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ABSTRACT

This paper considers the unlabeled sparse recovery under multiple measurements,
i.e., Y = Π\XB\ + W, where Y ∈ Rn×m,Π\ ∈ Rn×n,X ∈ Rn×p,B\ ∈
Rp×m,W ∈ Rn×m represents the observations, missing (or incomplete) corre-
spondence information, sensing matrix, sparse signals, and additive sensing noise,
respectively. Different from the previous works on multiple measurements (m > 1)
which all focus on the sufficient samples regime, namely, n > p, we consider a
sparse matrix B\ and investigate the insufficient samples regime (i.e., n� p) for
the first time. To begin with, we establish the lower bound on the sample number
and signal-to-noise ratio (SNR) for the correct permutation recovery. Moreover, we
present a simple yet effective estimator. Under mild conditions, we show that our
estimator can restore the correct correspondence information with high probability.
Numerical experiments are presented to corroborate our theoretical claims.

1 INTRODUCTION

In recent years, linear regression with permuted correspondence has received increasing attention due
to its wide applications in the field of machine learning, signal processing, and statistics. Among all
these applications, two most prominent examples are (i) linkage record, which merges two datasets
pertaining to the same objects into one comprehensive dataset; and (ii) data de-anonymization,
which infers the hidden labels of private data with public datasets. Apart from these two applications,
other applications include correspondence estimation between pose and estimation in graphics; time-
domain sampling in the presence of clock jitter; multi-target tracking; unsupervised data alignment,
etc (Pananjady et al., 2018; Slawski & Ben-David, 2019; Slawski et al., 2020; Zhang et al., 2018).

In this paper, we consider the canonical model, i.e., a linear sensing relation with permuted labels:

Y = Π\XB\ + W,

where Y ∈ Rn×m is the sensing result, Π\ ∈ Rn×n is an unknown permutation matrix, X ∈ Rn×p
is the design (sensing) matrix, B\ ∈ Rp×m represents the sparse signals of interests, and W ∈ Rn×m
denotes the additive noise. Assuming the signal B\ is a sparse signal, to put more specifically,
each column of B\ is k-sparse, we would like to (i) study the statistical limits of the permutation
recovery under this scenario, e.g., the minimum sample number n and signal-to-noise ratio (SNR);
and (ii) propose a practical estimator that can efficiently recover the permutation once the minimum
requirements are met. To begin with, we briefly review the previous works.

Related Works. The study of permuted linear regression has a long history that can at least date back
to DeGroot & Goel (1976; 1980); Goel (1975); Bai & Hsing (2005). Recent interests on this area start
from Unnikrishnan et al. (2015). Focusing on the noiseless case W = 0 with single measurement
(m = 1), Unnikrishnan et al. (2015) establish the necessary condition n ≥ 2p for the permutation
recovery if B\ is an arbitrary vector residing within the linear space Rp. Later, Pananjady et al. (2018)
extend the analysis to the noisy scenario. They showed the minimum SNR should be at least the
order of Ω(nc), where c > 0 is some positive constant. Numerical experiments suggest c is within
the region [4, 5]. Other works such as Hsu et al. (2017); Abid et al. (2017); Slawski & Ben-David
(2019); Tsakiris et al. (2020); Haghighatshoar & Caire (2018) also focus on this regime and obtain
the same answer. In Emiya et al. (2014), the setting with a sparse signal B\ is first studied. However,
only empirical investigation is conducted without rigorous theoretical analysis. In the first work
with theoretical analysis (Zhang & Li, 2021), both the statistical limits and practical estimators with
almost optimal performance are presented for the permutation recovery. Peng et al. (2021) studies the
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problem from the viewpoint of algebraic geometry. All existing works suggest that SNR = Ω(nc) is
inevitable for the permutation reconstruction if only one measurement is conducted, namely, m = 1.

On the other hand, numerous works suggest multiple measurements, i.e., m > 1, can greatly reduce
the SNR requirement, even to some positive constant. This line of research starts from Zhang et al.
(2022), where the information theoretic lower bounds and the maximum likelihood (ML) estimator
are investigated. Later, Zhang & Li (2020) study this problem from the viewpoint of non-convex
optimization and propose an optimal estimator for the permutation recovery. Independently, Slawski
et al. (2020) investigate this problem from the viewpoint of denoising. Putting parsimonious con-
straints on the number of permuted rows, they view (I−Π\)XB\ as sparse outliers and design the
permutation recovery algorithm accordingly. These works focus on the sufficient samples regime,
namely, n = Ω(p). In this paper, we focus on the insufficient samples regime. Assuming B\ to be
sparse, we would like to show the correct permutation can be obtained with n� p and SNR = O(1).

Our contributions are summarized as follows

• We study the lower bounds w.r.t the number n and signal-to-noise ratio (SNR) for the correct
reconstruction of both the permutation matrix Π\ and the signal B\. Assuming each column
B\

:,` (1 ≤ ` ≤ m) is k-sparse, we show that the sample number n should be at least of the order

Ω(k log p); meanwhile the SNR should satisfy log det(I + B\>B\/σ2) > log n+
m log (pk)

n .

• We propose a one-step estimator for the correspondence recovery, which consists of two sub-parts:
one for Π\ and another for B\. By formulating the correspondence recovery as a linear assignment
problem (LAP) (Kuhn, 1955; Bertsekas & Castañón, 1992; Burkard et al., 2012), the correct
permutation matrix can be obtained when SNR is above certain positive constant.

On top of the above contributions, we would like to briefly mention our proof strategy, which is based
on a tailored version of the leave-one-out technique. Compared with the previous works that adopt
the leave-out-out technique (Chen et al., 2020; Sur et al., 2019; El Karoui, 2013; 2018; Cai et al.,
2021), our construction method bas the following characteristics

• Our construction method is adaptive, which replaces multiple rows ranging from 2 to 4 depending
on each permuted row. Meanwhile, previous works such as Chen et al. (2020); Sur et al. (2019);
El Karoui (2013; 2018); Cai et al. (2021) replace a fixed number of rows (or columns).

• We not only leave out the rows, but also modify the thresholding operator operated on the perturbed
samples B̃(··· ) from thres(·) to (·)imax (its definition is deferred to Subsection 4.2). This step is
essential in controlling the approximation error, since otherwise the non-zero elements in matrices
B̂ (∝ X>Y) and B̃(·) may not share the same position and the approximation error can be
considerably large. A thorough understanding is deferred to the proof of Theorem 3.

Notations. Denote c, c
′
, ci as some positive constants, whose values are not necessarily the same

even for those with the same notations. We denote a . b if there exists some positive constants
c0 > 0 such that a ≤ c0b. Similarly, we define a & b provided a ≥ c0b for some positive constant c0.
We write a � b when a . b and a & b hold simultaneously.

For an arbitrary matrix M, we denote Mi,: as its ith row, M:,i as its ith column, and Mij as its
(i, j)th element. Its Frobenius norm is defined as |||M|||F while the operator norm is denoted as |||M|||OP,
whose definitions can be found in Section 2.3 of Golub & Loan (2013). In addition, we define its
stable rank as srank(·) , |||·|||2F/|||·|||

2
OP (Section 2.1.15 in Tropp (2015)) and its support set supp(·) as

{(i, j) : (·)i,j 6= 0}. The inner product between matrices is denoted as 〈〈·, ·〉〉 while the inner product
between vectors is denoted as 〈·, ·〉.
We define the set of all possible permutation matrices as Pn, which is defined as {Π ∈ {0, 1}n×n :∑n

i=1 Πij = 1,
∑n
j=1 Πij = 1}. Associate with each permutation matrix Π, we define the operator

π(·) that transforms index i to π(i) under Π. The Hamming distance dH(Π1,Π2) between two
permutation matrices Π1 and Π2 is defined as dH (Π1,Π2) =

∑n
i=1 1 (π1(i) 6= π2(i)). The SNR

is defined as
∣∣∣∣∣∣B\

∣∣∣∣∣∣2
F/(m · σ

2).
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2 PROBLEM FORMULATION

We start this section with a formal restatement of the considered problem reading as

Y = Π\XB\ + W, (1)

where Π\ ∈ Pn denotes the (fixed but unknown) permutation matrix, X ∈ Rn×p is the sensing
(design) matrix with its entries being i.i.d. standard normal random variables, i.e., Xij ∼ N(0, 1), 1

B\ ∈ Rp×m is a fixed sparse matrix awaiting to be reconstructed (corresponding to the sparse signal),
and W ∈ Rn×m denote the noise with each entry Wij

i.i.d∼ N(0, σ2). Here we put the separate sparse
constraints on each column of B\, namely, ‖B\

:,`‖0 ≤ k (1 ≤ ` ≤ m). In addition, we denote h as
the number of permuted rows, or equivalently, the Hamming distance between the identify matrix I
and the permutation matrix Π\, namely, h , dH(I,Π\).

Our goal is to reconstruct both the permutation matrix Π\ and sparse signal B\ from (1). Note that
we do not assume that different columns of Π\ share the same support set. Actually, we prefer each
column to be with a different support set, since otherwise rank(B\) will be bounded by k and will
bring extra difficulties to the permutation recovery. A detailed explanation is deferred to Section 4.

Before proceeding, we briefly review the prior art. In Unnikrishnan et al. (2015), where B\ can reside
within the entire linear space Rp, it is proved that n ≥ 2p is required for the correct permutation
recovery. As a result, subsequent works such as Pananjady et al. (2018); Zhang et al. (2022); Slawski
& Ben-David (2019); Slawski et al. (2020); Zhang & Li (2020) all focus on the sufficient sample
regime, i.e., n = Ω(p). Only until Zhang & Li (2021), the insufficient sample regime, i.e., n = o(p),
receives its first theoretical investigation. Similar to our setting, they put sparsity assumption on B\

however focus on the single measurement scenario, namely, m = 1. They show that the minimum
SNR for correct (Π\, supp(B\)) to be Ω(nc1/srank(B\)pc2p/n). In the following context, we will show
that the minimum SNR can be significantly reduced, to put more specifically, some positive constant
provided multiple measurements are made (m� 1).

