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Abstract

Automating the generation of Planning Domain Definition
Language (PDDL) with Large Language Model (LLM) opens
new research topic in AI planning, particularly for com-
plex real-world tasks. This paper introduces Image2PDDL,
a novel framework that leverages Vision-Language Models
(VLMs) to automatically convert images of initial states and
descriptions of goal states into PDDL problems. By providing
a PDDL domain alongside visual inputs, Imasge2PDDL ad-
dresses key challenges in bridging perceptual understanding
with symbolic planning, reducing the expertise required to
create structured problem instances, and improving scalabil-
ity across tasks of varying complexity. We evaluate the frame-
work on various domains, including standard planning do-
mains like blocksworld and sliding tile puzzles, using datasets
with multiple difficulty levels. Performance is assessed on
syntax correctness, ensuring grammar and executability, and
content correctness, verifying accurate state representation in
generated PDDL problems. The proposed approach demon-
strates promising results across diverse task complexities,
suggesting its potential for broader applications in AI plan-
ning. We will discuss a potential use case in robot-assisted
teaching of students with Autism Spectrum Disorder.

Introduction
Automating the generation of Planning Domain Definition
Language (PDDL) problems has long been a challenge in AI
planning, particularly for applications involving complex,
real-world tasks. Traditional approaches to PDDL genera-
tion often require domain-specific knowledge and substan-
tial manual effort to accurately structure problem instances.
This barrier limits the scalability and accessibility of AI
planning, as defining object relationships, spatial configura-
tions, and task goals is labor-intensive and demands exper-
tise.

Recent advances in Large Language Models (LLMs) have
opened new possibilities by enabling models to interpret and
translate visual and textual data into structured, symbolic
formats, bridging the gap between perceptual understand-
ing and symbolic reasoning (Liu et al. 2023; Xie et al. 2023;
Shirai et al. 2024). However, each approach has its limita-
tions. LLM+P (Liu et al. 2023) requires text descriptions for
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both initial and goal states, which, in practical applications,
depends on human input or additional tools to convert im-
ages to text. Xie’s work (Xie et al. 2023) focuses solely on
translating text descriptions of goal states, lacking a mech-
anism to interpret visual data. Meanwhile, ViLaIn (Shirai
et al. 2024) can generate PDDL problems from images but
relies on an object detection model and a captioning model
to process images, adding complexity to the pipeline. These
limitations highlight the need for a more streamlined ap-
proach that can directly process both visual and textual in-
puts for automated PDDL problem generation.

To address these challenges, we present Image2PDDL,
a novel framework that leverages Vision-Language Mod-
els (VLMs) to automatically generate PDDL problems from
both visual and textual inputs. Image2PDDL is designed
to handle a wide range of input formats, including im-
ages of initial and goal states as well as textual descrip-
tions, allowing it to adapt seamlessly across diverse do-
mains and task complexities. By directly interpreting spa-
tial and categorical relationships within visual data and inte-
grating them with goal-oriented descriptions, Image2PDDL
provides a flexible solution for PDDL problem generation.
We evaluated the framework across traditional planning do-
mains—Blocksworld and Sliding-Tile Puzzle—as well as a
3D world domain, Kitchen, assessing both syntax correct-
ness and content correctness of the generated PDDL prob-
lems. In all domains, Image2PDDL demonstrated promising
results, effectively reducing the need for domain-specific ex-
pertise and making AI planning more accessible, scalable,
and applicable to real-world scenarios.

Image2PDDL makes several key contributions to the field
of AI planning. Its adaptability across both traditional plan-
ning domains and complex 3D environments underscores its
versatility and scalability, positioning it as a valuable tool
for a wide range of AI planning applications. By reducing
dependency on domain-specific knowledge, Image2PDDL
broadens accessibility and opens new possibilities for apply-
ing AI planning to real-world tasks. Future work could focus
on enhancing the model’s capacity to interpret more intricate
object relationships and dynamic scenarios, further expand-
ing the potential of automated planning across diverse and
complex environments.

We will first introduce Image2PDDL together with exper-
iments in several benchmark domains, and then discuss a



Figure 1: Image2PDDL operates in three main steps. First, the image of the initial state is translated into a predefined state
format. Next, either an image or text description of the goal state is similarly converted to the same state format. Finally, both
states are used to generate a PDDL problem based on predefined domains and examples.

case in automated teaching of students with Autism Spec-
trum Disorders (ASD).

