
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INCREASING BOTH BATCH SIZE AND LEARNING RATE
ACCELERATES STOCHASTIC GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of mini-batch stochastic gradient descent (SGD) strongly de-
pends on setting the batch size and learning rate to minimize the empirical loss in
training the deep neural network. In this paper, we present theoretical analyses of
mini-batch SGD with four schedulers: (i) constant batch size and decaying learn-
ing rate scheduler, (ii) increasing batch size and decaying learning rate scheduler,
(iii) increasing batch size and increasing learning rate scheduler, and (iv) increas-
ing batch size and warm-up decaying learning rate scheduler. We show that mini-
batch SGD using scheduler (i) does not always minimize the expectation of the
full gradient norm of the empirical loss, whereas it does using any of schedulers
(ii), (iii), and (iv). Furthermore, schedulers (iii) and (iv) accelerate mini-batch
SGD. The paper also provides numerical results of supporting analyses showing
that using scheduler (iii) or (iv) minimizes the full gradient norm of the empirical
loss faster than using scheduler (i) or (ii).

1 INTRODUCTION

Mini-batch stochastic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003;
Nemirovski et al., 2009; Ghadimi & Lan, 2012; 2013) is a simple and useful deep-learning opti-
mizer for finding appropriate parameters of a deep neural network (DNN) in the sense of minimizing
the empirical loss defined by the mean of nonconvex loss functions corresponding to the training set.

The performance of mini-batch SGD strongly depends on how the batch size and learning rate
are set. In particular, increasing batch size (Byrd et al., 2012; Balles et al., 2016; De et al., 2017;
Smith et al., 2018; Goyal et al., 2018; Shallue et al., 2019; Zhang et al., 2019) is useful for train-
ing DNNs with mini-batch SGD. In (Smith et al., 2018), it was numerically shown that using an
enormous batch size leads to a reduction in the number of parameter updates.

Decaying a learning rate (Wu et al., 2014; Ioffe & Szegedy, 2015; Loshchilov & Hutter, 2017;
Hundt et al., 2019) is also useful for training DNNs with mini-batch SGD. In (Chen et al., 2020),
theoretical results indicated that running SGD with a diminishing learning rate ηt = O(1/t) and
a large batch size for sufficiently many steps leads to convergence to a stationary point. A prac-
tical example of a decaying learning rate with ηt+1 ≤ ηt for all t ∈ N is a constant learning
rate ηt = η > 0 for all t ∈ N. However, convergence of SGD with a constant learning rate is
not guaranteed (Scaman & Malherbe, 2020). Other practical learning rates have been presented for
training DNNs, including cosine annealing (Loshchilov & Hutter, 2017), cosine power annealing
(Hundt et al., 2019), step decay (Lu, 2024), exponential decay (Wu et al., 2014), polynomial decay
(Chen et al., 2018), and linear decay (Liu et al., 2020).

Contribution: The main contribution of the present paper is its theoretical analyses of mini-batch
SGD with batch size and learning rate schedulers used in practice satisfying the following inequality:

min
t∈[0:T−1]

E [∥∇f(θt)∥] ≤
{
2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

} 1
2

,

where f is the empirical loss for n training samples having Ln-Lipschitz continuous gradient ∇f
and lower bound f⋆, σ2 is an upper bound on the variance of the mini-batch stochastic gradient,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and (θt)
T−1
t=0 is the sequence generated by mini-batch SGD with batch size bt, learning rate ηt ∈

[ηmin, ηmax] ⊂ [0, 2
Ln

), and total number of steps to train a DNN T .

Scheduler BT VT O(
√
BT + VT)

Case (i) (Theorem 3.1; Section 3.1) H1

T

H2

b
+

H7

bT
O

(√
1

T
+

1

b

)
bt : Constant; ηt : Decay

Case (ii) (Theorem 3.2; Section 3.2) H3

T

H4

b0T
O

(
1√
T

)
, O

(
1√
M

)
bt : Increase; ηt : Decay

Case (iii) (Theorem 3.3; Section 3.3) H5

γM

H6

b0γM
O

(
1

γ
M
2

)
(*) ∃m̄∀M ≥ m̄

bt : Increase; ηt : Increase 1

γ
M
2

< 1√
M

Case (iv) (Theorem 3.4; Section 3.4) H5

γM
→ H3

T

H6

b0γM
→ H4

b0T
O

(
1

γ
M
2

)
→ O

(
1√
T

)
bt : Increase; ηt : Increase → Decay

Hi (i ∈ [6]) (resp. H7) is a positive (resp. nonnegative) number depending on ηmin and ηmax. γ and
δ are such that 1 < γ2 < δ (e.g., δ = 2 when batch size is doubly increasing every E epochs). The
total number of steps when batch size increases M times is T (M) =

∑M
m=0⌈

n
bm

⌉E ≥ ME.

(i) Using constant batch size bt = b and decaying learning rate ηt (Theorem 3.1; Section 3.1):
Using a constant batch size and practical decaying learning rates, such as constant, cosine-annealing,
and polynomial decay learning rates, satisfies that, for a sufficiently large step T , the upper bound
on mint∈[0:T−1] E[∥∇f(θt)∥] becomes approximately O(1√

b
) > 0, which implies that mini-batch

SGD does not always converge to a stationary point. Meanwhile, the analysis indicates that using
the cosine-annealing and polynomial decay learning rates would decrease E[∥∇f(θt)∥] faster than
using a constant learning rate (see (7)), which is supported by the numerical results in Figure 1.

(ii) Using increasing batch size bt and decaying learning rate ηt (Theorem 3.2; Section 3.2): Al-
though convergence analyses of SGD were presented in (Vaswani et al., 2019; Fehrman et al., 2020;
Scaman & Malherbe, 2020; Loizou et al., 2021; Wang et al., 2021; Khaled & Richtárik, 2023), pro-
viding the theoretical performance of mini-batch SGD with increasing batch sizes that have been
used in practice may not be sufficient. The present paper shows that mini-batch SGD has an O(1√

T
)

rate of convergence. Increasing batch size every E epochs makes the polynomial decay and linear
learning rates become small at an early stage of training (Figure 2(a)). Meanwhile, the cosine-
annealing and constant learning rates are robust to increasing batch sizes (Figure 2(a)). Hence, it is
desirable for mini-batch SGD using increasing batch sizes to use the cosine-annealing and constant
learning rates, which is supported by the numerical results in Figure 2.

(iii) Using increasing batch size bt and increasing learning rate ηt (Theorem 3.3; Section 3.3):
From Case (ii), when batch sizes increase, keeping learning rates large is useful for training DNNs.
Hence, we are interested in verifying whether mini-batch SGD with both the batch sizes and learning
rates increasing can train DNNs. Let us consider a scheduler doubly increasing batch size (i.e.,
δ = 2). We set γ > 1 such that γ <

√
δ =

√
2 and we set an increasing learning rate scheduler

such that the learning rate is multiplied by γ every E epochs (Figure 3(a)). This paper shows that,
when batch size increases M times, mini-batch SGD has an O(γ−M

2) convergence rate that is better
than the O(1√

M
) convergence rate in Case (ii). That is, increasing both batch size and learning rate

accelerates mini-batch SGD. We give practical results (Figure 3(b); δ = 2 and Figures 5, 7, 8(b);
δ = 3, 4) such that Case (iii) decreases ∥∇f(θt)∥ faster than Case (ii) and tripling and quadrupling
batch sizes (δ = 3, 4) decrease ∥∇f(θt)∥ faster than doubly increasing batch sizes (δ = 2).

(iv) Using increasing batch size bt and warm-up decaying learning rate ηt (Theorem 3.4; Sec-
tion 3.4): One way to guarantee fast convergence of mini-batch SGD with increasing batch sizes is
to increase learning rates (acceleration period; Case (iii)) during the first epochs and then decay the
learning rates (convergence period; Case (ii)), that is, to use a decaying learning rate with warm-up
(He et al., 2016; Vaswani et al., 2017; Goyal et al., 2018; Gotmare et al., 2019; He et al., 2019). We
give numerical results (Figure 4; δ = 2 and Figure 6; δ = 3) indicating that using mini-batch SGD
with increasing batch sizes and decaying learning rates with a warm-up minimizes ∥∇f(θt)∥ faster
than using a constant learning rate in Case (ii) or increasing learning rates in Case (iii).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 MINI-BATCH SGD FOR EMPIRICAL RISK MINIMIZATION

2.1 EMPIRICAL RISK MINIMIZATION

Let θ ∈ Rd be a parameter of a deep neural network; let S = {(x1,y1), . . . , (xn,yn)} be the
training set, where data point xi is associated with label yi; and let fi(·) := f(·; (xi,yi)) : Rd →
R+ be the loss function corresponding to the i-th labeled training data (xi,yi). Empirical risk
minimization (ERM) minimizes the empirical loss defined for all θ ∈ Rd as f(θ) = 1

n

∑
i∈[n] fi(θ).

This paper considers the following stationary point problem: Find θ⋆ ∈ Rd such that ∇f(θ⋆) = 0.

We assume that the loss functions fi (i ∈ [n]) satisfy the conditions in the following assumption
(see Appendix A for definitions of functions, mappings, and notation used in this paper).
Assumption 2.1 Let n be the number of training samples and let Li > 0 (i ∈ [n]).

