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Abstract
Deep learning systems deployed in real-world ap-
plications often encounter data that is different
from their in-distribution (ID). A reliable model
should ideally abstain from making decisions in
this out-of-distribution (OOD) setting. Existing
state-of-the-art methods primarily focus on dis-
tances to nearest neighbors or to decision bound-
aries, either overlooking or ineffectively using
in-distribution statistics. In this work, we propose
a novel angle-based metric for OOD detection that
is computed relative to the in-distribution struc-
ture. We demonstrate that the angles between
feature representations and decision boundaries,
viewed from the mean of in-distribution features,
serve as an effective discriminative factor between
ID and OOD data. We evaluate our method on
9 ImageNet-pretrained models. Our approach
achieves the lowest FPR in 5 out of 9 ImageNet
models, obtains the best average FPR overall, and
consistently ranking among the top 3 across all
evaluated models. Furthermore, we highlight the
benefits of contrastive representations by showing
strong performance with ResNet SCL and CLIP
models. Finally, we demonstrate that the scale-
invariant nature of our score enables an ensemble
strategy via simple score summation.

1. Introduction
A trustworthy deep learning system should not only pro-
duce accurate predictions, but also recognize when it is
processing an unknown sample. The ability to identify
when a sample deviates from the expected distribution, and
potentially rejecting it, plays a crucial role especially in
safety-critical applications, such as medical diagnosis (Fer-
nando et al., 2021), driverless cars (Bogdoll et al., 2022)
and surveillance systems (Diehl & Hampshire, 2002). The
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out-of-distribution (OOD) detection problem addresses the
challenge of distinguishing between in-distribution (ID) and
OOD data – essentially, drawing a line between what the
system knows and what it does not.

Various approaches have been proposed for OOD detection,
mainly falling into two categories: (i) methods that suggest
model regularization during training (Lee et al., 2018), and
(ii) post-hoc methods, which leverage a pre-trained model
to determine if a sample is OOD by designing appropriate
score functions (Hendrycks & Gimpel, 2022; Sun et al.,
2022). Post-hoc methods are more advantageous for their
efficiency and flexibility, as they can be applied to arbitrary
pre-trained models without retraining. These approaches
are often categorized based on the domain of their score
functions. Early OOD detection methods relied on confi-
dence scores derived from the logit space (Hendrycks &
Gimpel, 2022; Liu et al., 2020), but these often suffer from
the overconfidence of neural networks (Guo et al., 2017).
More recent approaches have shifted toward distance-based
scoring in the feature space (Sun et al., 2022; Sehwag et al.,
2021), motivated by the observation that relationships in the
latent space can offer a more nuanced and reliable signal.
Please see A for a more detailed related work.

In this work, we present OOD Detection with Relative
Angles (ORA), a novel approach that exploits the rela-
tionship between feature representations and classifier
decision boundaries, in the context of the mean statistics
of ID features. Moreover, the scale-invariant nature
of angle-based representations, as similarly observed
in Moschella et al. (2023), allows us to aggregate the
confidence scores from multiple pre-trained models simply
by summing their ORA scores. This enables to have a score
that can be single model based or extended to ensemble of
models. In summary, our key contributions include:

• We present a novel post-hoc OOD score, which computes
the angles between the features and their projection to the
decision boundaries, relative to the mean of ID-features

• We conduct an extensive evaluation on the ImageNet OOD
benchmark using 9 model backbones, including modern
transformer-based architectures and compare 10 detection
methods. ORA achieves the best average FPR95 across
all models, ranks in the top 3 for every model, and is the
best-performing method on 5 out of 9 models.
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Figure 1: Geometric visualization of ORA for in-distribution (left) and out-of-distribution (right) cases. ORA focuses on the
angular distance between the feature representation and the decision boundary, from the perspective of the in-distribution
mean. The angle θ serves as the distinguishing factor between ID and OOD samples, with θID > θOOD.

• We analyze the benefits of using contrastively learned
features with ORA. Our method achieves the best perfor-
mance on CIFAR-10 with ResNet18-SCL and on Ima-
geNet with ResNet50-SCL, reducing average FPR95 by
0.88% and 7.74% respectively. We further validate this
trend with the CLIP model, where ORA achieves strong
results in both zero-shot and linear probing settings.

• ORA’s scale-invariance allows confidence aggregation
using multiple pre-trained models, enabling an ensemble.
Our experiments show that the ORA ensemble reduces
the FPR95 by 2.51% on the ImageNet OOD benchmark
compared to the best single model performance.

2. OOD Detection with Relative Angles
Figure 1 provides a geometric visualization of our method.
Our approach leverages the geometric relationships between
three key points in the feature space: (i) the initial repre-
sentation of a sample, (ii) its projection onto the decision
boundary, and (iii) the mean of in-distribution features. For
a detailed problem setting please see Appendix B

We propose using the relation between feature represen-
tations and decision boundaries by deriving closed-form
plane equations for the decision boundaries between any two
classes. Specifically, we examine the angle formed between
the feature representation vector and its projection onto the
decision boundary. However, this angle is sensitive to the
choice of origin, creating an ambiguity as the geometric
relationship between the feature representation and the de-
cision boundary should be translation-invariant. To address
this, we propose to represent features in a reference frame
relative to the mean of the in-distribution samples. There-
fore, we incorporate ID characteristics by centering around
its mean, while ensuring scale and translation invariance.

We observe that the angle between a centered representation
and its projection is larger for ID data, reflecting higher label-
switching cost and confidence. For OOD data, the angle is
smaller, indicating instability and weaker class evidence.

2.1. Features on the Decision Boundary

In this section, we derive the score formulation and its
properties. The model f can be rewritten as a composed
function f1 ◦ ...fL−1 ◦ g, where L is the number of layers
and g : RD → R|Y| corresponds to the last layer classifica-
tion head. The function g(z) = Wz+ b maps penultimate
layer features z ∈ RD to the logits space via W ∈ R|Y|×D

and b ∈ R|Y|. The decision boundary between any two
classes y1 and y2 with y1 ̸= y2 can be represented as:

DBy1,y2
= (wy1

−wy2
)T z+ by1

− by2
= 0

where wy1
(or wy2

) denotes the the row vectors of W corre-
sponding to class y1 (respectively y2) and similarly, by1

, by2

are the bias values corresponding to classes y1 and y2. Intu-
itively, given a fixed classifier, this equation is satisfied for
all z’s such that their corresponding logits for class y1 and
y2 are equal. Then, feature representations can be projected
onto the hyperplane that defines the decision boundary:

zdb = z− (wy1 −wy2)
T z+ (by1 − by2)

∥wy1 −wy2∥2
(wy1 −wy2) (1)

Let µID ∈ RD be the mean of the in-distribution feature
representations. Centering w.r.t. µID corresponds to shifting
the origin to µID. In this new reference frame, three key
points form a triangle in D-dimensional space: the centered
feature vector (z − µID), its projection onto the decision
boundary (zdb − µID) and the new origin (see Figure 1).
Then, rather than the absolute distance between z and zdb,
we use the relative angle θy1,y2

(z) from the in-distribution
feature representation’s reference frame. This captures the
position of features and the decision boundaries relative to
the in-distribution data, while also being scale invariant:

θy1,y2
(z) = arccos

(
⟨z− µID, zdb − µID⟩
∥z− µID∥ · ∥zdb − µID∥

)
(2)

Our score function captures the maximum discrepancy
of the relative angles between the centered feature rep-
resentation and its projections on DBŷ,y′ , where ŷ =
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Table 1: Average FPR95 (%) on the ImageNet OOD detection benchmark. Each column corresponds to a different detection
method, and each row to a model backbone. Lower is better. The best result per row is highlighted in bold.

