
Under review as a conference paper at ICLR 2023

EXPLAINABILITY OF DEEP REINFORCEMENT LEARN-
ING ALGORITHMS IN ROBOTIC DOMAINS BY USING
LAYER-WISE RELEVANCE PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A key component to the recent success of reinforcement learning is the introduc-
tion of neural networks for representation learning. Doing so allows for solving
challenging problems in several domains, one of which is robotics. However, a
major criticism of deep reinforcement learning (DRL) algorithms is their lack of
explainability and interpretability. This problem is even exacerbated in robotics
as they oftentimes cohabitate space with humans, making it imperative to be able
to reason about their behaviour. In this paper, we propose to analyze the learned
representation in a robotic setting by utilizing graph neural networks. Using the
graphical neural networks and Layer-wise Relevance Propagation (LRP), we rep-
resent the observations as an entity-relationship to allow us to interpret the learned
policy. We evaluate our approach in two environments in MuJoCo. These two
environments were delicately designed to effectively measure the value of knowl-
edge gained by our approach to analyzing learned representations. This approach
allows us to analyze not only how different parts of the observation space con-
tribute to the decision-making process but also differentiate between policies and
their differences in performance. This difference in performance also allows for
reasoning about the agent’s recovery from faults. These insights are key contribu-
tions to explainable deep reinforcement learning in robotic settings.

1 INTRODUCTION

While Deep Reinforcement Learning (DRL) has shown tremendous success in domains like games,
highly structured robotic settings, and other real-world domains, it is still held back by concerns
over its safety and explainability. Due to DRL leveraging non-linear function approximators (i.e.,
neural networks), its behaviour cannot be fully understood and anticipated. Especially in domains
where DRL is deployed alongside humans, it is expected to perform as anticipated by those humans.
To fully harness the potential that comes from this powerful technique, it is paramount to translate
the internal state of DRL approaches into human-understandable signals.

A Reinforcement Learning (RL) agent interacts with the environment to gain knowledge and learn
to perform. It observes the environment, takes action accordingly, receives feedback, and updates its
behavior based on the feedback. This self-training ability makes RL a complex learning procedure,
causing many challenges in interpreting its behavior. Combining RL with the representation learning
power of Deep Learning (DL) models further adds to this complexity. Explaining the policy learned
by a black box DL model as a function approximator is one of the major challenges in interpreting
DRL models. One method proposed to tackle this challenge is State Representation Learning (SRL).
SRL is a feature learning method that learns a low-dimensional representation of the state from high-
dimensional raw observations (like pixels of an image) by capturing the variation in the environment
caused by the agent’s actions. (Lesort et al., 2018; Doncieux et al., 2018; Raffin et al., 2018; 2019;
Traoré et al., 2019; Doncieux et al., 2020). While SRL methods identify the most relevant features
of a high-dimensional observation for learning to act and compact the observation accordingly, we
still require highlighting the most relevant features in low-dimensional compact observation space
robotic environments.
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This work aims at identifying the relevance of each entity of a robot in the decision-making process
in low-dimensional sensory input robotic environments in which observation space is as compact
as possible. Compact observation means that removing any part of the observation space would
lead to a drop in performance. Saliency methods have proved to be successful in highlighting the
most relevant pixels in image classification (Simonyan et al., 2013; Bach et al., 2015; Zhou et al.,
2016; Selvaraju et al., 2017; Zhang et al., 2018a;b), and entities and relations in graph classification
(Baldassarre & Azizpour, 2019; Pope et al., 2019). Some work extended the application of saliency
methods from classification to RL, focusing on environments with visual data as states. One example
of this application is explaining the DRL agent’s behavior in Atari games by visualizing its decisions
(Weitkamp et al., 2018; Greydanus et al., 2018; Iyer et al., 2018; Huber et al., 2019). Nevertheless,
saliency methods in RL have only been applied to RL problems with visual input states. In our work,
a saliency method is used to highlight the contribution of each part of the robot to the policy, which
helps us identify the most and least contributing parts to the decision-making.

