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Abstract

We consider the problem of diversity maximization from the perspective of indi-
vidual fairness: given a set P of n points in a metric space, we aim to extract a
subset S of size k from P so that (1) the diversity of S is maximized and (2) S is
individually fair in the sense that every point in P has at least one of its n

k -nearest
neighbors as its “representative” in S. We propose (O(1), 3)-bicriteria approxima-
tion algorithms for the individually fair variants of the three most common diversity
maximization problems, namely, max-min diversification, max-sum diversification,
and sum-min diversification. Specifically, the proposed algorithms provide a set
of points where every point in the dataset finds a point within a distance at most 3
times its distance to its n

k -nearest neighbor while achieving a diversity value at most
O(1) times lower than the optimal solution. Numerical experiments on real-world
and synthetic datasets demonstrate that the proposed algorithms generate solutions
that are individually fairer than those produced by unconstrained algorithms and
incur only modest losses in diversity.

1 Introduction

As machine learning (ML) algorithms are widely used in automated decision-making processes such
as banking, hiring, and education, concerns have been raised about their negative social consequences
[30, 32], e.g., discriminatory treatment against specific individuals. Recently, there has been extensive
literature on algorithmic fairness, aiming to define the notion of fairness in ML problems and design
effective and efficient fairness-aware algorithms [10, 31]. Such considerations have been taken into
account in many data-driven ML tasks, including classification [12], clustering [44], ranking [34, 48],
matching [41], and data summarization [8, 23].

This paper focuses on the diversity maximization problem and addresses its individually fair variants.
Diversity maximization is a fundamental combinatorial optimization problem with broad applications
in feature selection [47], search [15, 42], and recommendation [4, 7]. Generally, its objective is to
extract a subset S of size k from a set P of n points so that the diversity of S (measured by the
point-wise dissimilarity) is maximized. The existing studies on diversity maximization primarily
consider three objectives, namely max-min diversification, which aims to maximize the minimum
distance between any pair of selected points, max-sum diversification, which aims to maximize
the sum of pairwise distances between selected points, and sum-min diversification, which aims to
maximize the sum of the minimum distances from each selected point to its nearest neighbor among
the other selected points. All three problems have been extensively investigated in the literature
[6, 9, 20, 27], where they are also, respectively, referred to as remote-edge, remote-clique, and
remote-pseudoforest. The unconstrained max-min diversification problem is NP-complete in metric
spaces, and a greedy algorithm [16] offers a 2-approximation, which has also been shown to be tight
[39]. For unconstrained max-sum and sum-min diversification problems, it is impossible to obtain an
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approximation factor better than 2 in polynomial time if we assume that the planted clique conjecture
holds [6, 22], while existing studies have proposed the best possible 2-approximation algorithm
for max-sum diversification through greedy selection [19], and the best-known 8-approximation
algorithm for sum-min diversification by randomization and solving linear programs (LPs) [6]. Given
that each of these objectives highlights different aspects of diversity, we consider all of them in this
paper to obtain a comprehensive understanding of the interplay between diversity and individual
fairness in various application scenarios.

Currently, efficient algorithms for diversity maximization under group fairness or partition matroid
constraints have been proposed in [2, 3, 33, 45, 46]. They consider that each point in P denotes an
individual associated with a particular demographic attribute, e.g., gender or race. As such, P is
divided into different demographic groups, and an algorithm is required to select a subset S from P
not only to maximize the diversity of S but also to ensure the selection of a pre-determined number
of points from every group in S for equitable representation. Despite these studies, little attention has
been paid to diversity maximization under individual fairness constraints. Inspired by an individual
notion of fairness for the facility location problem [21], the selection of a given point set P is fair if
every point in P has a center among its (|P |/k)-closest neighbors. Compared with group fairness,
individual fairness differs in two crucial aspects. First, it does not require access to group attributes,
while group fairness relies on predefined features such as gender, age, or race. Second, the two notions
consider different perspectives of fairness. While group fairness emphasizes equitable representation
across groups, it may overlook disparities among individuals within each group. Individual fairness,
by contrast, operates at the point level to ensure that each individual is adequately represented in the
selected subset.

The need for individual fairness, in particular, is natural and reasonable in many scenarios [9, 13, 24,
38, 40]. For instance, consider a fast-food franchise that selects k supply outlets within a city. From
the perspective of dispersion and diversity, we need to choose outlet locations that are spread out
to avoid over-concentration in one region, thereby increasing overall market coverage and potential
revenue. However, such dispersion strategies may still leave many individuals far from any chosen
outlet, thus excluding them from convenient services. Incorporating individual fairness can address
this issue by ensuring that each resident lies within a reasonable distance of at least one facility so
that no individual is neglected. This balance not only enhances potential revenue but also improves
the service experience for all customers, underscoring the need to balance diversity objectives with
individual fairness considerations.

Our Contributions. With these motivations, we study the problem of α-fair k-selection under
individual fairness constraints for the three common diversity maximization problems. Here, the
parameter α ≥ 1 can be viewed as a fairness tolerance level. Larger α values allow a looser notion of
fairness and thus potentially more diverse solutions, while α = 1 corresponds to the strictest form
of individual fairness. Moreover, our algorithms are analyzed under the notion of (β, γ)-bicriteria
approximation, which means that they may relax the fairness constraints with a factor of γ (e.g.,
allowing each point to be covered within a small multiplicative slack) while still providing provable
guarantees on the achieved diversity within a factor of β. Our main results include the following.

• Max-Min Diversification: For any α ≥ 1 and k ∈ Z+, we give a (β, 3)-bicriteria approxi-
mation algorithm for max-min diversification under individual fairness constraints if there
exists a β-approximation algorithm for max-min diversification under partition matroid
constraints. Using the approximation algorithm of [46] as a subroutine, the approximation
factor can be instantiated as (5 + ε, 3) for any ε > 0.

• Max-Sum Diversification: For any α ≥ 1 and k ∈ Z+, we give a (β(4 + ε), 3)-bicriteria
approximation algorithm for max-sum diversification under individual fairness constraints
if there exists a β-approximation algorithm for max-sum diversification under partition
matroid constraints. Using the 2-approximation local search algorithm in [2] as a subroutine,
the approximation factor can be instantiated as (8 + ε, 3) for any ε > 0.

• Sum-Min Diversification: For any α ≥ 1 and k < n/3, we give a (β(4 + ε), 3)-bicriteria
approximation algorithm for sum-min diversification under individual fairness constraints
if there exists a β-approximation algorithm for sum-min diversification under partition
matroid constraints. Using the LP-based 8-approximation algorithm in [6] as a subroutine,
the approximation factor can be instantiated as (32 + ε, 3) for any ε > 0.
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To the best of our knowledge, these are the first algorithms with theoretical guarantees for individually
fair max-min, max-sum, and sum-min diversification problems. Finally, we evaluate the empirical
performance of our algorithms on real-world and synthetic data sets. The results demonstrate that
our algorithms generate solutions that are individually fairer than those produced by unconstrained
algorithms while incurring modest diversity losses. In addition, our algorithms also exhibit high time
efficiency and scalability.

2 Related Work

(Unconstrained) Diversity Maximization. Diversity maximization has been studied from a graph-
theoretic perspective since the 1990s. Ravi et al. [39] proposed a 2-approximation algorithm for
max-min diversification and proved that the bound cannot be tighter unless P = NP. Hassin et al.
[19] proposed a 2-approximation algorithm for max-sum diversification, and Bhaskara et al. [6]
further proved that the approximation factor cannot be improved under the planted clique assumption
[22]. Chandra and Halldórsson [9] proposed a O(logn)-approximation algorithm for sum-min
diversification. Bhaskara et al. [6] further proposed an 8-approximation algorithm for sum-min
diversification and proved that the factor cannot be better than 2 under the same planted clique
assumption. These algorithms cannot be used for diversity maximization variants with group or
individual fairness constraints. Nevertheless, they often serve as building blocks for the design of fair
diversity maximization algorithms.

