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ABSTRACT

The performance of mini-batch stochastic gradient descent (SGD) strongly de-
pends on setting the batch size and learning rate to minimize the empirical loss in
training the deep neural network. In this paper, we present theoretical analyses of
mini-batch SGD with four schedulers: (i) constant batch size and decaying learn-
ing rate scheduler, (ii) increasing batch size and decaying learning rate scheduler,
(iii) increasing batch size and increasing learning rate scheduler, and (iv) increas-
ing batch size and warm-up decaying learning rate scheduler. We show that mini-
batch SGD using scheduler (i) does not always minimize the expectation of the
full gradient norm of the empirical loss, whereas it does using any of schedulers
(ii), (iii), and (iv). Furthermore, schedulers (iii) and (iv) accelerate mini-batch
SGD. The paper also provides numerical results of supporting analyses showing
that using scheduler (iii) or (iv) minimizes the full gradient norm of the empirical
loss faster than using scheduler (i) or (ii).

1 INTRODUCTION

Mini-batch stochastic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003;
Nemirovski et al., 2009; Ghadimi & Lan, 2012; 2013) is a simple and useful deep-learning opti-
mizer for finding appropriate parameters of a deep neural network (DNN) in the sense of minimizing
the empirical loss defined by the mean of nonconvex loss functions corresponding to the training set.

The performance of mini-batch SGD strongly depends on how the batch size and learning rate
are set. In particular, increasing batch size (Byrd et al., 2012; Balles et al., 2016; De et al., 2017;
Smith et al., 2018; Goyal et al., 2018; Shallue et al., 2019; Zhang et al., 2019) is useful for train-
ing DNNs with mini-batch SGD. In (Smith et al., 2018), it was numerically shown that using an
enormous batch size leads to a reduction in the number of parameter updates.

Decaying a learning rate (Wu et al., 2014; Ioffe & Szegedy, 2015; Loshchilov & Hutter, 2017;
Hundt et al., 2019) is also useful for training DNNs with mini-batch SGD. In (Chen et al., 2020),
theoretical results indicated that running SGD with a diminishing learning rate ηt = O(1/t) and
a large batch size for sufficiently many steps leads to convergence to a stationary point. A prac-
tical example of a decaying learning rate with ηt+1 ≤ ηt for all t ∈ N is a constant learning
rate ηt = η > 0 for all t ∈ N. However, convergence of SGD with a constant learning rate is
not guaranteed (Scaman & Malherbe, 2020). Other practical learning rates have been presented for
training DNNs, including cosine annealing (Loshchilov & Hutter, 2017), cosine power annealing
(Hundt et al., 2019), step decay (Lu, 2024), exponential decay (Wu et al., 2014), polynomial decay
(Chen et al., 2018), and linear decay (Liu et al., 2020).

Contribution: The main contribution of the present paper is its theoretical analyses of mini-batch
SGD with batch size and learning rate schedulers used in practice satisfying the following inequality:

min
t∈[0:T−1]

E [∥∇f(θt)∥] ≤
{
2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

} 1
2

,

where f is the empirical loss for n training samples having Ln-Lipschitz continuous gradient ∇f
and lower bound f⋆, σ2 is an upper bound on the variance of the mini-batch stochastic gradient,
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and (θt)
T−1
t=0 is the sequence generated by mini-batch SGD with batch size bt, learning rate ηt ∈

[ηmin, ηmax] ⊂ [0, 2
Ln

), and total number of steps to train a DNN T .

Scheduler BT VT O(
√
BT + VT )

Case (i) (Theorem 3.1; Section 3.1) H1

T

H2

b
+

H7

bT
O

(√
1

T
+

1

b

)
bt : Constant; ηt : Decay

Case (ii) (Theorem 3.2; Section 3.2) H3

T

H4

b0T
O

(
1√
T

)
, O

(
1√
M

)
bt : Increase; ηt : Decay

Case (iii) (Theorem 3.3; Section 3.3) H5

γM

H6

b0γM
O

(
1

γ
M
2

)
(*) ∃m̄∀M ≥ m̄

bt : Increase; ηt : Increase 1

γ
M
2

< 1√
M

Case (iv) (Theorem 3.4; Section 3.4) H5

γM
→ H3

T

H6

b0γM
→ H4

b0T
O

(
1

γ
M
2

)
→ O

(
1√
T

)
bt : Increase; ηt : Increase → Decay

Hi (i ∈ [6]) (resp. H7) is a positive (resp. nonnegative) number depending on ηmin and ηmax. γ and
δ are such that 1 < γ2 < δ (e.g., δ = 2 when batch size is doubly increasing every E epochs). The
total number of steps when batch size increases M times is T (M) =

∑M
m=0⌈

n
bm

⌉E ≥ ME.

(i) Using constant batch size bt = b and decaying learning rate ηt (Theorem 3.1; Section 3.1):
Using a constant batch size and practical decaying learning rates, such as constant, cosine-annealing,
and polynomial decay learning rates, satisfies that, for a sufficiently large step T , the upper bound
on mint∈[0:T−1] E[∥∇f(θt)∥] becomes approximately O( 1√

b
) > 0, which implies that mini-batch

SGD does not always converge to a stationary point. Meanwhile, the analysis indicates that using
the cosine-annealing and polynomial decay learning rates would decrease E[∥∇f(θt)∥] faster than
using a constant learning rate (see (7)), which is supported by the numerical results in Figure 1.

(ii) Using increasing batch size bt and decaying learning rate ηt (Theorem 3.2; Section 3.2): Al-
though convergence analyses of SGD were presented in (Vaswani et al., 2019; Fehrman et al., 2020;
Scaman & Malherbe, 2020; Loizou et al., 2021; Wang et al., 2021; Khaled & Richtárik, 2023), pro-
viding the theoretical performance of mini-batch SGD with increasing batch sizes that have been
used in practice may not be sufficient. The present paper shows that mini-batch SGD has an O( 1√

T
)

rate of convergence. Increasing batch size every E epochs makes the polynomial decay and linear
learning rates become small at an early stage of training (Figure 2(a)). Meanwhile, the cosine-
annealing and constant learning rates are robust to increasing batch sizes (Figure 2(a)). Hence, it is
desirable for mini-batch SGD using increasing batch sizes to use the cosine-annealing and constant
learning rates, which is supported by the numerical results in Figure 2.

(iii) Using increasing batch size bt and increasing learning rate ηt (Theorem 3.3; Section 3.3):
From Case (ii), when batch sizes increase, keeping learning rates large is useful for training DNNs.
Hence, we are interested in verifying whether mini-batch SGD with both the batch sizes and learning
rates increasing can train DNNs. Let us consider a scheduler doubly increasing batch size (i.e.,
δ = 2). We set γ > 1 such that γ <

√
δ =

√
2 and we set an increasing learning rate scheduler

such that the learning rate is multiplied by γ every E epochs (Figure 3(a)). This paper shows that,
when batch size increases M times, mini-batch SGD has an O(γ−M

2 ) convergence rate that is better
than the O( 1√

M
) convergence rate in Case (ii). That is, increasing both batch size and learning rate

accelerates mini-batch SGD. We give practical results (Figure 3(b); δ = 2 and Figures 5, 7, 8(b);
δ = 3, 4) such that Case (iii) decreases ∥∇f(θt)∥ faster than Case (ii) and tripling and quadrupling
batch sizes (δ = 3, 4) decrease ∥∇f(θt)∥ faster than doubly increasing batch sizes (δ = 2).

