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ABSTRACT

The performance of mini-batch stochastic gradient descent (SGD) strongly de-
pends on setting the batch size and learning rate to minimize the empirical loss in
training the deep neural network. In this paper, we present theoretical analyses of
mini-batch SGD with four schedulers: (i) constant batch size and decaying learn-
ing rate scheduler, (ii) increasing batch size and decaying learning rate scheduler,
(iii) increasing batch size and increasing learning rate scheduler, and (iv) increas-
ing batch size and warm-up decaying learning rate scheduler. We show that mini-
batch SGD using scheduler (i) does not always minimize the expectation of the
full gradient norm of the empirical loss, whereas it does using any of schedulers
(i1), (iii), and (iv). Furthermore, schedulers (iii) and (iv) accelerate mini-batch
SGD. The paper also provides numerical results of supporting analyses showing
that using scheduler (iii) or (iv) minimizes the full gradient norm of the empirical
loss faster than using scheduler (i) or (ii).

1 INTRODUCTION

Mini-batch stochastic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003;
Nemirovski et al., 2009; Ghadimi & Lan, 2012; 2013) is a simple and useful deep-learning opti-
mizer for finding appropriate parameters of a deep neural network (DNN) in the sense of minimizing
the empirical loss defined by the mean of nonconvex loss functions corresponding to the training set.

The performance of mini-batch SGD strongly depends on how the batch size and learning rate
are set. In particular, increasing batch size (Byrd et al., 2012; Balles et al., 2016; De et al., 2017;
Smith et al., 2018; Goyal et al., 2018; Shallue et al., 2019; Zhang et al., 2019) is useful for train-
ing DNNs with mini-batch SGD. In (Smith et al., 2018), it was numerically shown that using an
enormous batch size leads to a reduction in the number of parameter updates.

Decaying a learning rate (Wu et al., 2014; loffe & Szegedy, 2015; Loshchilov & Hutter, 2017;
Hundt et al., 2019) is also useful for training DNNs with mini-batch SGD. In (Chen et al., 2020),
theoretical results indicated that running SGD with a diminishing learning rate 7, = O(1/t) and
a large batch size for sufficiently many steps leads to convergence to a stationary point. A prac-
tical example of a decaying learning rate with 7,1 < 7, for all ¢ € N is a constant learning
rate 7 = 1 > 0 for all ¢ € N. However, convergence of SGD with a constant learning rate is
not guaranteed (Scaman & Malherbe, 2020). Other practical learning rates have been presented for
training DNNSs, including cosine annealing (Loshchilov & Hutter, 2017), cosine power annealing
(Hundt et al., 2019), step decay (Lu, 2024), exponential decay (Wu et al., 2014), polynomial decay
(Chen et al., 2018), and linear decay (Liu et al., 2020).

Contribution: The main contribution of the present paper is its theoretical analyses of mini-batch
SGD with batch size and learning rate schedulers used in practice satisfying the following inequality:
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where f is the empirical loss for n training samples having L,,-Lipschitz continuous gradient V f
and lower bound f*, o2 is an upper bound on the variance of the mini-batch stochastic gradient,
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and (Bt)tT;Ol is the sequence generated by mini-batch SGD with batch size b;, learning rate n; €
[Mmins Mmax] C [0, Ll) and total number of steps to train a DNN 7.

Scheduler Br Vr O(v/Br + Vr)
Case (i) (Theorem 3.1; Section 3.1) H, H, H 0 1 L 1
b, : Constant; 7, : Decay T bW T b
Case (ii) (Theorem 3.2; Section 3.2)  H; Hy 1 1
—_= — O|l—=],0|—==

b; - Increase; 1, : Decay T boT T vM
Case (iii) (Theorem 3.3; Section 3.3) Hj Hg 1 ) IMYM >
b 1 s 1 M by M o\x) Lo

¢ : Increase; 7, : Increase 0 07y 2 dr <

~

Case (iv) (Theorem 3.4; Section 3.4) Hj Hs Hg Hy 1 1
L5 M5 Mo Mo -0
b, : Increase; 7, : Increase — Decay M T  boyM T

H; (i € [6]) (resp. Hr) is a positive (resp. nonnegative) number depending on 7y,in, and 7yayx. v and
§ are such that 1 < 42 < § (e.g., § = 2 when batch size is doubly increasing every E epochs). The
total number of steps when batch size increases M times is T'(M) = ZM ~E > ME.

m=01b,,

(i) Using constant batch size b; = b and decaying learning rate n; (Theorem 3.1; Section 3.1):
Using a constant batch size and practical decaying learning rates, such as constant, cosine-annealing,
and polynomial decay learning rates, satisfies that, for a sufficiently large step 7", the upper bound
on mingepo.r—1] E[[|V f(8;)||] becomes approximately O(%) > 0, which implies that mini-batch
SGD does not always converge to a stationary point. Meanwhile, the analysis indicates that using
the cosine-annealing and polynomial decay learning rates would decrease E[||V f(6;)]|] faster than
using a constant learning rate (see (7)), which is supported by the numerical results in Figure 1.

(ii) Using increasing batch size b; and decaying learning rate n; (Theorem 3.2; Section 3.2): Al-
though convergence analyses of SGD were presented in (Vaswani et al., 2019; Fehrman et al., 2020;
Scaman & Malherbe, 2020; Loizou et al., 2021; Wang et al., 2021; Khaled & Richtarik, 2023), pro-
viding the theoretical performance of mini-batch SGD with increasing batch sizes that have been
used in practice may not be sufficient. The present paper shows that mini-batch SGD has an O(ﬁ)

rate of convergence. Increasing batch size every E epochs makes the polynomial decay and linear
learning rates become small at an early stage of training (Figure 2(a)). Meanwhile, the cosine-
annealing and constant learning rates are robust to increasing batch sizes (Figure 2(a)). Hence, it is
desirable for mini-batch SGD using increasing batch sizes to use the cosine-annealing and constant
learning rates, which is supported by the numerical results in Figure 2.

(iii) Using increasing batch size b; and increasing learning rate 7; (Theorem 3.3; Section 3.3):
From Case (ii), when batch sizes increase, keeping learning rates large is useful for training DNNs.
Hence, we are interested in verifying whether mini-batch SGD with both the batch sizes and learning
rates increasing can train DNNs. Let us consider a scheduler doubly increasing batch size (i.e.,
§ = 2). We set v > 1 such that v < v/d = v/2 and we set an increasing learning rate scheduler
such that the learning rate is multiplied by ~ every E epochs (Figure 3(a)). This paper shows that,
when batch size increases M times, mini-batch SGD has an O(~~ ¥) convergence rate that is better
than the O(ﬁ) convergence rate in Case (ii). That is, increasing both batch size and learning rate

accelerates mini-batch SGD. We give practical results (Figure 3(b); § = 2 and Figures 5, 7, 8(b);
d = 3,4) such that Case (iii) decreases ||V f(0;)|| faster than Case (ii) and tripling and quadrupling
batch sizes (§ = 3,4) decrease |V f(8;)]| faster than doubly increasing batch sizes (6 = 2).