Since the structure of a robot is similar to graphs, we represent the robot’s state using graphs and
apply a saliency technique to highlight the contribution of each part of the graph to the agent’s
decisions. Baldassarre & Azizpour (2019) claim that Layer-wise Relevance Propagation (LRP)
proves to be efficient in identifying the most contributing parts of a graph to a graph classification
task. Based on this claim, we choose LRP as our saliency method. First, we need to use graph neural
networks (GNN) as function approximators in our DRL algorithm. After the agent’s performance
converges, we apply LRP to identify the most contributing components of the robot to learning the
task.

A robot contains some number of body parts that are connected through joints. The body and joint
in the robot correspond to the node and edge in the graph, respectively. Graph representation is
used to decompose the robot into its entities and their relationships. This kind of representation in
DRL has been previously used by Sanchez-Gonzalez et al. (2018) and Wang et al. (2018). The LRP
highlights the relevance of every action element in the output to each entity of the observation graph,
creating a heat map of action-entity relevance, based on which we can distinguish the most relevant
parts from the least relevant ones.

Knowing the contribution of every entity in the robot to the decision-making process is highly im-
portant. One application is to provide a visualization for explaining the training process, which
can be done by identifying the robot’s entities contributing to learning a task during the training pro-
cess. To get an intuition, assume a child is learning to stand up. During the initial stages of learning,
they use their hands as assistance; however, in later stages, they can stand up easily without using
their hands. Therefore, during the early stages of training, the contribution score of both hands and
legs would be high, while during later stages, the contribution of hands drops. Another application
is during a malfunction, where part of a robot is broken. Knowing the importance of the broken
part helps us figure out how severe the damage is and whether the agent can recover from that
malfunction or not. This recovery can be in the form of learning a new policy from scratch for the
new dynamics or transferring the policy trained in the previous dynamics. If we choose to adapt to
the new dynamics after a malfunction, this method can explain the adaptation process. To have
better intuition, imagine the human’s writing task. A right-handed human breaks their right hand;
after that, they start using their left hand instead. In the first dynamics, the contribution of their right
hand is the highest in the writing task. In contrast, in the second one, after adaptation to the new
dynamics, the importance of their left hand escalates while the right hand’s importance drops.

2 BACKGROUND

2.1 GRAPH NEURAL NETWORK

Graphs are tools that are used to represent structured data. A graph contains multiple entities with
relationships among them. Entities and their relationships are shown using nodes and edges of the
graph, respectively, which gives us flexibility in designing representation architectures of arbitrary
shapes. Furthermore, this way of knowledge representation emphasizes the location of each entity
relative to other entities. Graph neural networks (GNN) are neural networks that operate on graph
inputs. GNNs impose constraints on relationships and interactions among entities while finding the
optimal solution. In other words, they emphasize the relational inductive bias. Our GNN architec-
ture and operations are according to Battaglia et al. (2018). In an input graph, there are three kinds
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of features: 1) node feature which shows the state of the entity, 2) edge feature which illustrates the
state of each relation, and 3) global feature which indicates the state of the whole system. E = {ek}
and V = {vi} denote the set of edge and node feature vectors respectively and u denotes the global-
level feature vector. A GNN has three operations for updating node, edge, and global-level features.
Equation 1 shows the operations in a GNN.

e′k = ϕe(ek,vrk ,vsk ,u) e′i = ρe→v(E′i)

v′i = ϕv(e′i,vi,u) e′ = ρe→u(E′)

u′ = ϕu(e′,v′,u) v′ = ρv→u(V ′)

(1)

where E′i = {(e′k, rk, sk)}rk=i,k=1:Ne is the updated set of edges whose receiver is node i and rk
and sk are the receiver and sender nodes of edge k, V ′ = {v′i}N

v

i=1 is the set of updated nodes, E′ =⋃
iE
′
i = {(e′k, rk, sk)}N

e

k=1 is the set of all the updated edges. ϕe updates edge features incorporating
surrounding nodes and global-level features in the update. ϕv updates node features incorporating
aggregated features of the surrounding edges of a node and global-level features. Finally, ϕu updates
global-level features given the graph’s aggregated node and edge features (Battaglia et al., 2018). A
summary of the GNN operations can be seen in Appendix A.

