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Abstract

We aim to understand the optimal PAC sample complexity in multiclass learning.
While finiteness of the Daniely-Shalev-Shwartz (DS) dimension has been shown
to characterize the PAC learnability of a concept class [Brukhim, Carmon, Dinur,
Moran, and Yehudayoff, 2022], there exist polylog factor gaps in the leading term of
the sample complexity. In this paper, we reduce the gap in terms of the dependence
on the error parameter to a single log factor and also propose two possible routes
towards completely resolving the optimal sample complexity, each based on a
key open question we formulate: one concerning list learning with bounded list
size, the other concerning a new type of shifting for multiclass concept classes.
We prove that a positive answer to either of the two questions would completely
resolve the optimal sample complexity up to log factors of the DS dimension.

1 Introduction

Multiclass learning refers to the problem of classifying an input feature from a set (feature space) X
to a label in a set (label space) Y with |Y| ą 2 (Y can be infinite) [Natarajan, 1989, Ben-David et al.,
1995, Daniely and Shalev-Shwartz, 2014, Brukhim et al., 2022]. When |Y| “ 2, the problem is known
as binary classification. Multiclass learning has wide applications to various tasks in machine learning
including image classification [Rawat and Wang, 2017], natural language processing [Kowsari et al.,
2019], tissue classification [Li et al., 2004], etc. For theoretical analysis of multiclass learning, a
probabilistic setting is typically assumed, where all the feature-label pairs in the training sequence are
assumed to be independent and identically distributed (iid) samples from some distribution P over
X ˆ Y . Then, the objective of the learner is to minimize the error rate of the output classifier under
the distribution P . A basic framework in the probabilistic setting is Probably Approximately Correct
(PAC) learning [Valiant, 1984]. Though the characterization of PAC learnability of a binary concept
class with the finiteness of its Vapnik-Chervonenkis (VC) dimension has been proved by Vapnik and
Chervonenkis [1968], the characterization of the multiclass PAC learnability remained open until
Brukhim et al. [2022] showed the equivalence between the PAC learnability of a concept class and
the finiteness of its Daniely-Shalev-Shwartz (DS) dimension (dim, see Definition 1.4) [Daniely and
Shalev-Shwartz, 2014] instead of Natarajan dimension or graph dimension.

However, the problem of establishing the optimal sample complexity or error rate (see Section 1.1 for
formal definitions) for multiclass learning remains unsolved. For binary concept classes, Hanneke
[2016] showed that the sample complexity is in Θppd ` logp1{δqq{εq where d is the VC dimension
of the concept class. Since DS dimension and VC dimension coincide for binary concept classes,
it is natural to ask if the sample complexity of a concept class H Ď YX for |Y| ą 2 is also in
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Θppd ` logp1{δqq{εq where d “ dimpHq is the DS dimension of H. In terms of the upper bound, it
asks if there exists a multiclass learner whose worst case error rate is in Oppd ` logp1{δqq{nq with
probability at least 1 ´ δ, where n denotes the size of the training sequence. However, on the one
hand, an explicit proof of the Ωppd ` logp1{δqq{εq lower bound on the sample complexity is still
missing in the literature. On the other hand, the current best upper bound on worst case error rate to
our knowledge is O

`

pd3{2 logpdq`d logplogpnqqq log2
pnq`logp1{δq

n

˘

[Brukhim et al., 2022], which differs
from the conjectured rate by the factor plogplogpnqq `

?
d logpdqq log2pnq.