(iv) Using increasing batch size bt and warm-up decaying learning rate ηt (Theorem 3.4; Sec-
tion 3.4): One way to guarantee fast convergence of mini-batch SGD with increasing batch sizes is
to increase learning rates (acceleration period; Case (iii)) during the first epochs and then decay the
learning rates (convergence period; Case (ii)), that is, to use a decaying learning rate with warm-up
(He et al., 2016; Vaswani et al., 2017; Goyal et al., 2018; Gotmare et al., 2019; He et al., 2019). We
give numerical results (Figure 4; δ = 2 and Figure 6; δ = 3) indicating that using mini-batch SGD
with increasing batch sizes and decaying learning rates with a warm-up minimizes ∥∇f(θt)∥ faster
than using a constant learning rate in Case (ii) or increasing learning rates in Case (iii).
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2 MINI-BATCH SGD FOR EMPIRICAL RISK MINIMIZATION

2.1 EMPIRICAL RISK MINIMIZATION

Let θ ∈ Rd be a parameter of a deep neural network; let S = {(x1,y1), . . . , (xn,yn)} be the
training set, where data point xi is associated with label yi; and let fi(·) := f(·; (xi,yi)) : Rd →
R+ be the loss function corresponding to the i-th labeled training data (xi,yi). Empirical risk
minimization (ERM) minimizes the empirical loss defined for all θ ∈ Rd as f(θ) = 1

n

∑
i∈[n] fi(θ).

This paper considers the following stationary point problem: Find θ⋆ ∈ Rd such that ∇f(θ⋆) = 0.

We assume that the loss functions fi (i ∈ [n]) satisfy the conditions in the following assumption
(see Appendix A for definitions of functions, mappings, and notation used in this paper).
Assumption 2.1 Let n be the number of training samples and let Li > 0 (i ∈ [n]).

(A1) fi : Rd → R (i ∈ [n]) is differentiable and Li-smooth, and f⋆
i := inf{fi(θ) : θ ∈ Rd} ∈ R.

(A2) Let ξ be a random variable that is independent of θ ∈ Rd. ∇fξ : Rd → Rd is the stochastic
gradient of ∇f such that (i) for all θ ∈ Rd, Eξ[∇fξ(θ)] = ∇f(θ) and (ii) there exists σ ≥ 0 such
that, for all θ ∈ Rd, Vξ[∇fξ(θ)] = Eξ[∥∇fξ(θ)−∇f(θ)∥2] ≤ σ2, where Eξ[·] denotes expectation
with respect to ξ.

(A3) Let b ∈ N such that b ≤ n; and let ξ = (ξ1, ξ2, · · · , ξb)⊤ comprise b independent and
identically distributed variables and be independent of θ ∈ Rd. The full gradient ∇f(θ) is estimated
as the following mini-batch gradient at θ: ∇fB(θ) :=

1
b

∑b
i=1 ∇fξi(θ).

2.2 MINI-BATCH SGD

Given the t-th approximated parameter θt ∈ Rd of the deep neural network, mini-batch SGD uses bt
loss functions fξt,1 , fξt,2 , · · · , fξt,bt randomly chosen from {f1, f2, · · · , fn} at each step t, where
ξt = (ξt,1, ξt,2, · · · , ξt,bt)⊤ is independent of θt and bt is a batch size satisfying bt ≤ n. The
pseudo-code of the algorithm is shown as Algorithm 1.
Algorithm 1 Mini-batch SGD algorithm

Require: θ0 ∈ Rd (initial point), bt > 0 (batch size), ηt > 0 (learning rate), T ≥ 1 (steps)
Ensure: (θt) ⊂ Rd

1: for t = 0, 1, . . . , T − 1 do
2: ∇fBt(θt) :=

1
bt

∑bt
i=1 ∇fξt,i(θt)

3: θt+1 := θt − ηt∇fBt(θt)
4: end for

The following lemma can be proved using Proposition A.1, Assumption 2.1, and the descent lemma
(Beck, 2017, Lemma 5.7): for all θ1,θ2 ∈ Rd, f(θ2) ≤ f(θ1)+⟨∇f(θ1),θ2−θ1⟩+ Ln

2 ∥θ2−θ1∥2,
where Assumption 2.1(A1) ensures that f is Ln-smooth (Ln := 1

n

∑
i∈[n] Li). The proof itself is

given in Appendix A.1.
Lemma 2.1 Suppose that Assumption 2.1 holds and consider the sequence (θt) generated by Algo-
rithm 1 with ηt ∈ [ηmin, ηmax] ⊂ [0, 2

Ln
) satisfying

∑T−1
t=0 ηt ̸= 0, where Ln := 1

n

∑
i∈[n] Li and

f⋆ := 1
n

∑
i∈[n] f

⋆
i . Then, for all T ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt

+
Lnσ

2

2− Lnηmax

∑T−1
t=0 η2t b

−1
t∑T−1

t=0 ηt
,

where E denotes the total expectation, defined by E := Eξ0Eξ1 · · ·Eξt .

3 CONVERGENCE ANALYSIS OF MINI-BATCH SGD

3.1 CONSTANT BATCH SIZE AND DECAYING LEARNING RATE SCHEDULER

This section considers a constant batch size and a decaying learning rate:
bt = b (t ∈ N) and ηt+1 ≤ ηt (t ∈ N). (1)

3
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Let p > 0 and T,E ∈ N; and let ηmin and ηmax satisfy 0 ≤ ηmin ≤ ηmax. Examples of decaying
learning rates are as follows: for all t ∈ [0 : T ],

[Constant LR] ηt = ηmax, (2)

[Diminishing LR] ηt =
ηmax√
t+ 1

, (3)

[Cosine-annealing LR] ηt = ηmin +
ηmax − ηmin

2

(
1 + cos

⌊
t

K

⌋
π

E

)
, (4)

[Polynomial Decay LR] ηt = (ηmax − ηmin)

(
1− t

T

)p

+ ηmin, (5)

where K = ⌈n
b ⌉ is the number of steps per epoch, E is the total number of epochs, and the number

of steps T in (4) is given by T = KE. A simple, practical decaying learning rate is the constant
learning rate defined by (2). A decaying learning rate used in theoretical analyses of deep-learning
optimizers is the diminishing learning rate defined by (3). The cosine-annealing learning rate defined
by (4) and the linear learning rate defined by (5) with p = 1 (i.e., an example of a polynomial decay
learning rate) are used in practice. Note that the cosine-annealing learning rate is updated each
epoch, whereas the polynomial decay learning rate is updated each step.

Lemma 2.1 leads to the following (the proof of the theorem is given in Appendix A.2).
Theorem 3.1 (Upper bound on mint E∥∇f(θt)∥2 for SGD using (1)) Under the assumptions
in Lemma 2.1, Algorithm 1 using (1) satisfies that, for all T ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

∑T−1
t=0 η2t

b
∑T−1

t=0 ηt︸ ︷︷ ︸
VT

,

where p, ηmin, ηmax, K, and E are the parameters used in (2)–(5), T = KE = ⌈n
b ⌉E for Polyno-

mial LR (5),

BT ≤



1

ηmaxT
[Constant LR (2)]

1

2ηmax(
√
T + 1− 1)

[Diminishing LR (3)]

2

(ηmin + ηmax)T
[Cosine LR (4)]

p+ 1

(pηmin + ηmax)T
[Polynomial LR (5)],

(6)

VT ≤



ηmax

b
[Constant LR (2)]

ηmax(1 + log T )

2b(
√
T + 1− 1)

[Diminishing LR (3)]

3η2min + 2ηminηmax + 3η2max

4(ηmin + ηmax)b
+

ηmax − ηmin

bT
[Cosine LR (4)]

2p2η2min + 2pηminηmax + (p+ 1)η2max

(2p+ 1)(pηmin + ηmax)b
+

(p+ 1)(η2max − η2min)

(pηmin + ηmax)bT
[Polynomial LR (5)].