2.2 LAYER-WISE RELEVANCE PROPAGATION

Originally, the LRP has been used as a visualization tool highlighting the contribution of pixels to
the classification of images by neural networks. The LRP decomposes the output probability given
to a specific class and back-propagates this score to the input components so that the sum of scores
in each layer is equal across layers:

f(x) = · · · =
∑

d∈(l+1)

Rl+1
d =

∑
d∈l

R
(l)
d = · · · =

∑
d

R
(1)
d (2)

where Rld is the relevance score given to unit d of layer l and f(x) is the score of the output layer.
Bach et al. (2015) proposed two methods for calculating these relevance scores and preventing them
from taking unbounded values. These two methods are the αβ-rule and the ε-stabilized rule. As
discussed by Baldassarre & Azizpour (2019), the latter rule is more robust and simple, which is why
we also use the second rule. For the details about LRP, please refer to Appendix B.

Intuitively, during the forward pass, the neural network emphasizes some parts of the input that are
contributing more to the output by giving them higher weights and activating them. LRP uses these
weights and activations in each layer to propagate the output back through the network until the
input layer. Hence, it can highlight the most contributing parts of the input.

2.3 DEEP REINFORCEMENT LEARNING

Our method can explain all the policies with neural networks as function approximators regardless
of the type of DRL algorithm. We selected Soft Actor-Critic (SAC), popular and known to perform
well in robotic environments (Haarnoja et al., 2018a). Our problem is a policy search in a Markov
decision process defined by a tuple (S,A, p, r) where S and A are continuous state and action
spaces, p : S×S×A → [0,∞) is the state transition probability density, and r : S×A → [rmin, rmax]
is the environment’s reward function. The policy, denoted by π, is the probability of selecting action
at in state st at time step t. SAC is trained through an off-policy process, meaning that the policy
being evaluated and updated is separate from the policy used for generating trajectories. SAC’s
objective function maximizes not only the expected cumulative reward but also an entropy term.
Therefore, the optimal policy looks as follows:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(.|st))] (3)

where α is the temperature parameter that determines the importance of entropy, and H(π(.|st))
is the entropy term. This entropy term facilitates the optimization process by smoothing out the
objective function to avoid getting stuck in local optima. Empirically, this entropy term incentivizes
the agent to explore the environment more widely. For the details, please refer to the original paper
(Haarnoja et al., 2018b). We also use automatic temperature parameter tuning, as discussed in the
paper.
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3 PROPOSED METHOD

Our method has two phases. In the first phase, we train the agent until convergence using graphs
as input observations and GNNs as function approximators for the DRL algorithm. Afterward, we
apply the LRP algorithm to the learned policy to provide a heatmap showing the relevance between
each action element and observation entity across time-steps. Then, by using the LRP scores, we
identify the most critical entities and joints in the observation and action spaces, respectively. The
importance scores calculated in this phase are evaluated in the second phase. Each joint plays two
roles in decision-making. First, its features are given to the agent as the state. Second, an action
in the form of torque is applied to that joint, creating motion. Therefore, there are two kinds of
information extracted by the LRP:

1. Entity Importance in the Observation Space: Each action element gives a relevance
score to each entity of the observation space. These relevance scores are averaged for an
entity across actions to yield the importance of that entity to the whole decision-making
process.

2. Joint Importance in the Action Space: The relevance scores given by each action to
entities of the observation space are averaged for each action element (i.e., joints) across
entities to yield the importance of the joint in the action space.

Note that we use the terms “Entity” and “Joint” to denote the observation and action space elements,
respectively. The reason is that not all the elements of the observation space are “Joints”, unlike
the elements of the action space. For each environment, the evaluation targets the two kinds of
information provided above. To evaluate the importance of the entities in the observation space,
we occlude the features of that entity by removing its features from the observation space and then
rerun the experiments in the new (partially observable) environment. We can validate the importance
score for each entity based on the drop in performance, which is expected to be proportional to the
importance score given to the occluded entity. For the importance of a joint in the action space,
we block that joint so that no torque (motion) can be applied to it. Again, we can validate the
importance scores for each joint based on the amount of drop in the performance, which is expected
to be proportional to the importance score given to the blocked joint.