Model MSP MaxLogit Energy R-Mah R-Cos P-Cos NNG KNN+ fDBD ORA

ConvNeXt 63.54 60.69 78.70 45.79 46.99 49.37 39.54 47.40 39.03 34.92
ConvNeXt-pre 45.57 42.39 46.95 34.91 36.16 35.47 76.91 77.23 42.13 29.53
Swin 61.99 59.21 65.78 45.25 46.26 49.37 57.34 53.79 52.34 51.56
Swin-pre 46.20 40.86 42.33 39.40 35.66 33.94 44.06 51.34 38.92 35.13
DeiT 57.48 57.52 70.05 52.51 47.63 61.62 58.02 71.34 55.98 54.16
DeiT-pre 57.45 54.72 55.56 39.37 38.49 39.11 43.56 44.18 46.69 37.76
EVA 43.75 40.37 43.40 27.45 27.94 27.68 37.33 34.19 36.10 33.37
ResNet-50 66.95 64.29 58.41 83.29 59.51 45.53 55.22 53.97 51.19 43.63
ResNet-50 (SCL) 50.06 97.59 98.46 77.52 48.18 31.57 98.80 38.47 32.78 25.04

Average 54.78 57.52 62.18 49.50 42.98 41.52 56.75 52.43 43.90 38.34

argmaxy∈Y g(z) is the predicted class, and y′ ∈ Y , y′ ̸= y.
Therefore for a sample x ∈ X , given z = f1 ◦ ... ◦ fL1

(x)
we can write the score s(x, f) as a function of z:

s̃(z) = max {θy,y′(z) | y′ ∈ Y, y′ ̸= y} (3)

Moreover, we provide an analysis that bridges the meth-
ods ORA and fDBD (Liu & Qin, 2024) in Appendix C.
Intuitively, our score function captures several key aspects:

• Confidence measure. The angle between the feature
representation and its projection onto a decision boundary
is proportional to the distance between them, serving as a
proxy for the model’s confidence.

• In-distribution context. By centering the space using
the mean of in-distribution features, we incorporate ID
statistics, improving angle separability across points.

• Scale invariance. Unlike absolute distances, angles re-
main consistent even if the feature space is scaled, allow-
ing for fair comparisons between different models.

3. Experiments
In this section, we first test ORA on a large-sale ImageNet
OOD benchmark (Deng et al., 2009) that spans nine mod-
els –including ConvNeXt (Liu et al., 2022), Swin (Liu
et al., 2021), DeiT (Touvron et al., 2021) and EVA (Fang
et al., 2023)– to establish the performance beyond the usual
ResNet-50 (He et al., 2016) setting. See Appendix D for
complete evaluation setting. We then demonstrate how
ORA benefits from contrastively learned features (i) on
CLIP (Radford et al., 2021) in both zero-shot and linear-
probe modes, and (ii) on CIFAR-10 (Krizhevsky, 2009)
and ImageNet with ResNet18/50 checkpoints trained with
supervised contrastive (SCL) loss (Khosla et al., 2020). Fi-
nally, we show that ORA’s scale-invariant scores can be
ensemble-summed across architectures for additional gains,

3.1. OOD Detection on ImageNet Benchmark

Table 1 presents an extensive evaluation of OOD detection
performance on the ImageNet benchmark, spanning 9 model
backbones and 10 scoring methods. In contrast to prior work
that typically centers evaluation on ResNet-50 (Liu & Qin,
2024; Sun et al., 2022), we expand the setting to include
modern transformer-based architectures—ConvNeXt, Swin,
DeiT, and EVA—as well as their ImageNet-21k pretrained
variants when available. This large-scale comparison pro-
vides a better performance evaluation across architectures.

ORA consistently demonstrates strong performance across
the board. It achieves the best average FPR95 across
all models at 38.34%, outperforming the second-best
method by a margin of 3.18% and the best FPR95 in 5
out of 9 model settings. Notably, ORA achieves the single
best FPR95 score overall with 25.04% on the ResNet-50
(SCL) model, outperforming the next-best score of 27.45%
obtained by R-Mah with EVA by a margin of 2.41%.

Furthermore, in the few cases where ORA is not the top
performer, no single baseline consistently dominates. In
contrast, ORA remains within top three across all model
architectures, demonstrating both robustness and versatility.

3.2. OOD Detection with CLIP

In this section, we evaluate post-hoc OOD detection meth-
ods on the CLIP architecture using two approaches: linear
probing and a zero-shot variant that leverages CLIP’s vision-
language structure without additional training.

Linear probing with CLIP. For methods requiring deci-
sion boundaries (e.g. Liu & Qin (2024), and ORA), we used
the vision encoder of CLIP to extract features and trained a
linear probe for the classification task. While effective, this
reduces flexibility due to the need for additional training.

Zero-shot OOD detection with CLIP. To mitigate the
limitation of requiring decision boundaries, we derive a
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Table 2: Average OOD detection performance on the Im-
ageNet benchmark using CLIP-ViT-H/14 features. Full
results are in Table 17.

Method FPR95↓ AUROC↑
NNG/lp 30.06 92.77
KNN/zs 77.66 85.79
fDBD/zs 25.23 94.08
fDBD/lp 25.17 94.66
Pcos/zs 32.46 92.62
MCM/zs 30.01 93.23
RMh/zs 22.57 94.49

ORA/zs 25.85 94.13
ORA/lp 23.94 95.03

zero-shot extension that defines them using text embed-
dings. For vision-language models like CLIP, we define the
decision boundaries by vectors whose cosine similarity to
the text embeddings of two classes are equal. Since cosine
similarity is scale-invariant, these vectors are unique up
to its norm. See Appendix F.3 for the complete derivation.
Table 2 summarizes the performance of these methods in
both linear probe and zero-shot settings. ORA achieves a
strong performance on both linear probing and zero-shot
settings with 23.94% and 25.85% FPR95 respectively.

Positive effect of contrastive features. An important
observation from our results is the positive effect of
contrastive learning on ORA’s performance. Contrastive ob-
jectives—whether within a single modality, such as SCL, or
across modalities, as in CLIP’s image-text training—impose
a geometric structure on the representation space that
separates semantic concepts. ORA benefits particularly
from this structure as confirmed by the results in Table 3: we
show that ORA delivers the lowest average FPR95 on both
benchmarks, cutting the previous best score from 11.85%
to 10.97% on CIFAR-10 and from 32.78% to 25.04% on
ImageNet, thereby outperforming every competing method
with SCL-trained ResNet-18 and ResNet-50 backbones.
Similarly, in Table 2, ORA shows strong results in both the
zero-shot and linear probe settings of CLIP. These findings
suggest that ORA is particularly well-suited to contrastively
structured representations, hinting at a deeper connection be-
tween contrastive learning and OOD detection performance.

