45] in our notation. It will be used later in this appendix.

Definition 5. QRPOMDP is the fixed point of the operator HRPOMDP, which is defined as:

HRPOMDPQ(b, a) =
∑
s∈S

b(s)

[
R(s, a) + γ inf

u∈U

∑
o∈Ω

∑
s′∈S

P(u)(s′, o | s, a)max
a′∈A

Q(τu(b, a, o), a
′)

]
,

(18)
where τu is the belief update under variable assignment u ∈ U defined as:

τu(b, a, o)(s
′) = b′(s′) ∝

∑
s∈S

b(s)P(u)(s′, o | s, a) (19)

Then, let us restate the definitions of the upper bounds we introduced in the main body of the paper.

Definition 4. QRMDP and QRFIB are the fixed point of the operators HRQMDP and HRFIB, defined as:

HRQMDPQ(b, a) =
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
s′∈S

T (u)(s′ | s, a)max
a′∈A

Q(bs′ , a
′)
]
, and (2)

HRFIBQ(b, a) =
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]
. (3)

Below, we provide the reasoning for the uniqueness and existence of fixed points through the Banach
fixed point theorem [48]. Then, it suffices to show that the operators are contraction mappings.

Lemma 4. The fixed point QRMDP is synonymous with the fixed point of robust dynamic programming
on the fully observable RMDP and lifting the resulting values into belief space.

Corollary 3. Consequently, the operator HRQMDP is a contraction mapping, and the existence and
uniqueness of the fixed point QRMDP are guaranteed through the Banach fixed point theorem [23, 43].

To prove that HRFIB is a contraction, we introduce the following two well-known lemmas.

Lemma 5. Let X be a compact set and f, g be functions of type X → R. Then:∣∣∣∣sup
x∈X

f(x)− sup
x∈X

g(x)

∣∣∣∣ ≤ sup
x∈X

|f(x)− g(x)| , and,
∣∣∣∣ infx∈X

f(x)− inf
x∈X

g(x)

∣∣∣∣ ≤ sup
x∈X

|f(x)− g(x)| .

It is a well-established lemma that occurs relatively often. For a proof, see for instance [Lemma B.2;
30].

Lemma 6 (Triangle Inequality). The triangle inequality states that, for any two real numbers u, v ∈ R
the following inequality holds:

|u+ v| ≤ |u|+ |v|.

Now, we are set to state the main theorem to prove that HRFIB is indeed a contraction.

Theorem 7. The operator HRFIB : (B×A → R) → (B×A → R) is a contraction mapping in terms
of the infinity norm || · ||∞ and the discount factor 0 ≤ γ < 1 as Lipschitz constant.

29

Proof. Let b ∈ B and a ∈ A be any belief and action, and let Q : B ×A → R and Q′ : B ×A → R
be any two Q-functions. Then:

|HRFIBQ(b, a)−HRFIBQ
′(b, a)| =

∣∣∣∣∣∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]

−
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q′(bs′ , a
′)
]∣∣∣∣∣

≤ γ
∑
s∈S

b(s)

∣∣∣∣∣ infu∈U

∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]

− inf
u∈U

∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q′(bs′ , a
′)

∣∣∣∣∣
≤ γ

∑
s∈S

b(s) sup
u∈U

∣∣∣∣∣∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]

−
∑
o∈Ω

max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q′(bs′ , a
′)
]∣∣∣∣∣

≤ γ
∑
s∈S

b(s) sup
u∈U

∑
o∈Ω

∣∣∣∣∣max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]

−max
a′∈A

∑
s′∈S

P(u)(s′, o | s, a)Q′(bs′ , a
′)
]∣∣∣∣∣

≤ γ
∑
s∈S

b(s) sup
u∈U

∑
o∈Ω

max
a′∈A

∣∣∣∣∣ ∑
s′∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]

−
∑
s′∈S

P(s′, o | u, s, a)Q′(bs′ , a
′)
]∣∣∣∣∣

≤ γ
∑
s∈S

b(s) sup
u∈U

[∑
o∈Ω

max
a′∈A

[∑
s′∈S

P(u)(s′, o | s, a)
∣∣∣∣∣Q(bs′ , a

′)−Q′(bs′ , a
′)

∣∣∣∣∣
]]

≤ γ
∑
s∈S

b(s) sup
u∈U

[∑
o∈Ω

max
a′∈A

[∑
s′∈S

P(u)(s′, o | s, a) ||Q−Q′||∞

]]
= γ ||Q−Q′||∞

Thus, it follows that, making use of the definition of the infinity norm:
||HRFIBQ(b, a)−HRFIBQ

′(b, a)||∞ ≤ max
⟨b,a⟩∈B×A

|HRFIBQ(b, a)−HRFIBQ
′(b, a)| ≤ γ ||Q−Q′||∞ .