A high-level sketch of the problem is to identify the contribution of each component of the robot
to the decision-making process. The first step of our solution is to treat each part as an entity
with relationships between each pair of entities, then learn a policy on the environment using this
decomposition. Hence, the state st at time step t would be in the form of:

st = G(Vt, Et, ut) (4)

where Vt and Et are the set of node and edge features at time step t respectively and ut is the global-
level feature vector. To use graph representation by the DRL, we need to replace fully-connected
networks as function approximators with GNNs. There are 5 networks in SAC as follows: policy
network ψ, Q-networks θ1 and θ2, and target networks θ̄1 and θ̄2 as explained in the algorithm
(Haarnoja et al., 2018b). Wherever we have states as input, we use a GNN architecture to extract
features from the state.

Within one layer of a GNN, three operations are done in order as in equation 1: 1) update edge
features using ϕe, 2) update node features using ϕv , 3) and update global features using ϕu. In
our architecture, for ϕe, we avoid incorporating node or global features in the update; for ϕv , we
avoid incorporating global features in the update (see equation 1). This avoidance helps us speed
up the network update without any drop in performance. However, for ϕu, the update is the same
as mentioned in equation 1. The first and second GNN layers update edge, node, and global feature
vectors’ sizes to 256 and 128, respectively. All the aggregation functions ρ are average pooling. The
global feature vector of the output graph is the network’s output. This output is concatenated with
the action for the Q-networks and fed into a 3-layer fully-connected network of size 256. For the
policy network, since there are two output layers: one for the mean and another for the standard
deviation of the Gaussian distribution, we use different ϕu functions at the output layer for each one
of them.

After training the agent until convergence, we proceed with the explanation phase. In this phase,
there is no further update to the policy, and we want to analyze the learned behavior. At each
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time-step t, given the state of the environment, the policy network outputs the action at = πψ(st)
corresponding to state st. This action, which is the mean of the Gaussian distribution, would look
like the following:

at = [a
(1)
t , a

(2)
t , . . . , a

(h)
t ] (5)

where h is the number of action elements corresponding to the number of actuated joints. To calcu-
late the relevance of each action a(i)t where i ∈ {0, . . . , h − 1}, to the input graph components, we
zero out all the elements in the action vector except the element at index i, which forms the relevance
score of the action i at time step t, r(i)t in the output graph’s global features. If ei ∈ Rh denotes one
hot vector whose elements are zero except the one at index i (which equals 1), then

r
(i)
t = at · ei (6)

This relevance score is set to the global features of the output graph, then back-propagated to the
input. If we denote the layer-wise relevance propagation operation on a neural network with LRP (),

R
(i)
c,t = LRP (r

(i)
t ) for c in {0, . . . , C − 1} (7)

where C is the number of components of the input graph, R(i)
c,t is the relevance of action i to com-

ponent c of the input graph at time-step t. The LRP () back-propagates the vector r(i)t to the input
graph’s components. Then, the relevance of each action to a corresponding component of the input
is averaged across time steps. The evaluation phase is summarized in algorithm 1.

Algorithm 1 Calculating relevance scores for the components in the observation space.

1: let R(i)
c = 0 for c ∈ {0, . . . , C − 1} and i ∈ {0, . . . , h− 1} ▷ R(i)

c is the relevance score given
by action i to component c of the input. c can be either a node, an edge, or the global unit

2: let N denote the number of episodes
3: for each episode n in {0, . . . , N − 1} do
4: for each time-step t in {0, . . . , T − 1} do
5: Sample current state st of the environment
6: at = πϕ(st) ▷ at equals the mean of the policy distribution
7: for each element i of the action vector do
8: r

(i)
t = at · ei

9: R
(i)
c = R

(i)
c + LRP (r

(i)
t )

10: end for
11: end for
12: end for
13: return ∀c, i : R(i)

c /(T ×N) ▷ Average of the relevance across time-steps

4 EXPERIMENTS

The experiments are run across two simulated robotic environments in MuJoCo Todorov et al. (2012)
OpenAI Gym OpenAI (2021): Walker2D-v2 and FetchReach-v1 . The observation space is
converted to a graph with only edge and global features. The walker is a two-dimensional two-
legged figure that consists of four main body parts – a single torso at the top (with the two legs
splitting after the torso), two thighs in the middle below the torso, two legs in the bottom below
the thighs, and two feet attached to the legs on which the entire body rests. The goal is to coordi-
nate the torso to move forward by applying torques on the six joints connecting the six body parts
OpenAI (2022). The fetch robot is a robot arm consisting of 7 joints ordered in a line, where the
shoulder pan is the joint closest to the base, and the wrist roll is located at the other end,
connected to the end-effector. The goal is to move the end-effector to a specific 3D position given
by the environment, i.e., the goal . The actions for both environments are torques applied to joints.
For both Walker2D-v2 and FetchReach-v1 , the edge feature is the position and velocity of
the joint. In Walker2D-v2 , the torso in the model is a joint connecting the robot to the world,
showing its position and velocity. In FetchReach-v1 , the global feature is the goal ’s position.
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4.1 TRAIN AND EXPLANATION PHASE