Let us consider using Constant LR (2), Cosine LR (4), or Polynomial LR (5). Theorem 3.1 indicates
that the bias term including BT converges to 0 as O( 1

T ), whereas the variance term including VT

does not always converge to 0. Hence, the upper bound on mint∈[0:T−1] E[∥∇f(θt)∥2] does not
converge to 0. In fact, Theorem 3.1 with η = ηmax and ηmin = 0 implies that

lim sup
T→+∞

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ Lnσ

2

(2− Lnη)b
×


η [Constant LR (2)]
3η

4
[Cosine LR (4)]

(p+ 1)η

(2p+ 1)
[Polynomial LR (5)].

(7)
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Since 3η
4 < η and (p+1)η

(2p+1) < η (p > 0), using the cosine-annealing learning rate or the polynomial
decay learning rate is better than using the constant learning rate in the sense of minimizing the
upper bound on mint∈[0:T−1] E[∥∇f(θt)∥2]. Theorem 3.1 also indicates that Algorithm 1 using Di-
minishing LR (3) converges to 0 with the convergence rate mint∈[0:T−1] E[∥∇f(θt)∥] = O(

√
log T

T
1
4

).

However, since Diminishing LR (3) defined by ηt =
η√
t+1

decays rapidly (see Figure 1(a)), it would
not be useful for training DNNs in practice.

3.2 INCREASING BATCH SIZE AND DECAYING LEARNING RATE SCHEDULER

An increasing batch size is used to train DNNs in practice (Byrd et al., 2012; Balles et al., 2016;
De et al., 2017; Smith et al., 2018; Goyal et al., 2018). This section considers an increasing batch
size and a decaying learning rate following one of (2)–(5):

bt ≤ bt+1 (t ∈ N) and ηt+1 ≤ ηt (t ∈ N). (8)
Examples of bt are, for example, for all m ∈ [0 : M ] and all t ∈ Sm = N ∩
[
∑m−1

k=0 KkEk,
∑m

k=0 KkEk) (S0 := N ∩ [0,K0E0)),

[Polynomial growth BS] bt =
(
am

⌈
t∑m

k=0 KkEk

⌉
+ b0

)c

, (9)

[Exponential growth BS] bt = δ
m

⌈
t∑m

k=0
KkEk

⌉
b0, (10)

where a ∈ R++, c, δ > 1, and Em and Km are the numbers of, respectively, epochs and steps
per epoch when the batch size is (am + b0)

c or δmb0. For example, the exponential growth batch
size defined by (10) with δ = 2 makes batch size double each Em epochs. We may modify the
parameters a and δ to at and δt monotone increasing with t. The total number of steps for the batch
size to increase M times is T =

∑M
m=0 KmEm. An analysis of Algorithm 1 with a constant batch

size bt = b and decaying learning rates satisfying (8) is given in Section 3.1.

Lemma 2.1 leads to the following them (the proof of the theorem and the result for Polynomial BS
(9) are given in Appendix A.2).
Theorem 3.2 (Convergence rate of SGD using (8)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (8) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where T =
∑M

m=0 KmEm, Emax = supM∈N supm∈[0:M ] Em < +∞, Kmax =
supM∈N supm∈[0:M ] Km < +∞, BT is defined as in (6), and VT is bounded as

VT ≤



δηmaxKmaxEmax

(δ − 1)b0T
[Constant LR (2)]

δηmaxKmaxEmax

2(δ − 1)b0(
√
T + 1− 1)

[Diminishing LR (3)]

2δη2maxKmaxEmax

(δ − 1)(ηmin + ηmax)b0T
[Cosine LR (4)]

(p+ 1)δη2maxKmaxEmax

(δ − 1)(ηmax + ηminp)b0T
[Polynomial LR (5)].

([Exponential BS (10)])

That is, Algorithm 1 using Exponential BS (10) has the convergence rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] =


O

(
1√
T

)
[Constant LR (2), Cosine LR (4), Polynomial LR (5)]

O

(
1

T
1
4

)
[Diminishing LR (3)].

Theorem 3.2 (Theorem A.1) indicates that, with increasing batch sizes such as Polynomial BS (9)
and Exponential BS (10), Algorithm 1 using each of Constant LR (2), Cosine LR (4), and Polyno-
mial LR (5) has the convergence rate O( 1√

T
), in contrast to Theorem 3.1.

5
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3.3 INCREASING BATCH SIZE AND INCREASING LEARNING RATE SCHEDULER

This section considers an increasing batch size and an increasing learning rate:
bt ≤ bt+1 (t ∈ N) and ηt ≤ ηt+1 (t ∈ N). (11)

Example of bt and ηt satisfying (11) is as follows: for all m ∈ [0 : M ] and all t ∈ Sm = N ∩
[
∑m−1

k=0 KkEk,
∑m

k=0 KkEk) (S0 = N ∩ [0,K0E0)),

[Exponential growth BS and LR] bt = δ
m

⌈
t∑m

k=0
KkEk

⌉
b0, ηt = γ

m

⌈
t∑m

k=0
KkEk

⌉
η0, (12)

where δ, γ > 1 such that γ2 < δ; and Em and Km are defined as in (10). We may modify the
parameters γ and δ to be monotone increasing parameters in t. The total number of steps when both
batch size and learning rate increase M times is T =

∑M
m=0 KmEm.

Lemma 2.1 leads to the following theorem (the proof of the theorem and the result for Polynomial
growth BS and LR (25) are given in Appendix A.2).
Theorem 3.3 (Convergence rate of SGD using (11)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (11) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where T , Emax, and Kmax are defined as in Theorem 3.2, Emin = infM∈N infm∈[0:M ] Em < +∞,

Kmin = infM∈N infm∈[0:M ] Km < +∞, γ̂ = γ2

δ < 1,

BT ≤ δ

η0KminEminγM
, VT ≤ KmaxEmaxη0δ

KminEminb0(1− γ̂)γM
.

That is, Algorithm 1 has the convergence rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] = O

(
1

γ
M
2

)
[Exponential growth BS and LR (12)].

Under Exponential BS (10), using Exponential LR (12) improves the convergence rate from O( 1√
M
)

with Constant LR (2), Cosine LR (4), or Polynomial LR (5) (Theorem 3.2) to O(
√
γ−M ) (γ > 1).

3.4 INCREASING BATCH SIZE AND WARM-UP DECAYING LEARNING RATE SCHEDULER

This section considers an increasing batch size and a decaying learning rate with warm-up for a
given Tw =

∑Mw

m=0 KmEm > 0 (learning rate increases Mw times):
bt ≤ bt+1 (t ∈ N) and ηt ≤ ηt+1 (t ∈ [Tw − 1]) ∧ ηt+1 ≤ ηt (t ≥ Tw). (13)

Examples of bt in (13) are Exponential BS (12) and Polynomial BS (25). Examples of ηt in (13) can
be obtained by combining (12) with (2)–(5). For example, for all m ∈ [0 : M ] and all t ∈ Sm,

[Constant LR with warm-up] ηt =

γ
m

⌈
t∑m

k=0
KkEk

⌉
η0 (m ∈ [Mw])

γMwη0 (m ∈ [Mw : M ])
(14)

and [Cosine LR with warm-up]

ηt =


γ
m

⌈
t∑m

k=0
KkEk

⌉
η0 (m ∈ [Mw])

ηmin +
ηmax − ηmin

2

×

{
1 + cos

(
m−1∑
k=0

Ek +

⌊
t−
∑m−1

k=0 KkEk

Km

⌋
− Ew

)
π

EM − Ew

}
(m ∈ [Mw : M ]),

(15)

where Ew is the number of warm-up epochs, ηmin ≥ 0, ηmax = γMwη0, and γ is defined as in (12).