(A1) fi : Rd → R (i ∈ [n]) is differentiable and Li-smooth, and f⋆
i := inf{fi(θ) : θ ∈ Rd} ∈ R.

(A2) Let ξ be a random variable that is independent of θ ∈ Rd. ∇fξ : Rd → Rd is the stochastic
gradient of ∇f such that (i) for all θ ∈ Rd, Eξ[∇fξ(θ)] = ∇f(θ) and (ii) there exists σ ≥ 0 such
that, for all θ ∈ Rd, Vξ[∇fξ(θ)] = Eξ[∥∇fξ(θ)−∇f(θ)∥2] ≤ σ2, where Eξ[·] denotes expectation
with respect to ξ.

(A3) Let b ∈ N such that b ≤ n; and let ξ = (ξ1, ξ2, · · · , ξb)⊤ comprise b independent and
identically distributed variables and be independent of θ ∈ Rd. The full gradient ∇f(θ) is estimated
as the following mini-batch gradient at θ: ∇fB(θ) :=

1
b

∑b
i=1 ∇fξi(θ).

2.2 MINI-BATCH SGD

Given the t-th approximated parameter θt ∈ Rd of the deep neural network, mini-batch SGD uses bt
loss functions fξt,1 , fξt,2 , · · · , fξt,bt randomly chosen from {f1, f2, · · · , fn} at each step t, where
ξt = (ξt,1, ξt,2, · · · , ξt,bt)⊤ is independent of θt and bt is a batch size satisfying bt ≤ n. The
pseudo-code of the algorithm is shown as Algorithm 1.
Algorithm 1 Mini-batch SGD algorithm

Require: θ0 ∈ Rd (initial point), bt > 0 (batch size), ηt > 0 (learning rate), T ≥ 1 (steps)
Ensure: (θt) ⊂ Rd

1: for t = 0, 1, . . . , T − 1 do
2: ∇fBt(θt) :=

1
bt

∑bt
i=1 ∇fξt,i(θt)

3: θt+1 := θt − ηt∇fBt(θt)
4: end for

The following lemma can be proved using Proposition A.1, Assumption 2.1, and the descent lemma
(Beck, 2017, Lemma 5.7): for all θ1,θ2 ∈ Rd, f(θ2) ≤ f(θ1)+⟨∇f(θ1),θ2−θ1⟩+ Ln

2 ∥θ2−θ1∥2,
where Assumption 2.1(A1) ensures that f is Ln-smooth (Ln := 1

n

∑
i∈[n] Li). The proof itself is

given in Appendix A.1.
Lemma 2.1 Suppose that Assumption 2.1 holds and consider the sequence (θt) generated by Algo-
rithm 1 with ηt ∈ [ηmin, ηmax] ⊂ [0, 2

Ln
) satisfying

∑T−1
t=0 ηt ̸= 0, where Ln := 1

n

∑
i∈[n] Li and

f⋆ := 1
n

∑
i∈[n] f

⋆
i . Then, for all T ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt

+
Lnσ

2

2− Lnηmax

∑T−1
t=0 η2t b

−1
t∑T−1

t=0 ηt
,

where E denotes the total expectation, defined by E := Eξ0Eξ1 · · ·Eξt .

3 CONVERGENCE ANALYSIS OF MINI-BATCH SGD

3.1 CONSTANT BATCH SIZE AND DECAYING LEARNING RATE SCHEDULER

This section considers a constant batch size and a decaying learning rate:
bt = b (t ∈ N) and ηt+1 ≤ ηt (t ∈ N). (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let p > 0 and T,E ∈ N; and let ηmin and ηmax satisfy 0 ≤ ηmin ≤ ηmax. Examples of decaying
learning rates are as follows: for all t ∈ [0 : T],

[Constant LR] ηt = ηmax, (2)

[Diminishing LR] ηt =
ηmax√
t+ 1

, (3)

[Cosine-annealing LR] ηt = ηmin +
ηmax − ηmin

2

(
1 + cos

⌊
t

K

⌋
π

E

)
, (4)

[Polynomial Decay LR] ηt = (ηmax − ηmin)

(
1− t

T

)p

+ ηmin, (5)

where K = ⌈n
b ⌉ is the number of steps per epoch, E is the total number of epochs, and the number

of steps T in (4) is given by T = KE. A simple, practical decaying learning rate is the constant
learning rate defined by (2). A decaying learning rate used in theoretical analyses of deep-learning
optimizers is the diminishing learning rate defined by (3). The cosine-annealing learning rate defined
by (4) and the linear learning rate defined by (5) with p = 1 (i.e., an example of a polynomial decay
learning rate) are used in practice. Note that the cosine-annealing learning rate is updated each
epoch, whereas the polynomial decay learning rate is updated each step.

Lemma 2.1 leads to the following (the proof of the theorem is given in Appendix A.2).
Theorem 3.1 (Upper bound on mint E∥∇f(θt)∥2 for SGD using (1)) Under the assumptions
in Lemma 2.1, Algorithm 1 using (1) satisfies that, for all T ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

∑T−1
t=0 η2t

b
∑T−1

t=0 ηt︸ ︷︷ ︸
VT

,

where p, ηmin, ηmax, K, and E are the parameters used in (2)–(5), T = KE = ⌈n
b ⌉E for Polyno-

mial LR (5),

BT ≤

1

ηmaxT
[Constant LR (2)]

1

2ηmax(
√
T + 1− 1)

[Diminishing LR (3)]

2

(ηmin + ηmax)T
[Cosine LR (4)]

p+ 1

(pηmin + ηmax)T
[Polynomial LR (5)],

(6)

VT ≤

ηmax

b
[Constant LR (2)]

ηmax(1 + log T)

2b(
√
T + 1− 1)

[Diminishing LR (3)]

3η2min + 2ηminηmax + 3η2max

4(ηmin + ηmax)b
+

ηmax − ηmin

bT
[Cosine LR (4)]

2p2η2min + 2pηminηmax + (p+ 1)η2max

(2p+ 1)(pηmin + ηmax)b
+

(p+ 1)(η2max − η2min)

(pηmin + ηmax)bT
[Polynomial LR (5)].

Let us consider using Constant LR (2), Cosine LR (4), or Polynomial LR (5). Theorem 3.1 indicates
that the bias term including BT converges to 0 as O(1

T), whereas the variance term including VT

does not always converge to 0. Hence, the upper bound on mint∈[0:T−1] E[∥∇f(θt)∥2] does not
converge to 0. In fact, Theorem 3.1 with η = ηmax and ηmin = 0 implies that

lim sup
T→+∞

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ Lnσ

2

(2− Lnη)b
×

η [Constant LR (2)]
3η

4
[Cosine LR (4)]

(p+ 1)η

(2p+ 1)
[Polynomial LR (5)].

(7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Since 3η
4 < η and (p+1)η

(2p+1) < η (p > 0), using the cosine-annealing learning rate or the polynomial
decay learning rate is better than using the constant learning rate in the sense of minimizing the
upper bound on mint∈[0:T−1] E[∥∇f(θt)∥2]. Theorem 3.1 also indicates that Algorithm 1 using Di-
minishing LR (3) converges to 0 with the convergence rate mint∈[0:T−1] E[∥∇f(θt)∥] = O(

√
log T

T
1
4

).

However, since Diminishing LR (3) defined by ηt =
η√
t+1

decays rapidly (see Figure 1(a)), it would
not be useful for training DNNs in practice.

3.2 INCREASING BATCH SIZE AND DECAYING LEARNING RATE SCHEDULER

An increasing batch size is used to train DNNs in practice (Byrd et al., 2012; Balles et al., 2016;
De et al., 2017; Smith et al., 2018; Goyal et al., 2018). This section considers an increasing batch
size and a decaying learning rate following one of (2)–(5):

bt ≤ bt+1 (t ∈ N) and ηt+1 ≤ ηt (t ∈ N). (8)
Examples of bt are, for example, for all m ∈ [0 : M] and all t ∈ Sm = N ∩
[
∑m−1

k=0 KkEk,
∑m

k=0 KkEk) (S0 := N ∩ [0,K0E0)),

[Polynomial growth BS] bt =
(
am

⌈
t∑m

k=0 KkEk

⌉
+ b0

)c

, (9)

[Exponential growth BS] bt = δ
m

⌈
t∑m

k=0
KkEk

⌉
b0, (10)

where a ∈ R++, c, δ > 1, and Em and Km are the numbers of, respectively, epochs and steps
per epoch when the batch size is (am + b0)

c or δmb0. For example, the exponential growth batch
size defined by (10) with δ = 2 makes batch size double each Em epochs. We may modify the
parameters a and δ to at and δt monotone increasing with t. The total number of steps for the batch
size to increase M times is T =

∑M
m=0 KmEm. An analysis of Algorithm 1 with a constant batch

size bt = b and decaying learning rates satisfying (8) is given in Section 3.1.

