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Figure 1: Overview of OmniBind. OmniBind integrates diverse knowledge of various existing
multimodal models, leading to large-scale omni representations. OmniBind exhibits remarkable
versatility and achieves state-of-the-art results on extensive downstream tasks over all modality pairs.

ABSTRACT

Recently, human-computer interaction with various modalities has shown promis-
ing applications, like GPT-4o and Gemini. Meanwhile, multimodal representa-
tion models have emerged as the foundation for these versatile multimodal un-
derstanding and generation pipeline. Models like CLIP, CLAP and ImageBind
can map their specialized modalities into respective joint spaces. To construct
a high-quality omni representation space that can be shared and expert in any
modality, we propose to merge these advanced models into a unified space in
scale. With this insight, we present OmniBind, advanced multimodal joint rep-
resentation models via fusing knowledge of 14 pre-trained spaces, which support
3D, audio, image, video and language inputs. To alleviate the interference be-
tween different knowledge sources in integrated space, we dynamically assign
weights to different spaces by learning routers with two objectives: cross-modal
overall alignment and language representation decoupling. Notably, since bind-
ing and routing spaces only require lightweight networks, OmniBind is extremely
training-efficient. Extensive experiments demonstrate the versatility of OmniBind
as an omni representation model, highlighting its great potential for diverse appli-
cations, such as any-query and composable multimodal understanding.

1 INTRODUCTION

Multimodal joint representation, which aligns different modalities into a shared space, forms the
foundation of current multimodal understanding (Liu et al., 2024a; 2023; Bai et al., 2023; Zhu
et al., 2023b) and generation pipelines (Rombach et al., 2022; Podell et al., 2023; Singer et al.,
2022; Huang et al., 2023b). Recently, co-understanding and generating various modalities with
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omni model has attracted increasing attention and demonstrates promising application prospects,
like GPT-4o (OpenAI, 2024) and Gemini (Team et al., 2023).

Scaling up achieves incredibly success in language (Achiam et al., 2023; Touvron et al., 2023a;
Jiang et al., 2024; Touvron et al., 2023b) and vision-language models (Alayrac et al., 2022; Liu
et al., 2023; Sun et al., 2024). It consistently improves model performance and generalization by
increasing the seen data and model parameters. In the �eld of multimodal representation models,
some recent work scale models and data, but they are limited to certain combinations of modalities,
such as image-text (Chen et al., 2023; Sun et al., 2024), video-text (Wang et al., 2022; 2024a),
audio-text (Wu* et al., 2023; Mei et al., 2023), audio-image (Gong et al., 2022; Girdhar et al., 2023)
and 3D-image-text (Zhou et al., 2023). Due to the lack of large-scale datasets covering various
modalities, it is dif�cult to train omni multimodal representation models from scratch.

In this paper, we presentOmniBind, a framework that binds advanced multimodal models, each
excelling within their respective modalities (as depicted in Fig. 1-a). By integrating the alignment
knowledge between different modalities, our approach achieves omni-alignment in an space shared
by various modalities. Furthermore, by inheriting the pre-trained knowledge from these specialized
models, our approach signi�cantly lower the requirements of computational resources and training
data. The entire training process can be completed with only several million unpaired data points
using 4090 GPUs. The integration strategies and low resource demands makes our framework highly
�exible and able to capitalize on improvements with any new pre-trained multimodal models.

However, it is non-trivial to effectively integrate numerous pre-trained spaces. Methods like remap-
ping and weighted-averaging, as suggested in Wang et al. (2024b), fail to scale effectively when
handling multiple source spaces. As more spaces are integrated, interference between the knowl-
edge of different sources increases, leading to suboptimal performance. Manually adjusting the
combining factors only results in trade-offs between different expertise rather than creating a truly
versatile omni-model. We attribute this interference and the associated trade-offs to the rigidity of
�xed weights. Since existing spaces are trained for different purposes using varied datasets, they
encapsulate knowledge speci�c to certain aspects. Fixed-weight averaging tends to favor only par-
ticular aspects of knowledge, limiting the overall knowledge integration.