Theorems 3.2 and 3.3 lead to the following theorem.
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Theorem 3.4 (Convergence rate of SGD using (13)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (13) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where bt is the exponential growth batch size defined by (12) with δ, γ > 1 such that γ2 < δ; Kmin,
Kmax, Emin, and Emax are defined as in Theorems 3.2 and 3.3;

BT ≤


δ

η0KminEminγMw
+

1

ηmax(T − Tw)
[Constant LR (14)]

δ

η0KminEminγMw
+

2

(ηmin + ηmax)(T − Tw)
[Cosine LR (15)]

VT ≤


KmaxEmaxη0δ

KminEminb0(1− γ̂)γMw
+

δηmaxKmaxEmax

(δ − 1)b0(T − Tw)
[Constant LR (14)]

KmaxEmaxη0δ

KminEminb0(1− γ̂)γMw
+

2δη2maxKmaxEmax

(δ − 1)(ηmin + ηmax)b0(T − Tw)
[Cosine LR (15)].

That is, Algorithm 1 has the convergence rate

min
t∈[Tw:T−1]

E [∥∇f(θt)∥] = O

(
1√

T − Tw

)
[Constant LR (14), Cosine LR (15)].

Since Algorithm 1 with (14) and (15) uses increasing batch sizes and decaying learning rates for
t ≥ Tw, it has the same convergence rate as using (8) in Theorem 3.2. Meanwhile, since Algorithm
1 with (14) and (15) uses the warm-up learning rates for t ∈ [Tw], Algorithm 1 speeds up during the
warm-up period, based on Theorem 3.3. As a result, for increasing batch sizes, Algorithm 1 using
decaying learning rates with warm-up minimizes E[∥∇f(θt)∥] faster than using decaying learning
rates in Theorem 3.2.

4 NUMERICAL RESULTS

We examined training ResNet-18 on the CIFAR100 dataset by using Algorithm 1 (see Appendices
A.5 and A.6 for training Wide-ResNet-28-10 on CIFAR100 and ResNet-18 on Tiny ImageNet). The
experimental environment was two NVIDIA GeForce RTX 4090 GPUs and Intel Core i9 13900KF
CPU. The software environment was Python 3.10.12, PyTorch 2.1.0, and CUDA 12.2. The code is
available at https://anonymous.4open.science/r/IncrBothBSLRAccelSGD.

We set the total number of epochs E = 300, the initial learning rate η0 = 0.1, and the minimum
learning rate ηmin = 0 in (4) and (5). The solid line in the figure represents the mean value, and the
shaded area in the figure represents the maximum and minimum over three runs.

Let us first consider the case (Figure 1(a)) of a constant batch size (b = 27) and decaying learning
rates ηt defined by (2)–(5) discussed in Section 3.1, where “linear” in Figure 1 denotes Polynomial
LR (5) with p = 1. Figure 1(b)–(d) indicate that using Diminishing LR (3) did not work well, since
it decayed rapidly and was very small (Figure 1(a)). Figure 1(b)–(d) also indicate that Cosine LR
(4) and Polynomial LR (5) performed better than Constant LR (2), as promised in the theoretical
results in Theorem 3.1 and (7).

Next, let us consider the case (Figure 2(a)) of doubly increasing batch size every 30 epochs from an
initial batch size b0 = 23 and decaying learning rates ηt defined by (2)–(5). Figure 2(a) indicates
that the learning rate of Polynomial LR (5) updated each step (“linear” and “polynomial (p = 2.0)”)
becomes small at an early stage of training. This is because the smaller the batch size bt is, the larger
the required number of steps Kt = ⌈ n

bt
⌉ per epoch becomes and the smaller the decaying learning

rate ηt becomes. Hence, in practice, increasing batch size is not compatible with Polynomial LR (5)
updated each step. Meanwhile, Figure 2(a) indicates Constant LR (2) (“constant”) and Cosine LR
(4) (“cosine”) were compatible with increasing batch size, since Constant LR (2) and Cosine LR (4)
updated each epoch maintain large learning rates even for small batch sizes. In particular, Figure
2(b)–(d) indicate that using Constant LR (2) performed well.
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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Figure 1: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train ResNet-18 on CIFAR100 dataset.
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 2: (a) Decaying learning rates and doubly increasing batch size every 30 epochs, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

Let us consider the case (Figure 3(a)) of doubly increasing batch size (δ = 2) every 30 epochs and
increasing learning rates defined by Exponential growth LR (12) with η0 = 0.1 . The parameters γ
in the increasing learning rates considered here were (i) γ ≈ 1.080 when ηmax = 0.2, (ii) γ ≈ 1.196
when ηmax = 0.5, and (iii) γ ≈ 1.292 when ηmax = 1.0, which satisfy the condition γ2 < δ (= 2)
to guarantee the convergence of Algorithm 1 (see Theorem 3.3). Figure 3 compares the result for
“constant” in Figure 2 with the ones for the increasing learning rates (i)–(iii). Figure 3(b) indicates
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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Figure 3: (a) Increasing learning rates (ηmax = 0.2, 0.5, 1.0) and doubly increasing batch size every
30 epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score
in testing for SGD to train ResNet-18 on CIFAR100 dataset.
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Figure 4: (a) Warm-up learning rates and doubly increasing batch size every 30 epochs, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

that the larger the learning rate ηt was, the smaller the full gradient norm ∥∇f(θe)∥ became and that
Algorithm 1 with increasing learning rates minimized the full gradient norm faster than Algorithm
1 with a constant learning rate (“constant” in Figures 2 and 3).

Let us consider the case (Figure 4(a)) of a doubly increasing batch size and decaying learning rates
(Constant LR (2) and Cosine LR (4)) with warm-up based on Figure 3(a). Figure 4(b) indicates
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that using decaying learning rates with warm-up accelerated Algorithm 1 more than using only
increasing learning rates in Figure 3(b) and only a constant learning rate in Figure 2(b).
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Figure 5: (a) Increasing learning rates and increasing batch sizes based on δ = 2, 3, 4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

From the sufficient condition γ2 < δ to guarantee convergence of Algorithm 1 with both batch size
and learning rate increasing (Theorem 3.3), we can set a larger γ when δ is large. Since Algorithm 1
has an O(γ−M

2 ) convergence rate (Theorem 3.3), using triply (γ = 1.5 <
√
δ =

√
3) and quadruply

(γ = 1.9 <
√
δ =

√
4) increasing batch sizes theoretically decreases ∥∇f(θe)∥ faster than doubly

increasing batch sizes (γ = 1.080 <
√
δ =

√
2 when ηmax = 0.2; Figure 3). Finally, we would

like to verify whether the theoretical result holds in practice. The scheduler was as in Figure 5(a)
with η0 = 0.1 and ηmax = 0.2, where schedulers were modified such that batch sizes belong to
[23, 212] and learning rates belong to [0.1, 0.2] (e.g., be = aδ⌊

e
30 ⌋ + b and ηe = cγ⌊ e

30 ⌋ + d, where
a ≈ 0.2077, b ≈ 7.7923, c ≈ 0.00267, and d ≈ 0.09733 when δ = 3 and γ = 1.50 and a ≈ 0.0155,
b ≈ 7.9844, c ≈ 0.00031, and d ≈ 0.09969 when δ = 4 and γ = 1.90). Figure 5(a) and (b) indicate
that the larger the increasing rate of batch size was (the cases of δ = 3, 4 after 180 epochs), the
larger the increasing rate of the learning rate became (γ = 1.5, 1.9 when δ = 3, 4) and the smaller
∥∇f(θe)∥ became. That is, using increasing learning rates based on tripling and quadrupling batch
sizes minimizes ∥∇f(θe)∥ faster than using increasing learning rates based on doubly increasing
batch sizes (see also Appendix A.4). Figure 5(c) and (d) indicate that using δ = 3, 4 was better than
using δ = 2 in the sense of minimizing f(θe) and achieving high test accuracy.