(iv) Using increasing batch size b; and warm-up decaying learning rate 7, (Theorem 3.4; Sec-
tion 3.4): One way to guarantee fast convergence of mini-batch SGD with increasing batch sizes is
to increase learning rates (acceleration period; Case (iii)) during the first epochs and then decay the
learning rates (convergence period; Case (ii)), that is, to use a decaying learning rate with warm-up
(He et al., 2016; Vaswani et al., 2017; Goyal et al., 2018; Gotmare et al., 2019; He et al., 2019). We
give numerical results (Figure 4; 6 = 2 and Figure 6; § = 3) indicating that using mini-batch SGD
with increasing batch sizes and decaying learning rates with a warm-up minimizes ||V f(6;)|| faster
than using a constant learning rate in Case (ii) or increasing learning rates in Case (iii).
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2  MINI-BATCH SGD FOR EMPIRICAL RISK MINIMIZATION

2.1 EMPIRICAL RISK MINIMIZATION

Let & € R? be a parameter of a deep neural network; let S = {(x1,y1),...,(Tn,yn)} be the
training set, where data point x; is associated with label y;; and let f;() := f ( (xi,9:)): RY —
R, be the loss function corresponding to the i-th labeled training data (x;, yZ) Empirical risk
minimization (ERM) minimizes the empirical loss defined forall @ € R% as f(6) = + 3", e fi(0)-

This paper considers the following stationary point problem: Find 8* € R¢ such that V f(6*) = 0.
We assume that the loss functions f; (¢ € [n]) satisfy the conditions in the following assumption
(see Appendix A for definitions of functions, mappings, and notation used in this paper).
Assumption 2.1 Let n be the number of training samples and let L; > 0 (i € [n]).

(A1) f;: RY — R (i € [n]) is differentiable and L;-smooth, and f} = inf{f;(0): 0 € R} € R.

(A2) Let & be a random variable that is independent of @ € R?. ¥V fe: R? — R? is the stochastic
gradient of V f such that (i) for all @ € RY, E¢[V f¢(0)] = V f(0) and (i) there exists o > 0 such
that, for all @ € R%, V[V £¢(0)] = E¢[||V £e(0) =V £(0)|1?] < 0%, where E¢[-] denotes expectation
with respect to &.

(A3) Let b € N such that b < n; and let & = (£1,&,--+,&) " comprise b independent and
identically distributed variables and be independent of @ € RY. The full gradient V f () is estimated

as the following mini-batch gradient at 0: V f5(8) := { Ei’:l V fe, (0).

2.2  MINI-BATCH SGD

Given the ¢-th approximated parameter 8; € R? of the deep neural network, mini-batch SGD uses b;
loss functions fe, |, fe, ,,+ , f¢, ,, randomly chosen from {f1, f2, -+, fn} at each step t, where
& = (&1,62, ,&’bt)T is independent of 6; and b, is a batch size satisfying by < m. The
pseudo-code of the algorithm is shown as Algorithm 1.

Algorithm 1 Mini-batch SGD algorithm

Require: 6, ¢ R? (initial point), b; > 0 (batch size), n; > 0 (learning rate), 7' > 1 (steps)
Ensure: (6;) C R¢

1: fort=0,1,...,7 —1do

2 ViB(00) = 5 Yty Ve (60)

3: 0t+1 = 0,5 - ﬂtVth (Ot)

4: end for

The following lemma can be proved using Proposition A.1, Assumption 2.1, and the descent lemma
(Beck, 2017, Lemma 5.7): for all 1,0, € R?, f(82) < f(6:)+ <Vf(01),02—91>+%||02—01H2,
where Assumption 2.1(A1) ensures that f is L,-smooth (L,, := ; Zie[n] L;). The proof itself is
given in Appendix A.1.

Lemma 2.1 Suppose that Assumption 2.1 holds and consider the sequence (0;) generated by Algo-
rithm 1 with 1; € [Nmin, Mmax] C [0, LQT) satisfying ZZ:OI 1y # 0, where L, := % Zie[n] L; and
fr = %ZiG[n] f#. Then, forall T € N,

2(f(6o) —f*) 1 Lao® 3/ mpb
min _E [|[V/(6)] < =7 =t 57 iy
tE[O T— 1 nnmax Zt:O ’I]t nnmax Zt 0 77t
where E denotes the total expectation, defined by E := E¢ E¢, ---Eg

3 CONVERGENCE ANALYSIS OF MINI-BATCH SGD

3.1 CONSTANT BATCH SIZE AND DECAYING LEARNING RATE SCHEDULER

This section considers a constant batch size and a decaying learning rate:
by =10 (t S N) and N1 < My (t S N) (1)
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Letp > 0and T, E € N; and let iy, and nyax satisfy 0 < nmin < Nmax. Examples of decaying
learning rates are as follows: for all ¢ € [0 : T7,

[Constant LR] ¢ = Mmax, @
L TImax
Diminishing LR] n; = ——, 3
max — //min t
[Cosine-annealing LR] 1; = Nmin + % (1 + cos \‘KJ g) ) 4)
£\ P
[Polynomial Decay LR] N = (nrnax - nmin) <1 - T) + Tmin» (5)

where K = [ 7] is the number of steps per epoch, E is the total number of epochs, and the number
of steps 1" in (4) is given by T' = K E. A simple, practical decaying learning rate is the constant
learning rate defined by (2). A decaying learning rate used in theoretical analyses of deep-learning
optimizers is the diminishing learning rate defined by (3). The cosine-annealing learning rate defined
by (4) and the linear learning rate defined by (5) with p = 1 (i.e., an example of a polynomial decay
learning rate) are used in practice. Note that the cosine-annealing learning rate is updated each
epoch, whereas the polynomial decay learning rate is updated each step.

Lemma 2.1 leads to the following (the proof of the theorem is given in Appendix A.2).
Theorem 3.1 (Upper bound on min; E||V f(6;)||2 for SGD using (1)) Under the assumptions
in Lemma 2.1, Algorithm I using (1) satisfies that, for all T € N,

2(f(6o) — f*) 1 + Lyo® Ztont
2 Lnnmax Zt 0 77t 2 - Lnnmax bZt 0 ’I]t
—— N—_———

BT VT

min ]E[IIVf Dl*] <

te[0:T

where P, Nmin, Mmax, K, and E are the parameters used in (2)—~(5), T = KE = [%]Efor Polyno-
mial LR (5),

1

[Constant LR (2)]
Nmax 1
[Diminishing LR (3)]
Bp < { Hmax(yT+1-1) ©)
D — [Cosine LR (4)]
(nmin + nmax)T
P+l polynomial LR (5)]
(pnmin + nmax)T ’
Urrgax [Constant LR (2)]
Nmax (1 + log T') .
—_— > - Diminishing LR (3
S 2b(vT +1—-1) [ gLR )]
T = 3 i 2 min’//max 3 2 max — //min .
Mhnin T 2minlmax  SMinax | Thoax — 71 [Cosine LR (4]
5 24(77min + nmax)b 9 bT 9 9
2 i 2 min//max 1 1 - i .
P avin + 2Pminthmax + (P + Dilinax P+ 1) (o = hnin)  {potenomial LR (5)],
(2p + 1)(p77n1in + nmax)b (pnmin + nmax)bT

Let us consider using Constant LR (2), Cosine LR (4), or Polynomial LR (5). Theorem 3.1 indicates
that the bias term including Br converges to 0 as O(%) whereas the variance term including Vp
does not always converge to 0. Hence, the upper bound on minc(.7—1] E[||[V f(6;)||?] does not
converge to 0. In fact, Theorem 3.1 with 7 = 79,.x and 95, = 0 implies that

n [Constant LR (2)]
L, o> 3ﬂ ;
imaw, pin | B(IVS0)I] < gZF g < d, o TS e
— 400 n
m [Polynomial LR (5)].
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Since %77 < n and Eg;{)ﬁ < n (p > 0), using the cosine-annealing learning rate or the polynomial

decay learning rate is better than using the constant learning rate in the sense of minimizing the
upper bound on mineo.r—1] E[|[V f(6;)||?]. Theorem 3.1 also indicates that Algorithm 1 using Di-

minishing LR (3) converges to 0 with the convergence rate min,eo.7— 1) E[[|V f(0:)||] = O(LTO%T).