Diversity Maximization under Group Fairness Constraints. Moumoulidou et al. [33] first pro-
posed approximation algorithms for the group-fair variant of max-min diversification. Addanki et al.
[3] improved the approximation ratios of the algorithms in [33]. Wang et al. [45] proposed streaming
algorithms for the group-fair variant of max-min diversification. Wang et al. [46] developed an exact
algorithm and a (5 + ε)-approximation algorithm for max-min diversification with bounded-size
group fairness constraints. Abbassi et al. [2] proposed 2-approximation local-search algorithms for
max-sum diversification under matroid constraints. Bhaskara et al. [6] proposed an 8-approximation
algorithm for sum-min diversification under matroid constraints based on randomization and linear
programming. Mahabadi and Trajanovski [28] proposed two deterministic algorithms for sum-min
diversification under group fairness constraints. One is a O(m · log k)-approximation algorithm with
an exponential time complexity w.r.t. k, and the other is a O(m2 · log k)-approximation algorithm
that runs in polynomial time. Mahabadi and Trajanovski [28] also proposed coreset-based algorithms
for max-sum and max-min diversification under group fairness constraints. However, the above
algorithms only consider group fairness (or general matroid) constraints and cannot be directly used
in the individually fair variants of diversity maximization.

Individual Fairness in Clustering Problems. Clustering has been studied extensively from a
fairness perspective over the past few years. Most previous results consider clustering problems under
the notion of group fairness [1, 10, 14, 23]. Jung et al. [21] first proposed the notion of individual
fairness we use in this paper for facility location problems. Following this seminal work, individually
fair clustering problems have attracted some attention in recent years. Mahabadi and Vakilian [29]
studied center-based clustering problems, such as k-median, k-means, and k-center, with individual
fairness constraints. Negahbani and Chakrabarty [35] explored individually fair k-clustering with
general ℓp-norm objectives using a linear programming approach. Vakilian and Yalçiner [44] studied
the problem of α-fair k-clustering with lp-norm objectives, achieving improved approximation factors
in both fairness and cost. Han et al. [17] considered individually fair k-center with outliers and
proposed a 4-approximation algorithm. Bateni et al. [5] designed a fast local-search algorithm for
individually fair k-means clustering with improved time complexity. These approaches provide
inspiration for the algorithms presented in this paper. However, they cannot be applied directly to
diversity maximization, as they are originally designed for clustering problems.

3 Problem Definition

Let (P, d) denote a metric space, where P is a set of n points and d : P × P → R≥0 is a distance
function that measures the dissimilarity between any pair of points in P and satisfies the axioms of
(i) identity of indiscernibles, (ii) symmetry, and (iii) triangle inequality. We use S ⊆ P to denote a
subset of points. The number of points to select, unless otherwise specified, is denoted by k ∈ Z+.
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Then, we define the objective functions of the max-min, max-sum, and sum-min diversification as
follows. They are all distance-based objectives; that is, they are formulated in terms of the pairwise
distances between the chosen points. Let d(u, v) be the distance between u and v, and for a set
of points T , let d(u, T ) = minv∈T d(u, v). The diversity functions for the three objectives are as
follows:

1. Max-Min Diversification: divmm(S, P ) = minu∈S d(u, S\{u});
2. Max-Sum Diversification: divms(S, P ) =

∑
u∈S

∑
v∈S\{u} d(u, v);

3. Sum-Min Diversification: divsm(S, P ) =
∑

u∈S d(u, S\{u}).

Max-min diversification aims to maximize the minimum distance between any pair of distinct points
in the selected set S. Intuitively, it encourages the selected points to be as far apart as possible,
ensuring separation among all points. Max-sum diversification aims to maximize the sum of all
pairwise distances among the points in the set S. Thus, it favors a set in which the points are
collectively dispersed across the space. Sum-min diversification aims to maximize the sum of the
distances from all points u ∈ S to their nearest neighbor within S \ {u}. It strikes a balance between
local and global diversity, promoting selections where each point is relatively well-separated from at
least one close neighbor, without maximizing all pairwise distances.

Next, we introduce some notation to formally define the notion of individual fairness we consider in
this paper. For every point v ∈ P , we use B(v, r) := {u ∈ P : d(v, u) ≤ r} to denote the subset of
all points in P that are at distance at most r from v and call it the ball of radius r centered at v.

Definition 1 (Fair Radius). Let l ∈ [n] be a fairness parameter. For every point v ∈ P , we define
the fair radius rl(v) as the minimum distance r such that |B(v, r)| ≥ n

l . When l = k, we drop the
subscript for simplicity and use r(·) to denote rk(·).

Then, we formally define the notion of α-fair k-selection [44], a variant of the individual fairness
notion from [21, 29].

Definition 2 (α-Fair k-Selection). A set of k points S ⊆ P is α-fair if for every point x ∈ P ,
d(x, S) ≤ αrk(x).

According to [21], there always exists a feasible solution when α ≥ 2. Ideally, we would like to
find a solution with α = 1, which would fully satisfy the original definition of individual fairness
[21, 29]. However, since deciding whether a given set of points P admits a fair selection with α = 1
is NP-hard [21], it is unlikely that such solutions can be found in polynomial time unless P = NP.
Consequently, we aim to provide a bicriteria approximation guarantee instead.

Definition 3 (Bicriteria Approximation). An algorithm is a (β, γ)-bicriteria approximation for α-fair
k-selection w.r.t. a given diversity function if for any set of points P the solution SOL returned by the
algorithm on P satisfies the following properties:

1. div(OPT, P ) ≤ β ·div(SOL, P ), where OPT denotes the optimal set of k points for α-fair
k-selection of P w.r.t. the given diversity function. In particular, div(OPT, P ) = 0 if an
α-fair k-selection does not exist for P .

2. SOL is a (γ · α)-fair k-selection of P .

Hardness of Approximation. Ravi et al. [39] showed that, unless P = NP, there does not exist any
polynomial-time β-approximation algorithm for the unconstrained max-min diversification problem
when β < 2. Bhaskara et al. [6] further proved that, under the planted clique conjecture, there
exists no polynomial-time β-approximation algorithm for the unconstrained max-sum and sum-min
diversification problems when β < 2. Since the unconstrained setting can be viewed as the special
case of our individually fair setting with α = ∞, the hardness results in the unconstrained case
naturally generalize to our problems, as stated below.

Theorem 1. There exists no polynomial-time β-approximation algorithm for individually fair max-
min diversification with β < 2, unless P = NP.

Theorem 2. There exists no polynomial-time β-approximation algorithm for individually fair max-
sum and sum-min diversification with β < 2 under the planted clique conjecture.
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Algorithm 1: IFRGENERATE

Input: Fairness parameter α
Output: A set of individual fairness regions for given parameters α, k
Initialize the set of covered points Z ← ∅ and the set of centers of selected balls C ← ∅
while Z ̸= P do

c← argminx∈P\Z r(x)
C ← C ∪ {c}
Z ← Z ∪ {x ∈ P\Z|d(x, c) ≤ 2α · r(x)}

end while
return {B(c, α · r(c)) : c ∈ C}

In previous studies on individually fair clustering [29, 44], connections between individual fairness
and partition matroid constraints have been established. We now introduce the concept of matroid
constraints so that our subsequent individually fair algorithms can be framed as solutions rooted in
them. Note that the group fairness constraint has also been shown to be a type of matroid constraint.

Definition 4 (Matroid Constraint). A matroidM is defined as a family of subsets of the ground set of
points E(M) = P , called independent sets. The set of independent sets S of a matroidM is denoted
by I(M). For a given matroidM, the associated matroid constraint is S ∈ I(M). As is standard,
M is a uniform matroid of rank r if I(M) := {X ⊆ E(M) : |X| ≤ r}. A partition matroid is the
direct sum of uniform matroids. Note that uniform matroid constraints are equivalent to cardinality
constraints, i.e., |S| ≤ k. This definition follows [43].

To satisfy individual fairness constraints, we introduce a special structure called individual fairness
regions, which partitions the points based on their distances in the metric space. This notion is useful
in our algorithms for connecting individual fairness to matroid constraints.