Lastly, we note that for QRFIB the set of reachable beliefs BS considered by the operator is finite,
as it contains only |BS | = |S| unit beliefs. That is, the variable assignments u chosen by nature do
not lead to an explosion of the set of reachable beliefs. Therefore, computing the fixed point only
requires computing iterations of the operator over BS ×A.

The following definition and theorem help establish the tightness of the heuristics. The proof largely
follows that of Hauskrecht [21].
Definition 6 (Monotone mapping). A mapping H : (B × A → R) → (B × A → R) is monotone
if for any two Q,Q′ and for all (b, a) ∈ B × A, we have that Q(b, a) ≤ Q′(b, a) → HQ(b, a) ≤
HQ′(b, a).
Theorem 8 (Theorem 6, [21]). Let H1 and H2 be two contractions mappings with fixed points Q∗

1
and Q∗

2, defined on the spaces of Q-value functions Q1 and Q2, respectively. We have Q∗
2 ≥ Q∗

1 if:

30

• Q∗
1 ∈ Q2 and H2Q

∗
1 ≥ H1Q

∗
1 = Q∗

1,

• H2 is a monotone mapping.

Note that we may have Q1 ⊂ Q2, i.e., Q1 may cover a smaller space of Q-value functions.

Now, we are set to prove the following theorem of the main paper:
Theorem 4. Regarding tightness, the following inequalities on the fixed points hold:

∀b ∈ ∆(S),∀a ∈ A : QRMDP(b, a) ≥ QRFIB(b, a) ≥ QRPOMDP(b, a).

Proof. Let us first restate that it is known that HRPOMDP is a contraction mapping [45]. Furthermore,
note that it can be shown that the operators H ∈ {HRQMDP, HRFIB, HRPOMDP} are monotone map-
pings, see for instance [Appendix B.1.4; 30]. Then, it follows from the following observation [21]:

HRQMDPQ(b, a) =
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
s′∈S

T (u)(s′ | s, a)max
a′∈A

Q(bs′ , a
′)
]

≥ HRFIBQ(b, a) =
∑
s∈S

b(s)
[
R(s, a) + γ inf

u∈U

∑
o∈Ω

max
a′∈A

∑
s∈S

P(u)(s′, o | s, a)Q(bs′ , a
′)
]

≥ HRPOMDPQ(b, a) =
∑
s∈S

b(s)

[
R(s, a) + γ inf

u∈U

∑
o∈Ω

∑
s′∈S

P(u)(s′, o | s, a)max
a′∈A

Q(τu(b, a, o), a
′)

]
.

31

Figure 6: An example RPOMDP. We assume px ∈ [0.7, 0.9] and py ∈ [0.7, 0.9]. We assume all
states give the same observation.

D Experiments

D.1 RHSVI

In this section, we give a brief overview of the RHSVI solver used in our experiments. We start with
a brief introduction on value iteration for POMDPs, then repeat the initial formulation of RHSVI
from Osogami [45] . Lastly, we describe several alterations made to RHSVI.

We provide an explanation of our alterations here for reproducibility. However, since we only use
RHSVI as a baseline RPOMDP solver, we leave a complete description of the correctness and/or
necessity of our alterations for future work.

HSVI. Since the value function for POMDPs is piecewise-linear [50], it can be represented as a
(possibly infinite) set of linear lower bounds Γ = {α : S → R} known as α-vectors. As shown [47],
this set can be approximated by iteratively performing a backup operation on a finite set of beliefs B.
To find such a belief set, heuristic search value iteration [51, 52] builds a belief tree via sampling,
guided by upper bounds on the value function. Thus, the belief set is restricted to reachable beliefs,
which increases tractability. Moreover, by keeping track of an upper bound, the algorithm can
determine when the policy it has found is ϵ-optimal.