To unleash the potential of the integrated space that inherently contains all knowledge, we introduce
a weight routing strategy designed to optimize the integration of different spaces. For each modality,
we use a learnable router that dynamically determines the combining weights for different inputs.
The training process of gating is guided by two primary goals: cross-modal overall alignment and
language representation decoupling. The former motivates routers to predict optimal weights for all
modality combinations, while the latter reduces con�icts among text embeddings aligned to different
modalities, ensuring the clarity and distinction of language representations.

With the above techniques, we have successfully constructed three models that bind 5,13, and 14
spaces respectively. For 3D, audio, and image classi�cation, our model exhibits advanced zero-shot
generalization capabilities. Furthermore, it achieves signi�cantly improved cross-modal alignment
across all possible modality pairs compared to existing multimodal representations. This high-
quality semantic omni-alignment enables advanced applications, including accurate 3D-audio re-
trieval, any-query object localization/audio separation, and complex compositional understanding.

Our contributions can be summarized as follows:

1) We proposeOmniBind, a series of omni multimodal representation models that bind 5,13, and
14 spaces respectively and support �ve mainstream modalities: 3D point, audio, image, video, and
language. It emphasizes the value of piecing various pre-trained specialist models together.

2) We introduce routers to ensemble spaces pre-trained on various modalities and datasets, thereby
mitigating interference between knowledge from different sources and further enhancing versatility.

3) We design two learning objectives for learning routers: cross-modal overall alignment and lan-
guage representation decoupling, which motivate routers to dynamically predict the optimal com-
bining weights for all modality pairs while reserving the discrimination of representations.

4) OmniBind exhibits state-of-the-art performance on 14 benchmarks that cover all the modality
pairs, and great potential for diverse applications, such as 3D-audio retrieval and any-query separa-
tion/localization, while requiring minimal training resources and data.
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2 RELATED WORK

2.1 MULTIMODAL JOINT REPRESENTATION

Multimodal joint representation mainly aims to map inputs from different modalities into a shared
space. Leveraging the semantic alignment property, pre-trained representation models are widely
utilized in current multimodal large language models, such as LLaVA (Liu et al., 2024a; 2023),
ImageBind-LLM (Han et al., 2023), and Chat-3D (Wang et al., 2023a; Huang et al., 2023a), as well
as multimodal generation pipelines like Stable Diffusion (Rombach et al., 2022), SD XL (Podell
et al., 2023), make-a-video (Singer et al., 2022) and make-an-audio (Huang et al., 2023b).

The initial multimodal representation is CLIP model (Radford et al., 2021), which demonstrates im-
pressive generalization capabilities in various vision-language downstream tasks. Motivated by its
success, successors propose stronger image-language representations by using higher-quality initial-
ization (Fang et al., 2023c; Sun et al., 2023), larger-scale datasets (Schuhmann et al., 2022; Byeon
et al., 2022), improved learning objectives (Zhai et al., 2023), or better model architecture (Fang
et al., 2023b; Li et al., 2023). Besides, some researchers employ the multimodal contrastive learning
paradigm in other modalities pair. LAION-CLAP (Wu* et al., 2023) and WavCaps (Mei et al., 2023)
learn aligned audio-language space from audio-text pairs.

In addition to these studies improving the alignment of two modalities, another line of work aims
to develop uni�ed spaces capable of accommodating inputs from multiple modalities (more than
two). For instance, AudioCLIP (Guzhov et al., 2022) and WAV2CLIP (Wu et al., 2022) introduce
additional audio encoders for CLIP, leveraging audio-image-text and audio-image pairs. ULIP (Xue
et al., 2023) and Uni3D (Zhou et al., 2023) collect massive amounts of 3D-image-text paired data,
enabling them to learn 3D-image-text joint representations based on advanced image-text pre-trained
models. More recently, ImageBind (Girdhar et al., 2023) and LanguageBind (Zhu et al., 2023a)
propose to integrate multiple modalities using different data pairs that share the crucial image or
language modality.

While current methods showcase a certain degree of robust cross-modal semantic alignment, they
are primarily explored at relatively small scales and limited to speci�c modality pairs. On the other
hand, our work focuses on exploring effective ways to bind a large number of omni representation
spaces.