Related Work
Recent advances in LLMs and VLMs have spurred inter-
est in their applications to automated planning. Most cur-
rent work in this area focuses on using LLMs and VLMs as
planners, where the models are tasked with generating plans
directly based on high-level descriptions or visual inputs
(Huang et al. 2022; Raman et al. 2022; Zhang et al. 2023;
Dagan, Keller, and Lascarides 2023; Guan et al. 2023). In
these approaches, the models produce a sequence of sym-
bolic actions (Lin et al. 2023), code (Liang et al. 2023), or
predefined skills (Singh et al. 2023; Brohan et al. 2023) to
complete a task, acting as planners that bridge the gap be-
tween high-level goals and executable actions. A significant
drawback of these methods is that the generated plans are not
always guaranteed to be correct, as both LLMs and VLMs
may produce sequences that overlook domain constraints or
violate task feasibility. Additionally, the planning process is
inherently opaque, making it difficult to verify or explain the
rationale behind the generated plans.

Recent research has also explored the potential of LLMs
and VLMs in directly generating PDDL domains or PDDL
problems, shifting the focus from plan generation to the for-
mulation of structured problem instances (Liu et al. 2023;
Xie et al. 2023; Shirai et al. 2024; Smirnov et al. 2024; Os-
wald et al. 2024). These approaches aim to leverage the lan-
guage and visual understanding capabilities of LLMs and
VLMs to automate the creation of PDDL problem defi-

nitions, which include initial and goal states and domain-
specific constraints.

Method
The Image2PDDL framework leverages VLM to parse vi-
sual and textual inputs, transforming them into Planning Do-
main Definition Language (PDDL) problem representations
based on pre-defined domains. The core idea is to utilize
the spatial relationship understanding that VLMs offer, en-
abling the translation of complex images and descriptions
into structured PDDL problems, which traditionally require
extensive domain expertise to manually create.

Framework Overview
Image2PDDL consists of a pipeline, as shown in Figure 1,
that translates an image of an initial state and either an image
or text description of a goal state into PDDL problem format.
This is achieved in in the following three main steps, each
using ChatGPT4o for structured output generation.

Initial State Translation: First, we input the image of the
initial state into ChatGPT4o, which is guided by a structured
prompt. This prompt includes an example of the desired out-
put format to encourage accurate parsing of spatial relation-
ships between objects. The model generates a pre-defined
textual representation of the spatial relationships observed
in the initial state, such as object locations and their relative
positions.

Goal State Translation: For the goal state, we offer ei-
ther an image or a text description. Similarly to the initial
state, ChatGPT4o is prompted to parse this goal state in-



Figure 2: Images of example scenarios of each domain.

formation into the same structured format, ensuring consis-
tency between the initial and goal state representations. This
format standardization is crucial for correctly translating the
data into PDDL syntax.

PDDL Problem Generation: With structured text repre-
sentations of both the initial and goal states, we proceed to
PDDL problem generation. ChatGPT4o receives the initial
and goal states, the corresponding PDDL domain definition,
and an example format to guide output structure. Additional
information, such as predicate rules and detailed state struc-
ture definitions, is also included to refine output quality and
enhance syntax correctness and executability.

This pipeline allows Image2PDDL to leverage the spatial
reasoning capabilities of VLMs, providing an automated,
scalable solution to generate PDDL problems for diverse
planning domains. The iterative prompt refinements and ex-
amples enable ChatGPT4o to achieve high accuracy in syn-
tax and content representation, making the framework effec-
tive for complex task definitions across different difficulty
levels.

Experiments and Evaluation
Dataset
To evaluate the Image2PDDL framework, we prepared
datasets across three distinct domains: Blocksworld,
Sliding-Tile Puzzle, and Kitchen Domain. Each domain
includes scenarios categorized by difficulty levels—Easy,
Medium, and Hard—allowing us to test the framework’s
scalability and accuracy across a range of task complexities.
For each difficulty level, we prepared 50 unique scenarios.
Table 1 shows object types, predicates, and actions of each
domains. Figure 2 shows image of an scenario from each
domain.