4
However, since Diminishing LR (3) defined by 7, = \/% decays rapidly (see Figure 1(a)), it would
not be useful for training DNNS in practice.

3.2 INCREASING BATCH SIZE AND DECAYING LEARNING RATE SCHEDULER

An increasing batch size is used to train DNNs in practice (Byrd et al., 2012; Balles et al., 2016;
De et al., 2017; Smith et al., 2018; Goyal et al., 2018). This section considers an increasing batch
size and a decaying learning rate following one of (2)—(5):

b < bt+1 (t c N) and Nt41 < (t c N) (8)
Examples of b, are, for example, for al m € [0 : M] and al ¢t € S,, = NN
[ ;;n:_()l KkEk;kazo KkEk) (SO =NnN [O,K()Eo)),
t C
[Polynomial growth BS] b, = (am {m-‘ +b ) , 9)
y g t Zk:o Kby 0
[Exponential growth BS] b, = 5" [Zzn:‘) Ki Pk W bo, (10)

where a € Ry4, ¢,6 > 1, and F,, and K,,, are the numbers of, respectively, epochs and steps
per epoch when the batch size is (am + bg)€ or 6™by. For example, the exponential growth batch
size defined by (10) with § = 2 makes batch size double each F,, epochs. We may modify the
parameters a and ¢ to a; and J; monotone increasing with ¢. The total number of steps for the batch
size to increase M times is T = Z o KmEm. An analy51s of Algorithm 1 with a constant batch
size by = b and decaying learning rates satlsfylng (8) is given in Section 3.1.

Lemma 2.1 leads to the following them (the proof of the theorem and the result for Polynomial BS
(9) are given in Appendix A.2).

Theorem 3.2 (Convergence rate of SGD using (8)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (8) satisfies that, for all M € N,

* T
min BV < O TD 1 Leo v
tE[OT 1] Lnnmax Zt 0 77t 2_Ln77max Zt 0 ’r]t +=0 bt
Br Vir
where T = Z%:O KmEnL; Emax = SUPpseN Sume[O:AI] Em <  +oo, Kmax
SUP preN SUPp[0: M) K,, < 400, Bt is defined as in (6), and V1 is bounded as
6 1. meaxEmax
n(z.w [Constant LR (2)]
- 0
nmameaxEmax . o . .
bo (VT +1—1 [Diminishing LR (3)]
Vr < 25,72 % } —1 ([Exponential BS (10)])
Lt T [Cosine LR (4)]
(5 - 1i(gmén +[(7]max%;bOT
(((Sp +1)2 ”ma’; max )b”‘"T [Polynomial LR (5)].
- Thmax ThminP )00

That is, Algorithm I using Exponential BS (10) has the convergence rate

0 Jlf) [Constant LR (2), Cosine LR (4), Polynomial LR (5)]
. min  E[|Vf(0)]] = 1
€[0:T—1]

1> [Diminishing LR (3)].

1

Theorem 3.2 (Theorem A.1) indicates that, with increasing batch sizes such as Polynomial BS (9)
and Exponential BS (10), Algorithm 1 using each of Constant LR (2), Cosine LR (4), and Polyno-
mial LR (5) has the convergence rate O(ﬁ), in contrast to Theorem 3.1.
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3.3 INCREASING BATCH SIZE AND INCREASING LEARNING RATE SCHEDULER

This section considers an increasing batch size and an increasing learning rate:

by <bit1 (t€N) and m < mepq (t€N). (11)
Example of b; and n; satisfying (11) is as follows: forallm € [0 : M]and allt € S,, = NN
[ZZZOI KyEy,> o KiEy) (So = NN [0, Ko Ey)),

[Exponential growth BS and LR] b; = 6 [Z?LO‘Kk Pk W bo, e = [Zzﬁ;o‘K"‘E"‘ W 10 (12)
where 6,7 > 1 such that v2 < §; and E,, and K, are defined as in (10). We may modify the
parameters v and d to be monotone increasing parameters in ¢. The total number of steps when both
batch size and learning rate increase M times is T = Z%:o K,E,,.

Lemma 2.1 leads to the following theorem (the proof of the theorem and the result for Polynomial
growth BS and LR (25) are given in Appendix A.2).

Theorem 3.3 (Convergence rate of SGD using (11)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (11) satisfies that, for all M € N,

T-1
2f(00)— /) 1 Lot 1 Ty
: 2 n t
min E[[|Vf(6,)]*] < 5T =1, 15T T—1 b
te[0:T—1] nTImax tho N nTlmax Zt:o M=o Ot
N—— N——
Br Vr

where T, Fyax, and K.« are defined as in Theorem 3.2, E;, = inf pren infme[o: M) Em < 400,
Koin = infyren inf e oo Ko < 400, 4 = % < 1,
) Vi < Kinax Emaxod .
N0 Kmin Emin Y™’ " 7 KminEminbo(1 — )y
That is, Algorithm I has the convergence rate

Br <

1
min E[|Vf(0:)]] =O (M> [Exponential growth BS and LR (12)].
te[0:T—1] VT

Under Exponential BS (10), using Exponential LR (12) improves the convergence rate from O(ﬁ)
with Constant LR (2), Cosine LR (4), or Polynomial LR (5) (Theorem 3.2) to O(\/ﬁfM) (y> 1.

3.4 INCREASING BATCH SIZE AND WARM-UP DECAYING LEARNING RATE SCHEDULER

This section considers an increasing batch size and a decaying learning rate with warm-up for a
given T,, = Zfio K, E,, > 0 (learning rate increases M,, times):

bt < bt+1 (t S N) and Nt < Nt+1 (t (S [Tw — 1]) A Nt4-1 < ur (t > T’w) (13)
Examples of b; in (13) are Exponential BS (12) and Polynomial BS (25). Examples of 7; in (13) can
be obtained by combining (12) with (2)—(5). For example, for all m € [0 : M] and all ¢ € S,,,

[Constant LR with warm-up] 7, = { 7 [wﬂ’ K’“E’”lno (m € [My)) (14)
7o (m € [My : M)
and [Cosine LR with warm-up]
N
vy e R T, (m € [My))
Tlmax — Tmin
p= T
m— m—1
t— . KkEk ™
1 Ep+ | —==0 "2 By | ———— M, : M]),
x ¢ 1+ cos Z e+ K, B B (me| D
k=0

15)

Mwpq, and 7 is defined as in (12).