3 INFORMATION THEORETIC LOWER BOUNDS

This section establishes the information theoretic lower bounds for the correct permutation recovery.
Our goal is to ensure both Π\ and B\ can be reliably reconstructed. We investigate this problem from
two perspectives: (i) the sample number n and (ii) the minimum SNR.

3.1 THE MINIMUM SAMPLE NUMBER n

We obtain the minimum sample number n such that sparse signal B\ can be reliably recovered with
high probability. Here we consider the oracle situation where Π\ is given a prior. As each column in
B\ does not necessarily share the same support set, we need to iteratively reconstruct each column
B\

:,`, a k-sparse signal, from the corresponding readings Y:,` (1 ≤ ` ≤ m). With the classical result
in Donoho (2006); Candes et al. (2006); Candès et al. (2006), we obtain the lower bound on n,
namely, n & k log p. Naturally, we can expect this bound applies to the non-oracle situation as well,
since reliable estimation of B\ is hopeless provided it is out of reach in the oracle situation.

3.2 THE MINIMUM SNR

Then we turn to the minimum SNR requirement for the correct permutation recovery. To begin with,
we restate the prior art in Zhang et al. (2022).
Theorem 1 (Theorem 1 in Zhang et al. (2022)). Consider the oracle case where B\ is given a prior.
Then there exists an integer n0 such that for an arbitrary estimator Π̂, we have

inf
Π̂

sup
Π\∈Pn

PX,W(Π̂ 6= Π\) ≥ 1

2
,

provided that (i) log det(I + B\>B\/σ2) < log n and (ii) n ≥ n0.
1Experiments suggest that we may relax this assumption to that Xij are i.i.d. sub-Gaussian random variables.
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One drawback of this bound is the missing role of the sparsity number k. This is because Theorem 1
assumes B\ to be perfectly known while sparsity number k only kicks in when B\ needs to be
reconstructed. To handle such issue, we take supp(B\) into account as well. Then we have

Theorem 2. There exists an integer n0 ≥ 0 such that for arbitrary estimators Π̂ and B̂, we have

inf
Π̂,B̂

sup
Π∈Pn,

B∈Bn,p,m,k

PX,W[(Π̂, supp(B̂)) 6= (Π, supp(B))] ≥ 1

2
,

hold for all n ≥ n0, where Pn denotes the set of all permutation matrices, Bn,p,m,k is defined

as the set reading as {B ∈ Rp×m : log det(I + B>B/σ2) ≤ log n +
m log (pk)

n }, and supp(·) ,
{(i, j) : (·)i,j 6= 0} denotes the support set.

This theorem suggests that for all possible estimators to reconstruct Π and supp(B), there exists at
least one pair (Π,B) ,Π ∈ Pn,B ∈ Bn,p,m,k such that the reconstruction error rate will be at least
1/2. Hence, a reliable correspondence reconstruction requires B\ (a fixed but unknown matrix) to
satisfy log det

(
I + B\>B\/σ2

)
> log n+ m log (pk)/n.

We leave the rigorous proof to the supplementary material and only give an intuitive interpretation,
which comes from the coding theory. First, we assume each entry in B to be binary, i.e., Bij ∈ {0, 1},
(1 ≤ i ≤ p, 1 ≤ j ≤ m). Thus, the information of B is fully incorporated in supp(B). In the
following, we will use supp(B) and B interchangeably, as they are identical.

Afterwards, we view the sensing relation in (1) as the following transmission process: (i) pair (Π,B)
is encoded into the codeword ΠXB; (ii) ΠXB passes through a Gaussian additive channel; and
(iii) one observes Y, from which one would like to obtain (Π,B).

Using the terminology from coding theory, we can compute the corresponding code rate and channel

capacity as
logn!+m log (pk)

n and log det(I + B>B/σ2), respectively. Due to the Shannon theorem, we
can expect non-negligible decoding error if the coding rate is greater than the channel capacity, which

leads to log det(I + B>B/σ2) < log n+
m log (pk)

n , the formula in Theorem 2.

Remark 1. Note that the minimum SNR requirements can be derived from Theorem 2 as log det(I +
B>B/σ2) is closely related to SNR. When B is of rank-one, we have log det(I + B>B/σ2) be log(1 +
m · SNR). When B is of full-rank and with identical singular values, we have log det(I + B>B/σ2)
be rank(B) · log(1 + SNR).

Having obtained the information theoretic lower bounds, we will propose a computationally efficient
estimator which matches the lower bounds thereof to a good extent.

4 ESTIMATOR DESIGN

This section proposes a computationally efficient estimator for the permutation recovery. Denote
thres(·) as the operator which only keeps the element with the largest magnitude in each column,
we reconstruct Π\ with the linear assignment problem (LAP) (Kuhn, 1955; Bertsekas & Castañón,
1992; Burkard et al., 2012) reading as

Πopt = argmaxΠ∈Pn
〈
Π,Y · thres(X>Y)> ·X>

〉
,

Once the permutation matrix Πopt is obtained, we can transform (1) to the previous setting and
iteratively recover each k-sparse column B\

:,i. A formal statement of the algorithm is in Algorithm 1.
Here we use Lasso estimator to reconstruct the signal B\, which can be replaced with other estimators,
say Dantzig estimator, etc.

Design intuition. The design of (2) shares a similar idea of the estimator in Zhang & Li (2020): we
would like to approximate the direction of B\ by the product X>Y. However, due to insufficient
samples, product X>Y is poorly aligned with B\, or equivalently, large errors in approximating B\

with X>Y and weak correlation 〈B\,X>Y〉. To reduce the approximation errors, we apply thres(·)
and set certain entries in X>Y to zero.
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Algorithm 1: One-step estimator.
Input: observation Y and sensing matrix X.
Output: pair (Πopt, Bopt), which is written as

Πopt = argmaxΠ∈Pn
〈
Π,Y · thres(X>Y)> ·X>

〉
, (2)

Bopt = argminB(2n)−1
∣∣∣∣∣∣∣∣∣Πopt>Y −XB

∣∣∣∣∣∣∣∣∣2
F

+ λn‖B‖1, (3)

where thres(·) applies to each column and thresholds all entries to zero except the one with the
largest magnitude, Pn denotes the set of all possible permutation matrices, ‖·‖1 ,

∑
i,j |(·)i,j |

denotes the absolute sum of all entries, and λn > 0 is some regularizer coefficient.
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Figure 1: Keeping more non-zero elements
in X>Y deteriorates permutation recov-
ery. n = 100, p = 500, h = 25, k = 5,
srank(B\) = 100. #non-zero elements
refers to the number of non-zero elements
kept in each column of X>Y.

Note that we always keep one nonzero entry in the
operation thres(·) regardless of the sparsity number
k. This operation is different from almost all the pre-
vious works, which ranges from Blumensath & Davies
(2009); Foucart (2011) in the literature of compressive
sensing to Jain et al. (2013); Yuan et al. (2014); Li et al.
(2016) in the literature of optimization, since all these
works suggest keeping at least O(k) non-zero elements
for a k-sparse signal.

More surprisingly, our numerical experiments suggest
keeping more non-zero elements are detrimental to the
permutation recovery. An illustration is put in Figure 1,
from which we observe the SNR required for correct
correspondence recovery increases with the number of
non-zero elements kept in X>Y.
Remark 2. We apply the operator thres(·) to X>Y
to better approximate B\’s direction, or equivalently,
increase the correlation 〈thres(X>Y),B\〉. Due to the
insufficient sample number n, X>Y is poorly aligned with B\. Thus, keeping more non-zero elements
in thres(·) leads to a potential decrease of 〈thres(X>Y),B\〉 and less satisfactory performance.

4.1 MAIN RESULTS

This subsection formally presents our main results.

4.1.1 RESULTS IN RECOVERING Π\

First, we study the correspondence recovery. The formal statement is given as
Theorem 3. Suppose that n ≥ n0 and p ≥ p0, where n0, p0 > 0 are some positive constants.
Provided that (i) n� k(log n)(log2mnp), (ii) srank(B\)� k2 log2(1+ε0) n, (iii) h ≤ c0 · n, and
(iv) SNR ≥ c1, we have {Πopt = Π\} with probability at least 1 − c2 · n−c3 , where ε0 > 0 is an
arbitrary positive constant and h , dH(I,Π\) denotes the number of permuted rows.

If we assume that for each column its maximum entry’s energy is at least a constant proportion of
the total energy, i.e., infj maxi |B\i,j |/‖B\:,j‖2 ≥ ε1 (1 ≤ i ≤ p, 1 ≤ j ≤ m, we can further relax the
requirements on stable rank srank(B\). Here ε1 > 0 is an arbitrarily small positive constant.

Discussion. Comparison with previous work is put in Table 1, from which we conclude that our
work gives the first affirmative answer such that SNR ≥ Ω(1) is sufficient to obtain the correct
permutation matrix with insufficient samples, i.e., n� p.

In addition, we would like to compare it with the lower bound. To begin with, we discuss the SNR
requirement, which is the top priority of our analysis. From Theorem 3, we can see that the correct
permutation matrix can be obtained provided that SNR is above some positive constant; meanwhile
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Table 1: Comparison with previous works. All results are presented in their best orders, which only
hold true in certain regimes. Here SNRmin, nmin and hmax denotes the minimum SNR required for
correct permutation recovery, the minimum required sample number and maximum allowed number
of permuted rows, respectively. Moreover, the logarithmic term is omitted in Ω̃(·).