3.3. Model Ensembling with ORA

Recent work Xue et al. (2024) shows that ensembling
models can improve OOD performance. Building on
this and the observation that scale invariant scores align
across architectures (Moschella et al., 2023), we show that
scale-invariant score functions enable effective confidence
aggregation, by simply summing their scores. Table 4
reports the results for ResNet-50, ResNet-50 with SCL and

Table 3: OOD performance across CIFAR-10 and ImageNet
benchmarks. All methods are evaluated using checkpoints
trained with SCL. See Appendix F for detailed tables.

Method CIFAR-10 ImageNet

FPR95↓ AUROC↑ FPR95↓ AUROC↑
SSD+ 18.51 97.02 63.24 80.09
KNN+ 13.35 97.56 38.47 90.91
fDBD 11.85 97.60 32.78 92.86

ORA 10.97 97.67 25.04 94.26

Table 4: ORA can be used for ensemble OOD detection due
to its scale-invariance property.

Method FPR95↓ AUROC↑
fDBD w/ResNet50 51.35 89.20
fDBD w/ResNet50-supcon 32.78 92.86
fDBD w/ViT-B/16 41.55 91.05
ORA w/ResNet50 44.58 90.68
ORA w/ResNet50-supcon 25.04 94.26
ORA w/ViT-B/16 39.92 91.38

Ensemble fDBD 31.05 95.29
Ensemble ORA 22.53 96.41

ViT-B/16 individually and as an ensemble using ORA and
fDBD. It can be seen that for both of the score functions,
the performance of ensemble is better than their individual
counterparts showing that score aggregation improves
their OOD performance. Moreover, the ensemble with
ORA achieves a performance with 22.53% FPR95 and
96.41% AUROC, improving the metrics compared to the
best individual performer in the ensemble by 2.51% and
2.15% respectively. In summary, we demonstrate that
scale-invariance of ORA allows aggregating different
models’ confidences to solve OOD Detection Problem.

4. Conclusion
In this paper, we introduce a novel angle-based OOD de-
tection score function. ORA can be applied to arbitrary
pretrained models and used in conjunction with existing ac-
tivation shaping algorithms, enhancing the performance. No-
tably, its scale-invariant nature enables simple aggregation
of multiple models’ confidences through score summation,
allowing a creation of an effective model ensemble for OOD
detection. Our extensive experiments demonstrate that ORA
achieves state-of-the-art performance, using the relationship
between the feature representations and decision boundaries
relative to the ID statistics effectively. Despite ORA’s strong
performance, a potential limitation is its reliance on the
mean to capture ID statistics. As future work, we aim to ad-
dress this by incorporating multiple relative angles to better
represent ID variation and further enhance OOD detection.
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A. Related Work
Previous work in OOD detection falls into two categories: (i) methods that regularize models during training to produce
different outcomes for ID and OOD data, and (ii) post-hoc methods that develop scoring mechanisms using pre-trained
models on ID data.

Model regularization. Early methods addressing the OOD detection problem (Bevandić et al., 2019; Hendrycks et al.,
2019) utilize additional datasets to represent out-of-distribution data, training models with both positive and negative
samples. This approach assumes a specific nature of OOD data, potentially limiting its effectiveness when encountering
OOD samples that deviate from this assumption during inference. (Malinin & Gales, 2018) designed a network architecture
to measure distributional uncertainty. In (Geifman & El-Yaniv, 2019)’s work, they provide another architecture with an
additional reject option to abstain from answering. (Ming et al., 2022; Du et al., 2022), focused on synthesizing outliers
rather than relying on auxilary datasets. On the other hand, (Van Amersfoort et al., 2020; Wei et al., 2022) argued that
overconfident predictions of the networks on OOD data are the problem to be mitigated. For example, (Van Amersfoort
et al., 2020) puts an additional gradient penalty to limit the confidence of the network. Whereas, (Wei et al., 2022)
tackled the same problem by enforcing a constant logit vector norm during training. Although it is natural to impose
structures during training for better OOD detection, these methods face the trade-off between OOD separability and model
performance. Moreover, such approaches lack the flexibility of post-hoc score functions, as they necessitate model retraining
which can be both time-consuming and computationally expensive.
Score functions. Recently, developing score functions for pretrained models on ID data has gained attention due to its ease
of implementation and flexibility. These methods typically either couple feature representations with distance metrics, or
measure a model’s confidence using its logits. Beyond canonical works such as Maximum Softmax Probability (Hendrycks
& Gimpel, 2022), ODIN score (Liang et al., 2018), Energy score (Liu et al., 2020), we observed many advancements in
post-hoc score design. For example, the activation shaping algorithms such as ASH (Djurisic et al., 2023), Scale (Xu et al.,
2024), and ReAct (Sun et al., 2021), apply activation truncations to feature representations, reducing model’s confidence
for OOD data. These methods can be used in conjunction with ORA improving the performance. Recent distance-based
methods KNN (Sun et al., 2022), NNGuide (Park et al., 2023), R-Mah (Ren et al., 2021) and fDBD (Liu & Qin, 2024)
successfully utilized the feature representations from networks. Both NNGuide and KNN assign a score to a sample based
on the kth nearest neighbor in ID training set. R-Mah measures the relative Mahalanobis distance between class centroids
and the overall data centroid. In contrast, fDBD assigns a score to a sample based on its estimate of the distance between the
feature representation and the decision boundaries. Moreover, recent angle-based methods such as P-Cos (Galil et al., 2023)
and R-Cos (Bitterwolf et al., 2023) assign scores based on the cosine similarity between representations and class centroids.

Our work falls into the score function category, serving as a plug-in for any pre-trained model on ID data. ORA combines
feature space and logit space methods by utilizing the relative angle between the feature representation and its projections
to the decision boundaries. Among the existing works, the closest approach to our method is fDBD, which uses a lower
bound estimate to the decision boundaries. However, the regularization term they introduced inadvertently includes a term
in their equation that is uncorrelated with being OOD or ID and can change spuriously, impeding performance. In contrast,
we provide a score function that effectively incorporates in-distribution context and maintains scale invariance, all without
extra regularization terms.

B. Problem Setting
We consider a supervised classification setting with input space X and label space Y , following the literature (Yang et al.,
2024). Given a model f : X → R|Y| pretrained on an in-distribution dataset DID = {(xi, yi)}Ni=1, where elements of DID
are drawn from a joint distribution PXY , with support X × Y . We denote its marginal distribution on X as PID. The OOD
detection problem aims to determine whether an input sample originates from the in-distribution PID or not. Let YOOD be a
set of labels such that Y ∩ YOOD = ∅. OOD samples are drawn from a distribution POOD which is the marginal distribution
on X of the joint distribution over X × YOOD i.e., they share the same input space X as in-distribution samples, but have
labels outside Y . Shifting from PID to POOD corresponds to a semantic change in the label space.