where E,, is the number of warm-up epochs, Nin > 0, Pmax = 7Y

Theorems 3.2 and 3.3 lead to the following theorem.
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Theorem 3.4 (Convergence rate of SGD using (13)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (13) satisfies that, for all M € N,

1 L, o> E= 772
e 1o ] < 200~ ) T
e B O < e ST ¥ 0 Lo ST Onf;bt’
N——
Br Vr

where by is the exponential growth batch size defined by (12) with 6,7 > 1 such that v*> < §; Kupin,
Kiax, Bmin, and Ey, .« are defined as in Theorems 3.2 and 3.3;

1) 1
_l’_
nOKminEmin'YMw nmax(T - ﬂv)
BT < ) 2

[Constant LR (14)]

— + [Cosine LR (15)]
n(]KminEmin’y]\/[w (nmin + nmax)(T - Tw)
KmaxEmaxn05 677mameaxEmax
[Constant LR (14)]
Vir < KmmEmmbO(l - )’Y]\/[ ((5 — l)b()(T — Tw)
= I(max-Emaan(S 2577I2nameaxEmax

- [Cosine LR (15)].
KIIliIlEIIlinbO(l - V)VM“’ (5 - 1)(771[1111 + nrrlax)bo (T - Tw)

That is, Algorithm I has the convergence rate

1
te[g%iuﬂi IVf@)|]=0 (m> [Constant LR (14), Cosine LR (15)].

Since Algorithm 1 with (14) and (15) uses increasing batch sizes and decaying learning rates for
t > T, it has the same convergence rate as using (8) in Theorem 3.2. Meanwhile, since Algorithm
1 with (14) and (15) uses the warm-up learning rates for ¢ € [T,,], Algorithm 1 speeds up during the
warm-up period, based on Theorem 3.3. As a result, for increasing batch sizes, Algorithm 1 using
decaying learning rates with warm-up minimizes E[||V f(6;)||] faster than using decaying learning
rates in Theorem 3.2.

4 NUMERICAL RESULTS

We examined training ResNet-18 on the CIFAR100 dataset by using Algorithm 1 (see Appendices
A.5 and A.6 for training Wide-ResNet-28-10 on CIFAR100 and ResNet-18 on Tiny ImageNet). The
experimental environment was two NVIDIA GeForce RTX 4090 GPUs and Intel Core 19 13900KF
CPU. The software environment was Python 3.10.12, PyTorch 2.1.0, and CUDA 12.2. The code is
available at https://anonymous.4open.science/r/IncrBothBSLRAccelSGD.

We set the total number of epochs E = 300, the initial learning rate 9 = 0.1, and the minimum
learning rate 7y,i, = 0 in (4) and (5). The solid line in the figure represents the mean value, and the
shaded area in the figure represents the maximum and minimum over three runs.

Let us first consider the case (Figure 1(a)) of a constant batch size (b = 27) and decaying learning
rates 7, defined by (2)—(5) discussed in Section 3.1, where “linear” in Figure 1 denotes Polynomial
LR (5) with p = 1. Figure 1(b)—(d) indicate that using Diminishing LR (3) did not work well, since
it decayed rapidly and was very small (Figure 1(a)). Figure 1(b)—(d) also indicate that Cosine LR
(4) and Polynomial LR (5) performed better than Constant LR (2), as promised in the theoretical
results in Theorem 3.1 and (7).

Next, let us consider the case (Figure 2(a)) of doubly increasing batch size every 30 epochs from an
initial batch size by = 23 and decaying learning rates 7, defined by (2)-(5). Figure 2(a) indicates
that the learning rate of Polynomial LR (5) updated each step (“linear” and “polynomial (p = 2.0)”)
becomes small at an early stage of training. This is because the smaller the batch size b; is, the larger
the required number of steps K; = (ﬁ} per epoch becomes and the smaller the decaying learning
rate 17, becomes. Hence, in practice, increasing batch size is not compatible with Polynomial LR (5)
updated each step. Meanwhile, Figure 2(a) indicates Constant LR (2) (“constant”) and Cosine LR
(4) (“cosine”) were compatible with increasing batch size, since Constant LR (2) and Cosine LR (4)
updated each epoch maintain large learning rates even for small batch sizes. In particular, Figure
2(b)—(d) indicate that using Constant LR (2) performed well.
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Figure 1: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (¢) empirical loss value, and (d) accuracy
score in testing for SGD to train ResNet-18 on CIFAR100 dataset.
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Figure 2: (a) Decaying learning rates and doubly increasing batch size every 30 epochs, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD

to train ResNet-18 on CIFAR100 dataset.

Let us consider the case (Figure 3(a)) of doubly increasing batch size (§ = 2) every 30 epochs and
increasing learning rates defined by Exponential growth LR (12) with 9 = 0.1 . The parameters
in the increasing learning rates considered here were (i) v =~ 1.080 when 7. = 0.2, (1) v ~ 1.196
when nyax = 0.5, and (iii) v ~ 1.292 when ny,,x = 1.0, which satisfy the condition ’yz <d(=2)
to guarantee the convergence of Algorithm 1 (see Theorem 3.3). Figure 3 compares the result for
“constant” in Figure 2 with the ones for the increasing learning rates (i)—(iii). Figure 3(b) indicates
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Figure 3: (a) Increasing learning rates (nmax = 0.2, 0.5, 1.0) and doubly increasing batch size every
30 epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score
in testing for SGD to train ResNet-18 on CIFAR100 dataset.
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Figure 4: (a) Warm-up learning rates and doubly increasing batch size every 30 epochs, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD

to train ResNet-18 on CIFAR100 dataset.

that the larger the learning rate 7, was, the smaller the full gradient norm ||V f (6. )|| became and that
Algorithm 1 with increasing learning rates minimized the full gradient norm faster than Algorithm
1 with a constant learning rate (“constant” in Figures 2 and 3).

Let us consider the case (Figure 4(a)) of a doubly increasing batch size and decaying learning rates
(Constant LR (2) and Cosine LR (4)) with warm-up based on Figure 3(a). Figure 4(b) indicates
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that using decaying learning rates with warm-up accelerated Algorithm 1 more than using only
increasing learning rates in Figure 3(b) and only a constant learning rate in Figure 2(b).