SNRmin (≥) nmin/p (≥) hmax/n (≤)

m = 1 m� 1 m = 1 m� 1 m = 1 m� 1

(Pananjady et al., 2018) Ω̃(nc) Ω̃(1) Ω̃(1)

(Slawski & Ben-David, 2019) Ω̃(nc) Ω̃(1) Ω̃(log−1 n)

(Zhang et al., 2022) Ω̃(1) Ω̃(1) Ω̃
(
log−1 r(B\)

)
(Slawski et al., 2020) Ω̃(1) Ω̃(p) Ω̃(log−1 n)

(Zhang & Li, 2020) Ω̃(nc) Ω̃(1) Ω̃(1) Ω̃(
√
p) Ω̃(1) Ω̃(1)

(Zhang & Li, 2021) Ω̃(nc) o(1) Ω̃(1)

Our Estimator Ω̃(1) o(1) Ω̃(1)

Theorem 2 requires SNR > 0. This means our SNR requirement has at most a gap of some positive
constant with the statistical lower bound.

For the sample number n, the lower bound requires n to be at least of order Ω(k log p); while
Theorem 3 requires n to be Ω(k(log n)(log2mnp)), which means the lower bound is matched up
to some multiplicative logarithmic terms. We conjecture that the required sample number n in
Theorem 3 can be further optimized, i.e., the logarithmic terms, with a more delicate analysis.
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Figure 2: Illustration of the dual role of
sample number n. We consider the noise-
less case (infinite SNR); and set p = 200
(signal length), k = 5 (sparsity number),
and h = 25 (number of permuted rows).

Moreover, our estimator allows the maximum number of
permuted rows to be linearly proportional to the sample
number, i.e., hmax � n, which is order-optimal.
Remark 3. Compared with Zhang & Li (2020) which
only requires srank(B\) to be above certain positive
constant, our estimator requires a larger stable rank
srank(B\). Although we cannot claim that srank(B\)
must be lower bounded by some non-decreasing func-
tions of log n, we have a numerical evidence such that
srank(B\) may have to increase with sample number n,
in other words, its lower bound may not be reduced to
be some positive constant. Fixing the parameters p, k, h,
and srank(B\), we study the impact of sample number n
on the permutation recovery and put the results in Fig-
ure 2. We observe that a larger n has a negative impact
on the permutation reconstruction once n exceeds certain
threshold. One possible reason is that the stable rank
srank(B\) is fixed as a constant and violates the requirement srank(B\)� log2 n.

4.1.2 RESULTS IN RECOVERING B\

Once the ground-truth Π\ is obtained, we restore (1) to the traditional model in compressive sens-
ing/sparse recovery (Candès et al., 2006; Candes et al., 2006; Donoho, 2006; Wainwright, 2019). One
corollary is given as follows.
Corollary 1. Suppose that n ≥ n0 and p ≥ p0, where n0, p0 > 0 are some positive constants.
Provided that (i) n� k(log n)(log2mnp), (ii) srank(B\)� k2 log2(1+ε) n, (iii) h ≤ c0 · n, and
(iv) SNR ≥ c1. Setting λn in (3) as c2σ

√
log p/n, we conclude

∣∣∣∣∣∣B\ −Bopt
∣∣∣∣∣∣

F . σ

√
mk log p

n

holds with probability exceeding 1− c3n−c4 − c5p−c6 .
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Its proof is a simple combination of Theorem 3 and the previous results in Candès et al. (2006);
Candes et al. (2006); Donoho (2006); Wainwright (2019). However, we observe a new phenomenon:
the reconstruction error

∣∣∣∣∣∣Bopt −B\
∣∣∣∣∣∣

F is affected by the signal energy
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F on top of the sensing

noise σ2. 2 Moreover, we should mention that the above difference will still exist even when we
replace (3) with other estimators, say, Dantzig estimator.

4.2 PROOF OUTLINE

Due to the space limit, we only give a sketch of our proof ideas and leave the technical details to the
supplementary material. Denote B̂ = (n− h)−1X>Y, our goal is to show

〈Y,Π\X · thres(B̂)〉 > 〈Y,ΠX · thres(B̂)〉, ∀Π 6= Π\ (4)
holds with high probability under the settings in Theorem 3.

Same as Zhang & Li (2020), our analysis faces the difficulties brought by (i) combinatorial nature
of the problem and (ii) high-order moments of sub-Gaussian random variables. On top of these
challenges, we are subject to insufficient samples, i.e., n � p. These issues are tackled by a
combination of relaxation and a tailored leave-one-out analysis, which can be roughly divided into
the following three stages.

Stage I. We consider the sufficient condition of (4), which reads as

〈Yi,:, thres(B̂)>Xπ\(i),:〉 ≥ 〈Yi,:, thres(B̂)>Xj,:〉, ∀ j 6= π\(i).

Re-arranging the terms, we obtain an equivalent form reading as

〈B\>Xπ\(i),:, thres(B̂)>Xπ\(i),:〉 ≥ 〈B\>Xπ\(i),:, thres(B̂)>Xj,:〉

+ 〈Wi,:, thres(B̂)>
(
Xπ\(i),: −Xj,:

)
〉. (5)

Informally speaking, we first assume that thres(B̂) is almost parallel to B\; and the dependence of
thres(B̂) on Xπ\(i),:,Xj,: is negligible. Then, we can approximate (5)’s left-hand side as

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F
and its right-hand side as a sum of z1B\>B\z2 and

√
2z
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F up to some normalization constant,

where z1, z2
i.i.d∼ N(0, Ip×p) and z i.i.d∼ N(0, Im×m) are Gaussian random vectors. Easily, we can

see that (5) holds with high probability provided the SNR is sufficiently large. In the following two
stages, we will verify the above two assumptions, that is, (i) ∠(thres(B̂),B\) is small and (ii) the
dependence between thres(B̂) and Xπ\(i),:,Xj,: is negligible.

Stage II. We would like to lower-bound the inner product 〈B\, thres(B̂)〉. Denote β̂ as the corre-
sponding column in B̂, we can express 〈B\, thres(B̂)〉 as

∑
β\∈{B\:,`}1≤`≤m

〈β\, thres(β̂)〉. From

the definition of thres(·), we notice that thres(β̂) only has one non-zero entry. W.l.o.g. we assume
its index is one and hence have

〈β\, thres(β̂)〉 = β\1β̂1 = (β\1)2 + β\1(β̂1 − β
\
1) ≥ (β\1)2 −max

i
|β\i | · ‖β

\ − β̂‖∞.

We (i) upper-bound maxi |β\i | and ‖β\ − β̂‖∞; and (ii) lower-bound |β\1|. Part (i) is quite standard
and part (ii) lies in analyzing the event |β̂1| ≥ maxj |β̂j |, which is due to the definition of thres(·).

Stage III. We would like to show the dependence between thres(B̂) and rows Xπ\(i),: and Xj,: is
negligible. This is accomplished by a tailored leave-one-out analysis. For each row indices pair
(π\(i), j), we construct a perturbed matrix B̂(π\(i),j) by replacing the rows Xπ\(i),:,Xj,: with their
i.i.d. substitutes. Easily, we can verify that B̂(π\(i),j) is independent from the rows Xπ\(i),:,Xj,: as
the latter are not involved in B̂(π\(i),j). Meanwhile, we have B̂(π\(i),j) exhibit a similar behavior
as B̂ as they share almost identical components. Actually, this is the basic idea of leave-one-out
technique (Chen et al., 2020; Sur et al., 2019; El Karoui, 2013; 2018; Cai et al., 2021). Compared
with these works, our construction method has the following characteristics

2This corollary has one requirement on SNR, which is affected by both
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F

and σ2. In addition, we may
have

∣∣∣∣∣∣Bopt −B\
∣∣∣∣∣∣

F
be directly linked to

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F
, as a wrong correspondence can be obtained with low SNR.
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• The number of replaced rows in our method varies for different pair of row indices. Meanwhile,
the replacement number is fixed in the above mentioned works. For a better explanation, we refer
the readers to our constructed leave-one-out samples B̃(·) in the appendix.

• We modify the operator thres(·) in approximating thres(B̂). While the previous works usually
keep the operator thres(·) intact, we approximate it with the operator (·)imax, which denotes the
positions of non-zero elements in thres(B̂). In other words, the positions of the non-zero elements
we keep in the leave-one-out samples B̃(·) are determined by thres(B̂) rather than thres(B̃(·)). In
our analysis, we can see this step is essential in controlling the approximation errors. Otherwise,
the approximation error can be considerably large, since thres(B̂) may not share the same support
set with thres(B̃(·)), let alone their `2 differences.

The explanation thereof is a simplified version of our proof technique. The technical details, which
are put in the supplementary material, can be different from the above however follow the same spirit.

Moreover, we want to discuss our algorithm’s computational complexity: in the first step for permuta-
tion recovery, our estimator only requires one matrix multiplication and thresholding operation on top
of the operations in the oracle estimator; in the second step for sparse signal recovery, our estimator
needs one additional matrix multiplication when compared with the work without permutation.

5 NUMERICAL RESULTS

This section presents the numerical experiments to verify our main theorem, to put more specifically,
Theorem 3: we would like to prove the correct permutation can be obtained, i.e., {Πopt = Π\}, with
n � p and SNR ≥ c. We only present the numerical results on the synthetic data here and defer
those on the real-world data to the supplementary material.

Experiment setting with Gaussian distribution. We let Xij
i.i.d∼ N(0, 1) and pick the sample

number n to be {100, 150} and set h = n/4. We vary the signal length p to be {500, 600}. Then we
set the sparsity number k within the region {10, 15, 20}. And the stable rank srank(B\) is within the
range {150, 200, 250}. The corresponding simulation results can be found in Figure 3.
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Figure 3: Simulated recovery rate P(Π̂ = Π\) with n = {100, 150}, p ∈ {500, 600}, h ∈ {25, 37},
and Xij

i.i.d∼ N(0, 1), with respect to SNR.