In this paper, we step forward towards improved sample complexity and error rate in multiclass
learning. As the concept class is fixed and the sample size increases during an online learning
process, we mainly focus on improving the error rate in terms of the sample size n. Specifi-
cally, for a concept class H Ď YX with dimpHq “ d, we prove an Ωppd ` logp1{δqq{εq lower
bound on its sample complexity and construct a multiclass learner whose worst case error rate is
Oppd3{2 logpdq logpnq ` logp1{δqq{nq with probability at least 1 ´ δ, which implies that the sample

complexity of H is O
`d3{2 logpdq logpd{εq`logp1{δq

ε

˘

. Our results greatly narrow the gap between the
upper and lower bounds of the sample complexity and the error rate. The dependence of the upper
bound of the error rate on the sample size has also been improved from Oplogplogpnqq log2pnq{nq

to Oplogpnq{nq (treating d as a constant). The multiclass learner we construct builds upon a list
learner which predicts a list of labels for the test point (see Section 2.1 for a detailed introduction
to list learning). Actually, we prove a reduction from multiclass learning to list learning and upper
bound the error rate of the constructed multiclass learner with some function of the list size and the
expected error rate of the list learner (the probability of excluding the true label in the predicted list).
Moreover, the upper bound indicates that a list learner with size independent of n and expected error
rate scaling linearly in 1{n in terms of the sample size n would imply an Op1{nq error rate (treating
d as a constant). We leave the construction of such list learners an open question.

Furthermore, we also explore an alternative combinatorial approach towards improved sample
complexity in multiclass learning. For a concept class, we can define a hypergraph called the
one-inclusion graph [Haussler et al., 1994] on its projection to a finite sequence of features (see
Section 1.1 for definitions). Then, informally speaking, the “density” (defined through the average
degree of the one-inclusion graph) of a concept class can be used to upper bound the error rate of
multiclass learning [Daniely and Shalev-Shwartz, 2014, Aden-Ali et al., 2023]. Specifically, if we can
upper bound the density of any concept class H by a multiple of its DS dimension, then the sample
complexity is in OppdimpHq ` logp1{δqq{εq, which matches the lower bound we prove. Thus, a
proof of the above upper bound directly leads to a ΘppdimpHq ` logp1{δqq{εq sample complexity for
multiclass learning. When dimpHq “ 1, we successfully prove the Θplogp1{δq{εq sample complexity
in Theorem 3.2. For general concept classes, we develop a technique named “pivot shifting” similar
to the shifting operator [Haussler, 1995] on concept classes. We show that if a pivot shifting does
not increase the DS dimension of a concept class, then its density is upper bounded by twice the DS
dimension. We leave the impact of pivot shifting on DS dimension as another open question.

Throughout the paper, we use N to denote the set of positive integers. For any n P N, we define rns :“
t1, . . . , nu. For any sets X , Y , sequence x “ px1, . . . , xnq P Xn, and function f P YX , we define
the subsequence x´i :“ px1, . . . , xi´1, xi`1, . . . , xnq for i P rns and f |x :“ pfpx1q, . . . , fpxnqq.
The projection of a set F Ď YX to x is defined as F |x :“ tf |x : f P F u Ď Yn.

Outline In Section 1.1, we introduce the problem of multiclass learning and review some existing
results. In Section 1.2, we summarize the key points of our theoretical results. In Section 2, we
introduce list learning, present the reduction from multiclass learning to list learning, and improve
the sample complexity upper bound of multiclass learning via this reduction together with a boosting
technique for list learners. In Section 3, we prove the optimal sample complexity for classes of
DS dimension 1, introduce the intuition and the definition of “pivot shifting”, and demonstrate its
potential application to the proof of the optimal sample complexity of multiclass learning.

1.1 Multiclass learning

In this section, we formally introduce the problem of multiclass learning [Valiant, 1984]. For any
distribution P over X ˆ Y , the error rate of a classifier h P YX under P is defined as

erP phq :“ P ptpx, yq P X ˆ Y : y ‰ hpxquq.
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In this paper, we focus on realizable distributions: for a concept class H Ď YX , a distribution P over
X ˆY is H-realizable if infhPH erP phq “ 0. Let REpHq denote the set of H-realizable distributions.
Besides, ppxi, yiqqni“1 P pX ˆ Yqn is H-realizable if Dh P H such that yi “ hpxiq, @i P rns.
Definition 1.1 (Multiclass learner). A multiclass learner (or a learner) A is an algorithm which given
a sequence s P Y8

n“0pX ˆ Yqn and a concept class H Ď YX , outputs a classifier Aps,Hq P YX .