Definition 5 (Individual Fairness Region). A set of balls B = {B(c1, α·r(c1), . . . , B(cm, α·r(cm))},
where m ≤ k, is called a set of individual fairness regions if it satisfies the following properties:

1. For every x ∈ P : d(x, {c1, . . . , cm}) ≤ 2α · r(x);

2. For any pair of centers ci, cj , d(ci, cj) > 2α ·max{r(ci), r(cj)}; in other words, individual
fairness regions are disjoint from each other.

4 Our Algorithms

In this section, we reduce our individually fair diversity maximization problem to data selection
under partition matroid constraints. We first present an algorithm, IFRGENERATE, that, given a set
of points P and a fairness parameter α, returns a set of individual fairness regions.

Overview of Algorithm 1. IFRGENERATE is designed to address the problem of maximizing
diversity under individual fairness constraints by reducing it to the problem under partition matroid
constraints. Similar algorithms have been used for individually fair clustering, and they are crucial
for satisfying individual fairness constraints in clustering problems [29, 44]. The algorithm takes as
input a fairness parameter α, the size of the input data set n, and the desired size of the output set
k. The procedure begins by initializing two empty sets: a set of covered points Z ← ∅ and a set of
selected ball centers C ← ∅. It then enters a loop that continues as long as the set of uncovered points
P \Z is non-empty. At each iteration, the algorithm selects a center c that has the minimal fair radius
in the uncovered points, adds c to the set of centers C, and updates the set of covered points Z by
including all points x ∈ P \ Z whose distance d(x, c) is at most 2α · r(x). This process repeats until
all points are covered. The output of the algorithm is a set of balls {B(c, αr(c)) : c ∈ C}, where
each ball should consist of a selected center c and its radius αr(c). This set of balls can be treated as
different groups, connecting our problem with that under the partition matroid constraints.

We now prove that IFRGENERATE generates individual fairness regions as defined in Definition 5.

Lemma 1. Let k be a positive integer and α be a parameter that indicates the desired fairness
guarantee. Algorithm 1 returns a set of at most k individual fairness regions in O(nk) time.
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Algorithm 2: OMSGENERATE

Input: Set of points P , desired number of selected points k, fairness parameter α
Output: Individual fairness regions and ki in the original metric space
Compute a set of individual fairness regions B = {B1, · · · , Bm} on (P, k, α) using Algorithm 1
Let P0 = {v0|v ∈ P\(B1 ∪ · · · ∪Bm)} be the points not in individual fairness regions
ki = k −m+ 1 for all i ∈ [m] ▷ {denote that we pick at most k −m+ 1 centers from each
individual fairness ball}
k0 = k ▷ {denote that we pick at most k centers from P0}
return {(P0, k0), (B1, k1), · · · , (Bm, km)}

See the proof in Appendix B.1. Similar to individually fair clustering [29, 44], the benefit of a set
of individual fairness regions is that it reduces the problem of finding an α-fair selection to a data
selection problem with lower bound requirements, i.e., at least one point must be selected from each
individual fairness region. Lemma 2 indicates that a set of points S is feasible w.r.t. a set of individual
fairness regions B, if for every ball B ∈ B, |S ∩B| > 0.
Lemma 2. Let B = {B(c1, α · r(c1)), . . . , B(cm, α · r(cm))} be a set of individual fairness regions
obtained from Algorithm 1 for a set of points P with parameters k and α. Then, any set of points S
that is feasible w.r.t. B is (3α)-fair.

See the proof in Appendix B.2. Based on the lemmas above, we now introduce our algorithm for
maximizing diversity under individual fairness constraints. We first construct individual fairness
regions on the original data P using Algorithm 2.

Overview of Algorithm 2. OMSGENERATE is designed to address the problem of selecting a
diverse subset of points while satisfying the fairness constraints in the given dataset P , specifically
by generating a set of individual fairness regions in P . The algorithm takes as input a set of points
P , a desired number of selected points k, a fairness parameter α, and the original metric space. It
begins by computing a set of individual fairness regions B = {B1, . . . , Bm} using Algorithm 1
(IFRGENERATE) on the input (P, k, α). Next, it identifies the set of points P0 that are not covered by
these fairness regions, i.e., points outside the union of all fairness regions in B. For each individual
fairness region Bi, the algorithm sets the maximum number of points that can be selected from
Bi at ki = k −m + 1. In addition, it sets k0 = k, which is the maximum number of centers that
can be selected from the uncovered points P0. Note that k0, k1, . . . , km do not denote the number
of points that should be selected but the maximum number that can be selected in a region. In
practical implementations, the number of points to be selected may differ from k0, k1, . . . , km, as
they are only the upper bounds on the number of points to select. Our ultimate goal is always
to select k points as the final result. Finally, the algorithm returns a set of individual fairness
regions {(P0, k0), (B1, k1), . . . , (Bm, km)}, representing the individual fairness regions in P and
the maximum number of points that can be selected from each region. Since the computation can be
mainly attributed to Algorithm 1, the time complexity of Algorithm 2 is O(nk) as well.

Now, we demonstrate that with a β-approximation algorithm for different diversity maximization
problems under partition matroid constraints, a bicriteria approximation for α-fair k-selection exists.
We first give the approximation for max-min diversification under individual fairness constraints.
Theorem 3. Suppose that there exists a β-approximation algorithm for max-min diversification
under partition matroid constraints. Then, there exists a (β, 3)-bicriteria approximation for α-fair
k-selection in max-min diversification.

Proof Sketch. We show that the solution from a β-approximation algorithm (MAXMINALG) for
max-min diversification under partition matroid constraints is a (β, 3)-bicriteria approximation for
α-fair k-selection on metric space P . The solution SOLG from MAXMINALG satisfies the partition
matroid constraints, ensuring at least one point per fairness region Bi. By Lemma 2, this implies
that SOLG is (3α)-fair. We show that the diversity of the optimal solution OPTG on P is equal to
that of OPT′

G on a constructed instance P ′. By mapping the solutions between P and P ′, we show
divmm(OPTG, P ) = divmm(OPT′

G, P
′).

For the α-fair optimal solution OPTI on P , we can construct a feasible solution OPT′
C on

P ′ with equal diversity while satisfying the partition matroid constraints. Since OPT′
G is opti-
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mal on P ′, divmm(OPT′
G, P

′) ≥ divmm(OPT′
C , P

′) = divmm(OPTI , P ). Given that MAXMI-
NALG is β-approximate, divmm(OPTG, P ) ≤ β · divmm(SOLG, P ), thus divmm(OPTI , P ) ≤
β · divmm(SOLG, P ). Therefore, SOLG is a (β, 3)-bicriteria approximation.

See the full proof in Appendix B.4.

After proving the existence of a bicriteria approximation algorithm for α-fair k-selection with a
max-min objective, we then prove that the algorithm for the max-sum objective also exists.

Theorem 4. Suppose that there exists a β-approximation algorithm for max-sum diversification
under partition matroid constraints. Then, there exists a (β(4 + ε), 3)-bicriteria approximation for
α-fair k-selection in max-sum diversification.

Proof Sketch. We show that the solution from a β-approximation algorithm (MAXSUMALG) for
max-sum diversification under partition matroid constraints is a (β(4+ε), 3)-bicriteria approximation
for α-fair k-selection on metric space P . We establish that divms(OPTG, P ) ≥ 1

4+εdivms(OPT′
G, P

′).
When divms(OPTG, P ) < divms(OPT′

G, P
′), OPT′

G may include multiple copies of points in P . In
the extreme case, k points in P ′ map to ⌊k2 ⌋ points in P , and we analyze basic cases (e.g., four points in
P ′ from two in P ) to show divms(OPT′

G, P
′) ≤ (4+ε)·divms(ORI, P ), where ORI are distinct points

in P . Since divms(OPTG, P ) ≥ divms(ORI, P ), we get divms(OPTG, P ) ≥ 1
4+εdivms(OPT′

G, P
′).

For the α-fair optimal solution OPTI on P , we construct OPT′
C on P ′ with equal diversity while

satisfying the partition matroid constraints. Since OPT′
G is optimal on P ′, divms(OPT′

G, P
′) ≥

divms(OPT′
C , P

′) = divms(OPTI , P ). In combination with the β-approximation of MAXSUMALG,
divms(OPTI , P ) ≤ (4 + ε) · divms(OPTG, P ) ≤ β(4 + ε) · divms(SOLG, P ). Therefore, SOLG is a
(β(4 + ε), 3)-bicriteria approximation.