5 CONCLUSION

This paper presented theoretical analyses of mini-batch SGD under batch size and learning rate
schedulers used in practice. Our results indicated that using increasing batch sizes and decaying
learning rates guarantees convergence of mini-batch SGD and using both batch sizes and learning
rates that increase accelerates mini-batch SGD. That is, using increasing batch sizes and decaying
learning rates with warm-up guarantees fast convergence of mini-batch SGD in the sense of min-
imizing the expectation of the full gradient norm of the empirical loss. This paper also provided
numerical results to support the analysis results that increasing both batch sizes and learning rates
accelerates mini-batch SGD. One limitation of this study is that the numbers of models and datasets
in the experiments were limited. Hence, we should conduct similar experiments with larger numbers
of models and datasets to support our theoretical results.
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A APPENDIX

We here give the notation and state some definitions. Let N be the set of natural numbers. Define
[n] := {1, 2, · · · , n} and [0 : n] := {0, 1, · · · , n} for n ∈ N. Let Rd be the d-dimensional Euclidean
space with inner product ⟨θ1,θ2⟩ = θ⊤

1 θ2 (θ1,θ2 ∈ Rd) and its induced norm ∥θ∥ :=
√
⟨θ,θ⟩

(θ ∈ Rd). Let Rd
+ := {θ = (θ1, θ2, . . . , θd)

⊤ ∈ Rd : θi ≥ 0 (i ∈ [d])} and Rd
++ := {θ =
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(θ1, θ2, . . . , θd)
⊤ ∈ Rd : θi > 0 (i ∈ [d])}. The gradient of a differentiable function f : Rd → R

at θ ∈ Rd is denoted by ∇f(θ). Let L > 0. A differentiable function f : Rd → R is said to
be L-smooth if the gradient ∇f : Rd → Rd is Lipschitz continuous, i.e., for all θ1,θ2 ∈ Rd,
∥∇f(θ1) − ∇f(θ2)∥ ≤ L∥θ1 − θ2∥. Let (xt), (yt) ⊂ R+ be sequences. Let O be Landau’s
symbol, i.e., yt = O(xt) if there exist c ∈ R+ and t0 ∈ N such that, for all t ≥ t0, yt ≤ cxt.

A.1 PROOFS OF PROPOSITION A.1 AND LEMMA 2.1

The following proposition holds for the mini-batch gradient.
Proposition A.1 Let t ∈ N and ξt be a random variable that is independent of ξj (j ∈ [0 : t− 1]);
let θt ∈ Rd be independent of ξt; let ∇fBt(θt) be the mini-batch gradient defined by Algorithm 1,
where fξt,i (i ∈ [bt]) is the stochastic gradient (see Assumption 2.1(A2)). Then, the following hold:

Eξt

[
∇fBt(θt)

∣∣∣ξ̂t−1

]
= ∇f(θt) and Vξt

[
∇fBt(θt)

∣∣∣ξ̂t−1

]
≤ σ2

bt
,

where Eξt [·|ξ̂t−1] and Vξt [·|ξ̂t−1] are respectively the expectation and variance with respect to ξt
conditioned on ξt−1 = ξ̂t−1.

The first equation in Proposition A.1 indicates that the mini-batch gradient ∇fBt(θt) is an unbiased
estimator of the full gradient ∇f(θt). The second inequality in Proposition A.1 indicates that the
upper bound on the variance of the mini-batch gradient ∇fBt

(θt) is inversely proportional to the
batch size bt.

Proof of Proposition A.1: Assumption 2.1(A3) and the independence of bt and ξt ensure that

Eξt

[
∇fBt

(θt)
∣∣∣ξ̂t−1

]
= Eξt

[
1

bt

bt∑
i=1

∇fξt,i(θt)

∣∣∣∣∣ξ̂t−1

]
=

1

bt

bt∑
i=1

Eξt,i

[
∇fξt,i(θt)

∣∣∣ξ̂t−1

]
,

which, together with Assumption 2.1(A2)(i) and the independence of ξt and ξt−1, implies that

Eξt

[
∇fBt

(θt)
∣∣∣ξ̂t−1

]
=

1

bt

bt∑
i=1

∇f(θt) = ∇f(θt). (16)

Assumption 2.1(A3), the independence of bt and ξt, and (16) imply that

Vξt

[
∇fBt

(θt)
∣∣∣ξ̂t−1

]
= Eξt

[
∥∇fBt

(θt)−∇f(θt)∥2
∣∣∣ξ̂t−1

]
= Eξt

∥∥∥∥∥ 1bt
bt∑
i=1

∇fξt,i(θt)−∇f(θt)

∥∥∥∥∥
2 ∣∣∣∣∣ξ̂t−1


=

1

b2t
Eξt

∥∥∥∥∥
bt∑
i=1

(
∇fξt,i(θt)−∇f(θt)

)∥∥∥∥∥
2 ∣∣∣∣∣ξ̂t−1

 .

From the independence of ξt,i and ξt,j (i ̸= j) and Assumption 2.1(A2)(i), for all i, j ∈ [bt] such
that i ̸= j,

Eξt,i [⟨∇fξt,i(θt)−∇f(θt),∇fξt,j (θt)−∇f(θt)⟩|ξ̂t−1]

= ⟨Eξt,i [∇fξt,i(θt)|ξ̂t−1]− Eξt,i [∇f(θt)|ξ̂t−1],∇fξt,j (θt)−∇f(θt)⟩
= 0.

Hence, Assumption 2.1(A2)(ii) guarantees that

Vξt

[
∇fBt

(θ)
∣∣∣ξ̂t−1

]
=

1

b2t

bt∑
i=1

Eξt,i

[∥∥∇fξt,i(θt)−∇f(θt)
∥∥2 ∣∣∣ξ̂t−1

]
≤ σ2bt

b2t
=

σ2

bt
,

which completes the proof. 2
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Proof of Lemma 2.1: The Ln-smoothness of f implies that the descent lemma holds; i.e., for all
t ∈ N,

f(θt+1) ≤ f(θt) + ⟨∇f(θt),θt+1 − θt⟩+
Ln

2
∥θt+1 − θt∥2,

which, together with θt+1 := θt − ηt∇fBt(θt), implies that

f(θt+1) ≤ f(θt)− ηt⟨∇f(θt),∇fBt
(θt)⟩+

Lnη
2
t

2
∥∇fBt

(θt)∥2. (17)

Proposition A.1 guarantees that

Eξt

[
∥∇fBt(θt)∥

2 |ξ̂t−1

]
= Eξt

[
∥∇fBt(θt)−∇f(θt) +∇f(θt)∥2

∣∣∣ξ̂t−1

]
= Eξt

[
∥∇fBt(θt)−∇f(θt)∥2

∣∣∣ξ̂t−1

]
+ 2Eξt

[
⟨∇fBt(θt)−∇f(θt),∇f(θt)⟩

∣∣∣ξ̂t−1

]
+ Eξt

[
∥∇f(θt)∥2

∣∣∣ξ̂t−1

]
≤ σ2

bt
+ ∥∇f(θt)∥2 .

(18)

Taking the expectation conditioned on ξt−1 = ξ̂t−1 on both sides of (17), together with Proposition
A.1 and (18), guarantees that, for all k ∈ N,

Eξt

[
f(θt+1)

∣∣∣ξ̂t−1

]
≤ f(θt)− ηtEξt

[
⟨∇f(θt),∇fBt(θt)⟩

∣∣∣ξ̂t−1

]
+

Lnη
2
t

2
Eξt

[
∥∇fBt

(θt)∥2
∣∣∣ξ̂t−1

]
≤ f(θt)− ηt ∥∇f(θt)∥2 +

Lnη
2
t

2

(
σ2

bt
+ ∥∇f(θt)∥2

)
.

Hence, taking the total expectation on both sides of the above inequality ensures that, for all t ∈ N,

ηk

(
1− Lnηt

2

)
E
[
∥∇f(θt)∥2

]
≤ E [f(θt)− f(θt+1)] +

Lnσ
2η2t

2bt
.