Then, we can define multiclass PAC learning as follows.
Definition 1.2 (Multiclass PAC learning). For any concept class H Ď YX , the (PAC) sample
complexity MA,H : p0, 1q2 Ñ N of a multiclass learner A is a mapping from pε, δq P p0, 1q2 to
the smallest positive integer such that for any m ě MA,Hpε, δq and any distribution P P REpHq,
PS„PnperP pApS,Hqq ą εq ď δ, and we define MA,Hpε, δq “ 8 if no such integer exists. We say
H is PAC learnable by A if MA,Hpε, δq ă 8 for all pε, δq P p0, 1q2. The (PAC) sample complexity
of H is defined as MHpε, δq :“ infA MA,Hpε, δq for any pε, δq P p0, 1q2.

Sometimes it is easier to analyze the expected error rate

εA,H,P : N Ñ r0, 1s, n ÞÑ ES„PnrerP pApS,Hqqs “ PpS,pX,Y qq„Pn`1pY ‰ ApS,HqpXqq

for a learner A and distribution P over X ˆ Y , or transductive error rate

εA,H,trans : N Ñ r0, 1s, n ÞÑ sup
s“ppx1,hpx1qq,...,pxn,hpxnqqqPpXˆYqn:hPH

1
n

řn
i“1 1hpxiq‰Aps´i,Hqpxiq.

We further define εA,H :“ supPPREpHq εA,H,P , εH :“ infA εA,H, and εH,trans :“ infA εA,H,trans.
By a leave-one-out argument [Brukhim et al., 2022, Fact 14], we observe that εA,H ď εA,H,trans.
Aden-Ali et al. [2023, Theorem 2.1] upper bounded the high probability error rate using the trans-
ductive error rate, which leads to a guarantee on PAC sample complexity. Based on their result, we
prove the same upper bound up to a multiplicative constant on the high probability error rate using
the expected error rate in Theorem 2.6.

Next, we define pseudo-cubes and DS dimensions of concept classes. Here, we also present their
extensions to the setting of k-list learning for future reference in Section 2.1.
Definition 1.3 (Pseudo-cube and k-pseudo-cube). For any d, k P N, a class H Ď Yd is called a
k-pseudo-cube of dimension d if it is non-empty, finite, and for every h P H and i P rds, there exist
at least k i-neighbors of h in H , where g is an i-neighbor of h if gpiq ‰ hpiq and gpjq “ hpjq for all
j P rdsztiu. A pseudo-cube of dimension d is a 1-pseudo-cube of dimension d.
Definition 1.4 (DS dimension and k-DS dimension, Charikar and Pabbaraju 2023). For any d, k P N,
we say x P X d is k-DS shattered by H Ď YX if H|x contains a d-dimensional k-pseudo-cube. The
k-DS dimension dimkpHq of H is the maximum size of a k-DS shattered sequence. We say x is DS
shattered by H if it is 1-DS shattered by H. The DS dimension dimpHq of H is defined as dim1pHq.

Now, we introduce some existing results in multiclass learning. Brukhim et al. [2022] proved that
a class H Ď YX is PAC learnable if and only if d :“ dimpHq ă 8, and there exists a multiclass
learner A which for any P P REpHq, δ P p0, 1q, n P N, and S „ Pn, satisfies that with probability
at least 1 ´ δ,

erP pApS,Hqq “ O
´

pd3{2 logpdq`d logplogpnqqq log2
pnq`logp1{δq

n

¯

, (1)

which is also the best upper bound before this paper to our knowledge. In terms of lower bound, it
follows from Charikar and Pabbaraju [2023, Theorem 6] that εHpnq “ Ω pd{nq. Thus, the current
upper and lower bounds of the expected error rate does not match. Moreover, a potentially sharp
lower bound on the sample complexity MH is still missing.