Learning Rate and Batch Size Schedular ResNet-18 on CIFAR100

(a) Learning rate n; and batch size b; versus epochs (b) Full gradient norm ||V f(6.)|| versus epochs

ResNet-18 on CIFAR100 ResNet-18 on CIFAR100
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— 5=4.0,y=1.90

285 200 205 300

Epochs Epochs

(c) Empirical loss f(0.) versus epochs (d) Test accuracy score versus epochs

Figure 5: (a) Increasing learning rates and increasing batch sizes based on § = 2, 3,4, (b) full
gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

From the sufficient condition v? < § to guarantee convergence of Algorithm 1 with both batch size
and learning rate increasing (Theorem 3.3), we can set a larger v when 4 is large. Since Algorithm 1
has an O('y_%) convergence rate (Theorem 3.3), using triply (y = 1.5 < v/d = v/3) and quadruply
(y = 1.9 < V/§ = v/4) increasing batch sizes theoretically decreases ||V f(8.)| faster than doubly
increasing batch sizes (y = 1.080 < v/§ = v/2 when 7, = 0.2; Figure 3). Finally, we would
like to verify whether the theoretical result holds in practice. The scheduler was as in Figure 5(a)
with 79 = 0.1 and Npmax = 0.2, where schedulers were modified such that batch sizes belong to
[23,2'2] and learning rates belong to [0.1,0.2] (e.g., be = adl5) 4 band 7, = eyl + d, where
a = 0.2077,b =~ 7.7923, ¢ ~ 0.00267, and d ~ 0.09733 when § = 3 and v = 1.50 and a ~ 0.0155,
b = 7.9844, ¢ ~ 0.00031, and d ~ 0.09969 when & = 4 and v = 1.90). Figure 5(a) and (b) indicate
that the larger the increasing rate of batch size was (the cases of § = 3,4 after 180 epochs), the
larger the increasing rate of the learning rate became (v = 1.5,1.9 when § = 3,4) and the smaller
IV f(6.)| became. That is, using increasing learning rates based on tripling and quadrupling batch
sizes minimizes ||V f(0.)|| faster than using increasing learning rates based on doubly increasing
batch sizes (see also Appendix A.4). Figure 5(c) and (d) indicate that using § = 3,4 was better than
using § = 2 in the sense of minimizing f(6.) and achieving high test accuracy.

5 CONCLUSION

This paper presented theoretical analyses of mini-batch SGD under batch size and learning rate
schedulers used in practice. Our results indicated that using increasing batch sizes and decaying
learning rates guarantees convergence of mini-batch SGD and using both batch sizes and learning
rates that increase accelerates mini-batch SGD. That is, using increasing batch sizes and decaying
learning rates with warm-up guarantees fast convergence of mini-batch SGD in the sense of min-
imizing the expectation of the full gradient norm of the empirical loss. This paper also provided
numerical results to support the analysis results that increasing both batch sizes and learning rates
accelerates mini-batch SGD. One limitation of this study is that the numbers of models and datasets
in the experiments were limited. Hence, we should conduct similar experiments with larger numbers
of models and datasets to support our theoretical results.

10
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A APPENDIX

We here give the notation and state some definitions. Let N be the set of natural numbers. Define
[n] :={1,2,--- ,n}and [0 : n] := {0,1,--- ,n} forn € N. Let R? be the d-dimensional Euclidean
space with inner product (61, 0:) = 0] 0y (61,0 € R?) and its induced norm ||@]| := /{0, 6)
(0 € RY). Let R := {0 = (61,0,...,04)" € R*: 6, > 0(i € [d])} and RY, := {6 =

12
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(01,09,...,04)7 € R?: 0; > 0 (i € [d])}. The gradient of a differentiable function f: R? — R
at @ € R? is denoted by Vf(6). Let L > 0. A differentiable function f: RY — R is said to
be L-smooth if the gradient V f: R — R? is Lipschitz continuous, i.e., for all 81,0, € R4,
IVf(61) — Vf(82)|] < L||@; — 0]. Let (z),(y:) C Ry be sequences. Let O be Landau’s
symbol, i.e., y; = O(x;) if there exist ¢ € Ry and tg € N such that, for all t > tg, y¢ < cxy.

A.1 PROOFS OF PROPOSITION A.1 AND LEMMA 2.1

The following proposition holds for the mini-batch gradient.

Proposition A.1 Lett € N and &; be a random variable that is independent of §; (j € [0: ¢t — 1]);

let 0; € RY be independent of &;; let V f5,(0;) be the mini-batch gradient defined by Algorithm 1,
where f¢, , (i € [by]) is the stochastic gradient (see Assumption 2.1(A2)). Then, the following hold:

2

Ee, [V/5.(6:) b < T

§1| = V(8 and Ve, |V 15, (0))

where g, [-|€;_1] and Ve, [-|€;_1] are respectively the expectation and variance with respect to &;
conditioned on ;1 = ;1.

The first equation in Proposition A.1 indicates that the mini-batch gradient V fp, (6;) is an unbiased
estimator of the full gradient V f(6;). The second inequality in Proposition A.1 indicates that the
upper bound on the variance of the mini-batch gradient V f5, (0;) is inversely proportional to the
batch size b;.

Proof of Proposition A.1: Assumption 2.1(A3) and the independence of b; and &; ensure that

by

étfl} = Eg, [blf Zl Ve, . (0:)

Ee, |Vf5,(0:)

6],

bt
ét1‘| = %ZEEM [vfft,i(et)
=1

which, together with Assumption 2.1(A2)(i) and the independence of &; and &;_1, implies that

by
Be, [V fa,(60]é-1| = > VH(6) = V560, (16)
i=1

Assumption 2.1(A3), the independence of b; and &;, and (16) imply that

Ve, [V/.(00)|€-1] = Be, 195,80 — V1(0)]2 |61
b 2
= Be, || D Ve, 00 - V500 [és
ti=1
1 b ’
= bﬁEﬁt Z (Vfg“(et) - Vf(at)) ét—l
t i=1

From the independence of &, ; and §; ; (i # j) and Assumption 2.1(A2)(i), for all ¢, € [b,] such
that i # j,

B, [(V/e..(6:) = VS (6:),V fe, ; (6:) = VS (61)) €]
= <E§tz [fotz (Ot)‘ét—l] - E§t1 [vf(et”ét—lL vfft,,j (975) - vf(ot)>
=0.

Hence, Assumption 2.1(A2)(ii) guarantees that

o%b, o2

Ve, [V/5.(0)|é1] = bli:Eg (1 /e,.(00) = V560" [éi-] < T3+ = 5
t =1 t

which completes the proof. o

13
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Proof of Lemma 2.1: The L,-smoothness of f implies that the descent lemma holds; i.e., for all
teN,

L,
F(Br41) < f(0:) +{Vf(6:),0rr1 — 01) + =001 — 0.,
which, together with 6, := 6; — .V fp,(0;), implies that

2
F(801) < F(8) ~ m(VF(80), Vi, (80) + 5 |V £5,(80) a7

Proposition A.1 guarantees that

Be, [IV/5,(001 |é-1] = Ee, [IV £,(60) = V£(8) + V1(6)| |11
= Ee, [|V/2,(6) = V£(0)|* |11
+ 2B, [(V5,(8) = V1(6:), V £(60)

+ Ee, [va(et) ||2 ’ét—l}

0.2

< T+ IVIO)I.

Taking the expectation conditioned on &;_1 = ét_l on both sides of (17), together with Proposition
A.1 and (18), guarantees that, for all £ € N,

Ee, {f(@sﬂ)‘ét—l} < f(6:) — niEe, {<Vf(9t), VB, (et)>‘ét—1}

L,n? -
+ B, [IV 5,001 €]

< 700~ n 19501 + 25 (T4 Vs ).

Hence, taking the total expectation on both sides of the above inequality ensures that, for all t € N,
Lno?n?