The Blocksworld domain assesses Image2PDDL’s ability
to interpret spatial relationships by arranging blocks, with
difficulties based on the number of blocks (5 for Easy, 6 for
Medium, and 7 for Hard). In the Sliding-Tile Puzzle domain,
the framework rearranges tiles to match a goal configura-
tion, testing sequential spatial handling across three puzzle
sizes: 8 tiles (Easy), 15 tiles (Medium), and 24 tiles (Hard).
The Kitchen Domain, created in IsaacSim, evaluates real-
world scenario comprehension by identifying and catego-
rizing objects. Task difficulty increases from identifying a
single item’s location (Easy) to distinguishing between two
items by attributes (Medium) and recognizing three items
with finer detail, such as brand or color (Hard).

For each scenario, the dataset provides an initial and goal
image alongside a textual goal state description, enabling
Image2PDDL to process diverse data formats and effec-

tively translate them into structured PDDL problems. This
setup allows for a systematic evaluation of the framework’s
ability to handle different levels of task complexity across
varied planning domains.

Results
Performance was assessed based on two metrics: Syntax
Correctness and Content Correctness. Syntax correctness
was verified by passing the generated PDDL problems to
a Fast Downward planner (Helmert 2006) to ensure each
problem could be successfully parsed and executed without
syntax errors. Content correctness was evaluated by com-
paring the initial and goal states described in the generated
PDDL problem against the true states, verifying accurate
representation of object locations and relationships. To ex-
amine the flexibility of Image2PDDL, we used both images
and text descriptions to represent goal states, analyzing the
framework’s ability to interpret both visual and textual in-
puts accurately. Tables 2, 3, and 4 provide detailed error
counts across domains and difficulty levels, showcasing the
method’s performance across varying task complexities.

Syntax Correctness: Overall, Image2PDDL demon-
strated strong syntax correctness across all domains, with
zero syntax errors recorded across both input modali-
ties—images for both initial and goal states, and images for
the initial state paired with a text description for the goal
state. The generated PDDL problems were consistently ver-
ified as syntactically valid by the Fast Downward planner,
showing that the framework adheres effectively to PDDL
syntax rules. Occasionally, the VLM returned PDDL prob-
lems with syntax highlighting, but these highlights were eas-
ily removed without affecting the problem structure. This
consistency suggests that Image2PDDL reliably constructs
grammatically correct and executable PDDL statements, re-
gardless of input type or task complexity within each do-
main.

Figure 3: Types of Errors in the Kitchen Domain: The left
chart represents errors when using an image to describe the
goal state, while the right chart represents errors when using
a text to describe the goal state.

Content Correctness: Our analysis shows that as domain
complexity increases, Image2PDDL is more prone to gen-
erating incorrect states in PDDL problems. We reviewed er-
rors within each domain to identify recurring patterns and
domain-specific challenges.



Domain Object Types Predicates Actions
Blocksworld block on, ontable, clear,

holding, arm-empty
pick-up, put-down,
stack, unstack

Sliding-Tile Puzzle tile, position tile, position, at,
blank, inc, dec

move-down, move-up,
move-right,
move-left

Kitchen item (fruit: lemon, apple;
cutting board; mug: black mug,
green mug; kettle; wine; soda:
cola, fanta), location (counter,
sink, shelf, stove)

at, clear move-item

Table 1: Defined Object Types, Predicates, and Actions in the Domain Descriptions

Input Type Difficulty Syntax Errors Content Errors

Images (Initial & Goal)
Easy 0 1/50

Medium 0 3/50
Hard 0 3/50

Image (Initial), Text (Goal)
Easy 0 1/50

Medium 0 3/50
Hard 0 3/50

Table 2: Syntax and Content Errors in Blocksworld Domain

Input Type Difficulty Syntax Errors Content Errors

Images (Initial & Goal)
Easy 0 2/50

Medium 0 1/50
Hard 0 1/50

Image (Initial), Text (Goal)
Easy 0 2/50

Medium 0 1/50
Hard 0 2/50

Table 3: Syntax and Content Errors in Sliding-Tile Puzzle
Domain

In the Blocksworld domain, Image2PDDL consistently
recognized the correct number of objects across both im-
age and text-based goal states, demonstrating reliable ob-
ject identification. However, the same errors appeared across
scenarios, revealing a recurring issue in goal state interpre-
tation. These errors typically involved incorrect stacking or-
ders: blocks intended to be on the table were sometimes
placed atop stacks, while blocks meant to be on top were
placed on the table. This reversal in stacking sequences in-
dicates a systematic misinterpretation of positional relation-
ships in the generated PDDL problem.