The learner A in Brukhim et al. [2022] relies on orienting the one-inclusion graphs defined below as
a building block.
Definition 1.5 (One-inclusion graph, Haussler et al. 1994). The one-inclusion graph (OIG) of
H Ď Yn for n P N is a hypergraph GpHq “ pH,Eq where H is the vertex-set and E denotes the
edge-set defined as follows. For any i P rns and f : rnsztiu Ñ Y , we define the set ei,f :“ th P H :
hpjq “ fpjq, @j P rnsztiuu. Then, the edge-set is defined as

E :“ tpei,f , iq : i P rns, f : rnsztiu Ñ Y, ei,f ‰ Hu.

For any pei,f , iq P E and h P H , we say h P pei,f , iq if h P ei,f and the size of the edge is
|pei,f , iq| :“ |ei,f |.
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Typically, we consider the one-inclusion graph of the projection of a concept class H Ď YX to a
sequence x P Xn with n P N, i.e., GpH|xq. The “density” of H discussed in Section 3 is defined via
the “maximal average degree” (defined below) of the hypergraph GpH|xq.
Definition 1.6 (Degree and average degree). For any hypergraph G “ pV,Eq and v P V , we define
the degree of v in G to be degpv;Gq :“ |te P E : v P e, |e| ě 2u|. When the underlying graph is
clear in the context, we simply write degpvq in abbreviation. If |V | ă 8, we can define the average
degree and average out-degree of G to be

avgdegpGq :“ 1
|V |

ř

vPV degpv;Gq “ 1
|V |

ř

ePE:|e|ě2 |e| and avgoutdegpGq :“ 1
|V |

ř

ePEp|e| ´ 1q.

For general V , we can define the maximal average degree of G to be mdpGq :“
supUĎV :|U |ă8 avgdegpGrU sq, where GrU s “ pU,ErU sq denotes the induced hypergraph of G
on U Ď V with ErU s :“ te X U : e P E, e X U ‰ Hu.

Note that for finite graphs, the average out-degree does not depend on the choice of orientation on G.
Moreover, since |e| ě 2 for all e P En, we have

avgdegpGq “ 1
|V |

ř

ePE:|e|ě2 |e| ď 1
|V |

ř

ePE 2p|e| ´ 1q “ 2avgoutdegpGq. (2)

Now, we can define the density of a concept class as follows.
Definition 1.7. The density of H Ď YX is defined as µHpmq :“ supxPXm mdpGpH|xqq, @m P N.

1.2 Main results

In this section, we summarize the key points of our theoretical results. The full versions of some
results are stated in Section 2 and 3. We first need the following definition to rule out trivial concept
classes for which one training point suffices to achieve zero error rate under any realizable distribution.
Definition 1.8 (Nondegenerate concept class, Hanneke et al. 2023). A concept class H P YX is
called nondegenerate if there exist h1, h2 P H and x0, x1 P X such that h1px0q “ h2px0q and
h1px1q ‰ h2px1q. H is called degenerate if it is not nondegenerate.

Our main result on the multiclass PAC sample complexity is as follows.
Theorem 1.9 (Partial summary of Theorem 2.5 and 2.11). For any nondegenerate concept class
H Ď YX with dimpHq “ d and any pε, δq P p0, 1q2, we have

Ωppd ` logp1{δqq{εq ď MHpε, δq ď Oppd3{2 logpdq logpd{εq ` logp1{δqq{εq. (3)

Our upper bound follows from a reduction to list learning and an improved sample complexity for
list learning summarized below.
Theorem 1.10 (Informal summary of Theorem 2.7 and 2.10). Assume that there exists a list learner
which given a concept class H with dimpHq “ d and training sequence of size n P N outputs a menu
of size ppH, nq with expected error rate upper bounded by βpH, nq{n for some functions p and β
nondecreasing in n. Then, there exists a multiclass learner whose error rate is

OppβpH, nq ` d logpppH, nqq ` logp1{δqq{nq with probability at least 1 ´ δ.

Moreover, there exists a list learner satisfying ppH, nq “ O
`

pe
?
dq

?
d logpnq

˘

and βpH, nq “

O
`

d3{2 logpdq logpnq
˘

.