This phase starts by training the DRL agent until convergence on the two environments, followed by
applying LRP to the learned policy to generate a heat map. This heat map represents the relevance
of each action element to each observation entity, as in Figure 1. The relevance scores for each envi-
ronment are calculated and averaged across 10 seeds, and each run for 20 episodes. We can calculate
contribution scores for each entity and joint by averaging LRP scores across every observation entity
and action element separately 1. The entity importance score is on the top-left and the action impor-
tance score is on the bottom-left of Figures 2 and 3 for Walker2D-v2 and FetchReach-v1 ,
respectively. The correctness and intuition of the following hypotheses are discussed in Section 4.2.

Figure 1: The LRP heat map for action-entity relevance score. The y-axis and x-axis show elements
of the action and entities of the observation, respectively. Since joints have different characteristics
and possible amounts of torque, the actions have different ranges. Therefore, we normalize the
relevance scores for each action across all the observation entities by dividing by the maximum
score given by that action.

4.1.1 WALKER2D-V2

Figure 1 right represents the heat map produced for the Walker2D-v2 environment by the LRP.
As the heatmap indicates, scores given to the torso entity are the highest across all the elements
of the action space. The reason is that the goal of the environment is to increase the speed of the
torso. Another thing that we expect to observe is the high relevance of the action elements to their
corresponding joint entities in the observation space. By ignoring the torso column from the heat
map, this dependence can be nicely seen on the heat map in which the relevance scores around
the diagonal are relatively high. For example, for the action (torque) applied to the thigh joint,
the relevance score given to the thigh entity (i.e., 0.62) is high relative to other entities. The
same is true for leg , thigh left , and leg left . For the thigh left action, in addition
to thigh left entity, the relevance score given to the leg left entity is also high. This case
highlights one of the reasons we selected the graph structure: not only do we take into account the
effect of features of each entity on the decision-making process, but we also consider their position
in the structure. In other words, the vicinity of the two entities in the robot is the cause of the high
score given to the leg left entity by thigh left action.

According to the entity importance plot (top-left bar plot in Figure 2), the most important entity to
the policy is torso – the goal of the environment. The importance score for other entities is pretty
small; however, the score of leg , thigh left , and leg left are higher than the remaining.

1The importance scores are not the average scores on the heat map because the scores on the heat map are
normalized for each action.
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Moreover, the action importance plot (bottom-left bar plot in Figure 2 indicates that the critical
action elements are foot and foot left joints, respectively.

4.1.2 FETCHREACH-V1

Figure 1 left shows the heat map generated by the LRP for the FetchReach-v1 environment.
The position of the goal receives a high score across all actions (except wrist roll ). This is
because all the torques should be adjusted in a way to position the end-effector at the goal . Ig-
noring the goal column, similar to Walker2D-v2 ’s heat map, we can see a diagonal pattern.
The highest scores for shoulder pan , elbow flex , forearm roll , wrist flex , and
wrist roll actions belong to their corresponding joint entities in the observation space as ex-
pected. Although for shoulder lift and upperarm roll actions the scores on the diagonal
are unexpectedly not the highest, still the scores given to their corresponding joint entities in the
observation space are relatively high. This unexpected result might be explained using the graph
structure and the vicinity of joints: for shoulder lift and upperarm roll actions, the rele-
vance scores are distributed across multiple entities in the observation space.

According to the entity importance plot (top-left bar plot in Figure 3), the most important entity to
the policy is goal . Other than goal , shoulder pan , forearm roll , wrist roll , and
upperarm roll have relatively high importance respectively. Other entities have pretty small
importance scores. Moreover, the action importance plot (bottom-left bar plot in Figure 3) indi-
cates that the critical joints for positioning the robot’s end-effector to the goal are elbow flex ,
wrist flex , and forearm roll joints, respectively.