The OOD decision can be made via the function d : X → {ID,OOD} given a score function s : X → R such that:

d(x; s, f) =

{
ID if s(x; f) ≥ λ

OOD if s(x; f) < λ
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where samples with high scores are classified as ID, according to the threshold λ. For example, to compute the standard
FPR95 metric (Yang et al., 2024), the threshold λ is chosen such that it correctly classifies 95% of ID held-out data. An ideal
OOD score function should capture differences in model outputs between samples drawn from PID and POOD, effectively
detecting inputs from unseen classes.

C. Relation with the state-of-the-art fDBD
We now provide a geometric interpretation for the score function fDBD (Liu & Qin, 2024). Using our analysis, we identified
that their score can directly be mapped into the triangle we formed in Figure 1. For a sample x ∈ X :

fDBD(z) =
d(z, zdb)

∥z− µID∥

where z ∈ RD is the feature representations of the input x ∈ X , zdb ∈ RD is its projection onto the decision boundary,
and d(·, ·) is the euclidean distance. Although seemingly unrelated, we can connect this score to our relative angle and
demonstrate that the regularization term on the denominator brings a term that does not effectively discriminate between
OOD and ID. Using translation invariance of the euclidean distance, the same score can be written as:

fDBD(z) =
d(z− µID, zdb − µID)

d(z− µID, 0)

One can observe that, this is the ratio of two sides of the triangle formed between the points z− µID, zdb − µID and the
origin. Using the law of sines:

d(z− µID, zdb − µID)

sin (θ)
=

d(z− µID, 0)

sin (α)
(4)

sin (θ)

sin (α)
=

d(z− µID, zdb − µID)

d(z− µID, 0)
= fDBD(z) (5)

Figure 2: Histogram of ID (CIFAR-10) and OOD (Texture) samples with respect to the sine of the angle formed with the
vector z− µID. This empirically shows that sin (α) is not highly informative for distinguishing ID from OOD.

where θ and α are the angles opposite to the sides z−µID− (zdb−µID) and z−µID respectively. Although the observation
they made on comparing the distances to the decision boundaries at equal deviation levels from the mean of in-distribution
is inspiring, we claim that the angle α is not very informative for ID and OOD separation. This is because α is connected
to the magnitude of the feature vector relative to µID, which may not directly correlate with OOD characteristics. On
Figure 2 we show the sin (α) values between CIFAR-10 (Krizhevsky, 2009) and Texture (Cimpoi et al., 2014) datasets,
empirically justifying that including this term impedes fDBD’s performance. Omitting the denominator from Equation 5
allows to effectively capture the relation between the feature representation and the decision boundary from the mean of
in-distribution’s view.

D. Evaluation Setting
Benchmarks. We consider two widely used benchmarks: CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al.,
2009)). We included the evaluation on CIFAR-10 OOD Benchmark to show the performance on smaller scale datasets. In
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CIFAR-10 experiments, we use a pretrained ResNet-18 architecture (He et al., 2016) trained with supervised contrastive
loss (Khosla et al., 2020), following previous literature (Liu & Qin, 2024; Sun et al., 2022; Sehwag et al., 2021). During
inference 10.000 test samples are used to set the in-distribution scores and choose the threshold value λ; while the datasets
SVHN (Netzer et al., 2011), iSUN (Xu et al., 2015), Places365 (Zhou et al., 2017) and Texture (Cimpoi et al., 2014) are
used to obtain out-of-distribution scores and metric evaluation.

For the large-scale ImageNet OOD benchmark, we extend prior evaluations (Liu & Qin, 2024; Sun et al., 2022; Park
et al., 2023; Ren et al., 2021; Sun et al., 2021; Xu et al., 2024) by going beyond ResNet-50 and including a diverse set of
nine models, such as ConvNeXt (Liu et al., 2022), Swin Transformer (Liu et al., 2021), DeiT (Touvron et al., 2021), and
EVA (Fang et al., 2023), along with their ImageNet-21k pretrained counterparts when available. This broader evaluation
allows a more comprehensive assessment of OOD detection performance across modern architectures. A validation set of
50,000 ImageNet samples is used to set ID scores and the threshold, while the OOD datasets include iNaturalist (Van Horn
et al., 2018), SUN (Xiao et al., 2010), Places365 (Zhou et al., 2017), and Texture (Cimpoi et al., 2014). Note that, in this
typical OOD Detection Benchmarks the samples that have same classes as ID are removed from their OOD counterparts,
following the work (Huang & Li, 2021) and fitting into our problem setting.

Metrics. We report two metrics in our experiments: False-positive rate at %95 true positive rate (FPR95), and Area Under
the Receiver Operating Characteristic Curve (AUROC). FPR95 measures what percentage of OOD data we falsely classify
as ID where our threshold includes 95% of ID data. Therefore, smaller FPR95 indicates a better performance by sharply
controlling the false positive rate. On the other hand, AUROC measures the model’s ability to distinguish between ID and
OOD by calculating the area under the curve that plots the true positive rate against the false positive rate across thresholds.
AUROC shows how rapidly we include ID data while paying the cost of including false positives. Thus, higher AUROC
shows a better result.

E. Ablation Studies
In this section, we will demonstrate the effectiveness of design choices on our score function ORA. We first justify our
choice of centering in µID empirically, among the candidates: µID, µypred , µytarget and max (zID). Then, we compare different
angle aggregation techniques across classes by replacing our max ({θy, y′}y′∈Y,y′ ̸=y) with mean and min across classes.

Table 5: Ablation on different centering strategies. Evaluated on both CIFAR-10 and ImageNet OOD benchmarks.

Method CIFAR-10 ImageNet

FPR95↓ AUROC↑ FPR95↓ AUROC↑
ORA w/ µypred 12.42 97.59 43.02 89.86
ORA w/ µytarget 13.26 97.48 28.29 93.46
ORA w/ max(zID) 13.39 97.42 32.44 92.01
ORA w/ µID 10.97 97.67 25.04 94.26

Centering with µID incorporates ID-statistics without biasing towards one particular class. Table 5 shows the
performance comparison between centerings with respect to different points. Using the relative angle with respect to
the predicted (µypred ) or target (µytarget ) class centroid induce a bias towards the corresponding class, which in the end
hinders the compatibility between angles coming across classes. On the other hand, using max (zID) shifts every feature
representation to the same orthant, reducing to simply computing the absolute distance between feature representations and
the decision boundaries, which is agnostic from the in-distribution feature statistics. We observe a significant improvement
in performance when computing relative angles using µID, demonstrating the importance of incorporating in-distribution
(ID) statistics when measuring the relationship between feature representations and decision boundaries. ORA with µID
centering improves the FPR95 by up to 1.45% and 7.4% on CIFAR-10 and ImageNet respectively while also improving the
AUROC for both benchmarks.