2.2 SCALING UP MODELS

Scaling up language or vision-language models has been incredibly successful in perception, rea-
soning, and generation tasks. GPT4 (Achiam et al., 2023) and LLaMA (Touvron et al., 2023a;b)
achieve impressive conversation capability via training billion level language models on almost the
massive internet language data. Recent InternVL (Chen et al., 2023) and EVA-CLIP-18B (Sun et al.,
2024) try to scale the parameter of the CLIP model to the ten-billion level. These methods prove
that with the growth of model parameters and seen data, models obtain consistent and non-saturating
performance improvement.

However, most large-scale multimodal models are limited to aligning only two or three modalities.
The scarcity of paired data across multiple modalities has hindered the development of large-scale
omni multimodal representation models.

2.3 KNOWLEDGE FUSION

Fusing knowledge from different sources is a classical and wildly-used method to develop robust AI
models. Traditional ensemble learning methods (Zhou & Zhou, 2021; Zounemat-Kermani et al.,
2021) train models with different sub-datasets, and combine the output of different models as
the �nal prediction. Similar ideas are also employed by large language model research, recent
works (Bansal et al., 2024; Wan et al., 2024; Yu et al., 2023) propose to merge multiple language
models tuned for different downstream tasks, and the resulting model excels at all aspects. Moreover,
the Mixture-of-Experts (MoE) language model (Fedus et al., 2022; Jiang et al., 2024; Chowdhery
et al., 2023) is also developing a hybrid model consisting of multiple sub-models and obtains better
performance or ef�ciency by integrating them together.
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Figure 2: The pipeline ofOmniBind. The� X denotes the router of modalityX , andE i
X is thei -th

encoder of modalityX . The lossesL align andL dec are the objectives for training the routers.

For multimodal representation learning, C-MCR (Wang et al., 2023c) and Ex-MCR (Wang et al.,
2023b) �rst propose to fuse two bi-modality representation space via the shared modality, thereby
building uni�ed space with low data and computing resource requirements. FreeBind (Wang et al.,
2024b) is a high-level abstract of the above two methods, which employs bi-modality spaces to
augment pre-trained uni�ed space. Unlike these methods that only involve a few numbers of spaces,
our goal is to obtain and keep improving omni representations via binding scale of spaces, which
face more severe risks of knowledge interference.

3 METHOD

3.1 SPACESBINDING IN SCALE

Given that vision-language models are well-resourced and play a pivotal role in the multimodal �eld,
we choose the advanced CLIP model EVA-CLIP-18B (Sun et al., 2024) as the foundation, and bind
additional image-text, audio-text, audio-image-text and 3D-image-text spaces onto it.

For space binding, FreeBind (Wang et al., 2024b) �rstly proposes to improve a representation space
by integrating extra spaces. Its space binding pipeline can be summarized as two steps: 1) collecting
pseudo embedding pairs across two spaces and 2) mapping one space to another. Our binding
process is primarily derived from FreeBind, but we replace its pseudo embedding-pair aggregation
with a more ef�cient and robust pseudo item-pair retrieval, and scale up integrated spaces.

Concretely, FreeBind �rst encodes massive unpaired unimodal data into embeddings of each space,
and then uses the cross-modal similarity maps to aggregate pseudo embedding pairs across two
spaces. The embedding pairs are unique for each pair of spaces. Therefore, when binding extensive
spaces, repeatedly aggregating embeddings is needed, which is very resource-intensive. Besides,
the non-shared pseudo pairs are also unstable due to the varying performance of existing spaces.

To bind spaces robustly and ef�ciently, we directly retrieve pseudo pairs across all modalities at
the item level. Considering lots of unpaired 3D, audio, vision, and language data, and leveraging
the most advanced 3D-image-text, audio-text, audio-image, and image-text retrieval model, we can
take each modality as a starting point to retrieve the top-1 recall of data from other modalities.
This approach constructs the pseudo item pairsf p; a; v; tg. For simplicity, lettersp, a, v andt is
correlated to point cloud, audio, image and text modality, respectively.