4.2 EXPLANATION EVALUATION PHASE

The purpose of this section is to validate the correctness of the hypotheses mentioned in Section 4.1.
To ensure that the contribution of each part to the decision-making does not depend on the type
of neural network, we use fully-connected networks in this phase as function approximators. As
discussed, the evaluation targets the importance of entities in the observation and joints in the ac-
tion. The first one is fulfilled by occluding the entity in the observation space, and the second by
blocking the joint. In each case, their importance scores are validated based on the drop in per-
formance. In Figures 2 and 3, the upper and lower rows reflect the importance of the observation
entities and the action elements evaluation results, respectively. The importance scores are normal-
ized by dividing by the maximum score and the performance bars are divided by the performance
of the standard setting. The standard setting is the original environment with no occlusion in
entities nor block in joints. The significancy tests are t-test with 95% confidence interval, meaning
that the two performances are significantly different for p ≤ 0.05. Also, the results for performance
bars of Walker2D-v2 and FetchReach-v1 are averaged across 30 and 10 seeds, respectively.
The reason is that Walker2D-v2 ’s performance was unstable across seeds with high variance,
while FetchReach-v1 was stable with a low variance.

4.2.1 WALKER2D-V2

First, we discuss the observation entity importance evaluation in the upper-row plots of Figure 2.
The top-left bar chart shows that the most important entity in the observation space is the torso ,
with a score of 1.0. The importance bars for entities other than torso are lower than or equal to
0.3 , among which leg , thigh left , and leg left have the highest scores. By occluding the
torso from the observation space, the agent could not learn a policy at all. Therefore, it has the
most significant drop in performance compared to the standard case in the upper-middle plot of
Figure 2. The performances of the thigh , leg , thigh left , and leg left are equal, as can
be seen in their performance bars and significancy test (i.e., their performances are not significantly
different) on the upper-middle and -right of the Figure 2. The foot and the foot left have
the least drop in performance compared to the standard setting, as shown in their performance
bar, which can be deduced from their importance score. Nevertheless, the importance score for the
thigh is unexpected because, based on its performance bar, we expect its score to be noticeable,
similar to leg , thigh left , and leg left .

The joint importance in the action space evaluation is reflected in the lower-row plots of Figure 2.
As the bottom-left bar chart indicates, foot and foot left joints are the most important. Their
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Figure 2: Evaluating explanation for the Walker2D-v2 . Upper-left: entity importance in the
observation, upper-middle: final behavior performance after occluding each entity, upper-right: sig-
nificancy test for the final behavior after occlusion, lower-left: joint importance in the action, lower-
middle: final behavior performance after blocking each joint, lower-right: significancy test for the
final behaviors after blocking.

performance bar in the bottom-middle figure proves the correctness of this hypothesis by showing
that the amount of drop in performance after blocking foot left and foot joints is substantial
compared to the standard setting. For leg and leg left the amount of drop in performance is
close to each other. Both leg and leg left ’s importance scores explain this drop; however, the
leg left ’s importance is low, although it was expected to be almost similar to leg ’s score. One
interesting thing is that the performance improves after blocking thigh and thigh left joints.
Although LRP gives a pretty low importance score to these two joints, it does not provide enough
information to explain this performance improvement.

4.2.2 FETCHREACH-V1

First, we focus on analyzing the observation entity importance in the upper-row plots of Figure 3.
The upper-left bar plot indicates that the most important entity is the goal . As expected, when
occluding the goal , the performance drops significantly, as indicated in the upper-middle plot.
After goal , shoulder pan and forearm roll entities have the highest scores. Their corre-
sponding performance bars show a proportional amount of drop in performance after occlusion. We
expect the wrist roll joint to receive a relatively low importance score based on its performance
bar. Although the wrist roll joint seemed to be critical according to its importance score, if
we look at the heat map of the FetchReach-v1 in Figure 1, the action applied to this joint gave
a relatively low score to the goal . Thus, we can conclude that this joint does not contribute to
reaching the goal. That is why after occluding it, the performance did not change. The high score of
wrist roll entity is only because of the score given by the wrist roll action. The importance
score of the upperarm roll entity can also be verified by its performance bar. However, since the
upperarm roll and elbow flex performance bars are approximately equal, we expect a high
score for the elbow flex , unlike its current importance score. It remains shoulder lift and
wrist flex entities that, as clear from their performance bars, the amount of drop in their perfor-
mance can imply their importance score.