Discussion w.r.t n/p. First, we confirm our theory such that correct permutation can be obtained with
insufficient samples, i.e., n� p. In addition, we notice that the permutation recovery becomes easy
with a larger n/p: the first row in Figure 3 is with n/p = 0.2 while the second row is with n/p = 0.25.
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We can verify the SNR for the correct permutation recovery is smaller in the second row than that for
the first row. However, we should stress that this conclusion may not hold provided that srank(B\) is
not sufficiently large. More details are referred to Figure 2.

Discussion w.r.t. sparsity number k. We vary the sparsity number k to be within {10, 15, 20}. We
conclude a large sparsity number k can make the permutation recovery more difficult. For example,
consider the case when (n, p, srank(B\)) = (100, 500, 200). When k = 10, correct permutation
requires SNR ≥ 1.4; when k = 15, correct permutation needs SNR ≥ 2.2; and when k = 20, correct
permutation requires SNR ≥ 4. The same conclusion holds for other cases as well. 3

Experiment setting with sub-Gaussian distribution. In addition to the Gaussian setting, we also
evaluate our estimator’s performance when Xij being sub-Gaussian. Here, we pick Xij to be i.i.d.
Rademacher random variables such that P(Xij = ±1) = 1/2. The corresponding results are put in
Figure 4, from which we can observe a similar pattern as that of the Gaussian setting.
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Figure 4: Simulated recovery rate P(Π̂ = Π\) with n = {100, 150}, p ∈ {500, 600}, h ∈ {25, 37},
and Xij

i.i.d∼ Rademacher, i.e., P(Xij = −1) = P(Xij = 1) = 1/2, w.r.t. SNR.

6 CONCLUSION

In this paper, we studied the unlabeled sparse recovery with multiple measurements (i.e., m > 1) for
the first time. To begin with, we investigated the lower bounds on the sample number n and the SNR.
Furthermore, we proposed a simple yet effective estimator, which restores the permutation matrix via
a linear assignment problem. We proved that our estimator can obtain the correct correspondence
information when SNR is above certain positive constant and required sample number n is in
linear dependence with sparsity number k. In addition, we discovered multiple phenomena that are
seldom encountered before: (i) keeping more non-zero elements in thres(·) deteriorates permutation
recovery; and (ii) increasing sample number n plays a dual role in reconstructing the permutation.
In the course of analyzing our estimator’s performance and explaining the above phenomena, we
developed a tailored version of the leave-one-out technique, which involves an adaptive number of
replaced elements and simultaneous modification of the threshold operator. Moreover, we provided
numerical experiments to corroborate our claims and showed our estimator can reliably reconstruct
the permutation matrix even when the entries Xij are sub-Gaussian random variables.

3This result is consistent with Theorem 2 as Bn,p,m,k covers a broader class of matrices B when k increases
from 15 to 20, which implies a larger SNR is required for correct permutation recovery.
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A PROOF OF THEOREM 2

Proof. The proof technique is a combination of that in Zhang et al. (2022) and Zhang & Li (2021).
First we put uniform distribution as the prior of Π, i.e., P(Π\ = Πsamp) = |Pn|−1, where Πsamp is
an arbitrary fixed permutation matrix and Pn denotes the set of all possible permutation matrices.
In addition, we introduce distributions for the support set of B. For an arbitrary column B:,`, we
assume its support set to be uniformly distributed among

(
p
k

)
possible patterns. Easily, we can verify

the relation
sup
Π,B

PX,W

[
(Π, supp(B)) 6= (Π̂, supp(B̂))

]
≥ PX,W,Π,B

[
(Π, supp(B)) 6= (Π̂, supp(B̂))

]
. (6)

Since infΠ̂,B̂ can be safely added to the left-hand side of (6), our goal becomes lower-bounding

PX,W,Π,B

[
(Π, supp(B)) 6= (Π̂, supp(B̂))

]
. Adopting the proof technique used in Theorem 2.10.1

in Cover & Thomas (2012), we consider the entropy H(Π, supp(B)), which can be computed as

H(Π, supp(B))
1©
= H(Π) + H(supp(B))

2©
= log n! +m · log

(
p

k

)
, (7)

where in 1© we use the independent among Π and supp(B), and in 2© we use the fact |Pn| = n! and
|supp(B)| =

(
p
k

)m
. Meanwhile, we have the relation

H(Π, supp(B))
3©
= H(Π, supp(B) |X)

4©
= H(Π, supp(B) |X, Π̂, supp(B̂))︸ ︷︷ ︸

, ζ1

+ I(Π, supp(B); Π̂, supp(B̂) |X)︸ ︷︷ ︸
, ζ2

. (8)

where 3© is due to the independence between X and Π,B; and 4© is because of the definition of the
conditional entropy and mutual information. The proof is thus complete by separately bounding η1
and η2.

Analysis of ζ1. We upper-bound ζ1 with Fano’s inequality (Cover & Thomas, 2012, Theorem 2.10.1),
which proceeds as

ζ1 ≤ H(Π, supp(B) | Π̂, supp(B̂))

≤ 1 + log (|(Π, supp(B))|) · PX,W,Π,B

[
(Π, supp(B)) 6= (Π̂, supp(B̂))

]
. (9)

Analysis of ζ2. Due to the Markov property of (Π, supp(B))→ Y → (Π̂, supp(B̂)), we invoke the
data-processing inequality (Cover & Thomas, 2012, Thm. 2.8.1) and conclude

ζ2 ≤ I(Π, supp(B); Y |X).

Invoking the definition of conditional mutual information, we have

I(Π, supp(B); Y |X) = EX,W,Π [h(Y |X = x))− h(Y |Π, supp(B),X = x)]

5©
≤ 1

2
log det

(
EX,W,ΠYY>

)
− mn

2
log σ2,

where in 5© we use the property (Cover & Thomas, 2012, Theorem 8.6.5)

h(Z) ≤ 1

2
log det Cov(Z) ≤ 1

2
log detE

(
ZZ>

)
,

for a random vector Z with finite covariance matrix Cov(Z), and the entropy for a Gaussian random
vector. Following the same procedure as in (Zhang et al., 2022, Lemma 11), we have

log detEX,W,ΠYY> = nm · log σ2 + n · log det
(
I + B>B/σ2

)
,

which further yields to

I(Π, supp(B); Y |X) ≤ n

2
log det

(
I + B>B/σ2

)
.
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Summary. Combing (7), (8), and (9) then leads to a lower-bound on PX,W,Π,B

[
(Π, supp(B)) 6=

(Π̂, supp(B̂))
]

reading as

PX,W,Π,B

[
(Π, supp(B)) 6= (Π̂, supp(B̂))

]
≥

log n! +m ˙log
(
p
k

)
− 1− (n/2) log det

(
I + B>B/σ2

)
log (|(Π, supp(B))|)

.

Easily, we can verify PX,W,Π,B

[
(Π, supp(B)) 6= (Π̂, supp(B̂))

]
is lower bounded by 1/2 given the

assumptions in Theorem 2 and thus complete the proof.

B PROOF OF THEOREM 3

We define B̂ as (n− h)−1X>Y and define operator imax(i) as argmaxj |B̂j,i| (1 ≤ i ≤ m) for each
column in B̂, which returns the index of the entry with the largest magnitude. With a slight abuse of
notation, we denote B̂imax = thres(B̂). The benefits of this notation will be seen shortly.

In addition, we define the error Eerr as

Eerr =
{
∃Π, s.t.

〈
Y,ΠX · B̂imax

〉
≥
〈
Y,Π\X · B̂imax

〉}
. (10)

According to the sensing relation such that Y = Π\XB\ + W, we rewrite (10) as〈
Π\XB\ + W,ΠX · B̂imax

〉
≤
〈
Π\XB\ + W,Π\X · B̂imax

〉
,

and would like to show it holds with probability near zero. The major technical difficulties come
from the fact that B̂ is correlated with sensing matrix X, which introduces high-order moments. The
solution of such challenge is broadly divided into the following two parts.

Part I: Relaxation of error event. We first relax the error event Eerr

Eerr ⊆
{〈

Yi,:, B̂
>
imaxXπ\(i),:

〉
≤
〈
Yi,:, B̂

>
imaxXj,:

〉
, ∃ j 6= π\(i)

}
︸ ︷︷ ︸

, Eerr-relax

, (11)

which means P(Eerr) ≤ P(Eerr-relax).

Part II: Decoupling dependence via a modified leave-one-out technique. To decompose the
dependence between B̂ and the rows Xπ\(i),: and Xj,:, we modify the leave-one-out technique and
construct a perturbed matrix B̂(π\(i),j), which shares almost identical statistical behaviors as B̂.
Before delving into the technical details, we first provide a glimpse of the construction idea. Recalling
the definition of B̂, which is written as

B̂ =
1

n− h

(
n∑
`=1

X`,:X
>
π\(`),:

)
B\ +

X>W

n− h
,

we construct the perturbed matrix B̂(π\(i),j) by replacing the corresponding rows with their i.i.d.
samples. The detailed construction method is stated as follows.