Robust HSVI. Osogami [45] generalizes HSVI to RPOMDPs by changing the robust backup operator
and belief update function to robust variants. We repeat both here in this paper’s notation. Given an
uncertainty assignment u and belief-action pair (b, a), the backup operator is defined as follows:

αΓ(b, a, u)(s) =
∑
o∈O

αΓ,o(b, a, u)(s) (20)

αΓ,o(b, a, u) ∈ argmax
α∈Γ

∑
s,s′∈S

b(s)P(u)(s′, o | s, a)α(s′). (21)

Given this, we can define the robust backup function and the corresponding worst-case nature policy
(which directly defines the belief update function) as follows:

θΓ(b, a) ∈ argmin
u∈U

∑
s∈S

b(s)αΓ(b, a, u)(s), (22)

αΓ(b, a) = αΓ(b, a, θΓ(b, a)). (23)

If our uncertainty set is given by intervals, then both can be computed using a linear program with at
most O(|O||S|2) variables and O(|S|2|O|+ |O||Γ|) contraints.5 However, the support of both the
belief and possible successor beliefs are often much smaller than |S|, which means the complexity
mostly depends on |O| and |Γ| in practice.

Our implementation of RHSVI makes a number of changes from the description of [45], which we
describe below:

Robust backup. First, we fix a problem with the backup procedure described above. Equation (21)
implies that for each belief-action-observation tuple (b, a, o), we can pick any alpha-vector that yields
an optimal value against θΓ(b, a) to compute our backup. This yields alpha-vectors that give the

5For eq. (21), we implement the argmax operator via the constraint that
∑

s∈S b(s)αΓ(b, a, θΓ(b, a))(s)
must be at least as high as any choice α ∈ Γ.

32

correct value for the current belief, but may lead to problems if we use the alpha-vector for different
beliefs.

To illustrate this problem, consider the RPOMDP shows in fig. 6. Working backwards, the following
α-vectors are can be found using the backup in states sx′ and sy′ and are thus valid:

αx′(s) = 100 · [s = sx′],

αy′(s) = 100 · [s = sy′].

Next, we use these alpha-vectors to perform backups in the beliefs bx and bxy, which denote the
beliefs reached from sn after action ax and axy, respectively. For the first, we can quickly see that
the optimal nature policy picks {px = 0.7, py = 0.3}, which yields a value of 70. For belief bxy,
there are multiple optimal variable assingments for nature, including {px 7→ 0.9, py 7→ 0.9}. We use
this assignment, in which case αx′ is a valid solution to eq. (21). In that case, our backup returns the
following α-vector:

αxy(s) =

{
90 if s = sx
10 if s = sy.

This gives us the correct value of 0.5 for bxy, but yields a value of 0.9 for bx, which is higher than
the actual value of 0.7 we computed before. Thus, even though αxy can be found using the robust
backup, it is not a valid underapproximation of the value function.

We discovered and empirically confirmed the problem with the backup function described above, but
were unable to fully address the problem. Instead, we implement an ad-hoc fix that aims to ensure
αΓ(b, a) has the following properties:

1. Indifference to state. αΓ(b, a) should have roughly equal values for each state in the support
of the current belief.

2. Indifference to nature. αΓ(b, a) should yield at least the same value against suboptimal
nature policies, as compared to the optimal one.

To achieve both, we first perform the robust backup described above, which yields a nature policy θ∗

and robust value V . We then solve a second LP to find an α-vector α∗
r that yields the same value

(up to a small error bound) but also has the properties above. To encode (1), we define the state
exploitability of an α-vector as follows:
Definition 7. Given an α-vector α, belief b, and corresponding value Vα(b) =

∑
s∈S b(s)α(s), the

state exploitability of α with respect to b is defined as:

Expl(α, b) =
∑
s∈S

b(s)|α(s)− Vα(b)| (24)

Intuitively, Expl(α, b) is zero if the expected value of α is independent of the actual state of the
environment, while Expl(α, b) > Expl(α′, b) implies α is more robust against changes in the
underlying state then α′. We use Expl(α, b) as a penalty term for our LP, i.e., we aim to maximize(∑

s∈S b(s)α∗
r(s)

)
− δe(α∗

r , b) for some small value δ > 0. To encode (2), we specify a number of
nature policies that differ slightly from θ∗, and add constraints so that α∗

r achieves at least value V
against all of these.

We empirically find that the approach above yields accurate value approximations, which is sufficient
for the purposes of this paper. However, our testing has been limited to the experiments described
in this paper, which were not specifically aimed at testing our backup. Apart from that, we have no
theoretical basis to claim the approach is correct. We leave a more systematic analysis and solution to
future work.