The joint importance in the action space evaluation is reflected in the lower-row plots of Figure 3.
As indicated on the lower-left bar plot, the most critical joints to the actions are elbow flex ,
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Figure 3: Evaluating explanation for the FetchReach-v1 . Upper-left: entity importance in
the observation, upper-middle: final behavior performance after occluding each entity, upper-right:
significancy test for the final behavior after occlusion, lower-left: joint importance in the action,
lower-middle: final behavior performance after blocking each joint, lower-right: significancy test
for the final behaviors after blocking.

wrist flex , and forearm roll joints, respectively, and are highly strategic for reaching the
goal. The noticeable drop in the performance after blocking these three joints, shown in their perfor-
mance bar in the lower-middle plot, implies their importance. As discussed, the wrist roll joint
does not contribute to reaching the goal. Therefore neither its occlusion nor its blockage affects the
performance. For upperarm roll and shoulder lift joints, the drop in their performance
bar compared to the standard setting can be correctly explained by their importance score. Nev-
ertheless, the LRP fails to explain the performance improvement after the shoulder lift joint’s
blockage. For shoulder pan joint, we expect that LRP gives an importance score approximately
equal to the forearm roll joint because their performance is nearly the same.

5 CONCLUSION AND FUTURE WORK

This paper proposes a novel technique for interpreting the deep reinforcement learning algorithms
in robotic domains using graph neural networks and Layer-wise Relevance Propagation. This
method identifies the contribution of the robot’s components to the decision-making process, al-
lowing us to analyze the learned behavior. The experimental results prove that our method could
successfully highlight the importance of each part of the robot to decision-making. Although the
contribution scores given to some entities were unexpected, for some of them, their importance
could be explained by referring to the original heat map, as we did for the wrist roll in the
FetchReach-v1 environment. The LRP also fails to provide additional information about the
performance improvement after blocking some joints. Knowing the contribution of every part of the
robot to performing a task is paramount, especially in realizing how important each part is in every
stage of learning a task. Furthermore, during a malfunction, it can give us an intuition of the sever-
ity of the damage and whether adaptation is possible or not. Even after the adaptation, it provides
additional information about how the robot substitutes the malfunctioning part by utilizing another
internal part, which can be achieved by comparing the contribution scores of the two parts before
and after adaptation.
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional net-
works. arXiv preprint arXiv:1905.13686, 2019.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Stephane Doncieux, David Filliat, Natalia Dı́az-Rodrı́guez, Timothy Hospedales, Richard Duro,
Alexandre Coninx, Diederik M Roijers, Benoı̂t Girard, Nicolas Perrin, and Olivier Sigaud. Open-
ended learning: a conceptual framework based on representational redescription. Frontiers in
neurorobotics, 12:59, 2018.
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A COMPUTATION STEPS IN A GRAPH NEURAL NETWORK

The computation steps of a GN block is summarized in algorithm 2. These steps comprise of 3 main
updates:

1. The first part relates to edge updates. The algorithm updates edge attributes in lines 2-4
using the ϕe function.

2. The second part is dedicated to updating node attributes (lines 5-9). In this part, first, we
select the set of edges whose receiver node is node i denoted by E′i (line 6). Then the
edge features of the edges in E′i would be aggregated using ρe→v to be used in the update
function ϕv to update attributes of node i in line 8.

3. The last part is updating global attributes (lines 10-14). V ′ and E′ denote sets of updated
node and edge attributes, respectively. Firstly, the updated edge attributes are aggregated
using ρe→u and called e′. Secondly, the updated node attributes are aggregated using ρv→u
and called v′. Then these aggregated node and edge attributes are used in updating global
attributes using ϕu.