Looking at the furthest class is better for ID/OOD separation. On Table 6 we explored different ways to aggregate
class specific angles. Originally, we devise our score function to return the maximum relative angle discrepancy between the
feature representation across decision boundaries. Intuitively, this suggests that considering the furthest possible class that a
feature belongs from the mean of in-distribution’s perspective is effective to distinguish OOD from ID. On the other hand,
comparing the minimum focuses on the smallest relative angle, reducing the separability significantly. Table 6 demonstrates
taking the maximum across classes clearly outperforms mean and min aggregations, improving FPR95 and AUROC metrics
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Table 6: Ablation on the different score aggregations across classes. Evaluated under both ImageNet and CIFAR-10 OOD
benchmarks.

Method CIFAR-10 ImageNet

FPR95↓ AUROC↑ FPR95↓ AUROC↑
ORA w/ min 32.02 95.23 79.15 81.38
ORA w/ mean 11.84 97.59 32.76 92.87
ORA w/ max 10.97 97.67 25.04 94.26

Table 7: ORA achieves state-of-the-art performance on CIFAR-10 OOD benchmark. Evaluated on ResNet-18 with FPR95
and AUROC. ↑ indicates that larger values are better and vice versa. Best performance highlighted in bold. Methods with *
are hyperparameter-free.

Method SVHN iSUN Place365 Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Without Contrastive Learning
MSP * 59.51 91.29 54.57 92.12 62.55 88.63 66.49 88.50 60.78 90.14
ODIN 61.71 89.12 15.09 97.37 41.45 91.85 52.62 89.41 42.72 91.94
Energy * 53.96 91.32 27.52 95.59 42.80 91.03 55.23 89.37 44.88 91.83
ViM 25.38 95.40 30.52 95.10 47.36 90.68 25.69 95.01 32.24 94.05
MDS 16.77 95.67 7.56 97.93 85.87 68.44 35.21 85.90 36.35 86.99

With Contrastive Learning
CSI 37.38 94.69 10.36 98.01 38.31 93.04 28.85 94.87 28.73 95.15
SSD+ 1.35 99.72 33.60 95.16 26.09 95.48 12.98 97.70 18.51 97.02
KNN+ 2.20 99.57 20.06 96.74 23.06 95.36 8.09 98.56 13.35 97.56
fDBD * 4.59 99.00 10.04 98.07 23.16 95.09 9.61 98.22 11.85 97.60
ORA * 3.53 99.16 8.36 98.28 23.40 94.88 8.58 98.34 10.97 97.67

on both benchmarks. Specifically the difference is higher on our large-scale experiments reducing the FPR95 by 7.72% and
increasing the AUROC by 1.39% compared to the second best aggregation.

F. Additional Results
F.1. OOD Detection on CIFAR-10 and ImageNet Benchmarks

Table 7 and Table 8 shows the performance of ORA along with the 9 baselines on CIFAR-10 and ImageNet OOD
Benchmarks, respectively. All the baselines on CIFAR-10 use ResNet-18 architecture and on ImageNet use ResNet-50.
Our proposed method reaches state-of-the-art performance on both benchmarks, reducing the FPR95 on average by 7.74%
on Imagenet and 0.88% on CIFAR10. In the following, we provide a detailed analysis of these results.

ORA continues to show the success of distance-based methods over logit-based methods. Logit-based scoring methods
MSP (Hendrycks & Gimpel, 2022), Energy (Liu et al., 2020) are one of the earliest baselines proving their success
on measuring model’s confidences. MSP measures the maximum softmax probability as its score while Energy does a
logsumexp operation on the logits. Recent distance-based methods like KNN+ (Sun et al., 2022) and fDBD (Liu & Qin,
2024) outperforms the early logit-based ones. Similarly, ORA achieves significantly better performance on both benchmarks,
reducing the FPR95 up to 49.81% and 41.91% while improving the AUROC up to 7.53% and 12.27% on CIFAR-10 and
ImageNet OOD benchmarks.

ORA improves on the recent success of methods using contrastively learned features. Table 7 and 8 show the success
of recent methods CSI (Tack et al., 2020), SSD+ (Sehwag et al., 2021), KNN+ (Sun et al., 2022) and fDBD (Liu &
Qin, 2024) that utilizes contrastively learned representations over the ones those do not use. We observe that the additional
structure the supervised contrastive loss puts on the feature representations are particularly beneficial to the distance-based
methods. ORA also benefits from more structured representations on the feature space, as it explores the relationship
between the representation and the decision boundaries. Notably, ORA improves both of the metrics on both CIFAR-10 and
ImageNet benchmarks, achieving the state-of-the-art performance.
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Table 8: ORA achieves state-of-the-art performance on ImageNet OOD benchmark. Evaluated on ResNet-50 with FPR95
and AUROC. ↑ indicates that larger values are better and vice versa. Best performance highlighted in bold. Methods with *
are hyperparameter-free.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Without Contrastive Learning
MSP * 54.99 87.74 70.83 80.63 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 47.66 89.66 60.15 84.59 67.90 81.78 50.23 85.62 56.48 85.41
Energy * 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ViM 71.85 87.42 81.79 81.07 83.12 78.40 14.88 96.83 62.91 85.93
MDS 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.17

With Contrastive Learning
SSD+ 57.16 87.77 78.23 73.10 81.19 70.97 36.37 88.53 63.24 80.09
KNN+ 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91
fDBD * 17.27 96.68 42.30 90.90 49.77 88.36 21.83 95.43 32.78 92.86
ORA * 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26

Table 9: ORA can be used as a plug-in on top of activation shaping. Evaluated on the ImageNet OOD benchmark.

Method FPR95↓ AUROC↑
ORA w/ReLU 25.04 94.26
ORA w/ASH 23.47 94.58
ORA w/Scale 23.34 94.37
ORA w/ReAct 20.36 96.29

F.2. ORA with Activation Shaping Algorithms

Recent methods ReAct (Sun et al., 2021), ASH (Djurisic et al., 2023) and Scale (Xu et al., 2024) show their success to
modify the feature representations to reduce model’s overconfident predictions. All three methods adopt a hyperparameter
percentile to choose how to truncate and scale the feature representations using ID data statistics. When combined with
Energy (Liu et al., 2020) score, these methods improve the OOD Detection performance. On Table 9 we show that applying
ORA scoring after activation shaping algorithms improves the performance. Specifically combining ORA with ReAct
reduces FPR95 from 25.04% to 20.36% highlighting both the flexibility and efficacy of our method. This demonstrates
that ORA can flexibly be combined with activation shaping algorithms.

F.3. CLIP Zero-shot Derivation

To compute the projection of a feature vector onto the decision boundary between two classes using CLIP embeddings, we
assume normalized representations. Let zc1 and zc2 denote the text embeddings of classes c1 and c2, respectively, and let z
be the image feature.

The decision boundary between c1 and c2 is defined by equal similarity to both classes:

⟨z, zc1⟩ = ⟨z, zc2⟩ (6)
⟨z, zc1 − zc2⟩ = 0 (7)

This implies that the decision boundary is orthogonal to the vector difference zc1 − zc2 . Define the unit vector

u =
zc1 − zc2
∥zc1 − zc2∥2

(8)

which serves as the normal vector to the boundary.