Lemma 2.1 leads to the following them (the proof of the theorem and the result for Polynomial BS
(9) are given in Appendix A.2).
Theorem 3.2 (Convergence rate of SGD using (8)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (8) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where T =
∑M

m=0 KmEm, Emax = supM∈N supm∈[0:M] Em < +∞, Kmax =
supM∈N supm∈[0:M] Km < +∞, BT is defined as in (6), and VT is bounded as

VT ≤

δηmaxKmaxEmax

(δ − 1)b0T
[Constant LR (2)]

δηmaxKmaxEmax

2(δ − 1)b0(
√
T + 1− 1)

[Diminishing LR (3)]

2δη2maxKmaxEmax

(δ − 1)(ηmin + ηmax)b0T
[Cosine LR (4)]

(p+ 1)δη2maxKmaxEmax

(δ − 1)(ηmax + ηminp)b0T
[Polynomial LR (5)].

([Exponential BS (10)])

That is, Algorithm 1 using Exponential BS (10) has the convergence rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] =

O

(
1√
T

)
[Constant LR (2), Cosine LR (4), Polynomial LR (5)]

O

(
1

T
1
4

)
[Diminishing LR (3)].

Theorem 3.2 (Theorem A.1) indicates that, with increasing batch sizes such as Polynomial BS (9)
and Exponential BS (10), Algorithm 1 using each of Constant LR (2), Cosine LR (4), and Polyno-
mial LR (5) has the convergence rate O(1√

T
), in contrast to Theorem 3.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 INCREASING BATCH SIZE AND INCREASING LEARNING RATE SCHEDULER

This section considers an increasing batch size and an increasing learning rate:
bt ≤ bt+1 (t ∈ N) and ηt ≤ ηt+1 (t ∈ N). (11)

Example of bt and ηt satisfying (11) is as follows: for all m ∈ [0 : M] and all t ∈ Sm = N ∩
[
∑m−1

k=0 KkEk,
∑m

k=0 KkEk) (S0 = N ∩ [0,K0E0)),

[Exponential growth BS and LR] bt = δ
m

⌈
t∑m

k=0
KkEk

⌉
b0, ηt = γ

m

⌈
t∑m

k=0
KkEk

⌉
η0, (12)

where δ, γ > 1 such that γ2 < δ; and Em and Km are defined as in (10). We may modify the
parameters γ and δ to be monotone increasing parameters in t. The total number of steps when both
batch size and learning rate increase M times is T =

∑M
m=0 KmEm.

Lemma 2.1 leads to the following theorem (the proof of the theorem and the result for Polynomial
growth BS and LR (25) are given in Appendix A.2).
Theorem 3.3 (Convergence rate of SGD using (11)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (11) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where T , Emax, and Kmax are defined as in Theorem 3.2, Emin = infM∈N infm∈[0:M] Em < +∞,

Kmin = infM∈N infm∈[0:M] Km < +∞, γ̂ = γ2

δ < 1,

BT ≤ δ

η0KminEminγM
, VT ≤ KmaxEmaxη0δ

KminEminb0(1− γ̂)γM
.

That is, Algorithm 1 has the convergence rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] = O

(
1

γ
M
2

)
[Exponential growth BS and LR (12)].

Under Exponential BS (10), using Exponential LR (12) improves the convergence rate from O(1√
M
)

with Constant LR (2), Cosine LR (4), or Polynomial LR (5) (Theorem 3.2) to O(
√
γ−M) (γ > 1).

3.4 INCREASING BATCH SIZE AND WARM-UP DECAYING LEARNING RATE SCHEDULER

This section considers an increasing batch size and a decaying learning rate with warm-up for a
given Tw =

∑Mw

m=0 KmEm > 0 (learning rate increases Mw times):
bt ≤ bt+1 (t ∈ N) and ηt ≤ ηt+1 (t ∈ [Tw − 1]) ∧ ηt+1 ≤ ηt (t ≥ Tw). (13)

Examples of bt in (13) are Exponential BS (12) and Polynomial BS (25). Examples of ηt in (13) can
be obtained by combining (12) with (2)–(5). For example, for all m ∈ [0 : M] and all t ∈ Sm,

[Constant LR with warm-up] ηt =

γ
m

⌈
t∑m

k=0
KkEk

⌉
η0 (m ∈ [Mw])

γMwη0 (m ∈ [Mw : M])
(14)

and [Cosine LR with warm-up]

ηt =

γ
m

⌈
t∑m

k=0
KkEk

⌉
η0 (m ∈ [Mw])

ηmin +
ηmax − ηmin

2

×

{
1 + cos

(
m−1∑
k=0

Ek +

⌊
t−
∑m−1

k=0 KkEk

Km

⌋
− Ew

)
π

EM − Ew

}
(m ∈ [Mw : M]),

(15)

where Ew is the number of warm-up epochs, ηmin ≥ 0, ηmax = γMwη0, and γ is defined as in (12).

Theorems 3.2 and 3.3 lead to the following theorem.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 3.4 (Convergence rate of SGD using (13)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (13) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where bt is the exponential growth batch size defined by (12) with δ, γ > 1 such that γ2 < δ; Kmin,
Kmax, Emin, and Emax are defined as in Theorems 3.2 and 3.3;

BT ≤

δ

η0KminEminγMw
+

1

ηmax(T − Tw)
[Constant LR (14)]

δ

η0KminEminγMw
+

2

(ηmin + ηmax)(T − Tw)
[Cosine LR (15)]

VT ≤

KmaxEmaxη0δ

KminEminb0(1− γ̂)γMw
+

δηmaxKmaxEmax

(δ − 1)b0(T − Tw)
[Constant LR (14)]

KmaxEmaxη0δ

KminEminb0(1− γ̂)γMw
+

2δη2maxKmaxEmax

(δ − 1)(ηmin + ηmax)b0(T − Tw)
[Cosine LR (15)].

That is, Algorithm 1 has the convergence rate

min
t∈[Tw:T−1]

E [∥∇f(θt)∥] = O

(
1√

T − Tw

)
[Constant LR (14), Cosine LR (15)].

Since Algorithm 1 with (14) and (15) uses increasing batch sizes and decaying learning rates for
t ≥ Tw, it has the same convergence rate as using (8) in Theorem 3.2. Meanwhile, since Algorithm
1 with (14) and (15) uses the warm-up learning rates for t ∈ [Tw], Algorithm 1 speeds up during the
warm-up period, based on Theorem 3.3. As a result, for increasing batch sizes, Algorithm 1 using
decaying learning rates with warm-up minimizes E[∥∇f(θt)∥] faster than using decaying learning
rates in Theorem 3.2.

4 NUMERICAL RESULTS

We examined training ResNet-18 on the CIFAR100 dataset by using Algorithm 1 (see Appendices
A.5 and A.6 for training Wide-ResNet-28-10 on CIFAR100 and ResNet-18 on Tiny ImageNet). The
experimental environment was two NVIDIA GeForce RTX 4090 GPUs and Intel Core i9 13900KF
CPU. The software environment was Python 3.10.12, PyTorch 2.1.0, and CUDA 12.2. The code is
available at https://anonymous.4open.science/r/IncrBothBSLRAccelSGD.

We set the total number of epochs E = 300, the initial learning rate η0 = 0.1, and the minimum
learning rate ηmin = 0 in (4) and (5). The solid line in the figure represents the mean value, and the
shaded area in the figure represents the maximum and minimum over three runs.

Let us first consider the case (Figure 1(a)) of a constant batch size (b = 27) and decaying learning
rates ηt defined by (2)–(5) discussed in Section 3.1, where “linear” in Figure 1 denotes Polynomial
LR (5) with p = 1. Figure 1(b)–(d) indicate that using Diminishing LR (3) did not work well, since
it decayed rapidly and was very small (Figure 1(a)). Figure 1(b)–(d) also indicate that Cosine LR
(4) and Polynomial LR (5) performed better than Constant LR (2), as promised in the theoretical
results in Theorem 3.1 and (7).

Next, let us consider the case (Figure 2(a)) of doubly increasing batch size every 30 epochs from an
initial batch size b0 = 23 and decaying learning rates ηt defined by (2)–(5). Figure 2(a) indicates
that the learning rate of Polynomial LR (5) updated each step (“linear” and “polynomial (p = 2.0)”)
becomes small at an early stage of training. This is because the smaller the batch size bt is, the larger
the required number of steps Kt = ⌈ n

bt
⌉ per epoch becomes and the smaller the decaying learning

rate ηt becomes. Hence, in practice, increasing batch size is not compatible with Polynomial LR (5)
updated each step. Meanwhile, Figure 2(a) indicates Constant LR (2) (“constant”) and Cosine LR
(4) (“cosine”) were compatible with increasing batch size, since Constant LR (2) and Cosine LR (4)
updated each epoch maintain large learning rates even for small batch sizes. In particular, Figure
2(b)–(d) indicate that using Constant LR (2) performed well.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

26

27

28

Ba
tc

h
Si

ze

constant
diminishing
cosine
linear
polynomial (p=2.0)
Batch Size

(a) Learning rate ηt and batch size b versus epochs

0 50 100 150 200 250 300
Epochs

10 1

100

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR100

280 285 290 295 300

71

72

73

constant
diminishing
cosine
linear
polynomial (p=2.0)

(d) Test accuracy score versus epochs

Figure 1: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train ResNet-18 on CIFAR100 dataset.