- (1 - Lg”t) E [IV(8)IF] < E[£(6) — FBe)] + =5

Let T' € N. Summing the above inequality from ¢ = 0 to ¢t = T' — 1 ensures that

ét—l} (18)

T—1 I ) L 0_2 T—-1 772
Sn (1- 552 ) e [Ivs601] < Elr(60) - 160+ Z5 S
t=0
which, together with Assumption 2.1(A1) (the lower bound f* := % Zie[n] f7 of f), implies that
-1 T-1
L,n L,o? n?
S (1- 55" ) & [Iv001] < se60) - 1+ T,
2 2 by
t=0 t=0
Since 1 € [Mmin, Pmax)> We have that
Lnlmas nU2 &y
(1- 2) Z wE [IV1(8)1] < £60) - >

which, together with 77; € [1)min, nmax] C [0, 7 ), implies that

T-1 T-1
2(f(60) — f*) Lno® i
E E |V 2 < — Ly b
= n {H f(ot)” } 2 — LypMmax 2 n7max t=0 b

Therefore, from th:ol e # 0, we have

2(f(60) = f*) 1 Lyo® Y nQb '
min E[|[V/(00)|*) < 57 - t5] =
te0:T—1] nTmax tho e — LipTmax Zt 0 Nt
which implies that the assertion in Lemma 2.1 holds. o

; 19)

14
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A.2 PROOFS OF THEOREMS
We can also consider the case where batch sizes decazf. For simplicity, let us set a constant learning
rate )y = 7) > 0 and a decaying batch size b, = 75, where b > 0. Then, we have that Vp <

2 Zt o bt = ’7<T+1) — 400 (T' — +00), which implies that convergence of mini-batch SGD is
not guaranteed. Accordmgly, this paper focuses on the four cases in the main text.

Proof of Theorem 3.1: Let max = 1.

[Constant LR (2)] We have that
T-1
Br——t =L oy
Zt o nt bZt o b

[Diminishing LR (3)] We have that

T
dt
> =2WT+1-1
1_/0\/t+1 (VT + )

which implies that

1 1
Br T—1 S :
o \/;’Tl p(vT+1-1)
‘We also have that
T—1

1 =1

—— <1 —— =1+logT
Zt+1_ +/0 t+1 +log L,
which implies that

7721: 0 t}rl < (1—|—logT)
bz 2b(vT+1-1)

[Cosine LR (4)] We have
KE-1 KE-1 {

ax — i ax — i t m
Z T}t — nminKE + nmw 2 nmln KE + nmu 2 nmln tz:; cos KJ E
From 1% cos| £ | & = K — 1, we have

KE-1

t|m
E: | oK —-1- =K. 20
2 cos {KJ 5 COS T (20)

We thus have
KE—1 e o
Z ne = nminKE + Tlmax . Jmin KE + Tlmax 5 77m1nK
t=0
1
== 5{(77min + nmax)KE + (nmax - nmin)K}

Z (nmin + Zmax)KE )

Moreover, we have that

KE-1 KE-1 " .
tz:; nt2 = 7712ninKE + nmin(nmax - nrnin) tz:: (1 -+ cos \‘KJ E)

0
KE-1 2
(T}Inax - nrnin)Q . t ™
e 2 (e | g )
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which implies that

KE-1 (n 0 )2 KE-1 P
2 Ulmax 7 Hmin) . . I
Z Ny = 77m1n77maxKE + 1 KE + 77m1n(77max 77m1n) Z Ccos LKJ E
t=0 t=0
KE-1 KE-1
(nmax - nnlin)2 t ™ (nmax - nmin)Q 2 t ™
+ 5 tz:% cos X E + 1 ; cos % B
From
KE KE
t|m 1 t| 7w
2 _t N
Zcos {KJ =3 Z (1+0052 \‘KJ E>
t=0 t=0
1 1
= (KE+1 —
2( 1)+ 2
= KE +1
= ,
we have

&Y L1t | n KE , KE
Zcos — | —==—+4+1—cos W:T.

K| FE 2
t=0
From (20), we have
KE—-1 2 2 2
2 (nmin + nmax) (nmax - nmin) (nmax - nmin) KE
= ———KF min\”/max — 7Jmin I
; i 1 + Tnin (Tmasx — Nmin) + 5 + 1 5

_ 3771211111 + 277min77max + 37712,13)( KE + (nmax - nmin)(nmax + 77min)
8 2 ’

Hence, we have

1 2
Br = — <
fi% 1 Mt (nmin + nmax)KE
and
KE—-1
VT _ +=0 77262 < 377r2nin + 277min77max + Sn?nax + Tlmax — "Jmin )
b ZfiEo‘il nt - 4(77n11n + nmax)b bKE

[Polynomial LR (5)] Since f(x) = (1 — x)? is monotone decreasing for z € [0, 1), we have that

/01(1—3;)de< ;Til(l—;)p,

t=0

which implies that

1 T-1 t\?
T/O (1—x)pdx<Z(1—T> ) 1)

=0
Since f01(1 — x)Pdx = TL, (21) implies that
Til < Lt )” T
Pt T p+1
Accordingly,
T-1 T-1 £\?
Z m = (nmax - nmin) Z <1 - T) + nminT
t=0 t=0
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minT
T

_ (nma; ; ?mln + nlnin) T
— Thmax + nmiin
p+1

T
> Thmax — Tlmin) — 7
( ) 5

Since f(z) = (1 — )P and g(z) = (1 — x)?P are monotone decreasing for = € [0, 1), we have that

1 A 1= t\? 1 ! )
- 1—— - 1—z)Pdz, — 1— — - 1—x)%d
Tt_o( T) <T+/O( ) $7TZ( T) <T+/O( x)Pdz,

which imply that

T-1 £\ 7 1 T-1 ¢ 2p 1 )
Z<1—T> <1+T/0 (1 - z)Pdz, Z<1—T> <1+T/0 (1—a)*dz.  (22)

t=0 t=0

Since we have that f (1 —x)Pdz = ﬁ and fo (1—z)*dz = (22) ensures that

1
2p+1°

_ T-1 2p T
Z(l—) <1+ ,Z(l—) <1+2p+1.

t=0

Hence,

T-1 t 2p T-—1 ¢ P
Z e = nmax nmin)2 Z (1 - T) + 2("71‘(13»)( - nmin) Z (1 - T) Tlmin + 7712ninT

t=0 t=0

T
2 2
< max min 1 2 max min 1 min min
(n Tmin) < % 1) (n Tmin) ( + 1) Nmin + Mminl

_ 7712nax(p + 1)(2p + T + 1) + 277max77miin + nrznin(2p (T - 1) B 3]9 - 1)
(p+1)2p+1) '

Therefore,
1 1
Bp = p+
Zt 0 Tt (nmax + nminp)T
and
T-1
Vp = £=t=0 Tt TIt
bZt o Tt

— nmaX(p + 1)(2p + T + 1) + 2nmaxnmiin + 77121[11n(2p2(T — 1) — 3p — 1)
(2p + 1)(77max + nminp)bT
2p27]r2nin + 2PNminMmax + (p + 1)771211ax 4 (p + 1)(2p + 1)"12nax — (p + 1)(2p + 1)7712111n

(2p + 1) (Pmin + Tmax )b (2p + 1) (PNmin + Mmax)0T
29”0kt 2P mintmax + (P + DPax | 0+ D (0R0x — Mhin)
(2p + 1) (Phmin + Mmax)b (Pmin + Nmax)0T
This completes the proof. O

We will now show the following theorem, which includes Theorem 3.2.