See the full proof in Appendix B.5.

We then consider the same circumstance for sum-min diversification.

Theorem 5. Suppose that there exists a β-approximation algorithm for sum-min diversification
under partition matroid constraints with 1 < k < n/3. Then, there exists a (β(4 + ε), 3)-bicriteria
approximation for α-fair k-selection in sum-min diversification.

Proof Sketch. We show that the solution from a β-approximation algorithm (SUMMINALG) for k-
selection under partition matroid constraints for sum-min diversification is a (β(4 + ε), 3)-bicriteria
approximation for α-fair k-selection on metric space P . We establish that divsm(OPTG, P ) ≥
1

4+εdivsm(OPT′
G, P

′). When divsm(OPTG, P ) < divsm(OPT′
G, P

′), OPT′
G includes multiple copies

of the points in P . With z ≤ k distinct points in P corresponding to OPT′
G, pairs of copies

contribute 2(k − z)εδ to divsm(OPT′
G, P

′). Defining D = divsm(OPT′
G, P

′) − 2(k − z)εδ, we
show D ≤ divsm(OPTz

G, P ), where OPTz
G is the optimal z-point solution in P . By Lemma 4 (see

Appendix B.6), divsm(OPTz
G, P ) ≤ 4 · divsm(OPTG, P ) for 1 < k < n/3. Since 2(k − z)εδ ≤

ε · divsm(OPTG, P ), we get divsm(OPT′
G, P

′) ≤ (4 + ε) · divsm(OPTG, P ).

For the α-fair optimal solution OPTI on P , we construct OPT′
C on P ′ with equal diversity satisfying

partition matroid constraints. Since OPT′
G is optimal on P ′, divsm(OPT′

G, P
′) ≥ divsm(OPT′

C , P
′) =

divsm(OPTI , P ). Combining with the β-approximation of SUMMINALG, divsm(OPTI , P ) ≤ (4 +
ε) · divsm(OPTG, P ) ≤ β(4 + ε) · divsm(SOLG, P ). Therefore, SOLG is a (β(4 + ε), 3)-bicriteria
approximation.

See the full proof in Appendix B.6.

According to Theorems 3–5, we have the following theorems with specific approximation factors.
Note that the computation of ε differs between these theorems; detailed explanations are provided in
Appendix C.

Theorem 6. For any α ≥ 1, there exists a O(mkn + mk log 1
ε ) time algorithm that computes a

(5 + ε, 3)-bicriteria approximate solution to the α-fair k-selection of max-min diversification under
individual fairness constraints.
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The proof follows from Theorem 3 and the (5 + ε)-approximation algorithm from [46] for max-min
diversification under partition matroid constraints. We note that the time complexity of this algorithm
is not linear w.r.t. k. More detailed discussions are provided in Appendix D.
Theorem 7. For any α ≥ 1, there exists a polynomial time algorithm that computes a (8 + ε, 3)-
bicriteria approximate solution to the α-fair k-selection of max-sum diversification under individual
fairness constraints.

The proof follows from Theorem 4 and the 2-approximation algorithm in [2] for max-sum diversifica-
tion under partition matroid constraints.
Theorem 8. For any α ≥ 1, there exists a nearly linear-time algorithm that computes a (32 + ε, 3)-
bicriteria approximate solution to the α-fair k-selection of sum-min diversification under individual
fairness constraints.

The proof follows from Theorem 5 and the 8-approximation algorithm in [6] for sum-min diversifica-
tion under partition matroid constraints.

5 Experiments

In this section, we empirically compare our algorithms with unconstrained diversity maximization
algorithms. The experiments focus on presenting the trade-off between fairness and diversity loss of
our algorithms.

Implementation. All experiments were carried out on a server with an Intel(R) Xeon(R) Gold
6134 CPU @3.20GHz (2 processors) and 128GB RAM running Windows Server 2019 Datacenter.
The algorithms were implemented in Python 3. Our code and data are publicly available at https:
//github.com/HonokaKousaka/IFDM.

Data Sets. In the experiments, we used three public real-world data sets and one synthetic data set.
The basic information for each data set is shown in Table 1. For MovieLens, the user vectors are
obtained through matrix factorization using LIBMF [11]. We randomly sampled 1,000 points from
each data set for evaluation.

Table 1: Statistics of data sets in the experiments, where n is the number of data points and dim is
the dimensionality.

Dataset Description n dim

CelebA [26] Features for celebrity images extracted by VGG16 202,599 25,088
GloVe [37] Global vectors for word representation 400,000 100

MovieLens [18] User vectors obtained from the rating matrix 162,541 50
Gaussian Gaussian blobs by make_blobs in scikit-learn [36] 1,000,000 20

Experimental Setup. For max-min diversification under individual fairness constraints, we im-
plemented FMMD-S [46], a (5 + ε)-approximation algorithm for max-min diversification under
partition matroid constraints in O(mkn+mk log 1

ε ) time, and fixed ε = 0.05 for FMMD-S. We com-
pared our algorithm with GMM [16], which provides a 2-approximation for unconstrained max-min
diversification. For max-sum diversification under individual fairness constraints, we implemented
the local search algorithm in [2], which is a 2-approximation algorithm for max-sum diversification
under general matroid constraints in O(nε log(k)) time, and set ε = 0.05 in the algorithm. We
compared our algorithm with the greedy algorithm in [19], which guarantees a 2-approximation
for unconstrained max-sum diversification. For sum-min diversification under individual fairness
constraints, we implemented the coreset-based algorithm in [28], which provides an O(m2 · log k)-
approximation for sum-min diversification under group fairness constraints in polynomial time. To
obtain an unconstrained solution for sum-min diversification, we placed all points in an individual
fairness region and ran our algorithm accordingly. We fixed α = 1 in all experiments so that each
algorithm makes the best effort to ensure individual fairness. We implemented all algorithms in
Python 3 and used the Gurobi optimizer to solve ILPs in FMMD-S. To compare with unconstrained
optimal solutions for quantifying exact utility losses, we also ran the Gurobi optimizer to solve the
ILPs for max-min, max-sum, and sum-min diversification within a 30-minute time limit.
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Figure 1: Overall experimental results. The first row illustrates the ratios of the diversity values of
the solutions returned by our algorithms over the diversity values of the best solutions returned by
unconstrained algorithms when k = 2, 5, 10, . . . , 50 and α = 1; the second row presents the αmax

values of the solutions returned by our algorithms.

Evaluation Measures. In terms of individual fairness, we define αmax = maxx∈P d(x, SOL)/r(x)
as the performance metric. Specifically, αmax indicates how close a solution is to satisfying the
individual fairness constraint on P : The smaller αmax, the fairer the solution SOL. If αmax ≤ 1,
the solution SOL strictly satisfies the individual fairness constraint. In terms of utility, we compute
the ratio of the diversity value of a fair solution to that of an unconstrained solution returned by an
approximation or an exact ILP-based algorithm, using this ratio as the performance metric. The
larger the ratio, the higher the utility of the solution. When using approximation algorithms to obtain
unconstrained solutions, we ran them 10 times and selected the solution with the largest diversity
value. We also ran our proposed algorithms ten times and used the average of both measures for
evaluation.

Experimental Results. In Figure 1, we present the experimental results for three diversity objectives
across four data sets. We observe that our algorithms consistently provide approximate solutions
with diversity losses of no more than 30% compared to unconstrained (approximate) solutions, while
always guaranteeing that the value of αmax is below 2. In Table 2, we also present the ratios of the
diversity values of our solutions to the optimal diversity values computed from the ILPs solved by
Gurobi. As shown, our algorithms limit utility losses relative to unconstrained (optimal) solutions to
at most 35%, further validating their effectiveness in ensuring diversity while satisfying individual
fairness constraints. These results demonstrate that our algorithms strike an effective balance between
individual fairness and diversity.

Table 2: Ratios of the diversity values of the solutions of our proposed algorithms over the diversity
values of the optimal unconstrained solutions by ILPs when k = 5, 10, 20 and α = 1.