Let T ∈ N. Summing the above inequality from t = 0 to t = T − 1 ensures that
T−1∑
t=0

ηt

(
1− Lnηt

2

)
E
[
∥∇f(θt)∥2

]
≤ E [f(θ0)− f(θT )] +

Lnσ
2

2

T−1∑
t=0

η2t
bt

,

which, together with Assumption 2.1(A1) (the lower bound f⋆ := 1
n

∑
i∈[n] f

⋆
i of f ), implies that

T−1∑
t=0

ηt

(
1− Lnηt

2

)
E
[
∥∇f(θt)∥2

]
≤ f(θ0)− f⋆ +

Lnσ
2

2

T−1∑
t=0

η2t
bt

.

Since ηt ∈ [ηmin, ηmax], we have that(
1− Lnηmax

2

) T−1∑
t=0

ηtE
[
∥∇f(θt)∥2

]
≤ f(θ0)− f⋆ +

Lnσ
2

2

T−1∑
t=0

η2t
bt

,

which, together with ηt ∈ [ηmin, ηmax] ⊂ [0, 2
Ln

), implies that

T−1∑
t=0

ηtE
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax
+

Lnσ
2

2− Lnηmax

T−1∑
t=0

η2t
bt

.

Therefore, from
∑T−1

t=0 ηt ̸= 0, we have

min
t∈[0:T−1]

E[∥∇f(θt)∥2] ≤
2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt

+
Lnσ

2

2− Lnηmax

∑T−1
t=0 η2t b

−1
t∑T−1

t=0 ηt
, (19)

which implies that the assertion in Lemma 2.1 holds. 2
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A.2 PROOFS OF THEOREMS

We can also consider the case where batch sizes decay. For simplicity, let us set a constant learning
rate ηt = η > 0 and a decaying batch size bt = b

t+1 , where b > 0. Then, we have that VT ≤
η
T

∑T−1
t=0

1
bt

= η(T+1)
2b → +∞ (T → +∞), which implies that convergence of mini-batch SGD is

not guaranteed. Accordingly, this paper focuses on the four cases in the main text.

Proof of Theorem 3.1: Let ηmax = η.

[Constant LR (2)] We have that

BT =
1∑T−1

t=0 η
=

1

ηT
, VT =

∑T−1
t=0 η2

b
∑T−1

t=0 η
=

η

b
.

[Diminishing LR (3)] We have that

T−1∑
t=0

1√
t+ 1

≥
∫ T

0

dt√
t+ 1

= 2(
√
T + 1− 1),

which implies that

BT =
1∑T−1

t=0
η√
t+1

≤ 1

2η(
√
T + 1− 1)

.

We also have that
T−1∑
t=0

1

t+ 1
≤ 1 +

∫ T−1

0

dt

t+ 1
= 1 + log T,

which implies that

VT =
η
∑T−1

t=0
1

t+1

b
∑T−1

t=0
1√
t+1

≤ η(1 + log T )

2b(
√
T + 1− 1)

.

[Cosine LR (4)] We have
KE−1∑
t=0

ηt = ηminKE +
ηmax − ηmin

2
KE +

ηmax − ηmin

2

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
.

From
∑KE

t=0 cos⌊
t
K ⌋ π

E = K − 1, we have

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
= K − 1− cosπ = K. (20)

We thus have
KE−1∑
t=0

ηt = ηminKE +
ηmax − ηmin

2
KE +

ηmax − ηmin

2
K

=
1

2
{(ηmin + ηmax)KE + (ηmax − ηmin)K}

≥ (ηmin + ηmax)KE

2
.

Moreover, we have that
KE−1∑
t=0

η2t = η2minKE + ηmin(ηmax − ηmin)

KE−1∑
t=0

(
1 + cos

⌊
t

K

⌋
π

E

)

+
(ηmax − ηmin)

2

4

KE−1∑
t=0

(
1 + cos

⌊
t

K

⌋
π

E

)2

,

15
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which implies that

KE−1∑
t=0

η2t = ηminηmaxKE +
(ηmax − ηmin)

2

4
KE + ηmin(ηmax − ηmin)

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E

+
(ηmax − ηmin)

2

2

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
+

(ηmax − ηmin)
2

4

KE−1∑
t=0

cos2
⌊
t

K

⌋
π

E
.

From
KE∑
t=0

cos2
⌊
t

K

⌋
π

E
=

1

2

KE∑
t=0

(
1 + cos 2

⌊
t

K

⌋
π

E

)
=

1

2
(KE + 1) +

1

2

=
KE

2
+ 1,

we have
KE−1∑
t=0

cos2
⌊
t

K

⌋
π

E
=

KE

2
+ 1− cos2 π =

KE

2
.

From (20), we have

KE−1∑
t=0

η2t =
(ηmin + ηmax)

2

4
KE + ηmin(ηmax − ηmin) +

(ηmax − ηmin)
2

2
+

(ηmax − ηmin)
2

4

KE

2

=
3η2min + 2ηminηmax + 3η2max

8
KE +

(ηmax − ηmin)(ηmax + ηmin)

2
.

Hence, we have

BT =
1∑KE−1

t=0 ηt
≤ 2

(ηmin + ηmax)KE

and

VT =

∑KE−1
t=0 η2t

b
∑KE−1

t=0 ηt
≤ 3η2min + 2ηminηmax + 3η2max

4(ηmin + ηmax)b
+

ηmax − ηmin

bKE
.

[Polynomial LR (5)] Since f(x) = (1− x)p is monotone decreasing for x ∈ [0, 1), we have that∫ 1

0

(1− x)pdx <
1

T

T−1∑
t=0

(
1− t

T

)p

,

which implies that

T

∫ 1

0

(1− x)pdx <

T−1∑
t=0

(
1− t

T

)p

. (21)

Since
∫ 1

0
(1− x)pdx = 1

p+1 , (21) implies that

T−1∑
t=0

(
1− t

T

)p

>
T

p+ 1
.

Accordingly,

T−1∑
t=0

ηt = (ηmax − ηmin)

T−1∑
t=0

(
1− t

T

)p

+ ηminT
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> (ηmax − ηmin)
T

p+ 1
+ ηminT

=

(
ηmax − ηmin

p+ 1
+ ηmin

)
T

=
ηmax + ηminp

p+ 1
T.

Since f(x) = (1− x)p and g(x) = (1− x)2p are monotone decreasing for x ∈ [0, 1), we have that

1

T

T−1∑
t=0

(
1− t

T

)p

<
1

T
+

∫ 1

0

(1− x)pdx,
1

T

T−1∑
t=0

(
1− t

T

)2p

<
1

T
+

∫ 1

0

(1− x)2pdx,

which imply that

T−1∑
t=0

(
1− t

T

)p

< 1 + T

∫ 1

0

(1− x)pdx,

T−1∑
t=0

(
1− t

T

)2p

< 1 + T

∫ 1

0

(1− x)2pdx. (22)

Since we have that
∫ 1

0
(1− x)pdx = 1

p+1 and
∫ 1

0
(1− x)2pdx = 1

2p+1 , (22) ensures that

T−1∑
t=0

(
1− t

T

)p

< 1 +
T

p+ 1
,

T−1∑
t=0

(
1− t

T

)2p

< 1 +
T

2p+ 1
.

Hence,
T−1∑
t=0

η2t = (ηmax − ηmin)
2
T−1∑
t=0

(
1− t

T

)2p

+ 2(ηmax − ηmin)

T−1∑
t=0

(
1− t

T

)p

ηmin + η2minT

< (ηmax − ηmin)
2

(
1 +

T

2p+ 1

)
+ 2(ηmax − ηmin)

(
1 +

T

p+ 1

)
ηmin + η2minT

=
η2max(p+ 1)(2p+ T + 1) + 2ηmaxηminpT + η2min(2p

2(T − 1)− 3p− 1)

(p+ 1)(2p+ 1)
.