0 50 100 150 200 250 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

24

26

28

210

212

Ba
tc

h
Si

ze

constant
diminishing
cosine
linear
polynomial (p=2.0)
Batch Size

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR100

280 285 290 295 300

71

72

73

constant
diminishing
cosine
linear
polynomial (p=2.0)

(d) Test accuracy score versus epochs

Figure 2: (a) Decaying learning rates and doubly increasing batch size every 30 epochs, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

Let us consider the case (Figure 3(a)) of doubly increasing batch size (δ = 2) every 30 epochs and
increasing learning rates defined by Exponential growth LR (12) with η0 = 0.1 . The parameters γ
in the increasing learning rates considered here were (i) γ ≈ 1.080 when ηmax = 0.2, (ii) γ ≈ 1.196
when ηmax = 0.5, and (iii) γ ≈ 1.292 when ηmax = 1.0, which satisfy the condition γ2 < δ (= 2)
to guarantee the convergence of Algorithm 1 (see Theorem 3.3). Figure 3 compares the result for
“constant” in Figure 2 with the ones for the increasing learning rates (i)–(iii). Figure 3(b) indicates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

24

26

28

210

212

Ba
tc

h
Si

ze

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

Batch Size (= 2.0)

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR100

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR100

280 285 290 295 300
71.0

71.5

72.0

72.5

73.0

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(d) Test accuracy score versus epochs

Figure 3: (a) Increasing learning rates (ηmax = 0.2, 0.5, 1.0) and doubly increasing batch size every
30 epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score
in testing for SGD to train ResNet-18 on CIFAR100 dataset.

0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

24

26

28

210

212

Ba
tc

h
Si

ze

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)
Batch Size (= 2.0)

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR100

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR100

280 285 290 295 300
71

72

73 constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(d) Test accuracy score versus epochs

Figure 4: (a) Warm-up learning rates and doubly increasing batch size every 30 epochs, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

that the larger the learning rate ηt was, the smaller the full gradient norm ∥∇f(θe)∥ became and that
Algorithm 1 with increasing learning rates minimized the full gradient norm faster than Algorithm
1 with a constant learning rate (“constant” in Figures 2 and 3).

Let us consider the case (Figure 4(a)) of a doubly increasing batch size and decaying learning rates
(Constant LR (2) and Cosine LR (4)) with warm-up based on Figure 3(a). Figure 4(b) indicates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

that using decaying learning rates with warm-up accelerated Algorithm 1 more than using only
increasing learning rates in Figure 3(b) and only a constant learning rate in Figure 2(b).

0 50 100 150 200 250 300
Epochs

0.10

0.12

0.14

0.16

0.18

0.20

Le
ar

ni
ng

 R
at

e
Learning Rate and Batch Size Schedular

24

26

28

210

212

Ba
tc

h
Si

ze

BS: = 2.0
BS: = 3.0
BS: = 4.0
LR: = 1.08
LR: = 1.50
LR: = 1.90

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR100

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR100

280 285 290 295 300
71

72

73

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(d) Test accuracy score versus epochs

Figure 5: (a) Increasing learning rates and increasing batch sizes based on δ = 2, 3, 4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on CIFAR100 dataset.

From the sufficient condition γ2 < δ to guarantee convergence of Algorithm 1 with both batch size
and learning rate increasing (Theorem 3.3), we can set a larger γ when δ is large. Since Algorithm 1
has an O(γ−M

2) convergence rate (Theorem 3.3), using triply (γ = 1.5 <
√
δ =

√
3) and quadruply

(γ = 1.9 <
√
δ =

√
4) increasing batch sizes theoretically decreases ∥∇f(θe)∥ faster than doubly

increasing batch sizes (γ = 1.080 <
√
δ =

√
2 when ηmax = 0.2; Figure 3). Finally, we would

like to verify whether the theoretical result holds in practice. The scheduler was as in Figure 5(a)
with η0 = 0.1 and ηmax = 0.2, where schedulers were modified such that batch sizes belong to
[23, 212] and learning rates belong to [0.1, 0.2] (e.g., be = aδ⌊

e
30 ⌋ + b and ηe = cγ⌊ e

30 ⌋ + d, where
a ≈ 0.2077, b ≈ 7.7923, c ≈ 0.00267, and d ≈ 0.09733 when δ = 3 and γ = 1.50 and a ≈ 0.0155,
b ≈ 7.9844, c ≈ 0.00031, and d ≈ 0.09969 when δ = 4 and γ = 1.90). Figure 5(a) and (b) indicate
that the larger the increasing rate of batch size was (the cases of δ = 3, 4 after 180 epochs), the
larger the increasing rate of the learning rate became (γ = 1.5, 1.9 when δ = 3, 4) and the smaller
∥∇f(θe)∥ became. That is, using increasing learning rates based on tripling and quadrupling batch
sizes minimizes ∥∇f(θe)∥ faster than using increasing learning rates based on doubly increasing
batch sizes (see also Appendix A.4). Figure 5(c) and (d) indicate that using δ = 3, 4 was better than
using δ = 2 in the sense of minimizing f(θe) and achieving high test accuracy.

5 CONCLUSION

This paper presented theoretical analyses of mini-batch SGD under batch size and learning rate
schedulers used in practice. Our results indicated that using increasing batch sizes and decaying
learning rates guarantees convergence of mini-batch SGD and using both batch sizes and learning
rates that increase accelerates mini-batch SGD. That is, using increasing batch sizes and decaying
learning rates with warm-up guarantees fast convergence of mini-batch SGD in the sense of min-
imizing the expectation of the full gradient norm of the empirical loss. This paper also provided
numerical results to support the analysis results that increasing both batch sizes and learning rates
accelerates mini-batch SGD. One limitation of this study is that the numbers of models and datasets
in the experiments were limited. Hence, we should conduct similar experiments with larger numbers
of models and datasets to support our theoretical results.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates,
2016. Thirty-Third Conference on Uncertainty in Artificial Intelligence, 2017.

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2017.

Richard H. Byrd, Gillian M. Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical Programming, 134(1):127–155, 2012.

Hao Chen, Lili Zheng, Raed AL Kontar, and Garvesh Raskutti. Stochastic gradient descent in cor-
related settings: A study on Gaussian processes. In Advances in Neural Information Processing
Systems, volume 33, 2020.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):
834–848, 2018.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated Inference with Adaptive
Batches. In Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research,
pp. 1504–1513. PMLR, 2017.

Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic gradi-
ent descent method for non-convex objective functions. Journal of Machine Learning Research,
21:1–48, 2020.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
vex stochastic composite optimization I: A generic algorithmic framework. SIAM Journal on
Optimization, 22:1469–1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly con-
vex stochastic composite optimization II: Shrinking procedures and optimal algorithms. SIAM
Journal on Optimization, 23:2061–2089, 2013.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look at deep
learning heuristics: Learning rate restarts, warmup and distillation. In International Conference
on Learning Representations, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training imagenet
in 1 hour, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition, pp. 770–778, 2016.

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image classification with
convolutional neural networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 558–567, 2019.

Andrew Hundt, Varun Jain, and Gregory D. Hager. sharpDARTS: Faster and more accurate differ-
entiable architecture search, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, 2015.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-
size for SGD: An adaptive learning rate for fast convergence. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017.

Jun Lu. Gradient descent, stochastic optimization, and other tales, 2024.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19:1574–
1609, 2009.

Herbert Robbins and Herbert Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, 22:400–407, 1951.

Kevin Scaman and Cédric Malherbe. Robustness analysis of non-convex stochastic gradient descent
using biased expectations. In Advances in Neural Information Processing Systems, volume 33,
2020.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. In Ad-
vances in Neural Information Processing Systems, volume 32, 2019.

Xiaoyu Wang, Sindri Magnússon, and Mikael Johansson. On the convergence of step decay step-size
for stochastic optimization. In Advances in Neural Information Processing Systems, 2021.

Yuting Wu, Daniel J. Holland, Mick D. Mantle, Andrew G. Wilson, Sebastian Nowozin, Andrew
Blake, and Lynn F. Gladden. A Bayesian method to quantifying chemical composition using
NMR: Application to porous media systems. In 2014 22nd European Signal Processing Confer-
ence, pp. 2515–2519, 2014.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger Grosse. Which algorithmic choices matter at which batch
sizes? Insights from a noisy quadratic model. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

A APPENDIX

We here give the notation and state some definitions. Let N be the set of natural numbers. Define
[n] := {1, 2, · · · , n} and [0 : n] := {0, 1, · · · , n} for n ∈ N. Let Rd be the d-dimensional Euclidean
space with inner product ⟨θ1,θ2⟩ = θ⊤

1 θ2 (θ1,θ2 ∈ Rd) and its induced norm ∥θ∥ :=
√
⟨θ,θ⟩

(θ ∈ Rd). Let Rd
+ := {θ = (θ1, θ2, . . . , θd)

⊤ ∈ Rd : θi ≥ 0 (i ∈ [d])} and Rd
++ := {θ =

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(θ1, θ2, . . . , θd)
⊤ ∈ Rd : θi > 0 (i ∈ [d])}. The gradient of a differentiable function f : Rd → R

at θ ∈ Rd is denoted by ∇f(θ). Let L > 0. A differentiable function f : Rd → R is said to
be L-smooth if the gradient ∇f : Rd → Rd is Lipschitz continuous, i.e., for all θ1,θ2 ∈ Rd,
∥∇f(θ1) − ∇f(θ2)∥ ≤ L∥θ1 − θ2∥. Let (xt), (yt) ⊂ R+ be sequences. Let O be Landau’s
symbol, i.e., yt = O(xt) if there exist c ∈ R+ and t0 ∈ N such that, for all t ≥ t0, yt ≤ cxt.