Using the pseudo data, we train simple projectors to individually bind each space to EVA-CLIP-18B.
The training objective of the projector is multimodal contrastive loss between all pairs of involved
modalities. For instance, when binding CLAP with EVA-CLIP-18B, the learning objective is:

L bind = Info(	( A at ); T vt )+ Info(	( A at ); V vt )+ Info(	( T at ); T vt )+ Info(	( T at ); V vt ) (1)
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whereA at , T at are CLAP embeddings,V vt , T vt are EVA-CLIP-18B embeddings and the	( �) is
an multi-layer perceptron projector. TheInfo( �; �) is multimodal constrastive loss:

Info(X ; Y ) = �
1
2

BX

i =1

(log
e(x i �y i )=�

P N
j =1 e(x i �y j )=�

+ log
e(y i �x i )=�

P N
j =1 e(y i �x j )=�

) (2)

Binding all different spaces together results in a hybrid model withK 3D point encoders,S audio
encoders,N image encoders, andM text encoders. These encoders originate from different pre-
trained models are sharing the same representation space after binding. The representations of the
resulting ensemble model can be calculated as:

�P =
KX

i =1

� i �P i ; �A =
SX

i =1

� i �A i ; �V =
NX

i =1


 i �V i ; �T =
MX

i =1

� i �T i ; (3)

where the�P, �A , �V , �T are the embeddings of resulting model, andP i , A i , V i , T i respectively
denote the 3D point, audio, vision, and text representations from each correspondingi -th encoder.
The� i , � i , 
 i , � i are the combining factors fori -th encoder of each modality.

3.2 WEIGHTS ROUTING

Existing works (Wang et al., 2023c;b; 2024b) manually set the combining factors of encoders from
different spaces. While manual settings offer �exibility to customize the resulting space when inte-
grating a few spaces, it is increasingly complex and impractical as more spaces are added. Moreover,
hand-designed combining weights also limit the deep integration across various knowledge sources,
leading to simple trade-offs rather than comprehensive incorporation of different expertise.

To address this issue, drawing inspiration from the Mixture-of-Expert (MoE) technique in Large
Language Models (LLMs), we propose dynamically assigning weights with learnable routers. As
shown in Fig. 2, each modality contains one router to predict the corresponding combining factors
for encoders of this modality, which can be formulated as:

� 1; : : : ; � K = softmax(� p(P)); � 1; : : : ; � S = softmax(� a(A ))

 1; : : : ; 
 N = softmax(� v (V )); � 1; : : : ; � M = softmax(� t (T ))

(4)

whereP, A , V , T are the concatenated outputs of each modality, and the� p, � a , � v , � t denote
the router for 3D point, audio, vision and language, respectively. To develop effective and robust
routers, we utilize the entire retrieved pseudo datasetf p; a; v; tg and design two learning objectives.

Cross-modal Overall Alignment. To motivate routers to predict the optimal weights for all modal-
ity combinations, we employ contrastive losses overall modality pairs as the �rst learning target:
L align = Info( �A ; �P) + Info( �A ; �V ) + Info( �A ; �T ) + Info( �P ; �V ) + Info( �P ; �T ) + Info( �V ; �T ) (5)

where �P, �A , �V , �T are de�ned in Eq. 3. By simply averaging the contrastive losses between all
modality pairs, we cultivate balanced routers that achieve comprehensively high-quality cross-modal
semantic alignment over all modalities.

Language Representation Decoupling.Compared to 3D points, audio, images, and videos, which
are primarily sampled from the real world, language data is entirely arti�cial, exhibiting much higher
information density and a stronger ideographic tendency. Therefore, textual descriptions of different
modalities exhibit signi�cant biases: image captions often describe appearances, audio captions
focus on sounding actions, and 3D captions prioritize spatial structures. As a result, text encoders
trained to align different modalities demonstrate more specialized expertise than encoders of other
modalities.