To begin with, we draw i.i.d. samples for each rows of Xi,: and denote it as X̃i,: (1 ≤ i ≤ n).
Similarly we draw samples W̃j,: for each row in W, 1 ≤ j ≤ n. For arbitrary indices π\(i) and j
such that j 6= π\(i), we create the samples B̂(π\(i),j) as (assume i 6= π\(i) and j 6= π\(j))

B̂(π\(i),j) = (n− h)−1
( ∑
`,π\(`) 6=π\(i),j

X`,:X
>
π\(`),:

)
B\

+ (n− h)−1
(

X̃i,:X̃
>
π\(i),: + X̃π\(i),:X̃

>
π\(π\(i)),: + X̃j,:X̃

>
π\(j),: + X̃π\−1(j),:X̃

>
j,:

)
B\

+ (n− h)−1

 ∑
` 6=π\(i),i

X`,:W
>
`,: + X̃π\(i),:W̃

>
π\(i),: + X̃i,:W̃

>
i,:

 . (12)
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Provided that i = π\(i), we can simplify the summaries X̃i,:X̃
>
π\(i),: + X̃π\(i),:X̃

>
π\(π\(i)),: and

X̃π\(i),:W̃
>
π\(i),: + X̃i,:W̃

>
i,: in the above construction as the terms X̃i,:X̃

>
i,: and X̃i,:W̃

>
i,:, respec-

tively. Similarly, we will simplify X̃j,:X̃
>
π\(j),:

+ X̃π\−1(j),:X̃
>
j,: as Xj,:X

>
j,: when j = π\(j).

With the above construction method, easily we can verify that B̂(π\,j) is independent of the rows
Xπ\(i),:, Xj,: and Wi,: as they are not involved in B̂(π\,j). Before delving into the technical details,
we first collect all required notations.

B.1 NOTATIONS

Define the following events

E1 ,

{∣∣∣∣∣
∑
`=π\(`) X2

`,i

n− h − 1

∣∣∣∣∣ ≤ c0
√

log(np)

n− h , ∀ 1 ≤ i ≤ p

}
;

E2(β) ,


∑
`=π\(`) X`,i

〈
X`,\iβ\i

〉
n− h .

√
log(mnp)

n− h ‖β\i‖2, ∀ 1 ≤ i ≤ p

 ;

E3(β) ,

{∑
` 6=π\(`) X`,i

〈
Xπ\(`),:,β

〉
n− h .

√
h log(mnp)

n− h ‖β‖2, ∀ 1 ≤ i ≤ p

}
;

E4 ,

{∑n
`=1 X>

`,iW`,j

n− h .
σ
√
n log(mnp)

n− h , ∀ 1 ≤ i ≤ p, 1 ≤ j ≤ m

}
;

E5 ,

{∥∥∥(B̂imax − B̂
(π\(i),j)
imax

)>
x
∥∥∥
2
.

log3/2(np)

n− h

∣∣∣∣∣∣∣∣∣B\
∣∣∣∣∣∣∣∣∣

F
+
σ(lognp)

√
m(logmn)

n− h , ∀ 1 ≤ π\(i) 6= j ≤ p

}
,

where β ∈ Rp is an arbitrary column of B\
`,: (1 ≤ ` ≤ m), β\i ∈ Rp denotes its copy with the ith

entry being set to be zero, and x ∈ Rp denotes an arbitrary row in matrix X, which follows Gaussian
distribution N(0, Ip×p). Note that x is not necessarily independent from B̂ and B̂(π\(i),j).

For an arbitrary event E, we denote its complement as E. In addition, we define matrix M(π\(i),j) as
B\>B̂

(π\(i),j)
imax . For the notational simplicity, we drop the superscript π\(i) and j in M(π\(i),j) when

there is no ambiguity. The following context provides the technical details and a diagram representing
the dependence among all lemmas is put in Figure 5.

Lemma 13
Lower bound on 〈B\, B̂(π\(i),j)〉

Lemma 11
Lower bound on |β̂imax|

Lemma 12
Upper bound on ‖β̂ − β\‖∞

Condition on (Lemma 7, 8, 9, and 10)
E1
⋂
E2(β)

⋂
E3(β)

⋂
E4

Lemma 14 (E5)
Upper bound on

∥∥∥∥(B̂imax − B̂
(π\(i),j)
imax

)>x∥∥∥∥
2

Analysis of F1

Equation (13)
Analysis of F6

Equation (18)
Analysis of F3

Equation (15)
Analysis of F5

Equation (17)

Figure 5: Dependence diagram of lemmas.
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B.2 PROOF OF THEOREM 3

Proof. The proof can be broadly divided into three stages.

Stage I. To begin with, we prove the relation Eerr ⊆ Eerr-relax, whose definition can be found in (11).
Conditional on Eerr-relax, we have

〈
Yi,:, B̂

>
imaxXπ\(i),:

〉
>
〈
Yi,:, B̂

>
imaxXj,:

〉
, ∀ j 6= π\(i).

Thus we conclude

〈
Y,Π\X · B̂imax

〉
>
〈
Y,ΠX · B̂imax

〉
, ∀Π 6= Π\,

which suggests Eerr-relax will automatically lead to Eerr, in other words, Eerr-relax ⊆ Eerr. Hence, we
could upper bound P (Eerr) by P (Eerr-relax).

Stage II. Regarding the relation 〈Yi,:, B̂
>
imaxXπ\(i),:〉 ≤ 〈Yi,:, B̂

>
imaxXj,:〉, we can recast it as

〈B\>Xπ\(i),:, B̂
(π\(i),j)>
imax Xπ\(i),:〉︸ ︷︷ ︸

η
(π\(i),j)
1

≤ 〈B\>Xπ\(i),:, B̂
(π\(i),j)>
imax Xj,:〉︸ ︷︷ ︸

η
(π\(i),j)
2

+ 〈B\>Xπ\(i),:,
(
B̂imax − B̂

(π\(i),j)
imax

)> (
Xj,: −Xπ\(i),:

)
〉︸ ︷︷ ︸

η
(π\(i),j)
3

+
〈
Wi,:, B̂

(π\(i),j)>
imax

(
Xj,: −Xπ\(i),:

)〉
︸ ︷︷ ︸

η
(π\(i),j)
4

+

〈
Wi,:,

(
B̂imax − B̂

(π\(i),j)
imax

)> (
Xj,: −Xπ\(i),:

)〉
︸ ︷︷ ︸

η
(π\(i),j)
5

.

We should emphasize that the subscript imax are solely determined by B̂ rather than its perturbed
partner B̂(π\(i),j). This is to ensure B̂ and B̂(π\(i),j) share the same support set. In the following
analysis, we will see this property plays an important role in bounding the difference between B̂imax

and B̂
(π\(i),j)
imax , which is contained in η(π

\(i),j)
3 and η(π

\(i),j)
5 . The following context separately studies

each term η
(π\(i),j)
` (1 ≤ ` ≤ 5). First we define quantities ∆

(π\(i),j)
` (1 ≤ ` ≤ 5) as

∆
(π\(i),j)
1 ,

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F

k
− mσ2 (logmnp)

2

n
−
√
mσ log(mnp)√

n

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F −
c0 log n√
srank(B\)

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F
;

∆
(π\(i),j)
2 , log n

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F
/
√

srank(B\);

∆
(π\(i),j)
3 ,

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F

√
log n (log np)

3/2

n
+

∣∣∣∣∣∣B\
∣∣∣∣∣∣

Fσ
√
m log n(logmn)1/2(log np)

n
;

∆
(π\(i),j)
4 , σ(log n)

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F
;

∆
(π\(i),j)
5 ,

√
m log n

(
log3/2 np

)
n− h

∣∣∣∣∣∣B\
∣∣∣∣∣∣

Fσ +
mσ2(log np)

√
(log n)(logmn)

n− h
.
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In addition, we define the events F` (1 ≤ ` ≤ 6) as

F1 ,
{
η
(π\(i),j)
1 & ∆

(π\(i),j)
1 , ∀ 1 ≤ π\(i) 6= j ≤ p

}
; (13)

F2 ,
{
|η(π

\(i),j)
2 | . ∆

(π\(i),j)
2 , ∀ 1 ≤ π\(i) 6= j ≤ p

}
; (14)

F3 ,
{
|η(π

\(i),j)
3 | . ∆

(π\(i),j)
3 , ∀ 1 ≤ π\(i) 6= j ≤ p

}
; (15)

F4 ,
{
|η(π

\(i),j)
4 | . ∆

(π\(i),j)
4 , ∀ 1 ≤ π\(i) 6= j ≤ p

}
; (16)

F5 ,
{
|η(π

\(i),j)
5 | . ∆

(π\(i),j)
5 , ∀ 1 ≤ π\(i) 6= j ≤ p

}
, (17)

F6 ,

{∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax −B\

imax

∣∣∣∣∣∣∣∣∣
F
.

log(mnp)√
n

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F +
σ log(mnp)

√
m√

n
, ∀ 1 ≤ π\(i) 6= j ≤ p

}
.

(18)
In Lemma 1, Lemma 2, Lemma 3, Lemma 4, Lemma 5, and Lemma 12, we will show all the above
events, namely, F` (1 ≤ ` ≤ 6), hold with probability approaching one.

Stage III. Given the assumptions in Theorem 3, we will verify the relation
⋂6
`=1 F` ⊆ Eerr-relax.

Considering the difference ∆
(π\(i),j)
1 −

∑5
`=2 ∆

(π\(i),j)
` , we can lower bound it as

∆
(π\(i),j)
1

mσ2
−

5∑
`=2

∆
(π\(i),j)
`

mσ2
≥ SNR

(
1

k
−
√

log n log
3/2(np)

n
− 2 log n√

srank(B\)

)
︸ ︷︷ ︸

ζ1

−
√
SNR

(√
log n(log np)

(√
logmn+

√
log np

)
n

+
logmnp√

n
+

log n√
m

+
2(log n)(logmnp)√

n · srank(B\)

)
︸ ︷︷ ︸

ζ1/2

−

(
log n(logmnp)√

mn
+

log2(mnp) +
√

log n(logmn)(log np)

n

)
︸ ︷︷ ︸

ζ0

.