A.1 PROOFS OF PROPOSITION A.1 AND LEMMA 2.1

The following proposition holds for the mini-batch gradient.
Proposition A.1 Let t ∈ N and ξt be a random variable that is independent of ξj (j ∈ [0 : t− 1]);
let θt ∈ Rd be independent of ξt; let ∇fBt(θt) be the mini-batch gradient defined by Algorithm 1,
where fξt,i (i ∈ [bt]) is the stochastic gradient (see Assumption 2.1(A2)). Then, the following hold:

Eξt

[
∇fBt(θt)

∣∣∣ξ̂t−1

]
= ∇f(θt) and Vξt

[
∇fBt(θt)

∣∣∣ξ̂t−1

]
≤ σ2

bt
,

where Eξt [·|ξ̂t−1] and Vξt [·|ξ̂t−1] are respectively the expectation and variance with respect to ξt
conditioned on ξt−1 = ξ̂t−1.

The first equation in Proposition A.1 indicates that the mini-batch gradient ∇fBt(θt) is an unbiased
estimator of the full gradient ∇f(θt). The second inequality in Proposition A.1 indicates that the
upper bound on the variance of the mini-batch gradient ∇fBt

(θt) is inversely proportional to the
batch size bt.

Proof of Proposition A.1: Assumption 2.1(A3) and the independence of bt and ξt ensure that

Eξt

[
∇fBt

(θt)
∣∣∣ξ̂t−1

]
= Eξt

[
1

bt

bt∑
i=1

∇fξt,i(θt)

∣∣∣∣∣ξ̂t−1

]
=

1

bt

bt∑
i=1

Eξt,i

[
∇fξt,i(θt)

∣∣∣ξ̂t−1

]
,

which, together with Assumption 2.1(A2)(i) and the independence of ξt and ξt−1, implies that

Eξt

[
∇fBt

(θt)
∣∣∣ξ̂t−1

]
=

1

bt

bt∑
i=1

∇f(θt) = ∇f(θt). (16)

Assumption 2.1(A3), the independence of bt and ξt, and (16) imply that

Vξt

[
∇fBt

(θt)
∣∣∣ξ̂t−1

]
= Eξt

[
∥∇fBt

(θt)−∇f(θt)∥2
∣∣∣ξ̂t−1

]
= Eξt

∥∥∥∥∥ 1bt
bt∑
i=1

∇fξt,i(θt)−∇f(θt)

∥∥∥∥∥
2 ∣∣∣∣∣ξ̂t−1

=

1

b2t
Eξt

∥∥∥∥∥
bt∑
i=1

(
∇fξt,i(θt)−∇f(θt)

)∥∥∥∥∥
2 ∣∣∣∣∣ξ̂t−1

 .

From the independence of ξt,i and ξt,j (i ̸= j) and Assumption 2.1(A2)(i), for all i, j ∈ [bt] such
that i ̸= j,

Eξt,i [⟨∇fξt,i(θt)−∇f(θt),∇fξt,j (θt)−∇f(θt)⟩|ξ̂t−1]

= ⟨Eξt,i [∇fξt,i(θt)|ξ̂t−1]− Eξt,i [∇f(θt)|ξ̂t−1],∇fξt,j (θt)−∇f(θt)⟩
= 0.

Hence, Assumption 2.1(A2)(ii) guarantees that

Vξt

[
∇fBt

(θ)
∣∣∣ξ̂t−1

]
=

1

b2t

bt∑
i=1

Eξt,i

[∥∥∇fξt,i(θt)−∇f(θt)
∥∥2 ∣∣∣ξ̂t−1

]
≤ σ2bt

b2t
=

σ2

bt
,

which completes the proof. 2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof of Lemma 2.1: The Ln-smoothness of f implies that the descent lemma holds; i.e., for all
t ∈ N,

f(θt+1) ≤ f(θt) + ⟨∇f(θt),θt+1 − θt⟩+
Ln

2
∥θt+1 − θt∥2,

which, together with θt+1 := θt − ηt∇fBt(θt), implies that

f(θt+1) ≤ f(θt)− ηt⟨∇f(θt),∇fBt
(θt)⟩+

Lnη
2
t

2
∥∇fBt

(θt)∥2. (17)

Proposition A.1 guarantees that

Eξt

[
∥∇fBt(θt)∥

2 |ξ̂t−1

]
= Eξt

[
∥∇fBt(θt)−∇f(θt) +∇f(θt)∥2

∣∣∣ξ̂t−1

]
= Eξt

[
∥∇fBt(θt)−∇f(θt)∥2

∣∣∣ξ̂t−1

]
+ 2Eξt

[
⟨∇fBt(θt)−∇f(θt),∇f(θt)⟩

∣∣∣ξ̂t−1

]
+ Eξt

[
∥∇f(θt)∥2

∣∣∣ξ̂t−1

]
≤ σ2

bt
+ ∥∇f(θt)∥2 .

(18)

Taking the expectation conditioned on ξt−1 = ξ̂t−1 on both sides of (17), together with Proposition
A.1 and (18), guarantees that, for all k ∈ N,

Eξt

[
f(θt+1)

∣∣∣ξ̂t−1

]
≤ f(θt)− ηtEξt

[
⟨∇f(θt),∇fBt(θt)⟩

∣∣∣ξ̂t−1

]
+

Lnη
2
t

2
Eξt

[
∥∇fBt

(θt)∥2
∣∣∣ξ̂t−1

]
≤ f(θt)− ηt ∥∇f(θt)∥2 +

Lnη
2
t

2

(
σ2

bt
+ ∥∇f(θt)∥2

)
.

Hence, taking the total expectation on both sides of the above inequality ensures that, for all t ∈ N,

ηk

(
1− Lnηt

2

)
E
[
∥∇f(θt)∥2

]
≤ E [f(θt)− f(θt+1)] +

Lnσ
2η2t

2bt
.

Let T ∈ N. Summing the above inequality from t = 0 to t = T − 1 ensures that
T−1∑
t=0

ηt

(
1− Lnηt

2

)
E
[
∥∇f(θt)∥2

]
≤ E [f(θ0)− f(θT)] +

Lnσ
2

2

T−1∑
t=0

η2t
bt

,

which, together with Assumption 2.1(A1) (the lower bound f⋆ := 1
n

∑
i∈[n] f

⋆
i of f), implies that

T−1∑
t=0

ηt

(
1− Lnηt

2

)
E
[
∥∇f(θt)∥2

]
≤ f(θ0)− f⋆ +

Lnσ
2

2

T−1∑
t=0

η2t
bt

.

Since ηt ∈ [ηmin, ηmax], we have that(
1− Lnηmax

2

) T−1∑
t=0

ηtE
[
∥∇f(θt)∥2

]
≤ f(θ0)− f⋆ +

Lnσ
2

2

T−1∑
t=0

η2t
bt

,

which, together with ηt ∈ [ηmin, ηmax] ⊂ [0, 2
Ln

), implies that

T−1∑
t=0

ηtE
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax
+

Lnσ
2

2− Lnηmax

T−1∑
t=0

η2t
bt

.

Therefore, from
∑T−1

t=0 ηt ̸= 0, we have

min
t∈[0:T−1]

E[∥∇f(θt)∥2] ≤
2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt

+
Lnσ

2

2− Lnηmax

∑T−1
t=0 η2t b

−1
t∑T−1

t=0 ηt
, (19)

which implies that the assertion in Lemma 2.1 holds. 2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOFS OF THEOREMS

We can also consider the case where batch sizes decay. For simplicity, let us set a constant learning
rate ηt = η > 0 and a decaying batch size bt = b

t+1 , where b > 0. Then, we have that VT ≤
η
T

∑T−1
t=0

1
bt

= η(T+1)
2b → +∞ (T → +∞), which implies that convergence of mini-batch SGD is

not guaranteed. Accordingly, this paper focuses on the four cases in the main text.

Proof of Theorem 3.1: Let ηmax = η.

[Constant LR (2)] We have that

BT =
1∑T−1

t=0 η
=

1

ηT
, VT =

∑T−1
t=0 η2

b
∑T−1

t=0 η
=

η

b
.

[Diminishing LR (3)] We have that

T−1∑
t=0

1√
t+ 1

≥
∫ T

0

dt√
t+ 1

= 2(
√
T + 1− 1),

which implies that

BT =
1∑T−1

t=0
η√
t+1

≤ 1

2η(
√
T + 1− 1)

.

We also have that
T−1∑
t=0

1

t+ 1
≤ 1 +

∫ T−1

0

dt

t+ 1
= 1 + log T,

which implies that

VT =
η
∑T−1

t=0
1

t+1

b
∑T−1

t=0
1√
t+1

≤ η(1 + log T)

2b(
√
T + 1− 1)

.

[Cosine LR (4)] We have
KE−1∑
t=0

ηt = ηminKE +
ηmax − ηmin

2
KE +

ηmax − ηmin

2

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
.