Theorem A.1 (Convergence rate of SGD using (8)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (8) satisfies that, for all M € N,

2(f(80) — f* 1 L,o? =
min (Vi@ < A0 L, b >
te[0:T—1] nTmax Zt:O un nTmax Zt o Mt i—o
—_———
BT VT
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where T = Zn]\f:o KB, Emax = SUDpyenySUPpejon) Bm < 400, Kiax
SUP a7 eN SUPpe(0:] Fm < 00, @ = min{a, by}, Br is defined as in (6), and Vr is given by

m XKIII XEIH X

37“# [Constant LR (2)]
aC

1. XKHI' XEnl' X . . . .

SZC (a\/T;—:l — ;) [Diminishing LR (3)]
Vr < 6112 Koo ([Polynomial BS (9)])
: (m"“‘ i“”‘ m;; [Cosine LR (4)]
a~(T"min Tlmax
3 1 2 KmaxEmax .
(p +( )nmi‘ 77 [Polynomial LR (3)]

a~(Tmax ThminP
5 mameaxEmax
W [Constant LR (2)]

—1)bg
6nmaxKnlaxEmax . . . .
b+ 1—1 [Diminishing LR (3)]
Vr < 25772) 0 Kma:?Em; ) ([Exponential BS (10)])
= 1)?1;"_ r——T [Cosine LR (4)]
+ 1)d EnameaxEmax .
(((Sp_ 1)27777 o e [Polynomial LR (3))
max min

That is, Algorithm 1 using each of Polynomial BS (9) and Exponential BS (10) has the convergence

rate
1
o \/T) [Constant LR (2), Cosine LR (4), Polynomial LR (5)]
,min B[V f(6)]] = 1
€lo:7-1] 10) 1> [Diminishing LR (3)].
Tz
Proof of Theorem A.I: Let M € N and T = Zm o KmEm, where Enp., =
SUPpeN Sume[O:]\/l] Em < +00, Kmﬂx = SUPjseN Sume[O:]\/f] Km < 00, SO =Nn [O? KOEO)
and S, = NN | Z‘:_Ol KyEi, Y 1o KiEr) (m € [M]). Let us consider using (9). Let njyax =7
and a = min{a, by }.
[Constant LR (2)] Let m € [M]. We have that
DD - <Y
fESm teESm (am [m—‘ + bo) €s,, a‘m¢ ’V el gKkEk—‘
S Z ]- < 1 K E. < Km'lem'lxi S Knannnxi
ame acmc me° ac me
tESm
and
Z Z bi max max.
tESo teSo
Accordingly, we have that
M “+o0
1 KmaxEmax ]' KmaxEmax 1
>3 e Mo (1 57 L) < St (1 57 1)
a m a
m=0teS,, m=1 m=1 (23)
SKmaxEmax
a¢
Hence, we have that
T-1
1 "72 SnKmaxEmax
Vr = 7= Z - S c :
>0 M 1= by a°T
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[Diminishing LR (3)] From (23), we have that

1 T—1 772
Vi =
Ty 2 (t+1)bt
t= 0 \/ﬁ t=0
n 1 37]KmaxEmax

— <

< ———— .
2WT+1-1) = by =~ 2ac(VT +1-1)
[Cosine LR (4)] The cosine LR is defined for all m € [0 : M] and all ¢ € S,,, by

m—1 m—1
o Tlmax — 7Tlmin t— 2 n—o KrEk ™
Mt = Mmin + 72 {1 + cos (Z Ek —+ \‘m AEM .

k=0
‘We have that
T-1

Bl V)

U 1
t=0 "t z::ob

which, together with (23), implies that

T-—1
M MK Finax
t=0 ac
Hence, we have that
V Z nt 67]mameaxEmax
t 0 Mt +=0 B ac nmlﬂ +T]de)T'
[Polynomial LR (5)] We have that
T—-1 o P 2 T—1
s t 2 1
7 max min J— min S max 7
20 §bt{” S (1-7) e} <

which, together with (23), 1mplies that

2
t

d

aC

& \

Hence, we have that

T-1
1 ntz < 3(p + 1)771211ameaxEmax

Vr = <
Zt 0 un =0 bt Qc(nnlax+nminp)T

Let us consider using (10). Let nymax = 0.
[Constant LR (2)] We have that

1 ]‘ KInaXElnaX
Z Z [ ‘ —‘ Z om bO 5mby ’
bo

tESm teESm 6 o Kk Bk teESm

which implies that

M M
1 E 1 Knax Emaxd
Z Z - max Z . S max{“max ) (24)
m=0tesS,, b m=0 57” bo (6 - 1)
Hence, we have that
T-1
1 2 KmaxEmaX(S
Vi = Z n < n
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[Diminishing LR (3)] From (24), we have that

V ]- Til 772 < TZ 1 nKmaxEmaxa
T = < — .
Zt o \/F pore (t+1)b; 2(\/T+1—1) prt by — 2(VT +1—1)be(6 — 1)
[Cosine LR (4)] We have that
T-1 T-1
3 < S,
t=0 ¢ t=0 be
which, together with (24), implies that
S M s B max Binaxd
b bo(6 — 1)
Hence, we have that
1 R 20 K Pad

Vr = < .
Zt —0 "t +—0 bt (5_ 1)(77min +77max)b0T

[Polynomial LR (5)] We have that

T-1 o T-1 p 2 T—1
n; 1 t 9 1
7 = e max — //min I — min < max T
;bt ;bt{(n n )( T) +1n } 7 2.5,
which, together with (24), implies that
T—1
pard by — bo(é— 1)
Hence, we have that
2 KmaxEmax(S
VT Z un < )nmax
Zt 0 Mt t—0 f )(nmax+77m111p)b0

Example of b; and 7, satisfying (11) is as follows:
[Polynomial growth BS and LR]

by = ! Tho) = ! i) 2
t = | a1m m 0 , e = | azm m Mo s

where a1,as > 0;¢1 > 1, co > 0 such that ¢; — 2¢o > 1.

We next show the following theorem, which includes Theorem 3.3.

Theorem A.2 (Convergence rate of SGD using (11)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (11) satisfies that, for all M € N,

T—
2(f(60) = f*) 1 Lno® i
min E [[V/(0)]7] < 120 o 7 Z 30
tc[0:T—1] 2 nTlmax Zt:O Nt 2 — LypMmax Zt o Mt =0
—_——
Br Vr
where T = Z%ZO Ky Epm, Emax = SUPareN SUPme(0: M) By < 400, Enin
infMENinfmG[O:M] En < +00, Kpax = SUPpseN SUPme(0: M) Km < 400, Kuin =
infpreninf i) Km < 400, = minfag,no}, 7 = max{az, o}, b = minf{ay,bo},
2
i=3 <
1+co .
o Ko By M55 [Polynomial growth BS and LR (25)]
BT S A IIIIIS min

m [Exponential growth BS and LR (12)]
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2KmaxEmax(1 + 62)ﬁ262

[(mimElr‘ﬂinT]Czbc1 M1ite:
KmaxEmaan(S

[(mmE‘mmbO(1 - ) M

[Polynomial growth BS and LR (25)]
Vr <

[Exponential growth BS and LR (12)].

That is, Algorithm I has the convergence rate

(0] ) [Polynomial growth BS and LR (25)]
min  ENVF@IN=1 ﬂ{)

te[0:T—1]

[Exponential growth BS and LR (12)].