In the Sliding-Tile Puzzle domain, errors primarily in-
volved switched tile locations, where specific tiles were in-
correctly swapped. Although Image2PDDL generally cap-
tured the spatial configuration well, it occasionally struggled
with precise tile placement, particularly in more complex tile
arrangements.

In the Kitchen domain, the visually intricate environment
introduced additional sources of error. We classified these
errors into five categories: (1) Stove Error, where the LLM
mistakenly identifies the stove as an item instead of a loca-
tion; (2) Missing Item, where certain items are omitted from
the generated PDDL problem; (3) Wrong Item, where items
are misclassified, leading to inaccuracies in object identifi-
cation; (4) Wrong Detail, where items are assigned incor-

Input Type Difficulty Syntax Errors Content Errors

Images (Initial & Goal)
Easy 0 7/50

Medium 0 5/50
Hard 0 9/50

Image (Initial), Text (Goal)
Easy 0 3/50

Medium 0 3/50
Hard 0 3/50

Table 4: Syntax and Content Errors in Kitchen Domain

rect attributes (e.g., brand or color); and (5) Wrong Loca-
tion, where items are placed in incorrect positions. Figure 3
presents the distribution of these error types. Across goal
state representation formats, the most common error was
missing items, typically smaller objects like fruit or soda
cans. Additionally, using images to represent the goal state
often led to stove misidentifications, where the stove was
treated as an item rather than a location, a recurring issue
when defining goal states.

Image2PDDL Use Case
Robot-assisted teaching of students with Autism Spectrum
Disorder Teachers utilize different types of prompts to sup-
port student learning. In robot-assisted education, robots can
deliver physical, verbal, visual or gestural prompts, and can
teach problem-solving through demonstration. Research in-
dicates that students with Autism Spectrum Disorder (ASD)
often respond positively to interactions with robots (van den
Berk-Smeekens et al. 2020).

Robot-assisted teaching shows potential for significant
enhancements in educational outcomes of students with
ASD. Educators note that children with ASD may benefit
from robot predictability and consistency, especially with
humanoid robots. However, further research is needed to
verify these observations. It is essential to identify specific
use cases and conditions under which skills acquired dur-
ing robot-assisted sessions can be effectively transferred to
the child’s daily life. Additionally, we should consider the
effects of robot morphology on children’s responses and be-
havior. Collaboration with ASD experts is crucial for devel-
oping systems that are both effective and appropriate for use
in special education (Alcorn et al. 2019). Students with ASD
often show a strong interest in technological devices, includ-
ing robots.



The Codey Rocky robot is an educational tool designed
to teach programming through block-based and text-based
code. Studies involving this robot indicate that students with
ASD are motivated to engage in programming activities, and
that robot-mediated interventions can enhance peer cooper-
ation (Gkiolnta, Zygopoulou, and Syriopoulou-Delli 2023).
Robots can also support the development of communica-
tion skills and help reduce maladaptive behaviors in students
with ASD (Dubois-Sage et al. 2024). Humanoid robots, such
as NAO, have shown substantial benefits in teaching chil-
dren with ASD and supporting the acquisition of new skills.
Focus and attention span were improved in robot-assisted
activities (Qidwai, Kashem, and Conor 2019).

Some researchers focus on challenges specific to individ-
uals with ASD, such as joint attention and imitation skills,
utilizing methods based on Computer-Assisted Therapies
(CATs) and Robot-Assisted Therapies (RATs) to improve
student skills (Zahid et al. 2024). However, some contra-
dictory results were published on the effects of robots on
joint attention (Sani-Bozkurt and Bozkus-Genc 2021) and
the overall skill development. For instance, while some stu-
dents found interactions with robots engaging, they did not
demonstrate significant learning progress (Abu-Amara, Mo-
hammad, and Bensefia 2024). Earlier studies have empha-
sized the use of video models to improve fine and gross mo-
tor task perfor-mance in individuals with ASD (Mechling
and Swindle 2012). Mobile applications have also shown po-
tential as effective tools for students with ASD; for example,
a mathematical problem-solving app was well received by
participants, who demonstrated the ability to complete tasks
independently (Blanco 2024).

Recently, interventions based on virtual reality have been
investigated to explore effects on enhancing social skills of
children (Sun, Huang, and Ho 2024) and to support remote
team collaboration of autistic adults (Amat 2023). In an in-
dustrial context, experiments examining the task of robotic
collaborative assembly have implied that some persons with
ASD can collaborate very effectively with the robot. How-
ever, behavioral differences in gaze, gestures, etc. suggest
that solutions designed for neurotypical participants may not
align with the needs of the ASD groups (Mondellini 2023).