From
∑KE

t=0 cos⌊
t
K ⌋ π

E = K − 1, we have

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
= K − 1− cosπ = K. (20)

We thus have
KE−1∑
t=0

ηt = ηminKE +
ηmax − ηmin

2
KE +

ηmax − ηmin

2
K

=
1

2
{(ηmin + ηmax)KE + (ηmax − ηmin)K}

≥ (ηmin + ηmax)KE

2
.

Moreover, we have that
KE−1∑
t=0

η2t = η2minKE + ηmin(ηmax − ηmin)

KE−1∑
t=0

(
1 + cos

⌊
t

K

⌋
π

E

)

+
(ηmax − ηmin)

2

4

KE−1∑
t=0

(
1 + cos

⌊
t

K

⌋
π

E

)2

,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

which implies that

KE−1∑
t=0

η2t = ηminηmaxKE +
(ηmax − ηmin)

2

4
KE + ηmin(ηmax − ηmin)

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E

+
(ηmax − ηmin)

2

2

KE−1∑
t=0

cos

⌊
t

K

⌋
π

E
+

(ηmax − ηmin)
2

4

KE−1∑
t=0

cos2
⌊
t

K

⌋
π

E
.

From
KE∑
t=0

cos2
⌊
t

K

⌋
π

E
=

1

2

KE∑
t=0

(
1 + cos 2

⌊
t

K

⌋
π

E

)
=

1

2
(KE + 1) +

1

2

=
KE

2
+ 1,

we have
KE−1∑
t=0

cos2
⌊
t

K

⌋
π

E
=

KE

2
+ 1− cos2 π =

KE

2
.

From (20), we have

KE−1∑
t=0

η2t =
(ηmin + ηmax)

2

4
KE + ηmin(ηmax − ηmin) +

(ηmax − ηmin)
2

2
+

(ηmax − ηmin)
2

4

KE

2

=
3η2min + 2ηminηmax + 3η2max

8
KE +

(ηmax − ηmin)(ηmax + ηmin)

2
.

Hence, we have

BT =
1∑KE−1

t=0 ηt
≤ 2

(ηmin + ηmax)KE

and

VT =

∑KE−1
t=0 η2t

b
∑KE−1

t=0 ηt
≤ 3η2min + 2ηminηmax + 3η2max

4(ηmin + ηmax)b
+

ηmax − ηmin

bKE
.

[Polynomial LR (5)] Since f(x) = (1− x)p is monotone decreasing for x ∈ [0, 1), we have that∫ 1

0

(1− x)pdx <
1

T

T−1∑
t=0

(
1− t

T

)p

,

which implies that

T

∫ 1

0

(1− x)pdx <

T−1∑
t=0

(
1− t

T

)p

. (21)

Since
∫ 1

0
(1− x)pdx = 1

p+1 , (21) implies that

T−1∑
t=0

(
1− t

T

)p

>
T

p+ 1
.

Accordingly,

T−1∑
t=0

ηt = (ηmax − ηmin)

T−1∑
t=0

(
1− t

T

)p

+ ηminT

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

> (ηmax − ηmin)
T

p+ 1
+ ηminT

=

(
ηmax − ηmin

p+ 1
+ ηmin

)
T

=
ηmax + ηminp

p+ 1
T.

Since f(x) = (1− x)p and g(x) = (1− x)2p are monotone decreasing for x ∈ [0, 1), we have that

1

T

T−1∑
t=0

(
1− t

T

)p

<
1

T
+

∫ 1

0

(1− x)pdx,
1

T

T−1∑
t=0

(
1− t

T

)2p

<
1

T
+

∫ 1

0

(1− x)2pdx,

which imply that

T−1∑
t=0

(
1− t

T

)p

< 1 + T

∫ 1

0

(1− x)pdx,

T−1∑
t=0

(
1− t

T

)2p

< 1 + T

∫ 1

0

(1− x)2pdx. (22)

Since we have that
∫ 1

0
(1− x)pdx = 1

p+1 and
∫ 1

0
(1− x)2pdx = 1

2p+1 , (22) ensures that

T−1∑
t=0

(
1− t

T

)p

< 1 +
T

p+ 1
,

T−1∑
t=0

(
1− t

T

)2p

< 1 +
T

2p+ 1
.

Hence,
T−1∑
t=0

η2t = (ηmax − ηmin)
2
T−1∑
t=0

(
1− t

T

)2p

+ 2(ηmax − ηmin)

T−1∑
t=0

(
1− t

T

)p

ηmin + η2minT

< (ηmax − ηmin)
2

(
1 +

T

2p+ 1

)
+ 2(ηmax − ηmin)

(
1 +

T

p+ 1

)
ηmin + η2minT

=
η2max(p+ 1)(2p+ T + 1) + 2ηmaxηminpT + η2min(2p

2(T − 1)− 3p− 1)

(p+ 1)(2p+ 1)
.

Therefore,

BT =
1∑T−1

t=0 ηt
≤ p+ 1

(ηmax + ηminp)T

and

VT =

∑T−1
t=0 η2t

b
∑T−1

t=0 ηt

=
η2max(p+ 1)(2p+ T + 1) + 2ηmaxηminpT + η2min(2p

2(T − 1)− 3p− 1)

(2p+ 1)(ηmax + ηminp)bT

=
2p2η2min + 2pηminηmax + (p+ 1)η2max

(2p+ 1)(pηmin + ηmax)b
+

(p+ 1)(2p+ 1)η2max − (p+ 1)(2p+ 1)η2min

(2p+ 1)(pηmin + ηmax)bT

=
2p2η2min + 2pηminηmax + (p+ 1)η2max

(2p+ 1)(pηmin + ηmax)b
+

(p+ 1)(η2max − η2min)

(pηmin + ηmax)bT
.

This completes the proof. 2

We will now show the following theorem, which includes Theorem 3.2.
Theorem A.1 (Convergence rate of SGD using (8)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (8) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where T =
∑M

m=0 KmEm, Emax = supM∈N supm∈[0:M] Em < +∞, Kmax =

supM∈N supm∈[0:M] Km < +∞, a = min{a, b0}, BT is defined as in (6), and VT is given by

VT ≤

3ηmaxKmaxEmax

acT
[Constant LR (2)]

3ηmaxKmaxEmax

2ac(
√
T + 1− 1)

[Diminishing LR (3)]

6η2maxKmaxEmax

ac(ηmin + ηmax)T
[Cosine LR (4)]

3(p+ 1)η2maxKmaxEmax

ac(ηmax + ηminp)T
[Polynomial LR (5)]

([Polynomial BS (9)])

VT ≤

δηmaxKmaxEmax

(δ − 1)b0T
[Constant LR (2)]

δηmaxKmaxEmax

2(δ − 1)b0(
√
T + 1− 1)

[Diminishing LR (3)]

2δη2maxKmaxEmax

(δ − 1)(ηmin + ηmax)b0T
[Cosine LR (4)]

(p+ 1)δη2maxKmaxEmax

(δ − 1)(ηmax + ηminp)b0T
[Polynomial LR (5)].

([Exponential BS (10)])

That is, Algorithm 1 using each of Polynomial BS (9) and Exponential BS (10) has the convergence
rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] =

O

(
1√
T

)
[Constant LR (2), Cosine LR (4), Polynomial LR (5)]

O

(
1

T
1
4

)
[Diminishing LR (3)].

Proof of Theorem A.1: Let M ∈ N and T =
∑M

m=0 KmEm, where Emax =
supM∈N supm∈[0:M] Em < +∞, Kmax = supM∈N supm∈[0:M] Km < +∞, S0 := N∩ [0,K0E0),
and Sm = N ∩ [

∑m−1
k=0 KkEk,

∑m
k=0 KkEk) (m ∈ [M]). Let us consider using (9). Let ηmax = η

and a = min{a, b0}.

[Constant LR (2)] Let m ∈ [M]. We have that∑
t∈Sm

1

bt
=
∑
t∈Sm

1(
am
⌈

t∑m
k=0 KkEk

⌉
+ b0

)c ≤
∑
t∈Sm

1

acmc
⌈

t∑m
k=0 KkEk

⌉c
≤
∑
t∈Sm

1

acmc
≤ 1

acmc
KmEm ≤ KmaxEmax

ac
1

mc
≤ KmaxEmax

ac
1

mc

and ∑
t∈S0

1

bt
=
∑
t∈S0

1

bc0
≤ KmaxEmax

ac
.

Accordingly, we have that

M∑
m=0

∑
t∈Sm

1

bt
≤ KmaxEmax

ac

(
1 +

M∑
m=1

1

mc

)
≤ KmaxEmax

ac

(
1 +

+∞∑
m=1

1

mc

)

≤ 3KmaxEmax

ac
.

(23)

Hence, we have that

VT =
1∑T−1

t=0 η

T−1∑
t=0

η2

bt
≤ 3ηKmaxEmax

acT
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

[Diminishing LR (3)] From (23), we have that

VT =
1∑T−1

t=0
η√
t+1

T−1∑
t=0

η2

(t+ 1)bt

≤ η

2(
√
T + 1− 1)

T−1∑
t=0

1

bt
≤ 3ηKmaxEmax

2ac(
√
T + 1− 1)

.

[Cosine LR (4)] The cosine LR is defined for all m ∈ [0 : M] and all t ∈ Sm by

ηt = ηmin +
ηmax − ηmin

2

{
1 + cos

(
m−1∑
k=0

Ek +

⌊
t−
∑m−1

k=0 KkEk

Km

⌋)
π

EM

}
.