Dataset Max-Min Max-Sum Sum-Min
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

CelebA 0.827 0.807 0.794 0.923 0.967 0.985 0.703 0.769 0.842
GloVe 0.780 0.793 0.824 0.947 0.980 0.991 0.754 0.835 0.910

MovieLens 0.701 0.724 0.764 0.925 0.961 0.977 0.676 0.757 0.830
Gaussian 0.819 0.845 0.819 0.968 0.988 0.996 0.831 0.893 0.955

Figure 2 shows the running times of our algorithms on each data set. In terms of time efficiency,
taking CelebA as an example, the process of computing an individually fair solution (including
Algorithms 1 & 2, and the diversification algorithms with matroid constraints) takes no more than
4 seconds when k ≤ 50 for max-min and sum-min diversification. For max-sum diversification,
because ε is very small, the local search requires many iterations to meet the stop condition; thus, it
takes about 300 seconds when k = 50.
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Figure 2: Running time (in seconds) of our algorithms when k = 2, 5, 10, . . . , 50 and α = 1.

We observe that when k = 50, the synthetic Gaussian data set exhibits anomalous results in the ratios,
the αmax values, and the running time for max-sum and sum-min diversification. This phenomenon
can be attributed to the data generation process, since the Gaussian data set is constructed by sampling
points around 50 Gaussian centers. As a result, when k = 50, the data set naturally forms exactly
50 individual fairness regions, each containing 20 points. Consequently, every data point falls into
one of these regions, and selecting one point from each region is sufficient to achieve high diversity
while guaranteeing individual fairness. This leads to αmax ≤ 1 when k = 50; that is, the proposed
algorithms provide solutions that strictly satisfy the individual fairness constraints. Moreover, for
max-sum diversification, the local search procedure requires only a few iterations before meeting
the stop condition because the initial solution already contains one point from each region. In
contrast, for sum-min diversification, our proposed algorithm uses GMM to fit within each of the 50
fairness regions and determine potential candidates. Consequently, performing 50 independent GMM
instances significantly increases the runtime when k = 50.

6 Conclusion

In this paper, we study the diversity maximization problem under individual fairness constraints,
namely α-fair k-selection. By generating individual fairness regions to partition data points and
utilizing existing approximation algorithms for diversity maximization under matroid constraints,
we propose a (5 + ε, 3)-bicriteria approximation algorithm for max-min diversification, (8 + ε, 3)-
bicriteria approximation algorithm for max-sum diversification, and (32 + ε, 3)-bicriteria approxima-
tion algorithm for sum-min diversification for any α ≥ 1 in any metric space. Experimental results
demonstrate that our proposed algorithms efficiently provide individually fair, highly diverse subsets
on real-world and synthetic datasets.

There are still some open problems for future work. Given that the approximation factors of our
algorithms are determined by those for diversity maximization under matroid constraints, a possible
direction is to improve the approximation ratio for individually fair diversity maximization by utilizing
better matroid-constrained diversity maximization algorithms. In addition, we acknowledge that
we have not proved whether individually fair diversity maximization problems are strictly harder
to approximate than their unconstrained counterparts. Establishing such hardness results remains
open and would shed light on further improvements in approximation factors. Another promising
avenue for exploration is to extend the problems and proposed algorithms to streaming, distributed,
and deletion-robust settings.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the Abstract and Introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See the Lemmas and Theorems as well as their proofs in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the experimental setup in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released our code and data in a GitHub repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See details in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experimental results are stable, since the experiments are run across
four datasets in various parameter settings. We also ran each algorithm that involves
approximation and randomization ten times and reported the best (for baselines) or the
average (for our proposed algorithms) of each evaluation metric.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See details in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not involve crowdsourcing, contract work. Our work does not
involve interactions between researchers and human participants. The datasets being used
are open-source or generated by scikit-learn, and we have correctly made citations. We do
not identify any deviation from the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In this work, we aim to maximize commonly used diversity objective functions
while ensuring a certain level of individual fairness. Our algorithm does not involve human
intervention in data distribution or classification. Our work contributes to raising awareness
of fairness and diversity in ML-based decision-making processes. Generally, we do not
foresee any immediate and direct harmful impacts from this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets being used in our paper are open-source or generated by scikit-
learn. Therefore, our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We list the licenses for the assets we use in our work. These assets have been
correctly and properly cited in our paper.
Code: Our implementation of the algorithm for sum-min diversification under partition
matroid constraints is partly based on the code from [29], which has an MIT license.
Datasets: CelebA is available for non-commercial research purposes, as claimed by the
dataset creators on their official website. MovieLens can be used for any research pur-
poses under their customized Usage License. GloVe is available under the Public Domain
Dedication and License, as claimed by the creators.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have released our code in a well-documented format.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The algorithm design and proof in this paper do not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm 3 (PSGENERATE) (Used for Proof Only)

Consider an instance of α-fair k-selection on a point set P . Let B be the set of individual fairness
regions of P with parameters k and α constructed using Algorithm 2. Then, given an instance of
α-fair k-selection, Algorithm 3 builds an instance of k-selection under partition matroid constraints.

Overview of Algorithm 3. Existing studies on individually fair clustering [44] have implemented a
similar instance to generate an individually fair solution for clustering problems. Our implementation
of Algorithm 3 is a little different, since the instance generated is not directly involved in our
solution generation process. However, it serves a critical role in our theoretical analysis. Unlike
prior work, where the constructed instance is typically used as a direct component in producing
the final clustering solution, our approach leverages the instance primarily to facilitate the proof
of our theorem guarantees, ensuring that the diversity properties hold under the individual fairness
constraints. PSGENERATE takes as input a point set P , the desired number of selected points k, a
fairness parameter α, and an accuracy parameter ε < 1/2. It begins by computing a set of individual
fairness regions B = B1, . . . , Bm using Algorithm 2 on (P, k, α). Next, it creates copies of the
original point set P and each individual fairness region Bi, denoted as P 0 and Bi respectively, and
constructs an extended set P ′ by including P 0 and Bi. Note that P ′ has two distinct copies of
the points that belong to an individual fairness ball of B. A modified distance function d′ is then
defined, where d′(u, u) = 0 for all u ∈ P ′, d′(vx, uy) = d(v, u) for distinct v, u ∈ P ′ with v ̸= u,
and d′(vx, vy) = εδ for vx, vy ∈ P ′, where δ ← minx,y∈P d(x, y). The algorithm finally returns
the tuple (P ′, {(P 0, k0), (B1, k1), . . . , (Bm, km)}, d′), providing an instance corresponding to the
given α-fair k-selection problem for the proof purpose. Given that the individual fairness regions in
P have been computed, the time complexity of Algorithm 3 is O(n), since most of the steps only
require iterating over all points in P . Note that we do not need to implement Algorithm 3 in practice.

Algorithm 3: PSGENERATE

Input: set of points P , desired number of selected points k, fairness parameter α, accuracy
parameter ε < 1/2

Output: an instance of k-selection under partition matroid constraints w.r.t. the given instance of
α-fair k-selection for the proof

Compute the set {(P0, k0), (B1, k1), · · · , (Bm, km)} on (P, k, α) using Algorithm 2
Let P 0 = {v0|v ∈ P} be a copy of P
Let Bi = {vi|v ∈ Bi} be a copy of Bi for all Bi ∈ B
P ′ ← P 0 ∪ (

⋃
Bi∈B Bi) ▷ {P ′ has two distinct copies of the points that belong to an

individual fairness ball of B.}
▷Construct a distance function d′ : P ′ × P ′ → R+

k0 = k0 ▷ {denotes that we pick at most k0 points from P 0}
ki = ki for all i ∈ [m] ▷ {denotes that we pick at most ki points from Bi}
Let δ ← minx,y∈P d(x, y)
Let d′(u, u) = 0 for all u ∈ P ′

Let d′(vx, uy) = d(v, u) for all vx, uy ∈ P ′ where v ̸= u
Let d′(vx, vy) = εδ for all vx, vy ∈ P ′

return (P ′, {(P 0, k0), (B1, k1), · · · , (Bm, km)}, d′)

We show that the distance function d′ in Algorithm 3 is a metric distance.