Policy randomization. Osogami [45] focuses on finding the value function for an RPOMDP, but
does not consider the problem of constructing a policy which matches this value. In contrast to
POMDPs, this is not a trivial problem, for similar reasons to the ones described above.

To illustrate this point, consider the environment of fig. 7, with δ ∈ [0, 1], and with γ = 1 for
simplicity. Here, the agent’s only meaningful action is to guess whether they are in state x or y.
Assuming p ∈ [1, 0], θNash should pick p such that the value given for both actions x and y is
equal. In this case, the agent is ambivalent about what action to pick, which means Γ = {αx}, with
αx(s) = [s = sx], is a valid representation of the value function. However, a policy that always picks

33

Figure 7: An RPOMDP showing the necessity of probabilities for robust policies.

action x is clearly suboptimal, since it performs poorly against {p 7→ 0}. Thus, it is not possible to
create an optimal policy based on this Γ. From this example, we can conclude the following:

Remark 2. To construct optimal RPOMDP policies, Γ should generally include all α-vectors
corresponding to optimal actions for each reachable belief. In contrast, for POMDPs, any such
α-vector is sufficient.

Note that we need not consider α-vectors corresponding to suboptimal actions for reachable beliefs.
With this condition satisfied, our policy should pick probabilities for each optimal action such that the
expected value is robust against different nature policies. More precisely, we want to be robust against
nature choosing different dynamics in previous timesteps, which would have led us to a different
belief. Luckily, we have already defined the concept of state exploitability above, which aims to solve
exactly this problem. Thus, we define our policy to aim and minimize state exploitability, which we
formally define as follows:

dExpl
Γ = argmin

d∈∆(Γ)

Expl
((∑

α∈Γ∗

d(α)α
)
, b
)

αExpl
Γ (s) =

∑
Γ∈Γ∗

dExpl
Γ α(s)

πExpl
Γ (a | b) =

∑
α∈Γ

dExpl
Γ (α)[α ∈ Γa]

Although we have no proof that this is optimal, we show below that this choice is equivalent to
minimizing a particular upper bound on the value function:

Lemma 7. Let π∗ be an optimal policy and π be a policy that picks actions with different probabilities
for some belief b but is otherwise identical. Then:

V π∗ − V π ≤ Expl(b, π). (25)

In particular, if ∀b : Expl(b, π) = 0, then π is optimal.

Proof. Assuming our model is graph-preserving, supp(b) = supp(b′). Let s+, s− denote the states
with the biggest difference in expected value, i.e.,

(s+, s−) ∈ argmax
s,s′∈supp(b)

∑
αa∈Λ∗(b)

π(a)
[
α(s)− α(s′)

]
. (26)

Recall that bs is the unit belief with b(s) = 1. Let b− = bs− , and b+ = bs+ in which case
V π(b−) ≤ V π(b′) ≤ V π(b) = V π∗

(b) ≤ V π(b+). Thus, we rewrite eq. (25) as follows:

V π∗ − V π ≤ V π(b+)− V π(b−)

=
∑

αa∈Λ∗(b)

π(a)
[
α(s+)− α(s−)

]
≤ Exploit(b, π),

which proves our lemma.

34

Computational optimizations.

Next, we highlight a number of significant alterations to RHSVI that we make to improve performance:

Belief Tree. Equation (23) shows that the worst-case nature policy, and thus the belief update, depends
on the current set of α-vectors Γ. Thus, for any found belief b, the possible successor beliefs may
change over time. This problem is not addressed by Osogami [45], which suggest they do not keep
track of the belief tree at all. This is a valid approach, but it does not allow the reuse of belief nodes,
which makes the method computationally expensive in practice. To deal with this, we use a belief tree,
but periodically reset it at exponentially increasing intervals. This way, we guarantee that RHSVI
finds all reachable beliefs (though this may take many iterations and resets in practice), while we can
still use a tree structure to find new beliefs and compute tighter upper bounds more efficiently.

Vector Pruning. As in HSVI, we prune α-vectors using point-wise domination with two changes.
Firstly, since the complexity of both the backup- and belief update functions depend strongly on |Γ|,
we try to keep this set as small as possible by only adding new α-vectors if they are not dominated
any α-vectors in Γ This requires additional overhead but drastically decreases the cost of backups.
Secondly, to allow us to compute random policies, we only consider domination between α-vectors
that correspond to the same action. Thus, if α dominates α′ but corresponds to a different action,
then α′ does not get pruned.