Then, the orthogonal projection of z onto the decision boundary is given by

zdb = z− ⟨z,u⟩ · u. (9)

This projected representation zdb enables computation of the ORA score in a zero-shot setting using CLIP features.
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F.4. Comparison with ReAct

Tables 10 and 11 compare the performance of ORA with the activation shaping method ReAct (Sun et al., 2021). ORA
improves FPR95 by 1.11% on CIFAR10 and 6.39% on ImageNet. Additionally, combining ORA with ReAct further
enhances performance on both benchmarks across both metrics, FPR95 and AUROC.

Table 10: ORA vs ReAct under ImageNet OOD benchmark.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95
ORA 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26
ORA w/ReAct 11.13 97.79 22.34 94.95 33.33 91.81 14.65 96.60 20.36 96.29

Table 11: ORA vs ReAct under CIFAR OOD benchmark.

Method SVHN iSUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
ReAct 6.15 98.75 10.31 98.09 21.68 95.47 10.18 98.12 12.08 97.61
ORA 3.53 99.16 8.36 98.28 23.40 94.88 8.58 98.34 10.97 97.67
ORA w/ReAct 3.35 99.18 8.11 98.29 20.84 95.25 7.87 98.45 10.04 97.79

F.5. Centering with Different Statistics

Tables 12 and 13 present the performance of the ORA score when using different class means as the reference view instead
of the mean of ID features. We also explored alternative centering strategies by replacing the mean of ID features with
elementwise operations—max, min, and median—where each corresponds to using the respective statistic before calculating
angles. Additionally, sum aggregation refers to summing scores obtained from individual class mean reference points or
from these elementwise operations. Results indicate that using µID consistently outperforms these alternatives.

Table 12: CIFAR10 centering with different statistics using ResNet18 model.

Method SVHN iSUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Class 0 mean 4.77 98.96 8.06 98.27 25.20 94.62 10.11 98.19 12.03 97.51
Class 1 mean 6.12 98.77 8.86 98.24 24.94 94.96 13.16 97.68 13.27 97.41
Class 2 mean 5.42 98.84 7.90 98.36 22.19 95.58 11.42 97.98 11.73 97.69
Class 3 mean 5.94 98.76 7.99 98.29 22.80 95.43 11.35 97.66 12.02 97.54
Class 4 mean 5.44 98.85 8.87 98.22 22.68 95.47 11.26 97.96 12.06 97.63
Class 5 mean 6.22 98.64 7.38 98.45 23.11 95.48 11.84 97.82 12.14 97.60
Class 6 mean 5.74 98.82 8.50 98.26 97.67 20.76 12.11 95.73 11.78 97.62
Class 7 mean 5.93 98.78 8.29 98.30 24.55 95.13 12.57 97.82 12.84 97.51
Class 8 mean 5.81 98.81 10.03 97.95 26.79 94.18 10.41 98.11 13.26 97.26
Class 9 mean 6.11 98.78 9.00 98.19 24.89 94.62 11.35 97.95 12.84 97.25
Sum aggregation 5.68 98.85 8.27 98.33 23.70 95.34 11.33 97.98 12.25 97.62

Elementwise max 6.28 98.73 8.28 98.30 13.79 97.57 24.35 95.21 13.18 97.45
Elementwise min 3.60 99.14 14.82 97.10 9.38 97.99 27.62 92.97 13.85 96.80
Elementwise median 2.33 99.34 10.02 97.90 7.73 98.29 23.99 93.84 11.02 97.34
Sum aggregation 5.78 98.65 20.31 95.64 10.35 97.80 30.42 91.60 16.72 95.92

ORA 3.53 99.16 8.36 98.28 23.40 94.88 8.58 98.34 10.97 97.67
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Table 13: ImageNet centering with different statistics using ResNet50 model.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Class 1 mean 16.01 96.92 31.63 92.52 39.86 90.67 25.39 93.33 28.22 93.36
Class 250 mean 11.48 97.65 31.20 92.69 39.53 90.77 20.16 94.87 25.59 93.99
Class 500 mean 14.87 97.08 38.97 90.52 45.80 88.90 26.29 93.04 31.48 92.28
Class 750 mean 11.57 97.59 34.23 92.13 42.60 90.15 19.75 95.18 27.04 93.76
Class 1000 mean 11.36 97.63 30.20 93.01 38.12 91.08 19.31 95.31 24.75 94.26
Sum aggregation 12.40 97.48 32.47 92.36 40.42 90.53 21.38 94.52 26.67 93.72

Elementwise Max 17.10 96.76 34.22 91.73 41.88 90.14 35.09 89.84 32.07 92.12
Elementwise Min 29.16 94.51 60.70 85.81 65.01 83.18 22.84 95.07 44.43 89.64
Elementwise Median 20.04 95.83 46.66 89.15 54.42 85.61 15.04 96.81 34.04 91.85
Sum aggregation 21.09 95.89 49.47 88.97 56.50 86.12 17.62 95.98 36.17 91.74

ORA 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26

F.6. Resource Constrained Setting

Table 14 presents the performance of ORA in a resource-constrained setting using MobileNetV2 (Sandler et al., 2018), a
model designed for efficient inference with minimal resources. ORA achieves the best average performance, improving FPR
and AUROC by 7.56% and 1.66%, respectively, demonstrating its adaptability to resource-limited scenarios.

Table 14: Resource Constrained Setting: ImageNet MobileNet_v2 performances.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 59.84 86.71 74.15 78.87 76.84 78.14 70.98 78.95 70.45 80.67
Energy 55.35 90.33 59.36 86.24 66.28 83.21 54.54 86.58 58.88 86.59
KNN 85.92 72.67 90.51 65.39 93.21 60.08 14.04 96.98 70.92 73.78
fDBD 53.72 90.89 68.22 82.84 73.20 80.09 37.82 91.85 58.24 86.42
ORA 46.59 91.86 61.21 85.01 67.81 82.08 27.07 94.04 50.68 88.25

G. Implementation Details
We used Pytorch (Paszke et al., 2019) to conduct our experiments. We obtain the checkpoints of pretrained models
ResNet18 with supervised contrastive loss and ResNet50 with supervised contrastive loss from (Liu & Qin, 2024)’s work
for a fair comparison. In the experiment where we aggregate different models’ confidences, ViT-B/16 (Dosovitskiy et al.,
2020) checkpoint is retrieved from the publicly available repository https://github.com/lukemelas/PyTorch-Pretrained-
ViT/tree/master. In the experiment where we merge ORA with the activation shaping algorithms ASH (Djurisic et al., 2023),
Scale (Xu et al., 2024) and ReAct (Sun et al., 2021), we used the percentiles to set the thresholds 35, 90 and 80 respectively.
For the extended results on Table 1, we used the timm (Wightman, 2020) checkpoints for the models ConvNeXt (Liu et al.,
2022), Swin (Liu et al., 2021), DeiT (Touvron et al., 2021) and EVA (Fang et al., 2023). Similarly, for the CLIP experiments
on Table ??, we used the huggingface checkpoint of CLIP ViT-H/14 (LAION). All experiments are evaluated on a single
Nvidia H100 GPU. Note that, thanks to our hyperparameter-free post-hoc score function, all experiments are deterministic
given the pretrained model.