Therefore,

BT =
1∑T−1

t=0 ηt
≤ p+ 1

(ηmax + ηminp)T

and

VT =

∑T−1
t=0 η2t

b
∑T−1

t=0 ηt

=
η2max(p+ 1)(2p+ T + 1) + 2ηmaxηminpT + η2min(2p

2(T − 1)− 3p− 1)

(2p+ 1)(ηmax + ηminp)bT

=
2p2η2min + 2pηminηmax + (p+ 1)η2max

(2p+ 1)(pηmin + ηmax)b
+

(p+ 1)(2p+ 1)η2max − (p+ 1)(2p+ 1)η2min

(2p+ 1)(pηmin + ηmax)bT

=
2p2η2min + 2pηminηmax + (p+ 1)η2max

(2p+ 1)(pηmin + ηmax)b
+

(p+ 1)(η2max − η2min)

(pηmin + ηmax)bT
.

This completes the proof. 2

We will now show the following theorem, which includes Theorem 3.2.
Theorem A.1 (Convergence rate of SGD using (8)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (8) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,
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where T =
∑M

m=0 KmEm, Emax = supM∈N supm∈[0:M ] Em < +∞, Kmax =

supM∈N supm∈[0:M ] Km < +∞, a = min{a, b0}, BT is defined as in (6), and VT is given by

VT ≤



3ηmaxKmaxEmax

acT
[Constant LR (2)]

3ηmaxKmaxEmax

2ac(
√
T + 1− 1)

[Diminishing LR (3)]

6η2maxKmaxEmax

ac(ηmin + ηmax)T
[Cosine LR (4)]

3(p+ 1)η2maxKmaxEmax

ac(ηmax + ηminp)T
[Polynomial LR (5)]

([Polynomial BS (9)])

VT ≤



δηmaxKmaxEmax

(δ − 1)b0T
[Constant LR (2)]

δηmaxKmaxEmax

2(δ − 1)b0(
√
T + 1− 1)

[Diminishing LR (3)]

2δη2maxKmaxEmax

(δ − 1)(ηmin + ηmax)b0T
[Cosine LR (4)]

(p+ 1)δη2maxKmaxEmax

(δ − 1)(ηmax + ηminp)b0T
[Polynomial LR (5)].

([Exponential BS (10)])

That is, Algorithm 1 using each of Polynomial BS (9) and Exponential BS (10) has the convergence
rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] =


O

(
1√
T

)
[Constant LR (2), Cosine LR (4), Polynomial LR (5)]

O

(
1

T
1
4

)
[Diminishing LR (3)].

Proof of Theorem A.1: Let M ∈ N and T =
∑M

m=0 KmEm, where Emax =
supM∈N supm∈[0:M ] Em < +∞, Kmax = supM∈N supm∈[0:M ] Km < +∞, S0 := N∩ [0,K0E0),
and Sm = N ∩ [

∑m−1
k=0 KkEk,

∑m
k=0 KkEk) (m ∈ [M ]). Let us consider using (9). Let ηmax = η

and a = min{a, b0}.

[Constant LR (2)] Let m ∈ [M ]. We have that∑
t∈Sm

1

bt
=
∑
t∈Sm

1(
am
⌈

t∑m
k=0 KkEk

⌉
+ b0

)c ≤
∑
t∈Sm

1

acmc
⌈

t∑m
k=0 KkEk

⌉c
≤
∑
t∈Sm

1

acmc
≤ 1

acmc
KmEm ≤ KmaxEmax

ac
1

mc
≤ KmaxEmax

ac
1

mc

and ∑
t∈S0

1

bt
=
∑
t∈S0

1

bc0
≤ KmaxEmax

ac
.

Accordingly, we have that

M∑
m=0

∑
t∈Sm

1

bt
≤ KmaxEmax

ac

(
1 +

M∑
m=1

1

mc

)
≤ KmaxEmax

ac

(
1 +

+∞∑
m=1

1

mc

)

≤ 3KmaxEmax

ac
.

(23)

Hence, we have that

VT =
1∑T−1

t=0 η

T−1∑
t=0

η2

bt
≤ 3ηKmaxEmax

acT
.
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[Diminishing LR (3)] From (23), we have that

VT =
1∑T−1

t=0
η√
t+1

T−1∑
t=0

η2

(t+ 1)bt

≤ η

2(
√
T + 1− 1)

T−1∑
t=0

1

bt
≤ 3ηKmaxEmax

2ac(
√
T + 1− 1)

.

[Cosine LR (4)] The cosine LR is defined for all m ∈ [0 : M ] and all t ∈ Sm by

ηt = ηmin +
ηmax − ηmin

2

{
1 + cos

(
m−1∑
k=0

Ek +

⌊
t−
∑m−1

k=0 KkEk

Km

⌋)
π

EM

}
.

We have that
T−1∑
t=0

η2t
bt

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (23), implies that
T−1∑
t=0

η2t
bt

≤ 3η2maxKmaxEmax

ac
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 6η2maxKmaxEmax

ac(ηmin + ηmax)T
.

[Polynomial LR (5)] We have that
T−1∑
t=0

η2t
bt

=

T−1∑
t=0

1

bt

{
(ηmax − ηmin)

(
1− t

T

)p

+ ηmin

}2

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (23), implies that
T−1∑
t=0

η2t
bt

≤ 3η2maxKmaxEmax

ac
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 3(p+ 1)η2maxKmaxEmax

ac(ηmax + ηminp)T
.

Let us consider using (10). Let ηmax = η.

[Constant LR (2)] We have that∑
t∈Sm

1

bt
=
∑
t∈Sm

1

δ
m

⌈
t∑m

k=0
KkEk

⌉
b0

≤
∑
t∈Sm

1

δmb0
≤ KmaxEmax

δmb0
,

which implies that
M∑

m=0

∑
t∈Sm

1

bt
≤ KmaxEmax

b0

M∑
m=0

1

δm
≤ KmaxEmaxδ

b0(δ − 1)
. (24)

Hence, we have that

VT =
1∑T−1

t=0 η

T−1∑
t=0

η2

bt
≤ ηKmaxEmaxδ

b0(δ − 1)T
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

[Diminishing LR (3)] From (24), we have that

VT =
1∑T−1

t=0
η√
t+1

T−1∑
t=0

η2

(t+ 1)bt
≤ η

2(
√
T + 1− 1)

T−1∑
t=0

1

bt
≤ ηKmaxEmaxδ

2(
√
T + 1− 1)b0(δ − 1)

.

[Cosine LR (4)] We have that
T−1∑
t=0

η2t
bt

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (24), implies that
T−1∑
t=0

η2t
bt

≤ η2maxKmaxEmaxδ

b0(δ − 1)
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 2η2maxKmaxEmaxδ

(δ − 1)(ηmin + ηmax)b0T
.

[Polynomial LR (5)] We have that
T−1∑
t=0

η2t
bt

=

T−1∑
t=0

1

bt

{
(ηmax − ηmin)

(
1− t

T

)p

+ ηmin

}2

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (24), implies that
T−1∑
t=0

η2t
bt

≤ η2maxKmaxEmaxδ

b0(δ − 1)
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ (p+ 1)η2maxKmaxEmaxδ

(δ − 1)(ηmax + ηminp)b0T
.

2

Example of bt and ηt satisfying (11) is as follows:

[Polynomial growth BS and LR]

bt =

(
a1m

⌈
t∑m

k=0 KkEk

⌉
+ b0

)c1

, ηt =

(
a2m

⌈
t∑m

k=0 KkEk

⌉
+ η0

)c2

,
(25)

where a1, a2 > 0; c1 > 1, c2 > 0 such that c1 − 2c2 > 1.