We refer readers to Section 2.1 for detailed definitions regarding list learning. Note that if ppH, nq

and βpH, nq of some list learner is independent of n, there exists a multiclass learner with error rate
linear in 1{n. We leave the establishment of such list learners as Open Question 1.

In addition to the above approach, we propose an alternative route toward obtaining the conjectured
Θppd ` logp1{δqq{εq sample complexity, by directly bounding the average degrees of one-inclusion
graphs. In particular, we show in Theorem 3.2 that any H with dimpHq “ 1 has MHpε, δq “

Θplogp1{δq{εq, which was not previously known. Moreover, we approach the general case via a new
technique we call “pivot shifting”. Specifically, we obtain the following result, which relies on an
assumption on such pivot shifting. The verification of this assumption is left as Open Question 2.
Proposition 1.11 (Informal summary of the results in Section 3). Assume that for any finite concept
class, there exists a pivot shifting such that the DS dimension of the concept class does not increase
after the pivot shifting, then we have MHpε, δq “ Θ ppdimpHq ` logp1{δqq{εq for any H Ď YX .
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2 Multiclass learning via list learning

In this section, we prove a reduction from multiclass learning to list learning in Section 2.2. We
improve the existing list learners using boosting in Section 2.3. Then, using a boosted list learner and
the reduction, we improve the multiclass learning sample complexity upper bound in Section 2.4. We
first present some definitions and results of list learning in Section 2.1.

2.1 List learning

In list learning, the menus defined below serve as classifiers in multiclass learning.
Definition 2.1 (k-menu, Brukhim et al. 2022). A menu of size k P N is a function µ : X Ñ tY Ď

Y : |Y| ď ku. A 1-menu can be viewed as a classifier in YX , and vice versa.

For any distribution P over X ˆ Y , the error rate of a k-menu µ under P is defined as erP pµq :“
P ptpx, yq P X ˆ Y : y R µpxquq which agrees with the definition of the error rate of classifiers when
the size of the menu is 1.
Definition 2.2 (k-list learner). A list learner A of size k P N is an algorithm which given a sequence
s P Y8

n“0pX ˆ Yqn and a concept class H Ď YX , outputs a k-menu Aps,Hq. A 1-list learner can
be viewed as a multiclass learner, and vice versa.

Similar to multiclass learners, the expected error rate of a list learner A is defined as

εA,H,P : N Ñ r0, 1s, n ÞÑ ES„PnrerP pApS,Hqqs “ PpS,pX,Y qq„Pn`1pY R ApS,HqpXqq

for any concept class H P YX and distribution P over X ˆ Y . Restricting to realizable distributions,
we can define

εA,H :“ sup
PPREpHq

εA,H,P and εkH :“ inf
k-list learners A

εA,H.

Next, we define list PAC learning.
Definition 2.3 (List PAC learning, Charikar and Pabbaraju 2023). For any concept class H Ď YX

and k P N, the (PAC) sample complexity MA,H : p0, 1q2 Ñ N of a k-list learner A is a mapping
from pε, δq P p0, 1q2 to the smallest positive integer such that for every m ě MA,Hpε, δq and every
distribution P P REpHq, PS„PnperP pApS,Hqq ą εq ď δ, and we define MA,Hpε, δq “ 8 if no
such integer exists. We say H is k-list PAC learnable by A if MA,Hpε, δq ă 8 for all pε, δq P p0, 1q2.
The k-list (PAC) sample complexity of H is defined as Mk

Hpε, δq :“ infk-list learner A MA,Hpε, δq for
any pε, δq P p0, 1q2.