Lemma 3. The distance function d′ : P ′×P ′ → R+ constructed in Algorithm 3 constitutes a metric
space. (See the proof in Appendix B.3.)

B Missing Proofs

B.1 Proof of Lemma 1

Proof. First, we show that the set of centers returned by Algorithm 1 satisfies property (1) of the
individual fairness regions. For every point x ∈ P let cx denote the first center added to C such that
d(x, cx) ≤ 2α · r(x). Hence, d(x, C) ≤ d(x, cx) ≤ 2α · r(x) where the last inequality follows from
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the fact that cx marks x as covered. Next, consider the iteration of the algorithm in which a center c
is added to C. Since c is an uncovered point, its distance to any other center c′ that is already in C is
more than 2α · r(c) = 2α ·max{r(c), r(c′)} where the equality follows from the fact that centers
are picked in a non-decreasing order of their fair radius. Hence, for any pair of centers in C, property
(2) holds. Finally, by property (2), the balls of radius r(·) around the centers present in C are disjoint.
Moreover, according to the definition of fair radius, each of the balls {B(c, r(c))}c∈C contains at
least n/k points. Hence, the number of individual fairness regions is at most k.

Now we consider the time complexity of Algorithm 1. When generating individual fairness regions,
the first step (Line 5) is to iterate over all radii to find the minimal fair radius, whose worst time
complexity is O(n). The time complexity of Line 6 is obviously O(1). The final step (Line 7)
requires iterating over points in P\Z, whose time complexity is O(n). Considering the outer while
loop runs at most k times, the total time complexity of Lines 5, 6, and 7 is O(nk), O(k), and O(nk),
respectively. Thus, the total time complexity for generating individual fairness regions is O(nk).

B.2 Proof of Lemma 2

Proof. Let S be a set of cluster centers that is feasible w.r.t. B. For every point x ∈ P , let cx denote
the first center chosen by Algorithm 1 such that d(x, cx) ≤ 2α · r(x). Moreover, let sx denote the
center in S such that sx ∈ B(cx, α · r(cx)). Then, for any point x ∈ P , we have

d(x, sx) ≤ d(x, cx) + d(cx, sx)

≤ 2α · r(x) + d(cx, sx)

≤ 2α · r(x) + α · r(cx)
≤ 3α · r(x),

where the first inequality follows from the triangle inequality, the second inequality follows from the
property (1) of individual fairness regions, the third inequality follows since sx ∈ B(cx, α · r(cx)),
and the last inequality follows since centers are added in a non-decreasing order of their fair radius in
line 5 of Algorithm 1, leading to r(cx) ≤ r(x).

B.3 Proof of Lemma 3

Proof. Let u, v, w ∈ (F ∪M) be three arbitrary points and let uP , vP , wP be their corresponding
points from P . First, we prove that d′(u, v) = 0 ⇐⇒ u = v. If u = v, the distance d′(u, v) is set
to zero by line 10. To show the other direction, if d′(u, v) = 0 then the constraint u = v for the
assignment in line 10 is satisfied since d(uP , vP ) > 0 for all up ̸= vp (line 11) and d′(u, v) = εδ > 0
when up = vp and u ̸= v (line 12). Secondly, we prove the symmetric property d′(u, v) = d′(v, u).
If d′(u, v) = 0, then by the first part u = v and therefore d′(v, u) = 0 = d′(u, v). Assume
d′(u, v) > 0, which implies u ̸= v. If uP ̸= vP , then by line 11 and the metric properties of d,
d′(u, v) = d(uP , vP ) = d(vP , uP ) = d′(v, u) holds. Lastly, we show that the triangle inequality
d′(u,w) ≤ d′(u, v)+d′(v, w) holds. If u = w then by the first property, d′(u,w) = 0 so the equality
holds. Assume u ̸= w and consider their corresponding points uP , wP .

1. If uP = wP , then d′(u,w) = εδ. If vP = uP , then d′(u, v) = d′(u,w) = εδ and therefore
d′(u,w) ≤ d′(u, v) + d′(v, w) already holds. If vP ̸= uP , then d′(u, v) = d(uP , vP ) ≥
minx,y∈P d(x, y) ≥ εδ. Thus, d′(u,w) ≤ d′(u, v) + d′(v, w) holds.

2. If uP ̸= wP , then d′(u,w) = d(uP , wP ) ≥ εδ. Note that (uP = vP and vP = wP ) can
not hold, so consider the remaining three cases:

(a) vP = wP and uP ̸= vP . Then d′(u,w) = d′(u, v) and d′(u,w) ≤ d′(u, v)+d′(v, w);
(b) uP = vP and vP ̸= wP . Then d′(u,w) = d′(v, w) and d′(u,w) ≤ d′(u, v)+d′(v, w);
(c) uP ̸= vP and vP ̸= wP . Then d′(u,w) = d(uP , wP ), d′(v, w) = d′(vP , wP ) and

since d(·) satisfies the triangle inequality, d′(u,w) ≤ d′(u, v) + d′(v, w) holds.

By combining the above results, we conclude that d′(·, ·) is a metric distance.
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B.4 Proof of Theorem 3

Proof. Let MAXMINALG be a β-approximation algorithm for k-selection under partition matroid
constraints for max-min diversification. Consider {(P0, k0), (B1, k1), . . . , (Bm, km)} as the original
metric space with individual fairness regions on P constructed by Algorithm 2. Consider an instance
of α-fair k-selection on P and let c be the instance of k-selection under partition matroid constraints
constructed by Algorithm 3 with input parameters P, k, and α. We show that the solution returned
by MAXMINALG({(P0, k0), (B1, k1), . . . , (Bm, km)}) is a (β, 3)-bicriteria approximate solution
of the given instance of α-fair k-selection on P .

Let SOLG be the solution returned by MAXMINALG({(P0, k0), (B1, k1), . . . , (Bm, km)}). Let
OPTG be the optimal solution on ({(P0, k0), (B1, k1), . . . , (Bm, km)}) maximizing the diversity
for max-min diversification on P under partition matroid constraints. We let OPT′

G be the optimal
solution on (P ′, {(P 0, k0), (B1, k1), . . . , (Bm, km)}, d′) from Algorithm 3 maximizing the diversity
for max-min diversification on P ′ under partition matroid constraints. We also let OPTI be the optimal
solution on P which maximizes the diversity with individual fairness constraints satisfied.

Fairness Approximation: Given that SOLG is constructed under partition matroid constraints, for
each i ∈ [m], |Bi ∩ SOLG| ≥ 1. Hence, by Lemma 2, SOLG is a (3α)-fair k-selection of P .

Diversity Approximation: We first prove that divmm(OPTG, P ) = divmm(OPT′
G, P

′). No matter
what OPTG is, we can always construct COR′

G in P ′ whose diversity is equivalent to OPTG in
P . We start with an initially empty set of centers COR′

G. In the first step, for each B ∈ B, let
ci denote an arbitrary center in OPTG ∩ Bi, and then we add the point c ∈ Bi corresponding
to ci to COR′

G. Next, in the second step, for each o0 in the rest points of OPTG, we add the
point o ∈ P 0 corresponding to o0 to COR′

G. It is obvious that COR′
G has exactly k distinct

centers and the pairwise distances between COR′
G are the same as those between OPTG. Therefore,

divmm(OPTG, P ) = divmm(COR′
G, P

′). Considering that divmm(OPT′
G, P

′) ≥ divmm(COR′
G, P

′),
we have divmm(OPTG, P ) ≤ divmm(OPT′

G, P
′).

Now we assume that divmm(OPTG, P ) < divmm(OPT′
G, P

′). If there do not exist two points u′, v′

in OPT′
G that are the copies of the same point in P , then we can always find the original k points

in P (which are corresponding to OPT′
G) whose diversity is greater than current divmm(OPTG, P )

and equals divmm(OPT′
G, P

′), which is a contradiction. If there exist two points u′, v′ in OPT′
G

that are the copies of the same point in P , then the diversity is εδ given the definition of max-min
diversification, which is much smaller than divmm(OPTG, P ), leading to a contradiction. Therefore,
divmm(OPTG, P ) = divmm(OPT′

G, P
′).