We have that
T−1∑
t=0

η2t
bt

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (23), implies that
T−1∑
t=0

η2t
bt

≤ 3η2maxKmaxEmax

ac
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 6η2maxKmaxEmax

ac(ηmin + ηmax)T
.

[Polynomial LR (5)] We have that
T−1∑
t=0

η2t
bt

=

T−1∑
t=0

1

bt

{
(ηmax − ηmin)

(
1− t

T

)p

+ ηmin

}2

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (23), implies that
T−1∑
t=0

η2t
bt

≤ 3η2maxKmaxEmax

ac
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 3(p+ 1)η2maxKmaxEmax

ac(ηmax + ηminp)T
.

Let us consider using (10). Let ηmax = η.

[Constant LR (2)] We have that∑
t∈Sm

1

bt
=
∑
t∈Sm

1

δ
m

⌈
t∑m

k=0
KkEk

⌉
b0

≤
∑
t∈Sm

1

δmb0
≤ KmaxEmax

δmb0
,

which implies that
M∑

m=0

∑
t∈Sm

1

bt
≤ KmaxEmax

b0

M∑
m=0

1

δm
≤ KmaxEmaxδ

b0(δ − 1)
. (24)

Hence, we have that

VT =
1∑T−1

t=0 η

T−1∑
t=0

η2

bt
≤ ηKmaxEmaxδ

b0(δ − 1)T
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

[Diminishing LR (3)] From (24), we have that

VT =
1∑T−1

t=0
η√
t+1

T−1∑
t=0

η2

(t+ 1)bt
≤ η

2(
√
T + 1− 1)

T−1∑
t=0

1

bt
≤ ηKmaxEmaxδ

2(
√
T + 1− 1)b0(δ − 1)

.

[Cosine LR (4)] We have that
T−1∑
t=0

η2t
bt

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (24), implies that
T−1∑
t=0

η2t
bt

≤ η2maxKmaxEmaxδ

b0(δ − 1)
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 2η2maxKmaxEmaxδ

(δ − 1)(ηmin + ηmax)b0T
.

[Polynomial LR (5)] We have that
T−1∑
t=0

η2t
bt

=

T−1∑
t=0

1

bt

{
(ηmax − ηmin)

(
1− t

T

)p

+ ηmin

}2

≤ η2max

T−1∑
t=0

1

bt
,

which, together with (24), implies that
T−1∑
t=0

η2t
bt

≤ η2maxKmaxEmaxδ

b0(δ − 1)
.

Hence, we have that

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ (p+ 1)η2maxKmaxEmaxδ

(δ − 1)(ηmax + ηminp)b0T
.

2

Example of bt and ηt satisfying (11) is as follows:

[Polynomial growth BS and LR]

bt =

(
a1m

⌈
t∑m

k=0 KkEk

⌉
+ b0

)c1

, ηt =

(
a2m

⌈
t∑m

k=0 KkEk

⌉
+ η0

)c2

,
(25)

where a1, a2 > 0; c1 > 1, c2 > 0 such that c1 − 2c2 > 1.

We next show the following theorem, which includes Theorem 3.3.
Theorem A.2 (Convergence rate of SGD using (11)) Under the assumptions in Lemma 2.1, Algo-
rithm 1 using (11) satisfies that, for all M ∈ N,

min
t∈[0:T−1]

E
[
∥∇f(θt)∥2

]
≤ 2(f(θ0)− f⋆)

2− Lnηmax

1∑T−1
t=0 ηt︸ ︷︷ ︸
BT

+
Lnσ

2

2− Lnηmax

1∑T−1
t=0 ηt

T−1∑
t=0

η2t
bt︸ ︷︷ ︸

VT

,

where T =
∑M

m=0 KmEm, Emax = supM∈N supm∈[0:M] Em < +∞, Emin =
infM∈N infm∈[0:M] Em < +∞, Kmax = supM∈N supm∈[0:M] Km < +∞, Kmin =

infM∈N infm∈[0:M] Km < +∞, η = min{a2, η0}, η = max{a2, η0}, b = min{a1, b0},

γ̂ = γ2

δ < 1,

BT ≤

1 + c2

ηc2KminEminM1+c2
[Polynomial growth BS and LR (25)]

δ

η0KminEminγM
[Exponential growth BS and LR (12)]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

VT ≤

2KmaxEmax(1 + c2)η

2c2

KminEminηc2b
c1M1+c2

[Polynomial growth BS and LR (25)]

KmaxEmaxη0δ

KminEminb0(1− γ̂)γM
[Exponential growth BS and LR (12)].

That is, Algorithm 1 has the convergence rate

min
t∈[0:T−1]

E [∥∇f(θt)∥] =

O

(
1

M
1+c2

2

)
[Polynomial growth BS and LR (25)]

O

(
1

γ
M
2

)
[Exponential growth BS and LR (12)].

Proof of Theorem A.2: Let M ∈ N and T =
∑M

m=0 KmEm, where Emax =
supM∈N supm∈[0:M] Em < +∞, Kmax = supM∈N supm∈[0:M] Km < +∞, S0 := N∩ [0,K0E0),
and Sm = N ∩ [

∑m−1
k=0 KkEk,

∑m
k=0 KkEk) (m ∈ [M]).

[Polynomial growth BS and LR (25)] We have that∑
t∈Sm

ηt =
∑
t∈Sm

(
a2m

⌈
t∑m

k=0 KkEk

⌉
+ η0

)c2

≥
∑
t∈Sm

(a2m+ η0)
c2 ,

which, together with η = min{a2, η0}, implies that∑
t∈Sm

ηt ≥ ηc2
∑
t∈Sm

(m+ 1)c2 ≥ ηc2KminEmin(m+ 1)c2 .

Hence,

M∑
m=0

∑
t∈Sm

ηt ≥ ηc2KminEmin

M+1∑
m=1

mc2 ≥
ηc2KminEmin

1 + c2
M1+c2 .

We also have that

∑
t∈Sm

η2t
bt

=
∑
t∈Sm

(
a2m

⌈
t∑m

k=0 KkEk

⌉
+ η0

)2c2(
a1m

⌈
t∑m

k=0 KkEk

⌉
+ b0

)c1 ≤
∑
t∈Sm

(a2m+ η0)
2c2

(a1m+ b0)
c1 .

Let η = max{a2, η0} and b = min{a1, b0}. Then,

M∑
m=0

∑
t∈Sm

η2t
bt

≤ KmaxEmax
η2c2

bc1

M∑
m=0

(m+ 1)2c2

(m+ 1)c1
≤ KmaxEmax

η2c2

bc1

M+1∑
m=1

1

mc1−2c2

≤ 2KmaxEmaxη
2c2

bc1
.

Hence,

BT =
1∑T−1

t=0 ηt
≤ 1 + c2

ηc2KminEminM1+c2

and

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ 2KmaxEmax(1 + c2)η
2c2

KminEminηc2b
c1M1+c2

.

[Exponential growth BS and LR (12)] We have that

M∑
m=0

∑
t∈Sm

ηt =

M∑
m=0

∑
t∈Sm

γ
m

⌈
t∑m

k=0
KkEk

⌉
η0 ≥ η0KminEmin

M∑
m=0

γm

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

= η0KminEmin
γM − 1

γ − 1
>

η0KminEminγ
M

γ2
>

η0KminEminγ
M

δ

and

M∑
m=0

∑
t∈Sm

η2t
bt

=

M∑
m=0

∑
t∈Sm

γ
2m

⌈
t∑m

k=0
KkEk

⌉
η20

δ
m

⌈
t∑m

k=0
KkEk

⌉
b0

≤ KmaxEmax
η20
b0

M∑
m=0

γ2m

δm

≤ KmaxEmax
η20
b0

M∑
m=0

(
γ2

δ

)m

≤ KmaxEmax
η20
b0

1

1− γ̂
,

where γ̂ = γ2

δ < 1. Hence,

BT =
1∑T−1

t=0 ηt
≤ δ

η0KminEminγM

and

VT =
1∑T−1

t=0 ηt

T−1∑
t=0

η2t
bt

≤ KmaxEmaxη0δ

KminEminb0(1− γ̂)γM
.

2

Proof of Theorem 3.4: Theorem 3.4 follows immediately from Theorems 3.2 and 3.3. 2

A.3 COMPARISONS OF CASE (II) WITH CASES (III) AND (IV) FOR TRAINING RESNET-18 ON
CIFAR100 USING INCREASING BATCH SIZE BASED ON δ = 3

(a) Learning rate ηt and batch size bt versus epochs (b) Full gradient norm ∥∇f(θe)∥ versus epochs

(c) Empirical loss f(θe) versus epochs (d) Test accuracy score versus epochs

Figure 6: (a) Increasing learning rates (ηmin = 0.01) and increasing batch sizes based on δ = 3, (b)
full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for
SGD to train ResNet-18 on CIFAR100 dataset.