Under the assumptions in Theorem 3, we have

ζ1 � k−1;

ζ1/2 �
logmnp√

n
+

log n√
m

;

ζ0 �
log n(logmnp)√

mn
+

log2(mnp)

n
,

which leads to

∆
(π\(i),j)
1

mσ2
−

5∑
`=2

∆
(π\(i),j)
`

mσ2
≥ ζ1 · SNR− ζ1/2

√
SNR− ζ0

1©
&

1

k
− 1

k
√

log n
− 1

k logε n
− 1

k2 logε+
1/2 n

− 1

k2 log n
> 0,

where in 1© we use the relation m ≥ rank(B\) ≥ srank(B\)� k2 log2(1+ε) n. Then we conclude

5∑
`=2

|η(π
\(i),j)

` | ≤
5∑
`=2

∆
(π\(i),j)
` ≤ ∆

(π\(i),j)
1 ≤ η(π

\(i),j)
1 , ∀ 1 ≤ π\(i) 6= j ≤ p,

which means we will automatically obtain Eerr-relax when assuming
⋂6
`=1 F`, in other words,⋂6

`=1 F` ⊆ Eerr-relax. Hence, we can complete the proof by P (Eerr) ≤ P (Eerr-relax) ≤
∑6
`=1 P(F`).
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Lemma 1. Conditional on the intersection of events E1
⋂m
`=1 E2(B\

`,:)
⋂m
`=1 E3(B\

`,:)
⋂
E4, we have

P(F1) ≥ 1− c0n−c1 provided n� k log2(mnp).

Proof. Recalling the definition of M, i.e., M , B\>B̂
(π\(i),j)
imax , we divide the proof procedure as

• Step I. Condition on M, we have

η
(π\(i),j)
1 ≥ Tr(M)− c0 log n√

srank(B\)

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F
, ∀ 1 ≤ π\(i) 6= j ≤ n,

hold with probability exceeding 1− n−c.

• Step II. Provided n� k log2(mnp), we have

Tr(M) &
1

k

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F −
mσ2 (logmnp)

2

n
−
√
mσ log(mnp)√

n

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F,

condition on E1
⋂m
`=1 E2(B\

`,:)
⋂m
`=1 E3(B\

`,:)
⋂
E4.

For the clarify of presentation, we defer the proof of Step II to Lemma 13 and focus on Step I. Due
to the construction of B̂(π\,j) in (12), we conclude B̂(π\,j) is independent with row Xπ\(i),:. Hence
we can first condition on M and rewrite term η1 in terms of a quadratic product x>Mx, where
x ∈ Rp is a random vector satisfying x ∈ N(0, Ip×p).

With Hanson-Wright inequality (c.f. Theorem 6.2.1 in Vershynin (2018)), we have

P
(
|η(π

\(i),j)
1 − Eη(π

\(i),j)
1 | ≥ t, ∃ 1 ≤ π\(i) 6= j ≤ n

)
≤ n2 · P

(∣∣x>Mx− Tr(M)
∣∣ ≥ t) ≤ n2 · 2 exp

(
−c0

(
t

|||M|||OP
∧ t2

|||M|||2F

))
.

Setting t = log n|||M|||F, we have

η
(π\(i),j)
1 ≥ Eη(π

\(i),j)
1 − c0 log n|||M|||F = Tr(M)− c0 log n|||M|||F, ∀ 1 ≤ π\(i) 6= j ≤ n,

holds with probability 1− 2n−c. Then we complete the proof by showing

|||M|||F ≤
∣∣∣∣∣∣B\

∣∣∣∣∣∣
OP

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F

1©
=

1√
srank(B\)

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F
,

where 1© is due to the definition of stable rank.

Lemma 2. We have P(F2) ≥ 1− 4n−c where event F2 is defined in (14).

Proof. First we fix the indices π\(i) and j such that π\(i) 6= j. Due to the independence across the
rows of X, we conclude

P
(
|x>My| & log n|||M|||F

)
≤ P

(
|x>My| & log n|||M|||F, ‖My‖2 .

√
log n|||M|||F

)
+ P

(
‖My‖2 &

√
log n|||M|||F

)
1©
≤ P

(
|x>My| &

√
log n‖My‖2

)
+ 2n−c ≤ 4n−c,

where M is defined as B\>B̂
(π\(i),j)
imax and in 1© we have the rotation invariance of Gaussian random

vector. Regarding the event F2, we invoke the union bound and complete the proof as P(F2) ≤
n2 · 4n−c = 4n−c

′

.
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Lemma 3. Condition on E5, we conclude P (F3|E5) ≥ 1− 2n−c, where F3 is defined in (15).

Proof. First we recall the definition of η3, which is written as

η3 , 〈B\>Xi,:,
(
B̂imax − B̂

(π\(i),j)
imax

)>
(Xj,: −Xi,:)〉.

We begin the proof as

P
(
F3|E5

)
≤ P

(
‖B\>Xi,:‖2 & log n

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F, ∃ 1 ≤ i ≤ n|E5
)

+ P
(
F3, ‖B\>Xi,:‖2 . log n

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F, ∀ 1 ≤ i ≤ n|E5
)
.

For the first term, we invoke the Hanson-Wright inequality (c.f. Theorem 6.2.1 in Vershynin (2018)),
which leads to

P
(
‖B\>Xi,:‖2 & log n

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F, ∃ 1 ≤ i ≤ n|E5
)

≤ n · P
(∣∣‖B\>Xi,:‖22 − E‖B\>Xi,:‖22

∣∣ & log n
∣∣∣∣∣∣B\

∣∣∣∣∣∣2
F|E5

)
≤ 2n · exp

(
−c

(
log2 n

∣∣∣∣∣∣B\
∣∣∣∣∣∣4

F

|||B\>B\|||2F
∧

log n
∣∣∣∣∣∣B\

∣∣∣∣∣∣2
F

|||B\>B\|||OP

))
≤ 2n−c.

For the second term, we will prove it to be zero. This is because

|η(π
\(i),j)

3 | ≤ ‖B\>Xπ\(i),:‖2 ·
∥∥∥(B̂imax − B̂

(i,j)
imax

)> (
Xj,: −Xπ\(i),:

)∥∥∥
2

1©
.
√

log n
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F ·

log3/2(np)

n− h
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F +

σ(log np)
√
m(logmn)

n− h
,

for all 1 ≤ π\(i) 6= j ≤ n, where in 1© we condition on E5 and
∥∥B\>Xπ\(i),:

∥∥
2
.
√

log n
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F.

Lemma 4. We have P(F4) ≥ 1− 4n−c.

Proof. First we fix the indices π\(i) and j such that π\(i) 6= j. Invoke the definition of B̂
(π\(i),j)
imax ,

we conclude Wi,:, B̂
(π\(i),j)
imax , Xj,:, and Xπ\(i),: are independent with each other. Hence we can

complete the proof as

P
(
|η(π

\(i),j)
4 | & σ(log n)

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F

)
≤ P

(∥∥∥B̂(π\(i),j)>
imax

(
Xj,: −Xπ\(i),:

)∥∥∥
2
&
√

log n
∣∣∣∣∣∣∣∣∣B̂(π\(i),j)

imax

∣∣∣∣∣∣∣∣∣
F

)
+ P

(
|η4| & σ(log n)

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F
,
∥∥∥B̂(π\(i),j)>

imax

(
Xj,: −Xπ\(i),:

)∥∥∥
2
.
√

log n
∣∣∣∣∣∣∣∣∣B̂(π\(i),j)

imax

∣∣∣∣∣∣∣∣∣
F

)
≤ 2n−c + P

(
|η4| & σ

√
log n

∥∥∥B̂(π\(i),j)>
imax

(
Xj,: −Xπ\(i),:

)∥∥∥
2

) 1©
≤ 4n−c,

where in 1© we use the tail bound for Gaussian random variable. The proof is then completed with
the union bound such that

P
(
F4

)
≤ n2P

(
|η(π

\(i),j)
4 | & σ(log n)

∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax

∣∣∣∣∣∣∣∣∣
F

)
≤ 4n2 · n−c = 1− 4n−c

′

.
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Lemma 5. Condition on E5, we conclude P(F5|E5) ≥ 1− 2n−c.

Proof. The proof is in a similar form of that for Lemma 3. First we decompose the probability
P(F5|E5) as

P(F5|E5) ≤ P(‖Wi,:‖2 & σ
√
m log n, ∃ 1 ≤ i ≤ n|E5) + P

(
F5, ‖Wi,:‖2 . σ

√
m log n, ∀ 1 ≤ i ≤ n|E5

)
≤ 2n · n−c + P

(
F5, ‖Wi,:‖2 . σ

√
m log n, ∀ 1 ≤ i ≤ n|E5

)
,

where the last inequality is due to the tail bound for the Gaussian random variable. We complete the
proof by showing the second probability is zero. This is because

|η(π
\(i),j)

5 | ≤ ‖Wi,:‖2 ·
∥∥∥(B̂imax − B̂

(i,j)
imax

)>
(Xj,: −Xi,:)

∥∥∥
2

.

√
m log n

(
log3/2 np

)
n− h

∣∣∣∣∣∣B\
∣∣∣∣∣∣

Fσ +
mσ2(log np)

√
(log n)(logmn)

n− h
.

Lemma 6. Conditional on the intersection of events E1
⋂m
`=1 E2(B\

`,:)
⋂m
`=1 E3(B\

`,:)
⋂
E4, we have

P(F5) = 1.

Proof. We complete the proof by∣∣∣∣∣∣∣∣∣B̂(π\(i),j)
imax −B\

imax

∣∣∣∣∣∣∣∣∣2
F

=
∑
β\

∥∥∥∥β̂(π\(i),j)

imax − β\imax

∥∥∥∥2
2

1©
=
∑
β\

∥∥∥∥β̂(π\(i),j)

imax − β\imax

∥∥∥∥2
∞

2©
.

log2(mnp)

n

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F +
mσ2 log2(mnp)

n
,

where 1© is due to the fact such that β̂
(π\(i),j)

imax − β\ has only one non-zero element, and 2© is due to
Lemma 12.