H. Robustness of the Relative Angles
In this section, we provide a theoretical justification for focusing on relative angles, rather than absolute distances, to better
understand the robustness of representations under scaling transformations.

Theorem: Let M1 and M2 be two neural networks such that:

1. The encoder of M2 is a scaled version of the encoder of M1. Specifically, there exists a positive scalar k ∈ R+ such
that the output of the penultimate layer of M2 satisfies:

zM2 = k · zM1
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2. Both networks share the same final linear layer (without bias) for classification.

Since scaling transformations do not affect the softmax decision boundaries (due to monotonicity), M1 and M2 will produce
the same classification decisions. Under this setup:

• The angles satisfy θy1,y2(z
M1) = θy1,y2(z

M2), where θy1,y2(z) is the relative angle between representation and its
projection onto the decision boundary.

• However, the distances satisfy dy1,y2
(zM2 , zM2

db ) = k · dy1,y2
(zM1 , zM1

db ), where d(·, ·) is the Euclidean distance.

Proof: Let zM1 be the penultimate layer representation of M1 and let zM1

db denote the projection of zM1 onto the decision
boundary between two classes y1 and y2. Then following the Equation 1

zM1

db = zM1 − (wy1
−wy2

)T zM1

∥wy1 −wy2∥2
(wy1

−wy2
)

where wy1
and wy2

are the weight vectors corresponding to classes y1 and y2 in the shared linear layer. For M2, the features
are scaled by k, so zM2 = k · zM1 . Substituting into the projection formula:

zM2

db = k · zM1 − (wy1
−wy2

)T k · zM1

∥wy1
−wy2

∥2
(wy1

−wy2
)

zM2

db = k · zM1

db

The angle is defined by the cosine similarity between the vectors zM1 − µM1
ID and zM1

db − µM1
ID . Using the substitutions

zM2 = k · zM1 , zM2

db = k · zM1

db , and µM2
ID = k · µM1

ID , we have:

cos (θy1,y2
(zM1)) =

⟨zM1 − µM1
ID , zM1

db − µM1
ID ⟩

∥zM1 − µM1
ID ∥ · ∥z

M1

db − µM1
ID ∥

=
k · k · ⟨zM1 − µM1

ID , zM1

db − µM1
ID ⟩

k · k · ∥zM1 − µM1
ID ∥ · ∥z

M1

db − µM1
ID ∥

=
⟨k · zM1 − k · µM1

ID , k · zM1

db − k · µM1
ID ⟩

∥k · zM1 − k · µM1
ID ∥ · ∥k · z

M1

db − k · µM1
ID ∥

=
⟨zM2 − µM2

ID , zM2

db − µM2
ID ⟩

∥zM2 − µM2
ID ∥ · ∥z

M2

db − µM2
ID ∥

= cos (θy1,y2
(zM2))

On the other hand, the absolute distance between z and zdb scale as follows:

dy1,y2
(zM2 , zM2

db ) = dy1,y2
(k · zM1 , k · zM1

db )

= k · dy1,y2
(zM1 , zM1

db )

Therefore, for two networks M1 and M2 with identical performance, we demonstrate that relative angles remain invariant
to scaling, whereas absolute distances are sensitive to it. Given that ReLU networks are commonly used in practice
(where activations are unbounded), scale-invariant, angle-based techniques provide a more robust and suitable approach for
measuring confidence compared to distance-based methods, especially when comparing the confidences of different models.
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Algorithm 1 ORA (OOD Detection with Relative Angles)

Require: Sample x, Pretrained model f , Mean of the in-distribution features µID
Ensure: OOD score s

1: function ORA(x, f,µID)
2: ŷ ← argmaxy∈Y f(x)
3: z = f1 ◦ . . . ◦ fL−1(x) ▷ penultimate layer features
4: score← −∞
5: for y′ ∈ Y and y′ ̸= ŷ do ▷ for each other class
6: compute zdb as in Eq. 1
7: compute θŷ,y′(z) using Eq. 2
8: compute s̃(z) using Eq. 3
9: if s̃(z) ≥ score then

10: score = s̃(z)
11: end if
12: end for
13: return score ▷ maximum score across classes
14: end function

I. Algorithm Box
We present the pseudocode for ORA in Algorithm Box 1. It depicts how ORA assigns a score given a sample x, pretrained
model f , and the ID statistics, mean of the in-distribution features µID.

J. Detailed Tables and Figures
Table 15: Extended version for the model ensemble experiment presented on Table 4. ORA can be used as a score function
to accumulate different architectures’ confidences due to its scale-invariance property. Evaluated under both ImageNet OOD
benchmark. Best performance highlighted in bold.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
fDBD w/ResNet50 40.10 93.70 60.89 86.86 66.75 84.14 37.66 92.09 51.35 89.20
fDBD w/ResNet50-supcon 17.34 96.68 42.26 90.92 49.68 88.38 21.84 95.44 32.78 92.86
fDBD w/ViT-B/16 12.97 97.71 51.09 89.67 56.51 87.32 45.62 89.48 41.55 91.05
ORA w/ResNet50 34.88 94.43 54.30 88.41 61.79 85.64 27.34 94.24 44.58 90.68
ORA w/ResNet50-supcon 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26
ORA w/ViT-B/16 11.81 97.85 48.98 90.06 54.60 87.75 44.31 89.85 39.92 91.38
Ensemble fDBD 4.58 98.93 42.81 93.97 53.49 91.92 23.33 96.34 31.05 95.29
Ensemble ORA 2.77 99.29 30.21 95.39 42.52 93.39 14.63 97.59 22.53 96.41

Figure 3: Comparison of the score histograms on Imagenet (ID) and inaturalist(Van Horn et al., 2018)(OOD) of the best
individual model (left) with the model ensemble (right). Model ensemble improves the ID and OOD separation.
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Table 16: Extended version for the activation shaping experiment presented on Table 9. ORA can be used as a plug-in on
top of activation shaping algorithms. Evaluated under ImageNet OOD benchmark. ↑ indicates that larger values are better
and vice versa. Best performance highlighted in bold.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
ORA w/ReLU 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26
ORA w/ASH 11.08 97.68 27.81 93.59 36.53 91.36 18.48 96.70 23.47 94.58
ORA w/Scale 14.65 97.05 25.43 94.02 36.21 90.78 17.07 95.65 23.34 94.37
ORA w/ReAct 11.13 97.79 22.34 94.95 33.33 91.81 14.65 96.60 20.36 96.29