Upper bounds. We initialize the upper bounds with the robust upper bounds introduced in section 5
of the main body of the paper.

D.2 Benchmarks & Infrastructure

Infrastructure. All experiments were conducted in Julia (version 1.11.5) on the same Ubuntu
machine (version 22.04.5 LTS), which has an Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz and
256GB RAM (8 x 32GB DDR4-3200). We parallelize experiments across three workers [56].

Benchmark descriptions. Our new benchmarks, TOY∗ and ECHO, as well as the finite and infinite
chain environments PARITY(10) and PARITY(∞), are described in section 3.

For the second set of benchmarks, we lift several (classic) POMDPs from the literature into
RPOMDPs: TIGER [6] (also used in [22, 41]), MINIHALLWAY [33], and ALOHA [24], as well
as an expanded variant of HEAVENORHELL [4] (also used in [45]).

• TIGER: The classic problem where an agent has to decide between two doors to open. One
door has a tiger behind it, with a high negative reward associated, and one door has a prize
with a high reward. The agent only knows the initial state distribution; the tiger is initialized
to one of the doors with uniform probability. It therefore has to find a balance between noisy
listening actions to gather information and deciding to open one of the doors. Therefore, it
is intuitive that the nature policy heuristics that maximizes the entropy of the agent’s belief
leads to a good approximation of the worst-case.

• MINIHALLWAY: A small POMDP problem where the agent must navigate a corridor with
noisy observations of the goal location, where a reward is located.

• ALOHA(N): The agent must set the parameters of a communication protocol formulated as
a POMDP, parameterized by N . A detailed description can be found in Jeon et al. [24].

• HEAVENORHELL(N): An agent is positioned in the middle of a corridor of length 2×N .
At one end of the corridor, the agent can pass either through a door on its left or its right,
one of which yields a reward (heaven) and one a penalty (hell). The location of the reward
is observable on a sign at the other end of the corridor. Thus, the agent must learn to first
visit this sign, then remember the location while traversing to the other side of the corridor.

We construct these RPOMDPs such that for any T (u), any transition probability is less than 0.5 times
higher or lower than the nominal POMDP, with no alterations to the observation function.

For the last set, we added partial observability to two benchmarks from the RMDP literature:
HEALTHDETECTION [16] and REPLACEMENT [10].

• HEALTHDETECTION: The agent must schedule different methods of medical screening
for colorectal cancer (or CRC) for a patient. The dynamics of the model are based on

35

Dimensions |S| |Ω| |A|
TOY∗ 9 2 2
ECHO 8 2 2
PARITY(∞) 9 1 4
PARITY (10) 12 1 4

TIGER 2 2 3
HEAVENORHELL(5) 28 11 4
HEAVENORHELL(10) 48 21 4
MINIHALLWAY 13 9 3
ALOHA(10) 30 30 9

REPLACEMENT 7 7 4
HEALTHDETECTION 378 9 3

Table 1: Dimensions of the RPOMDP benchmarks used in the experimental evaluation.

Algorithm RHSVI(MCenter) RHSVI(MEnt) RHSVI(MRMDP)
Metric min. std. min. std. min. std.

TOY∗ 37.48 35.76 37.48 0.01 32.49 17.88
ECHO 19.31 0.01 19.30 0.01 21.12 0.00
PARITY(∞) 9.25 0.74 9.07 1.05 13.65 0.00
PARITY (10) 59.92 0.10 62.40 0.04 55.19 0.07

TIGER 19.35 0.01 19.35 0.01 13.12 0.02
HEAVENORHELL(5) −24.04 0.01 −21.55 0.01 −24.04 0.00
HEAVENORHELL(10) −37.35 0.01 −36.71 0.01 −37.36 0.02
MINIHALLWAY 0.76 0.00 0.76 0.00 0.76 0.00
ALOHA(10) 62.41 0.15 59.70 0.11 56.49 0.10

REPLACEMENT −47.64 0.76 −46.69 0.82 −46.58 0.50
HEALTHDETECTION −5718.42 36.29 −5661.49 67.73 −5554.34 32.23

Table 2: Detailed statistics for the evaluation of the naive nature policies. We report the worst value
(min.) out of 5 runs as computed on the nature MDP using MCTS and the standard deviation (std.) of
the values found by the 5 MCTS runs.

real medical data. In the original paper, the authors only consider a number of existing
screening protocols, which they combine with their model to construct robust Markov chains.
However, the model can also be interpreted as an RPOMDP.