Proof of Theorem A2: let M € N and T = Z%

SUP preN SUPme|o: M] E < +00, Knax = SUD p/en SUpP,,efo:M] £om <
and Sm—Nﬁ[ KkEk'aZk OKkEk) (m € [ ])

[Polynomial growth BS and LR (25)] We have that

= 0 5 o] )2 S e

tESm teESm teSm

o KmEm, where Eg., =
00, Sp :=NNJ0, Ko Ey),

which, together with n = min{as, 70}, implies that

STz S (A 1) 2 4% Ko Eanin (m + 1)

tESm te€Sm
Hence,
M+1
T] KIHIHEII]H] 1
E E n > 7) 2 K min Emin E m > = 1tec = Mlite
m=0teSsS,, 2

‘We also have that

262
t — C:
sty (s o) i,

C1 — C1
tESm tes,, (alm [m—‘ + bo) e (arm + bo)
Let 7 = max{as, 7o} and b = min{ay, by }. Then,
M 2 —=2co M m+1 2¢s —2c, M+1 1
S 3 B K T S kTS
by b (m+ 1) I3 me1—2ca
m=0teS,, m=0 —
< 2KmaxEmaxﬁ262
= T
Hence,
1 1+4+¢
Br = < . 2 T
Zt o™ ﬂ ZKminEminM 2
and

Z 2 2K1naxEmax(]- + 02)77262

Vp = .
bt o I(minlz‘minﬂwbq]\41—i_c2

t077tt0

[Exponential growth BS and LR (12)] We have that

Z Z e = Z Z v ’VZIT OKkEk_‘nD > UOKmlnEmm Z ’Y

m=0teS,, m=0teS,,
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M M M
v -1 nOKminEmin'}/ nOKminEmin’V
= NoKminEmi > >
7104 minL/min N — 1 72 S
and

M 2 M 2m’7 i OthEk—‘ 2 2 M 2m
Z bit = Z 7 o < KmaxErnaxbio Z ’gim

m=0t€S,, ¢  m=0teS,, 5m{2?:0thEk-‘ b 0 m=o0

2
where 4 = &= < 1. Hence,

= <
ZtT 01 Mt nOKminEmin’yM

and

T-1
ﬁ < KnlaxEnlaan(s

Vi = < 0 '
Zt o ™ +=o bt KminEminb()(l —’y)’yM

Proof of Theorem 3.4: Theorem 3.4 follows immediately from Theorems 3.2 and 3.3.

A.3 COMPARISONS OF CASE (I1) WITH CASES (IIT) AND (IV) FOR TRAINING RESNET-18 ON
CIFAR100 USING INCREASING BATCH SIZE BASED ON § = 3

Batch Size

Batch Size (6=3.0)

Leaming Rate and Batch Size Schedular ResNet-18 on CIFAR100
— constant
04 easing (y=1.70)

100 — constant
increasing
— wam\upcunstan(
incre 2
—— warmup constant (y =1.70)
— warmup cosine (y=1.70)
02 \
2

Learning Rate
S

Full Gradient Norm of Empirical Loss for Trainint

[ 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs

(a) Learning rate 7, and batch size b; versus epochs (b) Full gradient norm ||V f (6. )|| versus epochs

ResNet-18 on CIFAR100 ResNet-18 on CIFAR100

— constant

ing

Empirical Loss Value for Traini

— constant
increasing
—— warmup constant

[ 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs

(c) Empirical loss f(6.) versus epochs (d) Test accuracy score versus epochs

Figure 6: (a) Increasing learning rates (7,;;, = 0.01) and increasing batch sizes based on § = 3, (b)
full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for
SGD to train ResNet-18 on CIFAR100 dataset.

Figures 2—4 compare Case (ii) with Cases (iii) and (iv) for training ResNet-18 on CIFAR100 using
increasing batch size based on § = 2.
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A4

TRAINING RESNET-18 ON CIFAR10 AND CIFAR100 USING DOUBLING, TRIPLING,
AND QUADRUPLING BATCH S1ZES

Learning Rate and Batch Size Schedular

9

Empirical Loss Value for Trainint
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Batch Size

(a) Learning rate 7, and batch size b; versus epochs

ResNet-18 on CIFAR10

— constant
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— 6=40,y=190

150
Epochs
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(c) Empirical loss f(0.) versus epochs

ining

Full Gradient Norm of Empirical Loss for Trai

Accuracy Score for Test

ResNet-18 on CIFAR10

100 150

Epochs

o 50 200 250

(b) Full gradient norm ||V f(6.)|| versus epochs

ResNet-18 on CIFAR10

150 200

Epochs

(d) Test accuracy score versus epochs

Figure 7: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((d,v) =
(2,1.4),(3,1.7), (4,1.9) satisfying v/§ > ) every 100 epochs, (b) full gradient norm of empirical
loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR10 dataset.
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(a) Learning rate 7, and batch size b; versus epochs

ResNet-18 on CIFAR100
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Epochs

(b) Full gradient norm ||V f(0.)|| versus epochs

ResNet-18 on CIFAR100
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200 250

(d) Test accuracy score versus epochs

Figure 8: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((d,v) =
(2,1.4),(3,1.7), (4, 1.9) satisfying v/d > +) every 100 epochs, (b) full gradient norm of empirical
loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR100 dataset.
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A.5 TRAINING WIDE-RESNET-28-10 oN CIFAR100

Leaming Rate and Batch Size Schedular
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(a) Learning rate 7, and batch size b versus epochs
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(c) Empirical loss f(6.) versus epochs
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Figure 9: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.
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(d) Test accuracy score versus epochs

Figure 10: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train

Wide-ResNet-28-10 on CIFAR100 dataset.
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Leaming Rate

Empirical Loss Value for Training
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Figure 11: (a) Increasing learning rates (ny,,x = 0.2,0.5,1.0) and increasing batch size every 30
epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in
testing for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.
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Figure 12: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (¢) empirical loss value, and (d) accuracy score in testing for SGD to train
Wide-ResNet-28-10 on CIFAR100 dataset.
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Learning Rate and Batch Size Schedular Wide-ResNet-28-10 on CIFAR100
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Figure 13: (a) Increasing learning rates and increasing batch sizes based on § = 2, 3,4, (b) full
gradient norm of empirical loss, (c¢) empirical loss value, and (d) accuracy score in testing for SGD
to train Wide-ResNet-28-10 on CIFAR100 dataset.

A.6 TRAINING RESNET-18 ON TINY IMAGENET

Learning Rate and Batch Size Schedular ResNet-18 on Tiny ImageNet
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Figure 14: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train ResNet-18 on Tiny ImageNet dataset.
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Learning Rate and Batch Size Schedular ResNet-18 on Tiny ImageNet
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Figure 15: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
ResNet-18 on Tiny ImageNet dataset.
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Figure 16: (a) Increasing learning rates (max = 0.2,0.5,1.0) and increasing batch size every 30
epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in
testing for SGD to train ResNet-18 on Tiny ImageNet dataset.
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Figure 17: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
ResNet-18 on Tiny ImageNet dataset.
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(c) Empirical loss f(0.) versus epochs
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Figure 18: (a) Increasing learning rates and increasing batch sizes based on § = 2, 3,4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on Tiny ImageNet dataset.
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