B.3 SUPPORTING LEMMAS

Lemma 7. We have P(E1) ≥ 1− 2n−c1p−c2 when n− h� log np, and n, p are sufficiently large.

Proof. Due to the Hanson-Wright inequality (c.f. Theorem 6.2.1 in Vershynin (2018)), we have

P (E1) ≤ 2p exp

[
−c

(
(n− h) log(np)∣∣∣∣∣∣I(n−h)×(n−h)∣∣∣∣∣∣2F ∧

√
(n− h) log(np)∣∣∣∣∣∣I(n−h)×(n−h)∣∣∣∣∣∣OP

)]
1©
≤ 2p · n−cp−c = 2n−c1p−c2 ,

where in 1© we use the fact n− h� log(np).

Lemma 8. For a fixed β ∈ Rp, we have P(E2(β)) ≥ 1− pe−c0(n−h) − n−c1m−c2p−c3 .

Proof. To begin with, we construct the sensing matrix XS by concatenating all rows X`,: such that
` = π\(`). With union bound, we can upper bound P

(
E2(β)

)
as

P
(
E2(β)

)
≤ pP

(∥∥XSβ\\i∥∥2 ≥√2(n− h)‖β\\i‖2
)

︸ ︷︷ ︸
ζ1

+ pP

(
n−h∑
`=1

X`,i

〈
X`,:,β

\
\i

〉
&
√

(n− h) log(mnp)‖β\\i‖2,
∥∥XSβ\\i∥∥2 <√2(n− h)‖β\\i‖2

)
︸ ︷︷ ︸

ζ2

.
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Since X are with i.i.d Gaussian entries, we have each row in XSβ
\
\i be a Gaussian random vector

with zero mean and variance ‖β\\i‖
2
2. Hence, we have ‖XSβ\\i‖22/‖β\\i‖22 be a χ2 random variable with

freedom n− h, which leads to

ζ1
1©
≤ p exp

(
n− h

2
(log 2− 1)

)
≤ pe−0.65(n−h),

where 1© is due to Lemma 15.

For ζ2, we notice that X`,i is independent of the inner product 〈X`,:,β
\
\i〉. Hence, we can view the

product
∑n−h
`=1 X`,i〈X`,:,β

\
\i〉 as a Gaussian random variable N(0, ‖XSβ\\i‖

2
2), which leads to

ζ2 ≤ pP

(
n−h∑
`=1

X`,i

〈
X`,:,β

\
\i

〉
&
√

log(mnp)‖XSβ\\i‖2

)
2©
≤ 2n−cm−cp−c,

where in 2© we use the tail bound of Gaussian random vectors.

Lemma 9. For a fixed β ∈ Rp, we have P(E3(β)) ≥ 1− c0n−c1m−c2p−c3 .

Proof. According to Lemma 16, we can decompose the index set
{
` : ` 6= π\(`)

}
into three disjoint

sets Ij such that (i) indices ` and π\(`) do not fall into the same set Ij ; and (ii) the cardinality of
each set satisfies hj , |Ij | ≥ bh3 c, (1 ≤ j ≤ 3).

Then we can decompose product
∑
` 6=π\(`) X`,i

〈
Xπ\(`),:,β

〉
as

∑
6̀=π\(`)

X`,i

〈
Xπ\(`),:,β

〉
=

3∑
j=1

∑
`∈Ij

X`,i

〈
Xπ\(`),:,β

\
〉
.

With the union bound, we have

P(E3(β)) ≤ p ·
3∑
j=1

P

∑
`∈Ij

X`,i

〈
Xπ\(`),:,β

\
〉
& (logmp)

√
hj‖β\‖2

 . (19)

Due to the properties of Ij , we have X`,i and 〈Xπ\(`),:,β
\〉 be independent and hence

P

∑
`∈Ij

X`,i

〈
Xπ\(`),:,β

\
〉
& log(mnp)

√
hj‖β\‖2


= P

(∥∥∥X`∈Ij ,:β
\
∥∥∥2
2
& log(mnp)|hj |‖β\‖22

)

+ P

∥∥∥X`∈Ij ,:β
\
∥∥∥2
2
. log(mnp)|hj |‖β\‖22,

∑
`∈Ij

X`,i

〈
Xπ\(`),:,β

\
〉
& log(mnp)

√
hj‖β\‖2


1©
≤ exp

[
hj
2

(log(c0 logmnp)− c0 logmnp+ 1)

]
+ P

∑
`∈Ij

X`,i

〈
Xπ\(`),:,β

\
〉
&
√

logmnp‖X`∈Ij ,:β
\‖2


2©
. n−c0m−c0p−c0 + n−c1m−c1p−c1 � n−cm−cp−c,

where 1© is due to Lemma 15 and 2© is due to the Gaussian tail bound. Plugging it in (19) then
completes the proof.
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Lemma 10. We have P(E4) ≥ 1− cn−c0m−cp−c.

Proof. We complete the proof as

P(E4)
1©
≤ mp · P

(
n∑
`=1

X>`,iW`,j & σ
√
n log(mnp)

)
2©
≤ mp

[
P
(
‖X:,i‖2 &

√
n log(mnp)

)
+ P

(
n∑
`=1

X>`,iW`,j & σ
√
n log(mnp), ‖X:,i‖2 .

√
n log(mnp)

)]
3©
≤ mp

[
exp

(n
2

(log(c0 log(mnp))− c0 log(mnp) + 1)
)

+ P

(
n∑
`=1

X>`,iW`,j & σ
√

logmnp‖X:,i‖2

)]
4©
≤ mp

(
n−c0m−c0p−c0 + n−c1m−c1p−c1

)
� n−c0m−cp−c,

where 1© and 2© are due to the union bound, 3© is due to Lemma 15, and 4© is due to the tail bound
for Gaussian random variable.

Lemma 11. Conditional on the intersection of events E1
⋂
E2(β\)

⋂
E3(β\)

⋂
E4, we have

|β\imax| & |β
\
max| −

√
log(mnp)√

n
‖β\‖2 −

σ log(mnp)√
n

,

where imax and max are defined as the indices of β̂ and β\ with the largest magnitude, i.e., imax ,
argmaxi|β̂i| and max , argmaxi|β

\
i |, respectively.

Proof. To begin with, we define ζ(i)1 , ζ(i)2 , and ζ(i)3 as

ζ
(i)
1 =

1

n− h

(
n−h∑
`=1

X2
`,i

)
β\i ;

ζ
(i)
2 =

1

n− h

n−h∑
`=1

X`,i

〈
X`,:,β

\
\i

〉
;

ζ
(i)
3 =

1

n− h

n∑
`=n−h+1

X`,i

〈
Xπ\(`),:,β

\
〉

;

ζ
(i)
4 =

1

n− h

n∑
`=1

X>`,iW`,j ,

respectively. Then we can write β̂i as
∑4
j=1 ζ

(i)
j . Due to the definition of imax, we conclude

|β̂imax| ≥ |β̂max|, where max is defined as the index of β\ with the largest magnitude, i.e., max ,
argmaxi|β

\
i |. With triangle inequality, we obtain

4∑
j=1

|ζ(imax)
j | ≥ |β̂imax| ≥ |β̂max| ≥ |ζ

(max)
1 | −

4∑
j=2

|ζ(max)
j |. (20)

The following context separately discusses each term. First, we consider |ζ(imax)
1 | and |ζ(max)

1 |.
Conditional on E1, we have

|ζ(imax)
1 | ≤

(
1 + c0

√
log(np)

n− h

)
|β\imax| . |β

\
imax|;

|ζ(max)
1 | ≥

(
1− c0

√
log(np)

n− h

)
|β\max| & |β

\
max|. (21)
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Then we turn to study the rest of terms. Conditional on E2(β\)
⋂
E3(β\)

⋂
E4, we have

|ζ(imax)
2 |, |ζ(max)

2 | .
√

log(mnp)

n− h
‖β\‖2;

|ζ(imax)
3 |, |ζ(max)

3 | . log(mnp)
√
h

n− h
‖β\‖2;

|ζ(imax)
4 |, |ζ(max)

4 | . σ
√
n log(mnp)

n− h
. (22)

Combining (20), (21), and (22) then yields the lower-bound for |β\imax|

|β\imax| & |ζ
(imax)
1 | ≥ |ζ(max)

1 | −
4∑
j=2

(
|ζ(imax)
j |+ |ζ(max)

j |
)

& |β\max| − c2

√
log(mnp)

n− h
‖β\‖2 −

c3 log(mnp)
√
h

n− h
‖β\‖2 −

c4σ
√
n log(mnp)

n− h
,

which concludes the proof as n & h.

Lemma 12. Conditional on the intersection of events E1
⋂
E2(β\)

⋂
E3(β\)

⋂
E4, we have

‖β̂ − β\‖∞ .
log(mnp)√

n
‖β\‖2 +

σ log(mnp)√
n

.

Proof. For an arbitrary index i, we consider the difference β̂i − β
\
i , which can be written as

β̂i − β
\
i =

1

n− h
∑

`=π\(i)

(
X2
`,i − 1

)
|β\i |︸ ︷︷ ︸

ζ1

+
1

n− h
∑

`=π\(`)

X`,i

〈
X`,:,β

\
\i

〉
︸ ︷︷ ︸

ζ2

+
1

n− h

n∑
`=n−h+1

X`,i

〈
Xπ\(`),:,β

\
〉

︸ ︷︷ ︸
ζ3

+
1

n− h

n∑
`=1

X>`,iW`,j︸ ︷︷ ︸
ζ4

.

Conditional on the intersection of events E1
⋂
E2(β\)

⋂
E3(β\)

⋂
E4, we can bound ϑi (1 ≤ i ≤ 4),

as

|ζ1| .
√

log(np)

n− h
|β\i |;

|ζ2| .
√

log(mnp)

n− h
‖β\\i‖2;

|ζ3| .
log(mnp)

√
h

n− h
‖β\‖2;

|ζ4| .
σ
√
n log(mnp)

n− h
,

respectively, and complete the proof as |ζ1|+ |ζ2| .
√

log(mnp)
n−h ‖β\‖2 and h ≤ n.