• REPLACEMENT: the agent must schedule costly repairs for a machine, which is represented
by a chain environment. To transform this model into an RPOMDP, we assume the agent
cannot observe the state of the machine unless they pay a measurement cost. Such active
measure environments have been considered both for POMDPs [19, 27] and RPOMDPs [28].

We use discount factor γ = 1 for TOY∗, of γ = 0.99 for ECHO en HEAVENORHELL, and of
γ = 0.95 for all other environments.

Benchmark dimensions. Table 1 shows the dimensions of the benchmarks used in the experimental
evaluation.

D.3 Error margins

In the plot in the main body of the paper, we normalize and plot the worst result among the 5 MCTS
runs on the nature MDP. In tables 2 and 3, we provide the raw value (not normalized) of the worst
evaluation out of the 5 runs, together with the standard deviation of the set of values found in the 5
MCTS runs, for all the algorithms tested.

36

Algorithm RHSVI RQMDP RFIB
Metric min. std. min. std. min. std.

TOY∗ 69.99 0.00 32.49 28.27 62.47 0.01
ECHO 31.10 0.00 25.45 0.01 25.44 0.01
PARITY(∞) 20.00 0.00 7.98 0.02 20.00 0.00
PARITY (10) 62.71 0.00 38.89 1.60 62.71 0.00

TIGER 19.36 0.01 −20.04 7.33 14.49 1.27
HEAVENORHELL(5) −21.55 0.01 −63.76 0.00 −63.76 0.00
HEAVENORHELL(10) −36.71 0.01 −63.76 0.00 −63.76 0.00
MINIHALLWAY 0.76 0.00 0.25 0.00 0.25 0.00
ALOHA(10) 46.96 1.98 57.32 0.27 53.39 0.90
REPLACEMENT −46.16 0.15 −51.96 0.37 −70.87 2.02

HEALTHDETECTION −5596.72 46.17 −5671.29 36.57 −5660.60 64.77

Table 3: Detailed statistics for the evaluation of the new baselines and RHSVI. We report the worst
value (min.) out of 5 runs as computed on the nature MDP using MCTS and the standard deviation
(std.) of the values found by the 5 MCTS runs.

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction summarize the results in the paper, and all claims
are backed up by theoretical and/or empirical results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a paragraph that discusses limitations at the conclusion.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proofs of theoretical results are provided in the appendix, and their intuition is
presented in the main body of the paper.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All essential information is specified in the experiments section. Additional
details are written down in the appendix. Additionally, the source code is provided.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and results are provided in the supplemental material and will be
published.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, while some of the aforementioned training and test details do not apply,
all essential information is in the main body of the paper.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper discusses the statistical significance of the results in the plot and
how these were obtained over multiple runs. Standard errors are provided in the appendix.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

38

Answer: [Yes]

Justification: Our experiments do not require significant computing resources and are all
performed on the same machine. We provide details in the appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the code of ethics and did not identify any issues.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research is fundamental in nature. No direct societal impact is expected.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk of misuse of the results in the paper.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The implementation of the methods in the paper builds on POMDPs.jl, which
is acknowledged and referred to explicitly.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code and benchmarks are provided in the supplemental material with a readme
and comments in the code to explain important parts.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: N.A.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: N.A.

16. Declaration of LLM usage

39

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: N.A.

40

	Introduction
	Preliminaries: Robust POMDPs
	Solvability Classes and Benchmark Models
	Solvability and Theta-solvable
	Benchmarks

	Evaluating Agent Policies in RPOMDPs
	Efficient Approximations for Robust Agent Policies
	Experimental Evaluation
	Experimental Setup
	Results & Analysis

	Related Work
	Conclusion & Discussion
	Solvability Classes and Benchmark Models
	Solvability proofs
	Trivially solvable
	Naively solvable
	Stationary solvable
	Not stationary solvable

	Benchmarks
	Echo machine
	Parity

	Evaluating Agent Policies in RPOMDPs
	Efficient Approximations for Robust Agent Policies
	Experiments
	RHSVI
	Benchmarks & Infrastructure
	Error margins