Next, we connect the partition matroid constraints on P ′ with individual fairness constraints on P .
By the definition of α-fairness, each point v ∈ P must have a center in OPTI within distance at most
α·r(v). Hence, for each individual fairness region B ∈ B, |OPTI∩B| ≥ 1. For each i ∈ [m], let ci be
the copy of an arbitrary center c ∈ OPTI∩Bi in the set Bi. For the remaining points in OPTI , we pick
their corresponding copies in the set P 0. Let OPT′

C denote the constructed solution for the instance P ′.
Since OPT′

C picks exactly one point from each set Bi, for i ∈ [m], and exactly k−m points from P 0,
OPT′

C is a feasible solution for max-min diversification under partition matroid constraints on instance
(P ′, {(P 0, k0), (B1, k1), . . . , (Bm, km)}, d′). Since the pairwise distances between OPTI are the
same as those between OPT′

C , we can have divmm(OPTI , P ) = divmm(OPT′
C , P

′). Considering
that OPT′

G is the optimal solution on instance (P ′, {(P 0, k0), (B1, k1), . . . , (Bm, km)}, d′), we can
have divmm(OPT′

G, P
′) ≥ divmm(OPT′

C , P
′). Hence, we have

divmm(OPTI , P ) ≤ divmm(OPT′
G, P

′) = divmm(OPTG, P
′) ≤ β · divmm(SOLG, P ).

Thus, the diversity of max-min diversification under individual fairness constraints of P using SOLG

is within a β factor of the diversity of any optimal α-fair k-selection of P .

B.5 Proof of Theorem 4

Proof. We use the same notations as those in Proof of Theorem 3. The only difference is that MAXMI-
NALG is changed into MAXSUMALG, referring to a β-approximation algorithm for k-selection under
partition matroid constraints for max-sum diversification. We show that the solution returned by MAX-
SUMALG({(P0, k0), (B1, k1), . . . , (Bm, km)}) is a (β(4 + ε), 3)-bicriteria approximate solution of
the given instance of α-fair k-selection on P .
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Diversity Approximation: We first prove that (4 + ε) · divms(OPTG, P ) ≥ divms(OPT′
G, P

′). We
can get divms(OPTG, P ) ≤ divms(OPT′

G, P
′) through the same process shown in the same part in

Proof of Theorem 3. Let us focus on the case when divms(OPTG, P ) < divms(OPT′
G, P

′) occurs.
In this case, there are two or more points in OPT′

G being copies of the same point in OPTG. The
extreme situation is that each point p′1 in OPT′

G can always find another point p′2 in OPT′
G, and their

original point in P is the same point. Therefore, in general situations, there are at most ⌊k2 ⌋ points in
P whose two copies in P ′ are both selected.

In order to obtain the diversity of the extreme situation, we now consider the basic case where there
are only four points in P ′ that are selected, and there are only two points in P , which are the original
points of the four points in P ′. W.l.o.g., let EXP′

4 be the four points in P ′ containing a′1, a
′
2, a

′
3, a

′
4

and EXP2 be the two distinct original points in P containing a1, a3, where a′1, a
′
2 are the copies of

a1, and a′3, a
′
4 are the copies of a3. From the definition, we can have d′(a′1, a

′
2) = d′(a′3, a

′
4) = εδ,

d′(a′1, a
′
3) = d′(a′1, a

′
4) = d′(a′2, a

′
3) = d′(a′2, a

′
4) = d(a1, a3). It is obvious that divms(EXP2, P ) =

d(a1, a3), while we have divms(EXP′
4, P

′) = d′(a′1, a
′
2) + d′(a′3, a

′
4) + d′(a′1, a

′
3) + d′(a′1, a

′
4) +

d′(a′2, a
′
3) + d′(a′2, a

′
4) = 4 · divms(EXP2, P ) + 2εδ.

Now consider the situation for OPT′
G is not extreme, i.e., there exists at least one point p′1 in OPT′

G
that is unable to find another point p′2 in OPT′

G satisfying d′(p′1, p
′
2) = εδ. There are two types

of basic situations. W.l.o.g., in the first situation, we let EXP′
3 be the 3 points in P ′ containing

a′1, a
′
2, a

′
3 and EXP2 be the 2 distinct original points in P containing a1, a2, where a′2, a

′
3 are the

copies of a2, and a′1 is the only copy of a1. From the definition, we can have d′(a′2, a
′
3) = εδ,

d′(a′1, a
′
2) = d′(a′1, a

′
3) = d(a1, a2). We can have divms(EXP′

3, P
′) = d′(a′1, a

′
2) + d′(a′1, a

′
3) +

d′(a′2, a
′
3) = 2 · divms(EXP2, P ) + εδ ≤ 4 · divms(EXP2, P ) + 2εδ. In the second situation, we let

EXP′
2 be the 2 points in P ′ containing a′1, a

′
2 and EXP2 be the 2 original points in P containing a1, a2,

where a′1 is the only copy of a1, and a′2 is the only copy of a2 as well. We have d′(a′1, a
′
2) = d(a1, a2)

and divms(EXP′
2, P

′) = divms(EXP2, P ) ≤ 4 · divms(EXP2, P ) + 2εδ.

For a general OPT′
G in P ′, divms(OPT′

G) is a combination of the three basic cases mentioned above.
We let ORI be the distinct original points in P which are corresponding to OPT′

G in P ′. We can
have 4 ·divms(ORI, P )+ ⌊k2 ⌋εδ ≥ divms(OPT′

G, P
′). Given that there at least ⌊k2 ⌋ points in ORI, we

have divms(ORI, P ) ≥ ⌊k2 ⌋δ, and we can further have (4 + ε) · divms(ORI, P ) ≥ divms(OPT′
G, P

′).
Next, we assume |ORI| = ks ≥ ⌊k2 ⌋, and we let OPTks

G be the optimal solution for ks-point
max-sum diversification under partition matroid constraints in P . We can have divms(OPTG, P ) ≥
divms(OPTks

G , P ), since the addition of any other point to OPTks

G would increase the diversity. Given
that divms(OPTks

G , P ) ≥ divms(ORI, P ), we can have divms(OPTG, P ) ≥ divms(ORI, P ). Therefore,
we can come to the conclusion that (4 + ε) · divms(OPTG, P ) ≥ divms(OPT′

G, P
′).

Through the same process as that in proof of Theorem 3, we have

divms(OPTI , P ) ≤ divms(OPT′
G, P

′) ≤ (4 + ε) · divms(OPTG, P ) ≤ β(4 + ε) · divms(SOLG, P ).

Thus, the diversity of max-sum diversification under individual fairness constraints of P using SOLG

is within a β(4 + ε) factor of the diversity of any optimal α-fair k-selection of P .

B.6 Proof of Theorem 5

Proof. We use the same notations as those in the proof of Theorem 3. The only difference is
that MAXMINALG is changed into SUMMINALG, referring to a β-approximation algorithm for
k-selection under partition matroid constraints for sum-min diversification. We show that the
solution returned by SUMMINALG({(P0, k0), (B1, k1), . . . , (Bm, km)}) is a (β(4+ ε), 3)-bicriteria
approximate solution of the given instance of α-fair k-selection on P .

Diversity Approximation: We first prove that (4 + ε) · divsm(OPTG, P ) ≥ divsm(OPT′
G, P

′). We
can get divsm(OPTG, P ) ≤ divsm(OPT′

G, P
′) through the same process shown in the same part in

Proof of Theorem 3.

Let us focus on the case when divsm(OPTG, P ) < divsm(OPT′
G, P

′) occurs. In this case, there are
two or more points in OPT′

G being copies of the same point in OPTG. We assume that there are z
distinct original points in P corresponding to OPT′

G in P ′, z ≤ k. Now we focus on two points a′1, a
′
2

in OPT′
G satisfying d′(a′1, a

′
2) = εδ if they exist. It can be inferred that these kinds of points contribute
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2(k − z)εδ to the overall diversity, since d′(a′1,OPT′
G\a′1) = d′(a′2,OPT′

G\a′2) = d′(a′1, a
′
2) = εδ

and there are 2(k − z) points from OPT′
G involved in this calculation.