Lemma 13. Conditional on the intersection of events E1
⋂m
`=1 E2(B\

`,:)
⋂m
`=1 E3(B\

`,:)
⋂
E4, we

have

〈B̂(π\(i),j)
imax ,B\〉 ≥

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F

k
− mσ2 (logmnp)

2

n
−
√
mσ log(mnp)√

n

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F,

provided n� k(logmnp)2.
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Proof. First, we pick one arbitrary column β\ of B\. W.l.o.g. we assume that β\imax ≥ 0. Then we
obtain

β̂imax ≥ β
\
imax − ‖β̂

(π\(i),j)
− β\‖∞,

where β̂
(π\(i),j)

denotes the corresponding column in B̂(π\(i),j). Then we obtain the following lower
bound on β̂imaxβ

\
imax

β̂imaxβ
\
imax ≥ (β\imax)

2 − |β\imax|‖β̂
(π\(i),j)

− β\‖∞. (23)

Similarly, we can show (23) holds as well when β\imax < 0. Recalling the definition of β\max,
to put more specifically |β\max| ≥ |β

\
i | (1 ≤ i ≤ p), we can further lower bound β̂imaxβ

\
imax by

(β\imax)
2 − |β\max|‖β̂

(π\(i),j)
− β\‖∞.

For |β\imax|, we can lower bounded it by Lemma 11. While for ‖β̂
(π\(i),j)

− β\‖∞, we cannot
directly use Lemma 12 since, strictly speaking, it concerns X with rows Xπ\(i),:,Xj,: rather than
X̃π\(i),:, X̃j,: However since they follow the same distributions, we can follow the same procedure
and show

‖β̂
(π\(i),j)

− β\‖∞ .
log(mnp)√

n
‖β\‖2 +

σ log(mnp)√
n

.

Then we obtain

β̂imaxβ
\
imax &

(
|β\max| −

√
log(mnp)√

n
‖β\‖2 −

σ log(mnp)√
n

)2

− |β\max|
(

log(mnp)√
n

‖β\‖2 +
σ log(mnp)√

n

)
1©
& |β\max|2 − |β

\
max|

(
log(mnp)√

n
‖β\‖2 +

σ log(mnp)√
n

)
− log(mnp)

n

(
‖β\‖22 + σ2 · log(mnp)

)
,

where in 1© we use the relation (a− b)2 ≥ a2/2− b2. Under the assumption n ≥ k(logmnp)2, we
have |β\max| ≥ ‖β

\‖2/
√
k� log(mnp)‖β\‖2/(2·

√
n) and thus

|β\max|2 − |β
\
max| ·

log(mnp)√
n

‖β\‖2
2©
≥
(

1

k
− log(mnp)√

nk

)
‖β\‖22,

where in 2© we use the fact that x2 − 2ax is monotonically increasing in the region [a,∞); and the
equality is achieved when |β\max| = ‖β

\‖2/
√
k. Hence, we obtain

β̂imaxβ
\
imax &

(
1

k
− log(mnp)√

nk
− log(mnp)

n

)
‖β\‖22 −

σ log(mnp)√
n

‖β\‖2 −
σ2(logmnp)2

n
.

Having obtained the lower bound for one single column of B\, we complete the proof as

〈B̂(π\(i),j)
imax ,B\〉 =

∑
β\

β̂imaxβ
\
imax

3©
&

(
1

k
− log(mnp)√

nk
− log(mnp)

n

)
︸ ︷︷ ︸

� k−1 since n�k log2(mnp)

∣∣∣∣∣∣B\
∣∣∣∣∣∣2

F −
√
mσ log(mnp)√

n

∣∣∣∣∣∣B\
∣∣∣∣∣∣

F −
mσ2(logmnp)2

n

where 3© comes from a reorganization of the terms and the inequality
∑
β\ ‖β

\‖2 ≤
√
m
∣∣∣∣∣∣B\

∣∣∣∣∣∣
F.
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Lemma 14. We have P(E5) ≥ 1− 4n−cp−c − 2n−c
′

m−c
′

.

Proof. We begin the proof with the union bound

P
(
E5
)
≤ P

(
|xi| &

√
log np, ∃ 1 ≤ i ≤ p

)
︸ ︷︷ ︸

≤ 2np·n−cp−c=2n−c
′
p−c
′

+P
(
|〈x,β\〉| &

√
log np‖β\‖2

)
︸ ︷︷ ︸
≤ ≤2n·n−cp−c=2n−c

′
p−c
′′

+ P
(
|wi| & σ

√
log nm, 1 ≤ i ≤ m

)
︸ ︷︷ ︸

≤ 2mn·n−cm−c=2n−c
′
m−c

′

+ P
(
E5, ‖x‖∞ .

√
log np, |〈x,β\〉| .

√
log np‖β\‖2, ‖w‖∞ . σ

√
log nm

)
︸ ︷︷ ︸

,ϑ

,

where w(·) and w̃(·) denote the corresponding entries from W and W̃.

Then we would prove that ϑ is zero. The technical details are attached in the following. Due to the
fact that B̂

(i,j)
imax shares the same support set as B̂imax, we have

∥∥∥(B̂imax − B̂
(i,j)
imax

)>
x
∥∥∥2
2

=
∑
β\

[
ximax

(
β̂imax − β̂

\(i,j)
imax

)]2 1©
. (log np)

∑
β\

∥∥∥∥β̂imax − β̂
\(i,j)
imax

∥∥∥∥2
2

= (log np)
∑
β\

∥∥∥∥β̂imax − β̂
\(i,j)
imax

∥∥∥∥2
∞
,

where in 1© we condition on the relation ‖x‖∞ .
√

log np.

Regarding ‖β̂imax − β̂
\(i,j)
imax ‖∞, we have ‖β̂imax − β̂

\(i,j)
imax ‖∞ ≤ ‖β̂ − β̂

\(i,j)
‖∞. Again, this fact

relies heavily on the fact such that B̂
(i,j)
imax shares the same support set as B̂imax. Otherwise, the best

result we can have is ‖β̂imax − β̂
\(i,j)
imax ‖∞ ≤ max

(
‖β̂imax‖∞, ‖β̂

\(i,j)
imax ‖∞

)
. Afterwards, we obtain

‖β̂imax − β̂
\(π\(i),j)
imax ‖∞ ≤ (n− h)−1

∥∥∥(Xi,:X
>
i,: + Xj,:X

>
j,: − X̃i,:X̃

>
i,: − X̃j,:X̃

>
j,:

)
β\
∥∥∥
∞

+ (n− h)−1
∥∥∥Xπ\(i),:wπ\(i) + Xi,:wi − X̃π\(i),:w̃π\(i) − X̃i,:w̃i

∥∥∥
∞

. (n− h)−1‖x〈x,β\〉‖∞ + (n− h)−1‖xw‖∞

. (n− h)−1‖x‖∞|〈x,β
\〉|+ (n− h)−1‖x‖∞‖w‖∞

2©
. (n− h)−1(log np)‖β\‖2 + (n− h)−1σ

√
(log np)(logmn),

where in 2© we use the condition ‖x‖∞ .
√

log np, |〈x,β\〉| .
√

log np‖β\‖2, and ‖w‖∞ .
σ
√

log nm.

Iterating over all columns B\, we can show E5 holds with probability one provided ‖x‖∞ .
√

log np,
|〈x,β\〉| .

√
log np‖β\‖2, and ‖w‖∞ . σ

√
log nm, in other words, ϑ is zero.
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C ADDITIONAL NUMERICAL EXPERIMENTS WITH REAL-WORLD DATA

This subsection evaluates our algorithm on the MNIST dataset (LeCun et al., 1998). We first create
the sparse matrix B\ as a block-diagonal matrix diag

(
imagetrain

0 , imagetest
0 , imagetrain

1 , · · · imagetest
9

)
,

where imagetrain
i ∈ R28×28 (resp. imagetest

i ∈ R28×28) represents an arbitrary image of digit i (0 ≤
i ≤ 9) in the training (resp. test) set. Then, we create a Gaussian sensing matrix X and a noise matrix
W. Afterwards, we permute the sensing results and apply our algorithm in Algorithm 1 to reconstruct
the images. As the benchmark, we ignore the missing correspondence and directly estimate B\ with
Lasso estimator. In other words, we let Πopt in (3) be the identity matrix and use it to estimate the
images. An illustration of the reconstructed images is put in Figure 6.

!"#$%&'()*)+",-
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0&"(,1#

2&()3

Figure 6: We set the sample number n as 100 and the sensing noise variance σ2 as 1. (Top) The
ground-truth images. (Middle) The reconstructed images with our algorithm using both (2) and (3).
(Bottom) The reconstructed images only using (3), where Πopt is simply set as I.

D USEFUL FACTS

This section collects some useful facts about probability for the sake of self-containing.
Lemma 15 ((Dasgupta & Gupta, 2003)). For a χ2-random variable Z, which is with freedom `, we
conclude

P (Z ≤ t) ≤ exp

[
`

2

(
t

`
− t

`
+ 1

)]
, t < `;

P (Z ≥ t) ≤ exp

[
`

2

(
t

`
− t

`
+ 1

)]
, t > `.

Lemma 16 ((Pananjady et al., 2018)). Suppose the permutation matrix Π with Hamming distance h
from the identity matrix I, namely, dH(I,Π) = h. We can decompose the index set {i : i 6= π(i)} into
3 independent sets Ii (1 ≤ i ≤ 3) such that the cardinality of each set satisfies |Ii| ≥ bh/3c ≥ h/5.
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