Considering the signi�cant distribution variance among the different text representations, we intro-
duce an auxiliary learning objective for the language router to disentangle the language represen-
tation and improve its generalization. It preserves the discrimination of text embedding space and
enhances the semantic alignments with various modalities. Speci�cally, we drive the language router
to identify which modality the input texts are likely describing and to prioritize text encoders that
are specialized in the corresponding modality. To this end, we de�ne the loss function as follows:

L dec = �
MX

j =1

[yj log(� t (T ) j ) + (1 � yj ) log(1 � � t (T ) j )] (6)
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where theM is the number of text encoders. The texts in the retrieved pseudo-paired dataset are
collected from audio-text, vision-text, and 3D-text pairs. Correspondingly, the text encoders are also
derived from models pre-trained for audio-text, vision-text, and 3D-text alignment. In Eq. 6,yj = 1
if the input text and thej -th text encoder are related to the same modality andyj = 0 otherwise.

Finally, we linearly combine the above two objectives, and the �nal loss can be expressed as:

L = �L dec + L align (7)

3.3 MODEL CONFIGURATIONS

The projectors	 used for aligning spaces are simple two-layer MLPs. Additionally, we employ the
mixture-of-projectors strategy following Wang et al. (2024b). The routers� are similarly designed
as two-layer MLPs, with an extra sigmoid activation function at the end.

We select 14 pre-trained spaces for binding, which can be grouped into �ve audio-text (three Wav-
Caps (Mei et al., 2023), two LAION-CLAPs (Wu* et al., 2023)), �ve image-text (EVA-CLIP-
18B (Sun et al., 2024), EVA02-CLIP-E (Fang et al., 2023b) two SigLIPs (Zhai et al., 2023), DFN-
ViT-H (Fang et al., 2023a)), three 3D-image-text (three Uni3Ds (Zhou et al., 2023)) and one audio-
image-text (ImageBind (Girdhar et al., 2023)) spaces. After binding all spaces to EVA-CLIP-18B,
we construct three con�gurations of OmniBind by combining different spaces:OmniBind-Base,
OmniBind-Large, andOmniBind-Full with 5, 13, and 14 individual spaces. The encoder parame-
ters for each modality and the speci�c spaces used in each variant are detailed in Appendix B.

4 EXPERIMENT

4.1 IMPLEMENTATION

Datasets & Hyper-parameter. To construct the pseudo-paired data, we collect unpaired 3D point,
audio, vision, and text data from the training set of existing datasets. For 3D data, we use the 800k
3D point clouds from Objaverse (Deitke et al., 2023). The audio and image data come from Au-
dioSet (Gemmeke et al., 2017) and ImageNet (Deng et al., 2009) respectively. The text data sources
from three kinds of datasets: 3D-text (Liu et al., 2024b), visual-text (Lin et al., 2014; Sharma et al.,
2018) and audio-text (Kim et al., 2019; Drossos et al., 2020) datasets. Based on these unpaired uni-
modal data, we employ state-of-the-art audio-text (WavCaps (Mei et al., 2023)), image-text (EVA-
CLIP-18B (Sun et al., 2024)), audio-image (ImageBind (Girdhar et al., 2023)) and 3D-image-text
(Uni3D (Zhou et al., 2023)) models to retrieve the pseudo item pairs, as discussed in Sec. 3.1. The
temperature factors in contrastive losses are 0.03, and the� in Eq. 7 is 3.

Table 1: Statistic for evaluation tasks and bench-
marks.