TEACCH® Autism Program
The TEACCH® Autism Program was developed at the Uni-
versity of North Carolina (Us 2024). It was created in the
1970s by Eric Schopler who disproved the hypothesis that
autism is a mental illness caused by emotionally cold par-
ents. His experiments imply that autism is not primarily a
disorder of emotions but a disorder of processing sensory
information (Mesibov 2004).

The TEACCH approach exploits the premise that people
with ASD are predominantly visual learners and prefer vi-
sually cued instructions in the educational process (Quill
1995). It’s the recommended methodology in the Czech Re-
public for the education of people with ASD and is used
worldwide. The TEACCH Structured Work Session consists
of structured tasks. Educators often use a specific type of
structured task, the shoe-box task (see Figure 4), to be solved
by students in the class.

Automated assessment and planning of shoe-box
tasks
There is a visual structure that allows to recognize how the
shoe-box task should be completed. Vision-based machine
learning methods seems to be suitable for exploring tasks
and automatically evaluating them. A system that provides
automatic assessment of structured tasks extended by ac-
tions planning could be used in structured teaching, with a
real robot in the role of teacher. To the best of our knowl-
edge, there is no existing research on automated assess-
ment of shoe-box tasks, or on automated action planning for
robot-assisted shoe-box activities.

For learning new shoe-box tasks, students typically fol-
low teacher guidance, or use picture-based or text-based in-
structional systems (Bryan and Gast 2000). Additional ex-
periments have explored alternative types of prompts, in-
cluding video, computer, and other devices. For example,
a Personal Digital Assistant was used to assist students in
completing new tasks and to facilitate smoother transitions
between tasks (Mechling and Savidge 2010).

Some research addresses action planning for structured
tasks (not for shoe-box tasks), employing a mathematical
framework with an agent in the role of a teacher. In experi-
ments, a humanoid NAO robot was utilized in a storytelling
scenario to guide the child’s gaze toward target screens, us-
ing a sequence of planned actions (Baraka et al. 2020, 2022).

Experiments with real robots can be performed with the
humanoid robots and robot manipulators. Depth cameras
can be used as main sensors to interpret the environment.

Objective
The main goal of a use case for Image2PDDL is to imple-
ment a computerized system for the automatic assessment
and planning of structured shoe-box tasks in robot-assisted
education.

This system provides methods for creating models of the
shoe-box tasks, automatically identifying the current state of
a task instance and planning actions for it. It allows a robot
to assist a student in completing the shoe-box task, which
will be demonstrated by the real robot. The robot responds
to the student’s requests for help and provides instructions to
complete the task. There are implemented multiple interac-
tion strategies that represent different teaching approaches.
Each strategy contains, for each task instance, a sequence of
robot actions that lead to successful completion of the task,
if the student follows robot instructions.

Methods of Research
The TEACCH Structured Work Session consists of struc-
tured tasks. The shoebox task is a structured task with a box
that serves as a workstation and contains all the materials
for the task (puzzles, cards, blocks, . . . ). There is a visual
structure that hints how the task should be completed.

Structured task assessment are answers to the following
questions: What is the goal? Was the goal achieved in this
instance? What needs to be done to achieve the goal?

We can represent the structured task as abstract structure
containing set of given elements with pre-defined states, ac-



Figure 4: Shoebox tasks as a use case for robot-assisted
teaching.

tions and goal. For this structure, logic programming could
be used to search for sequence of actions (plan) to reach the
goal. Then, for a given task instance (i.e., configuration of el-
ements in the box), the vision-based method Image2PDDL
can be used to decide whether the task has been completed
or what state it is in.

In the structured teaching sessions, there is typically a
teacher that supervises a student while he is working on the
task. System for automated task assessment could be used
as a tool to provide basic feedback to a student, for exam-
ple to confirm that the task is completed. The teacher also
assists the student by giving prompts or by demonstration.
This part of the teaching process can be performed by a real
robot that would help the student to solve the task, using the
action plan to reach the goal from current state.

Another approach might be to try to infer the abstract
structure and to create a logic model automatically using ma-
chine learning methods, e.g., from demonstration (video) or
from annotated samples of completed and incomplete task
instances (images, simulation snapshots). Planning would
use some predefined actions to manipulate objects.