The order of steps in algorithm 2 is irrelevant. One can change this order to update global attributes,
per-node attributes, then per-edge attributes.
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Algorithm 2 Steps of computation in a GNN block
1: function GRAPH NEURAL NETWORK(E, V,u)
2: for k ∈ {1 . . . Ne} do
3: e′k ← ϕe(ek,vrk ,vsk ,u) ▷ Compute updated edge attributes
4: end for
5: for i ∈ {1 . . . Nv} do
6: let E′i = {(e′k, rk, sk)}rk=i,k=1:Ne

7: e′i = ρe→v(E′i) ▷ Aggregate edge attributes per node
8: v′i = ϕv(e′i,vi,u) ▷ Compute updated node attributes
9: end for

10: let V ′ = {v′i}N
v

i=1

11: let E′ = {(e′k, rk, sk)}N
e

k=1
12: e′ = ρe→u(E′) ▷ Aggregate edge attributes globally
13: v′ = ρv→u(V ′) ▷ Aggregate node attributes globally
14: u′ = ϕu(e′,v′,u) ▷ Compute updated global attribute
15: return (E′, V ′,u′)
16: end function

B LAYER-WISE RELEVANCE PROPAGATION METHOD

The LRP method is explained according to the work by Bach et al. (2015). the relevance scores
from higher layers are introduced as messages sent from those layers. Therefore, the relevance of a
neuron i at layer l (except the last layer) is computed as follows:

R
(l)
i =

∑
k: i is input for neuron k

R
(l,l+1)
i←k (8)

where R(l,l+1)
i←k shows the relevance coming from neuron k in layer l + 1 to neuron i in layer l. The

relevance of the last layer is defined as the classification score f(x). Equation 8 checks the sum of
relevance scores with respect to the output neurons from the input neuron. We can consider the other
way and check the sum of relevance scores of the input neurons for the output neuron:

R
(l+1)
k =

∑
i: i is input for neuron k

R
(l,l+1)
i←k (9)

Equations 8 and 9 are the main constrains of defining LRP. Multi-layer networks are commonly built
as a set of interconnected neurons organized layer-wise. We denote neurons from layer l by xi and
neurons form layer l+ 1 by xj . In the same manner, the summation over all neurons of layers l and
l + 1 are denoted by

∑
i and

∑
j respectively. A common mapping from one layer to the next one

consists of a linear projection followed by a non-linear function:
zij = xiwij , (10)

zj =
∑
i

zij + bj , (11)

xj = g(zj) (12)

where wij is the weight connecting neuron xi to neuron xj , bj is the bias term, and g is a non-
linear activation function. Common non-linear functions can be Rectified Linear Unit (ReLU) or
hyperbolic tangent (tanh). One possible choice of relevance decomposition for messages from layer
j to layer i is as follows:

R
(l,l+1)
i←j =

zij
zj
.R

(l+1)
j (13)

This type of formalization guarantees the conservation properties of equation 2. One drawback of
the equation 13 is that for small values zj ,Ri←j can take unbounded values. Two solutions provided
to overcome this drawback are ε-stabilizer and αβ-stabilizer.

For the ε-stabilizer, let ε ≥ 0, then the relevance scores would be as follows:

R
(l,l+1)
i←j =

{
zij
zj+ε

.R
(l+1)
j zj ≥ 0

zij
zj−ε .R

(l+1)
j zj < 0

(14)
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One problem with this method is that the relevance can be fully absorbed if the stabilizer ε becomes
very large. For this case, we use the alternative αβ-stabilizer, which treats negative and positive
pre-activations separately. Let z+j =

∑
i z

+
ij + b+j and z−j =

∑
i z
−
ij + b−j be negative and positive

part of pre-activation respectively, where “+” and “−” denote the negative and positive values of zij
and bj . The relevance scores are then calculated as follows:

R
(l,l+1)
i←j = R

(l+1)
j

(
α.
z+ij

z+j
+ β.

z−ij

z−j

)
. (15)

where α + β = 1. This method can also control the importance of positive and negative evidence
by changing the values of α and β. The complete layer-wise relevance propagation procedure for
neural networks is summarized in algorithm 3.

Algorithm 3 Layer-wise relevance propagation for neural networks

1: let R(L) = f(x)
2: for l ∈ {L− 1 . . . 1} do
3: R

(l,l+1)
i←j as in equation 14 or 15

4: R
(l)
i =

∑
j R

(l,l+1)
i←j

5: end for
6: return ∀d : R

(l)
d
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