We next show the following theorem, which includes Theorem 3.3.
Theorem A.2 (Convergence rate of SGD using (11)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (11) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where T =
∑M

m=0 KmEm, Emax = supM∈N supm∈[0:M ] Em < +∞, Emin =
infM∈N infm∈[0:M ] Em < +∞, Kmax = supM∈N supm∈[0:M ] Km < +∞, Kmin =

infM∈N infm∈[0:M ] Km < +∞, η = min{a2, η0}, η = max{a2, η0}, b = min{a1, b0},

γ̂ = γ2

δ < 1,

BT ≤


1 + c2

ηc2KminEminM1+c2
[Polynomial growth BS and LR (25)]

δ

η0KminEminγM
[Exponential growth BS and LR (12)]
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VT ≤


2KmaxEmax(1 + c2)η

2c2

KminEminηc2b
c1M1+c2

[Polynomial growth BS and LR (25)]

KmaxEmaxη0δ

KminEminb0(1− γ̂)γM
[Exponential growth BS and LR (12)].

That is, Algorithm 1 has the convergence rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] =


O

(
1

M
1+c2

2

)
[Polynomial growth BS and LR (25)]

O

(
1

γ
M
2

)
[Exponential growth BS and LR (12)].

Proof of Theorem A.2: Let M ∈ N and T =
∑M

m=0 KmEm, where Emax =
supM∈N supm∈[0:M ] Em < +∞, Kmax = supM∈N supm∈[0:M ] Km < +∞, S0 := N∩ [0,K0E0),
and Sm = N ∩ [

∑m−1
k=0 KkEk,

∑m
k=0 KkEk) (m ∈ [M ]).

[Polynomial growth BS and LR (25)] We have that∑
t∈Sm

ηt =
∑
t∈Sm

(
a2m

⌈
t∑m

k=0 KkEk

⌉
+ η0

)c2

≥
∑
t∈Sm

(a2m+ η0)
c2 ,

which, together with η = min{a2, η0}, implies that∑
t∈Sm

ηt ≥ ηc2
∑
t∈Sm

(m+ 1)c2 ≥ ηc2KminEmin(m+ 1)c2 .

Hence,

M∑
m=0

∑
t∈Sm

ηt ≥ ηc2KminEmin

M+1∑
m=1

mc2 ≥
ηc2KminEmin

1 + c2
M1+c2 .

We also have that

∑
t∈Sm

η2t
bt

=
∑
t∈Sm

(
a2m

⌈
t∑m

k=0 KkEk

⌉
+ η0

)2c2(
a1m

⌈
t∑m

k=0 KkEk

⌉
+ b0

)c1 ≤
∑
t∈Sm

(a2m+ η0)
2c2

(a1m+ b0)
c1 .

Let η = max{a2, η0} and b = min{a1, b0}. Then,

M∑
m=0

∑
t∈Sm

η2t
bt

≤ KmaxEmax
η2c2

bc1

M∑
m=0

(m+ 1)2c2

(m+ 1)c1
≤ KmaxEmax

η2c2

bc1

M+1∑
m=1

1

mc1−2c2

≤ 2KmaxEmaxη
2c2

bc1
.

Hence,

BT =
1∑T−1

t=0 ηt
≤ 1 + c2

ηc2KminEminM1+c2

and

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 2KmaxEmax(1 + c2)η
2c2

KminEminηc2b
c1M1+c2

.

[Exponential growth BS and LR (12)] We have that

M∑
m=0

∑
t∈Sm

ηt =

M∑
m=0

∑
t∈Sm

γ
m

⌈
t∑m

k=0
KkEk

⌉
η0 ≥ η0KminEmin

M∑
m=0

γm
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= η0KminEmin
γM − 1

γ − 1
>

η0KminEminγ
M

γ2
>

η0KminEminγ
M

δ

and

M∑
m=0

∑
t∈Sm

η2t
bt

=

M∑
m=0

∑
t∈Sm

γ
2m

⌈
t∑m

k=0
KkEk

⌉
η20

δ
m

⌈
t∑m

k=0
KkEk

⌉
b0

≤ KmaxEmax
η20
b0

M∑
m=0

γ2m

δm

≤ KmaxEmax
η20
b0

M∑
m=0

(
γ2

δ

)m

≤ KmaxEmax
η20
b0

1

1− γ̂
,

where γ̂ = γ2

δ < 1. Hence,

BT =
1∑T−1

t=0 ηt
≤ δ

η0KminEminγM

and

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ KmaxEmaxη0δ

KminEminb0(1− γ̂)γM
.

2

Proof of Theorem 3.4: Theorem 3.4 follows immediately from Theorems 3.2 and 3.3. 2

A.3 COMPARISONS OF CASE (II) WITH CASES (III) AND (IV) FOR TRAINING RESNET-18 ON
CIFAR100 USING INCREASING BATCH SIZE BASED ON δ = 3

(a) Learning rate ηt and batch size bt versus epochs (b) Full gradient norm ∥∇f(θe)∥ versus epochs

(c) Empirical loss f(θe) versus epochs (d) Test accuracy score versus epochs

Figure 6: (a) Increasing learning rates (ηmin = 0.01) and increasing batch sizes based on δ = 3, (b)
full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for
SGD to train ResNet-18 on CIFAR100 dataset.

Figures 2–4 compare Case (ii) with Cases (iii) and (iv) for training ResNet-18 on CIFAR100 using
increasing batch size based on δ = 2.
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A.4 TRAINING RESNET-18 ON CIFAR10 AND CIFAR100 USING DOUBLING, TRIPLING,
AND QUADRUPLING BATCH SIZES
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 7: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((δ, γ) =
(2, 1.4), (3, 1.7), (4, 1.9) satisfying

√
δ > γ) every 100 epochs, (b) full gradient norm of empirical

loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR10 dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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Figure 8: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((δ, γ) =
(2, 1.4), (3, 1.7), (4, 1.9) satisfying

√
δ > γ) every 100 epochs, (b) full gradient norm of empirical

loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR100 dataset.
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A.5 TRAINING WIDE-RESNET-28-10 ON CIFAR100
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(a) Learning rate ηt and batch size b versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 9: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 10: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
Wide-ResNet-28-10 on CIFAR100 dataset.
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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Figure 11: (a) Increasing learning rates (ηmax = 0.2, 0.5, 1.0) and increasing batch size every 30
epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in
testing for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.

0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h 
Si

ze

constant
warmup constant ( max = 0.2)
warmup constant ( max = 0.5)
warmup constant ( max = 1.0)
warmup cosine ( max = 0.2)
warmup cosine ( max = 0.5)
warmup cosine ( max = 1.0)
Batch Size ( = 2.0)

(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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Figure 12: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
Wide-ResNet-28-10 on CIFAR100 dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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Figure 13: (a) Increasing learning rates and increasing batch sizes based on δ = 2, 3, 4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train Wide-ResNet-28-10 on CIFAR100 dataset.

A.6 TRAINING RESNET-18 ON TINY IMAGENET
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(a) Learning rate ηt and batch size b versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 14: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train ResNet-18 on Tiny ImageNet dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 15: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
ResNet-18 on Tiny ImageNet dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 16: (a) Increasing learning rates (ηmax = 0.2, 0.5, 1.0) and increasing batch size every 30
epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in
testing for SGD to train ResNet-18 on Tiny ImageNet dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 17: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
ResNet-18 on Tiny ImageNet dataset.
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(a) Learning rate ηt and batch size bt versus epochs
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(b) Full gradient norm ∥∇f(θe)∥ versus epochs
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(c) Empirical loss f(θe) versus epochs
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(d) Test accuracy score versus epochs

Figure 18: (a) Increasing learning rates and increasing batch sizes based on δ = 2, 3, 4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on Tiny ImageNet dataset.
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