Figures 2–4 compare Case (ii) with Cases (iii) and (iv) for training ResNet-18 on CIFAR100 using
increasing batch size based on δ = 2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.4 TRAINING RESNET-18 ON CIFAR10 AND CIFAR100 USING DOUBLING, TRIPLING,
AND QUADRUPLING BATCH SIZES

0 50 100 150 200 250 300
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

27

28

29

210

211

Ba
tc

h
Si

ze

BS: constant
BS: = 2.0
BS: = 3.0
BS: = 4.0
LR: constant
LR: = 1.40
LR: = 1.70
LR: = 1.90

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 1

100

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR10

constant
= 2.0, = 1.40
= 3.0, = 1.70
= 4.0, = 1.90

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR10

constant
= 2.0, = 1.40
= 3.0, = 1.70
= 4.0, = 1.90

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

50

60

70

80

90

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR10

280 285 290 295 300
92

93

94

constant
= 2.0, = 1.40
= 3.0, = 1.70
= 4.0, = 1.90

(d) Test accuracy score versus epochs

Figure 7: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((δ, γ) =
(2, 1.4), (3, 1.7), (4, 1.9) satisfying

√
δ > γ) every 100 epochs, (b) full gradient norm of empirical

loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR10 dataset.

0 50 100 150 200 250 300
Epochs

0.10

0.15

0.20

0.25

0.30

0.35

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

27

28

29

210

211

Ba
tc

h
Si

ze

BS: constant
BS: = 2.0
BS: = 3.0
BS: = 4.0
LR: constant
LR: = 1.40
LR: = 1.70
LR: = 1.90

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on CIFAR100

constant
= 2.0, = 1.40
= 3.0, = 1.70
= 4.0, = 1.90

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on CIFAR100

constant
= 2.0, = 1.40
= 3.0, = 1.70
= 4.0, = 1.90

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on CIFAR100

280 285 290 295 300
70

71

72

73

74

constant
= 2.0, = 1.40
= 3.0, = 1.70
= 4.0, = 1.90

(d) Test accuracy score versus epochs

Figure 8: (a) Increasing learning rates and doubling, tripling, and quadrupling batch sizes ((δ, γ) =
(2, 1.4), (3, 1.7), (4, 1.9) satisfying

√
δ > γ) every 100 epochs, (b) full gradient norm of empirical

loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train ResNet-18 on
CIFAR100 dataset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.5 TRAINING WIDE-RESNET-28-10 ON CIFAR100

0 50 100 150 200 250 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10
Le

ar
ni

ng
 R

at
e

Learning Rate and Batch Size Schedular

26

27

28

Ba
tc

h
Si

ze

constant
diminishing
cosine
linear
polynomial (p=2.0)
Batch Size

(a) Learning rate ηt and batch size b versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

Wide-ResNet-28-10 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

Wide-ResNet-28-10 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

Wide-ResNet-28-10 on CIFAR100

280 285 290 295 300
72

73

74

75

constant
diminishing
cosine
linear
polynomial (p=2.0)

(d) Test accuracy score versus epochs

Figure 9: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.

0 50 100 150 200 250 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

constant
diminishing
cosine
linear
polynomial (p=2.0)
Batch Size

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

Wide-ResNet-28-10 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

Wide-ResNet-28-10 on CIFAR100

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

Wide-ResNet-28-10 on CIFAR100

280 285 290 295 300
76.25

76.50

76.75

77.00

77.25

constant
diminishing
cosine
linear
polynomial (p=2.0)

(d) Test accuracy score versus epochs

Figure 10: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
Wide-ResNet-28-10 on CIFAR100 dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

1.0
Le

ar
ni

ng
 R

at
e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

Batch Size (= 2.0)

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

Wide-ResNet-28-10 on CIFAR100

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

Wide-ResNet-28-10 on CIFAR100

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

Wide-ResNet-28-10 on CIFAR100

280 285 290 295 300
76.0

76.5

77.0

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(d) Test accuracy score versus epochs

Figure 11: (a) Increasing learning rates (ηmax = 0.2, 0.5, 1.0) and increasing batch size every 30
epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in
testing for SGD to train Wide-ResNet-28-10 on CIFAR100 dataset.

0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)
Batch Size (= 2.0)

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

Wide-ResNet-28-10 on CIFAR100

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

Wide-ResNet-28-10 on CIFAR100

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

Wide-ResNet-28-10 on CIFAR100

280 285 290 295 300
76.5

77.0

77.5

78.0
constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(d) Test accuracy score versus epochs

Figure 12: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
Wide-ResNet-28-10 on CIFAR100 dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.10

0.12

0.14

0.16

0.18

0.20

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

BS: = 2.0
BS: = 3.0
BS: = 4.0
LR: = 1.08
LR: = 1.50
LR: = 1.90

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

Wide-ResNet-28-10 on CIFAR100

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

Wide-ResNet-28-10 on CIFAR100

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

30

40

50

60

70

80

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

Wide-ResNet-28-10 on CIFAR100

280 285 290 295 300
76.6

76.8

77.0

77.2

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(d) Test accuracy score versus epochs

Figure 13: (a) Increasing learning rates and increasing batch sizes based on δ = 2, 3, 4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train Wide-ResNet-28-10 on CIFAR100 dataset.

A.6 TRAINING RESNET-18 ON TINY IMAGENET

0 50 100 150 200 250 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

26

27

28

Ba
tc

h
Si

ze

constant
diminishing
cosine
linear
polynomial (p=2.0)
Batch Size

(a) Learning rate ηt and batch size b versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on Tiny ImageNet

constant
diminishing
cosine
linear
polynomial (p=2.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on Tiny ImageNet

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on Tiny ImageNet

280 285 290 295 300
57

58

59

60

61

constant
diminishing
cosine
linear
polynomial (p=2.0)

(d) Test accuracy score versus epochs

Figure 14: (a) Decaying learning rates (constant, diminishing, cosine, linear, and polynomial) and
constant batch size, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy
score in testing for SGD to train ResNet-18 on Tiny ImageNet dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.00

0.02

0.04

0.06

0.08

0.10
Le

ar
ni

ng
 R

at
e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

constant
diminishing
cosine
linear
polynomial (p=2.0)
Batch Size

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on Tiny ImageNet

constant
diminishing
cosine
linear
polynomial (p=2.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on Tiny ImageNet

constant
diminishing
cosine
linear
polynomial (p=2.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on Tiny ImageNet

280 285 290 295 300
59.0

59.5

60.0

60.5

61.0

constant
diminishing
cosine
linear
polynomial (p=2.0)

(d) Test accuracy score versus epochs

Figure 15: (a) Decaying learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
ResNet-18 on Tiny ImageNet dataset.

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

Batch Size (= 2.0)

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on Tiny ImageNet

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on Tiny ImageNet

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on Tiny ImageNet

280 285 290 295 300
59.0

59.5

60.0

60.5

constant
max = 0.2(1.080)
max = 0.5(1.196)
max = 1.0(1.292)

(d) Test accuracy score versus epochs

Figure 16: (a) Increasing learning rates (ηmax = 0.2, 0.5, 1.0) and increasing batch size every 30
epochs, (b) full gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in
testing for SGD to train ResNet-18 on Tiny ImageNet dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Le

ar
ni

ng
 R

at
e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)
Batch Size (= 2.0)

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on Tiny ImageNet

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on Tiny ImageNet

constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on Tiny ImageNet

280 285 290 295 300
59.0

59.5

60.0

60.5

61.0
constant
warmup constant (max = 0.2)
warmup constant (max = 0.5)
warmup constant (max = 1.0)
warmup cosine (max = 0.2)
warmup cosine (max = 0.5)
warmup cosine (max = 1.0)

(d) Test accuracy score versus epochs

Figure 17: (a) Warm-up learning rates and increasing batch size every 30 epochs, (b) full gradient
norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD to train
ResNet-18 on Tiny ImageNet dataset.

0 50 100 150 200 250 300
Epochs

0.10

0.12

0.14

0.16

0.18

0.20

Le
ar

ni
ng

 R
at

e

Learning Rate and Batch Size Schedular

23

24

25

26

27

28

29

210

Ba
tc

h
Si

ze

BS: = 2.0
BS: = 3.0
BS: = 4.0
LR: = 1.08
LR: = 1.50
LR: = 1.90

(a) Learning rate ηt and batch size bt versus epochs

0 50 100 150 200 250 300
Epochs

10 2

10 1

Fu
ll

Gr
ad

ie
nt

 N
or

m
 o

f E
m

pi
ric

al
 L

os
s f

or
 Tr

ai
ni

ng

ResNet-18 on Tiny ImageNet

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(b) Full gradient norm ∥∇f(θe)∥ versus epochs

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Em
pi

ric
al

 L
os

s V
al

ue
 fo

r T
ra

in
in

g

ResNet-18 on Tiny ImageNet

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(c) Empirical loss f(θe) versus epochs

0 50 100 150 200 250 300
Epochs

30

35

40

45

50

55

60

Ac
cu

ra
cy

 S
co

re
 fo

r T
es

t

ResNet-18 on Tiny ImageNet

280 285 290 295 300
59.0

59.5

60.0

60.5

61.0

= 2.0, = 1.08
= 3.0, = 1.50
= 4.0, = 1.90

(d) Test accuracy score versus epochs

Figure 18: (a) Increasing learning rates and increasing batch sizes based on δ = 2, 3, 4, (b) full
gradient norm of empirical loss, (c) empirical loss value, and (d) accuracy score in testing for SGD
to train ResNet-18 on Tiny ImageNet dataset.

28