Let us define D = divsm(OPT′
G, P

′) − 2(k − z)εδ. We notice that D does not equal the diversity
of the original z points in P . This is because some points in the original z points that are copied
to OPT′

G have contributed εδ to divsm(OPT′
G, P

′), so they cannot make any other contribution to
D. Let OPTz

G be the optimal solution for z-point sum-min diversification under partition matroid
constraints in P . From what we have discussed above, we can get D ≤ divsm(OPTz

G, P ).

Now we are going to introduce a lemma [6] so as to compare divsm(OPTz
G, P ) and divsm(OPTG, P ).

Lemma 4. Let (P, d) be a metric space, and n = |P |. Suppose 1 < k < n/3 is the target number of
elements. Let S′ be any subset of V of size ≤ k. Then we can efficiently find an S ⊆ V of size = k,
such that divsm(S, P ) ≥ 1

4divsm(S
′, P ). (See the proof in Appendix B.7.)

Based on Lemma 4, for OPTz
G, we can always find a TEMP ⊆ P of size = k, such that

4 · divsm(TEMP, P ) ≥ divsm(OPTz
G, P ). Obviously, divsm(TEMP, P ) ≤ divsm(OPTG, P ), since

OPTG is the optimal solution. We can now have

divsm(OPTz
G, P ) ≤ 4 · divsm(OPTG, P )

if 1 < k < n/3. Now we have

divsm(OPT′
G, P

′) = D + 2(k − z)εδ

≤ divsm(OPTz
G, P ) + 2(k − z)εδ

≤ 4 · divsm(OPTG, P ) + 2(k − z)εδ.

As mentioned in the proof of Theorem 4, k − z ≥ ⌊k2 ⌋. Therefore, we have 2(k − z)εδ ≤ 2⌊k2 ⌋εδ ≤
kεδ ≤ ε · divsm(OPTG, P ). Therefore, we have divsm(OPT′

G, P
′) ≤ (4 + ε) · divsm(OPTG, P ).

Hence, we finally come to the conclusion that

divsm(OPTI , P ) ≤ divsm(OPT′
G, P

′)

≤ (4 + ε) · divsm(OPTG, P )

≤ β(4 + ε) · divsm(SOLG, P ).

Thus, the diversity of sum-min diversification under individual fairness constraints of P using SOLG

is within a β(4 + ε) factor of the diversity of any optimal α-fair k-selection of P .

B.7 Proof of Lemma 4

Proof. Let us suppose 1 < k < n/3, and let S′ be a set of size r < k. We may assume that r ≥ 2,
and so we can suppose that S′ = {u1, u2, . . . , ur}, for 1 < r < k.

Let us partition P into P1, P2, . . . , Pr, where Pi is the set of vertices whose closest neighbor in S′

is ui. Without loss of generality, assume that |P1| ≥ |P2| ≥ · · · ≥ |Pr|. Also, let di denote the
minimum distance from ui to the rest of S′. We consider two cases:

Case 1 (|P1| ≥ k): First, consider the set of points W1 := {u2, u3, . . . , ur} ∪ T , where T is an
arbitrary set of k−r+1 points in P1. We claim that the diversity of W1 is at least (d2+d3+· · ·+dr)/2.
This is because for any i > 1, every point in P1 is at a distance at least di/2 from ui (to see
this, consider some v ∈ Pi; we know that d(v, u1) ≤ d(v, ui), by the definition of Pi; thus, if
d(v, ui) < di/2, we must have d(v, u1) < di, a contradiction). Second, let v be the ui that is furthest
from u1. Clearly, we have d(u1, v) ≥ d1. Now consider the set of points W2 := {v} ∪ T , where T
is any set of k − 1 vertices in P1. From the same argument as above, the diversity of W2 is at least
d1/2. Now, one of the sets above must have diversity ≥ (d1 + d2 + · · ·+ dr)/4 ≥ divsm(S

′, P )/4.
This completes the argument in this case.

Case 2 (|P1| < k < n/3): In other words, all the sets Vi have size < k. Now, let s be the smallest
index for which |P1 ∪ · · · ∪ Ps| ≥ k. Since all the |Pi| are smaller than k < n/3, we certainly have
s < r. Furthermore, we must have |Ps+1 ∪ · · · ∪Pr| ≥ k. Now, define W1 := {u1, u2, . . . , us} ∪ T ,
where T is an arbitrary set of k− s elements from Ps+1 ∪ · · · ∪ Pr and W2 := {us+1, . . . , ur} ∪ T ′,
where T ′ is an arbitrary set of k − s elements from P1 ∪ · · · ∪ Ps. By the above argument, the
diversity of W1 is at least (d1 + d2 + · · ·+ ds)/2, and that of W2 is at least (ds+1 + · · ·+ dr)/2. As
before, one of these quantities is at least divsm(S

′, P )/4.
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C Discussion on Error Parameter in Theorems 6–8

C.1 Error Parameter in Theorem 6

The algorithm used in Theorem 6 is FMMD-S from [46], which is a (5+ ε)-approximation algorithm
for max-min diversification under group fairness constraints running in O(mkn+mk log 1

ε ) time.
Therefore, ε in Theorem 6 directly inherits the error parameter in FMMD-S.

C.2 Error Parameter in Theorem 7

In the proof of Theorem 4, ε is an accuracy parameter in Algorithm 3. Therefore, ε in Theorem 7 is
the accuracy parameter in Algorithm 3. In Section 5, ε is a small positive constant used to control the
threshold for accepting local improvements. Thus, a smaller ε can potentially lead to better results
while incurring higher computational overhead.

C.3 Error Parameter in Theorem 8

In the proof of Theorem 5, ε is an accuracy parameter in Algorithm 3. The algorithm used in Theorem
8 is from [6] with no other parameter involved in its approximation factor. Therefore, ε in Theorem 8
is just the accuracy parameter in Algorithm 3.

D Extended Theoretical Analysis for Max-Min Diversification

In Theorem 6, we show that the time complexity of our algorithm is exponential w.r.t. k, as it uses
FMMD-S [46] as a subroutine. This arises because max-min diversification with individual fairness
is at least as hard as its partition matroid-constrained version (Theorem 3). To date, however, no
algorithm can simultaneously satisfy the following four requirements: (i) the solution exactly meets
the partition matroid constraint; (ii) the time complexity is polynomial; (iii) the solution provides a
constant-factor approximation guarantee for max-min diversification; and (iv) the algorithm works in
general metric spaces.

To provide different trade-offs among these requirements, we show that our algorithm can work with
different algorithms for max-min diversification with group fairness constraints. The main results are
summarized as follows:

1. FMMD-S [46]: According to the concept of group fairness defined in [46], after executing
Algorithm 2, one can directly apply FMMD-S by restricting the number of points selected
in each individual fairness region to lie between 1 and k −m+ 1. The solution achieves a
5-approximation while strictly satisfying group fairness constraints, as indicated in Theorem
6. However, FMMD-S relies on solving an ILP for solution computation and thus has an
exponential time complexity w.r.t. k.

2. Fair-Greedy-Flow [3]: According to the concept of group fairness defined in [3], after
executing Algorithm 2, one can directly apply Fair-Greedy-Flow by pre-specifying for each
individual fairness region a constant ki ≥ 1 such that the sum of all ki’s is equal to k. This
algorithm runs in O(nkm3) time but only provides an O(m)-approximation, where m is
the number of individual fairness regions.

3. MFD [25]: According to the definition of group fairness in [25], after executing Algorithm
2, one can directly apply MFD by pre-specifying for each individual fairness region a
constant ki ≥ 1 such that the sum of all ki’s is equal to k. This algorithm has a near-linear
time complexity of O(nk) and achieves a constant approximation. However, the algorithm
is randomized and its solutions may not always satisfy the fairness constraints. In addition,
MFD is specific to Euclidean space.

Each of these methods does not meet at least one of the four requirements. Considering the empirical
performance of our algorithm, we chose the FMMD-S algorithm [46] in our implementation.
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