Ideally, the system would not require any programming
skills to be used: for a new task, the teacher creates the
model just by demonstration of the task. Then, for individ-
ual students and task instances, s/he choose an educational
strategy which would be performed by the robot.

Representation of shoe-box tasks Each task type is rep-
resented by its model that contains elements, locations, ini-
tial state, goal states and possible actions. This PDDL model
can be provided with the shoe-box task, or created automati-
cally using vision-based machine learning. For each task in-
stance the Image2PDDL model then allows to identify auto-
matically (from camera data) the current state of the instance
and to plan actions for the current state.

Initial experiments We conducted initial tests with a
small dataset of shoe-box tasks to verify that the Im-
age2PDD model can be used to identify shoe-box task states
and to plan actions.

For simple tasks such as distributing balls into labeled
bowls, ChatGPT can easily derive the goal of the task and

Figure 5: Instance of the distribution task that requires single
snapshot to obtain specification from ChatGPT.

Figure 6: Instance of the distribution task with unambiguous
assignment: labels are treated as bowl names, not as number
of balls.

plan actions. In some cases, a single snapshot is sufficient
to obtain a full task description. However, we usually need
to provide snapshots of multiple configurations to avoid am-
biguous conclusions.

The Image2PDD framework provides tools for specify-
ing a task using an image or text description. This allows
us to work with more complex shoe-box tasks models and
also makes the application more intuitive. In robot-assisted
teaching, teachers should have a choice of how to work with
the robots: some would prefer to use only images, others
would be interested in advanced methods that allow to de-
scribe difficult tasks with many objects.

Robot as a teacher The robot will assist the student in
completing the shoe-box task e.g., by manually moving el-
ements, pointing, or giving verbal prompts. The student can
ask the robot for help, e.g., by using a button, gesture, or
voice commands.

There are many interaction strategies to decide what the
robot should do and when. We will consult the strategies
with experts in ASD and implement multiple recommended
strategies, as options for the user (teacher). Planned actions
will be translated into abstract robot actions using the se-
lected strategy; abstract robot actions will be translated into
commands for the real robot.

Collaboration with experts in ASD In the preparation
phase, we will discuss basic practical questions related to
structure teaching, e.g., which structured tasks types are cur-
rently used in education (in Czech Republic and in world),
are there any standard for shoe-box tasks in Czech schools
(for example, products from ShoeboxTasks®) or are they
typically designed and made by teachers, what are physical
parameters of the boxes.

We also need to consult educational strategies and
methodology specific to ASD, especially the safety recom-



mendations for experiments with students and the real robot.
For testing, annotated data from the multi-modal database of
autistic children’s interactions are available (DE-ENIGMA
2019).

Conclusion
In this work, we introduced Image2PDDL, a framework
that leverages VLM to automate the generation of PDDL
problems. By utilizing both images and textual descrip-
tions for initial and goal states, Image2PDDL bridges
the gap between visual perception and symbolic plan-
ning, allowing for a streamlined, accessible process of
problem generation across diverse domains. Our evalua-
tion across three domains—Blocksworld, Sliding-Tile Puz-
zle, and Kitchen—demonstrated that Image2PDDL achieves
high syntax correctness, reliably producing grammatically
valid PDDL outputs across various task complexities and
input types. While content correctness varied depending on
domain difficulty and input modality, results indicated that
the framework performs well with structured tasks and ben-
efits from textual input in visually complex scenarios.

Image2PDDL’s promising performance suggests broader
applications in AI planning, particularly for complex real-
world tasks requiring visual and symbolic integration. Fu-
ture work could enhance the framework’s capacity to man-
age intricate object relationships and multi-step transforma-
tions in dynamic environments, such as the autistic shoe-
box task. Overall, this framework lays the groundwork for
more accessible and scalable AI planning solutions, creat-
ing new opportunities for integrating vision and language
models into automated planning domains.

We discussed an apparent application case for Im-
age2PDDL in robot-assisted teaching of students with ASD.
Some possible research avenues include

• automatically generating 3D models of shoebox tasks (to
provide the visual feedback or to practice the task in a
simulation).

• using vision language model to generate verbal instruc-
tions.

• automating the entire process: use the robot to prepare
the shoebox task or the entire work session.

• using the system as tool for education of robot program-
ming for students with ASD.
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