Task Modality Benchmarks Items

Zero-shot
Classi�cation

Audio
AudioSet (Gemmeke et al., 2017) 19,048

ESC-50 (Piczak, 2015) 400

Image ImageNet-1K (Deng et al., 2009) 50,000

3D
Objaverse-LVIS (Deitke et al., 2023) 46,832

ScanObjNN (Uy et al., 2019) 2,890
ModelNet40 (Wu et al., 2015) 2,468

Cross-modal
Retrieval

Audio-Text
AudioCaps (Kim et al., 2019) 964
Clotho (Drossos et al., 2020) 1,045

Audio-Image
VGG-SS (Chen et al., 2021) 5,158

FlickrNet (Senocak et al., 2018) 5,000

Image-Text
COCO (Lin et al., 2014) 5,000

Flickr-30K (Young et al., 2014) 1,000

Text-Video MSR-VTT (Xu et al., 2016) 2,990

3D-Image Objaverse-LVIS (Deitke et al., 2023) 46,205

Benchmarks & Baselines. To compre-
hensively access the performance of our
omni representations, we conduct quanti-
tative experiments across 14 benchmarks
covering 7 downstream tasks, as summa-
rized in Tab. 1. In these benchmarks, we
compare OmniBinds with three groups of
previous multimodal representation mod-
els: 1) 3D-image-text models: Uni3D's pre-
trained and three �ne-tuned variants (Zhou
et al., 2023). 2) audio-image-text models:
C-MCR (Wang et al., 2023c), Language-
Bind (Zhu et al., 2023a), ImageBind (Gird-
har et al., 2023), ImageBind++ (Wang et al.,
2024b) and InternVLIB ++ (Wang et al.,
2024b). 3) 3D-audio-image-text models:
Ex-MCR (Wang et al., 2023b) and Point-
Bind (Guo et al., 2023). Moreover, we provide the best results on each benchmark achieved by
the 14 source specialist spaces for reference, denoted as “Individual Best”.
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Table 2: Cross-modal retrieval results. Best result isbolded, and second best result is underlined.

Models
Audio-Text Audio-Image Image-Text Text-Video 3D-Image

AudioCaps Clotho VGG-SS FlickrNet COCO Flickr30K MSRVTT Objaverse
R@1 R@5 R@1 R@5R@1 R@5 R@1 R@5R@1 R@5 R@1 R@5R@1 R@5 R@1 R@5

Uni3D � � � � � � � � 59.51 81.45 87.85 97.55 - - 43.57 67.61
C-MCR 15.76 41.37 8.37 24.861.94 7.69 1.39 5.9716.67 37.04 34.16 63.64 - - � �
LanguageBind 12.42 36.70 11.32 31.032.55 9.86 1.52 6.3653.24 76.48 82.36 96.1932.64 55.43 � �
ImageBind 9.24 27.47 6.64 17.2814.82 35.67 7.68 20.7957.28 79.54 86.04 96.9726.73 48.21 � �
ImageBind++ 29.16 62.98 13.67 33.1915.48 39.26 8.01 21.87 57.01 79.23 85.91 97.03 - - � �
InternVLIB ++ 29.11 62.30 12.66 32.7514.40 36.78 7.74 21.8561.07 82.00 89.30 98.09 - - � �
Ex-MCR 19.07 47.05 7.01 22.042.13 8.13 1.57 5.9440.24 64.78 71.89 90.55 - - 2.54 8.25
PointBind 9.24 27.47 6.64 17.2814.82 35.67 7.68 20.7957.28 79.54 86.04 96.9726.73 48.21 5.86 14.59

OmniBind-Base 43.61 76.02 20.94 46.7714.11 35.74 7.67 21.6556.94 80.11 85.99 97.0224.23 46.0834.34 58.40
OmniBind-Large47.89 79.75 23.07 49.67 14.14 36.07 7.86 21.7260.08 82.35 87.20 97.4030.05 52.9146.09 69.11
OmniBind-Full 49.28 80.09 23.2249.36 15.64 38.19 8.32 23.4963.01 84.4189.12 98.00 32.89 55.7646.55 69.92

Individual Best 48.22 81.15 23.57 49.1314.82 35.67 7.68 20.7963.69 84.09 90.83 98.3333.54 55.9543.57 67.61

Table 3: Zero-shot classi�cation results. Uni3D, Uni3D(Objav.), Uni3D(Scan.) and Uni3D(Model.)
represent the pre-trained and three �ne-tuned version of Uni3D-g, respectively.