Table 17: OOD detection performance on the ImageNet benchmark using CLIP-ViT-H/14 features. We report FPR95 (%)
and AUROC (%) for four OOD datasets under two regimes: linear probing (lp) and zero-shot (zs). The best result per
column is highlighted in bold.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP/lp 15.74 96.64 46.00 88.68 48.73 87.40 40.87 87.98 37.83 90.18
Energy/lp 7.26 97.94 34.62 92.13 41.32 90.05 37.02 90.98 30.06 92.77
MaxL/lp 9.02 97.91 37.15 91.70 42.25 89.86 36.37 90.80 31.20 92.57
NNG/lp 7.26 97.94 34.62 92.12 41.32 90.05 37.02 90.98 30.06 92.77
KNN/zs 80.20 87.86 86.68 84.63 73.51 86.07 70.27 84.60 77.66 85.79
fDBD/zs 9.31 98.11 22.32 94.78 29.15 93.20 40.12 90.25 25.23 94.08
fDBD/lp 5.62 98.48 32.18 93.89 35.74 92.54 27.13 93.71 25.17 94.66
Pcos/zs 19.86 96.09 28.67 93.58 36.09 91.84 45.21 88.97 32.46 92.62
MCM/zs 17.81 96.52 26.04 93.94 35.07 91.54 41.12 90.92 30.01 93.23
RMh/zs 3.64 98.85 30.71 93.12 34.72 92.18 21.21 93.84 22.57 94.49

ORA/zs 14.12 97.41 22.97 94.97 28.01 93.41 38.28 90.73 25.85 94.13
ORA/lp 6.66 98.16 30.35 94.43 33.79 93.20 24.95 94.34 23.94 95.03

K. Plain Model Performances
Tables 18, 19, and 20 show the performance of feature-based OOD methods on models trained without supervised contrastive
loss. The results highlight that supervised contrastive loss significantly enhances feature quality, leading to a substantial
performance boost for feature-based OOD methods.

Table 18: CIFAR10 Plain ResNet18 performances.

Method SVHN iSUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
KNN 27.85 95.52 24.67 95.52 44.56 90.85 37.57 94.71 33.66 94.15
fDBD 22.58 96.07 23.96 95.85 46.59 90.40 31.24 94.48 31.09 94.20
ORA 22.09 96.02 22.91 95.90 46.46 90.37 31.28 94.48 30.86 94.21
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Table 19: ImageNet Plain ResNet50 performances.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
KNN 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01
fDBD 40.24 93.67 60.60 86.97 66.40 84.27 37.50 92.12 51.19 89.26
ORA 38.94 93.68 59.78 86.53 66.89 83.04 31.67 93.33 49.32 89.15

Table 20: ImageNet ViT performances.

Method iNaturalist SUN Places Texture Avg

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
KNN 11.41 97.65 56.91 86.39 63.76 82.61 42.23 89.61 43.58 89.07
fDBD 12.86 97.72 50.86 89.74 56.28 87.44 45.74 89.41 41.44 91.08
ORA 11.80 97.86 48.81 90.14 54.32 87.88 44.56 89.75 39.87 91.41

L. Histogram Plots for ID/OOD Separability
Figures 4 and 5 shows the score distributions on the Tables 7 and 8 respectively.

Figure 4: Score distributions of ID and OOD datasets in CIFAR-10 OOD Benchmark.
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Figure 5: Score distributions of ID and OOD datasets in ImageNet OOD Benchmark.

M. Comparison of Different Angles
Figure 6 presents the score distributions for different angles discussed in Section ??. The results show that sin (α) does not
provide good ID/OOD separation, whereas sin (θ) and sin (θ)/ sin (α) present significantly clearer distinctions. Additionally,
incorporating sin (α) into sin (θ)/ sin (α) hinders its performance compared to using sin (θ) alone.
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Figure 6: We demonstrate the ID/OOD separability of sin(α), sin(θ) and sin(θ)
sin(α) . Columns show the performances on

iNaturalist and SUN datasets respectively. It can be seen that the ID/OOD class separability is the best when sin(θ) is used:
considering sin(α) impedes the performance as confirmed quantitatively in terms of FPR95 and AUROC metrics in Table 8.

N. Near OOD Results
In Table 21, we report ORA’s FPR and AUROC on NINCO (Bitterwolf et al., 2023) and SSB-hard (Vaze et al., 2022)
datasets, along with average scores and in-distribution (ID) classification accuracy.

NINCO dataset: We observe that models pretrained on ImageNet21k generally outperform their non-pretrained counterparts
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in terms of FPR95, consistent with the observations in (Bitterwolf et al., 2023). However, even with ORA, no single method
referenced in (Bitterwolf et al., 2023) dominates across all architectures. For example, ORA attains the best results on the
plain ConvNeXt (Liu et al., 2022) backbone, while Rcos (Bitterwolf et al., 2023) outperforms others on DeiT (Touvron
et al., 2021) and ResNet50 (He et al., 2016). Interestingly, Energy (Liu et al., 2020) performs best on Swin-pretrained (Liu
et al., 2021).

SSB-Hard dataset: A similar trend is evident. ORA outperforms other methods on plain ConvNeXt (Liu et al., 2022) and
offers strong performance on SWIN-pre (Liu et al., 2021), ConvNeXt-pre (Liu et al., 2022), and DeiT-pre (Touvron et al.,
2021), where it outperforms Rcos (Bitterwolf et al., 2023), RMaha (Ren et al., 2021), and Pcos (Galil et al., 2023). However,
it is worse than naive baselines like Energy (Liu et al., 2020) in certain pretrained settings. In contrast, for models without
pre-training, naive methods degrade significantly while ORA remains on par with the top baselines.

These findings underscore a fundamental distinction between far- and near-OOD detection. Identifying completely novel
inputs (as in far-OOD) is a fundamentally different problem from determining how much deviation is acceptable within or
between known classes (as in near-OOD). Consequently, methods designed for detecting novelty or semantic outliers—such
as those based on global uncertainty or energy scores—do not necessarily excel in near-OOD settings. This makes direct
comparisons across these tasks potentially misleading. In near-OOD scenarios, where fine-grained class separation is
critical, approaches that explicitly incorporate class-wise feature statistics—such as Rcos, Pcos, or RMah (Bitterwolf et al.,
2023; Galil et al., 2023; Ren et al., 2021)—tend to have a clear advantage. These methods are better equipped to handle
intra-class variance and subtle distributional shifts, highlighting the need for tailored evaluation and method design across
OOD subtypes.

Table 21: OOD performance across benchmarks. FPR↓ and AUR↑ are reported for NINCO and SSB-Hard. The last two
columns show the average performance and ID classification accuracy.

Model
NINCO SSB-Hard Average

ID Acc (%)
FPR↓ AUR↑ FPR↓ AUR↑ FPR↓ AUR↑

ResNet-50 68.31 85.89 85.65 71.17 76.98 78.53 76.12
ResNet-50-SCL 54.39 86.50 79.09 71.35 66.74 78.93 77.31
ConvNeXt 48.04 89.17 70.90 75.47 59.47 82.32 84.84
ConvNeXt-pre 45.54 90.56 68.82 77.13 57.18 83.84 85.49
DeiT 71.76 78.47 83.07 69.38 77.42 73.93 83.13
DeiT-pre 60.07 86.40 80.40 72.40 70.24 79.40 84.79
Swin 66.91 84.00 81.28 73.95 74.10 78.98 84.49
Swin-pre 52.62 88.25 77.45 74.76 65.04 81.51 85.73
EVA 46.61 88.15 67.86 75.65 57.24 81.90 87.88
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