Model
Audio Image 3D

AudioSet ESC-50 ImageNet Objaverse ScanObjectNN ModelNet40
mAP Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Uni3D � � � 80.12 95.97 53.13 81.59 64.12 91.63 87.5699.27
Uni3D(Objav.) � � � 80.12 95.97 54.74 82.54 58.89 88.69 84.20 98.42
Uni3D(Scan.) � � � 80.12 95.97 50.99 80.00 65.81 92.70 88.05 98.58
Uni3D(Model.) � � � 80.12 95.97 51.21 80.14 64.43 90.66 88.05 99.11
C-MCR 11.15 70.35 96.70 24.50 52.44 � � � � � �
LanguageBind 18.33 94.90 99.70 77.15 94.64 � � � � � �
ImageBind 13.96 67.25 87.50 76.31 94.23 � � � � � �
ImageBind++ 19.69 90.30 99.30 76.01 94.36 � � � � � �
InternVLIB ++ 18.93 87.75 98.75 81.21 96.68 � � � � � �
Ex-MCR 6.67 71.20 96.80 60.79 86.98 17.94 43.37 40.31 77.20 66.53 93.60
PointBind 13.96 67.25 87.50 76.13 94.22 13.83 30.34 55.05 86.89 76.18 97.04

OmniBind-Base 21.19 92.90 99.75 76.18 94.02 53.30 81.85 57.79 89.76 82.82 97.12
OmniBind-Large 25.57 93.25 99.80 78.87 95.32 53.97 82.90 64.67 94.15 86.55 99.03
OmniBind-Full 25.87 94.55 99.90 79.11 95.49 58.13 81.76 64.60 95.53 86.83 99.03

Individual Best 23.36 94.05 99.75 82.43 96.73 54.74 82.54 65.81 92.70 88.05 99.11

4.2 PERFORMANCERESULTS

Cross-modal Retrieval. As aforementioned, OmniBind aims to provide high-quality semantic
alignment between all modality pairs. Therefore, we comprehensively assess the cross-modal re-
trieval performance across all possible modality pairs. The quantitative results for audio-text, audio-
image, vision-text, and 3D-image retrieval are presented in Tab. 2.

Overall, OmniBind-Full and OmniBind-Large consistently outperform all previous methods across
all benchmarks. Some prior approaches demonstrate competitive performance within their spe-
ci�c domains. For instance, ImageBind++ shows similarly strong audio-image alignment, and
InternVLIB ++ displays comparable image-text capabilities, but they both fall short in other areas
and lack support for 3D input. Compared to existing 3D-audio-image-text models like Ex-MCR and
PointBind, all OmniBind variants exhibit substantial and comprehensive advantages across all com-
binations of modalities. These observations underscore the versatility and superiority of OmniBind.

Moreover, OmniBind-Full achieves similar performance to the “Individual Best”, demonstrating
that OmniBind successfully inherits and effectively integrates the expertise of various source spaces.
Remarkably, OmniBind achieves even better audio-image and 3D-image alignment, showcasing the
exciting cross-space knowledge transfer. By incorporating the high-quality image representations
learned from image-text data, the audio-image and 3D-image alignment can also be improved.
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Figure 3: Qualitative comparison of audio-3D object retrieval. More visualizations are provided in
the Appendix C.

Zero-shot Classi�cation. To further validate the generalization ability of OmniBind, we conduct
zero-shot classi�cation on each modality, and report the results in Tab. 3.

For audio and image classi�cation, OmniBind demonstrates overall superiority, even when com-
pared to models excelling in the audio-image-text domains. While LanguageBind performs slightly
better than OmniBind on ESC-50, all variants of OmniBind signi�cantly outperform previous meth-
ods on the more challenging AudioSet benchmark. This highlights the robustness and generalization
of OmniBind. Furthermore, although InternVLIB ++ achieves the highest accuracy on ImageNet, it
falls short in audio classi�cation, which further showcases the versatility of OmniBind.

In 3D object classi�cation, the three �ne-tuned variants of Uni3D perform exceptionally well on
their respective �ne-tuned datasets. OmniBind-Base, which leverages only Uni3D(Objav.) as
the 3D-image-text source space, achieves performance comparable to Uni3D(Objav.), demonstrat-
ing that the binding space effectively inherits knowledge from the source space. Additionally,
OmniBind-Large and OmniBind-Full integrate the knowledge from all three �ne-tuned versions,
performing well across various benchmarks and achieve signi�cant improvements on the most chal-
lenging Objaverse-LVIS benchmark.
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