Note that H is PAC learnable by a learner A if and only if H is 1-list learnable by A, and the PAC
sample complexity of H is MH “ M1

H. For list PAC learning, it was proved by Charikar and
Pabbaraju [2023] that a concept class H is k-list learnabale if and only if dk :“ dimkpHq ă 8, and
there exists a k-list learner Ak which for any P P REpHq, δ P p0, 1q, n P N, and S „ Pn, satisfies
that with probability at least 1 ´ δ,

erP pAkpS,Hqq “ O
´

k6dkp
?
dk logpdkq`logpk logpnqqq log2

pnq`logp1{δq

n

¯

. (4)

For the expected error rate, the lower bound εkHpnq “ Ω pdk{pknqq has been proved in Charikar and
Pabbaraju [2023, Theorem 6]. However, a lower bound of the same order on the k-list PAC sample
complexity is still missing in the literature. To establish a lower bound, we also need to rule out trivial
classes in list learning. In analogy to Definition 1.8, we define k-nondegeneracy as follows.
Definition 2.4 (k-nondegenerate concept class). A concept class H P YX is called k-nondegenerate
for k P N if there exist h1, . . . , hk`1 P H and x0, x1 P X such that |thjpx0q : j P rk ` 1su| “ 1 and
|thjpx1q : j P rk ` 1su| “ k ` 1. H is called k-degenerate if it is not k-nondegenerate.

We claim that only one training point is sufficient for the k-list learning of a k-degenerate concept
class H. Indeed, H is k-list learnable if |H| ď k. Now, suppose that |H| ě k ` 1 and is k-degenerate.
Upon observing any point px1, y1q P X ˆ Y realizable by H, if |th P H : hpx1q “ y1u| ď k, then
x ÞÑ thpxq : h P H, hpx1q “ y1u is a k-menu which always contains the correct label. If |th P H :
hpx1q “ y1u| ě k ` 1, then, for any x P X ztx1u, we must have |thpxq : h P H, hpx1q “ y1u| ď k
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because otherwise H is k-nondegenerate. Then, x ÞÑ thpxq : h P H, hpx1q “ y1u is a k-list which
always contains the correct label.

Now, we are ready to present the following lower bound on the k-list PAC sample complexity.
Theorem 2.5. For any k P N, k-nondegenerate concept class H Ď YX with dimkpHq “ dk P N,

ε P

´

0, 1
8pk`1q

¯

, and δ P

´

0, 1
4pk`1q

¯

, we have Mk
Hpε, δq ě

pdk´1q logp2q`4 logp1{δq

16pk`1qε . In particular,

when k “ 1, for any ε P p0, 1{16q and δ P p0, 1{8q, we have

MHpε, δq ě
pdimpHq´1q logp2q`4 logp1{δq

32ε . (5)

The proof of Theorem 2.5 is presented in Appendix A where we construct hard distributions based on
properties of k-pseudo-cubes.

2.2 Reduction from multiclass learning to list learning

We first introduce the theorem that provides a guarantee on PAC sample complexity based on expected
error rate, which will be used frequently in our analysis.
Theorem 2.6. Fix a concept class H Ď YX and consider a learner A which satisfies εA,H,P pnq ď

Mn{n for any n P N and P P REpHq with Mn nondecreasing in the sample size n. Then, there
exists a learner A1 such that for any P P REpHq, δ P p0, 1q, n ě 4, and the training sequence
S „ Pn, with probability at least 1 ´ δ, we have

erP pA1pS,Hqq ď 4.82 ¨ p8.34Mtn{2u ` logp2{δqq{n.

The proof of Theorem 2.6 is provided in Appendix B. Now, we consider general list learners whose
sizes may depend on the sample size. The theorem below states our reduction to list learning.
Theorem 2.7. Assume that there exists a list learner Alist which for any H Ď YX , D P REpHq,
n P N, and S „ Dn, outputs a menu AlistpS,Hq of size ppH, nq satisfying εAlist,H,D ď βpH, nq{n

for some function β : 2YX
ˆ N Ñ r0,8q. Without loss of generality, we assume that ppH, nq and

βpH, nq are nondecreasing in n. Then, there exist multiclass learners Ared (see Algorithm 1) and
A1

red which for any concept class H of DS dimension d, D P REpHq, δ P p0, 1q, and n ě 4, satisfy
εAred,H,Dpnq “ O ppβpH, n1q ` d log ppH, n1qq{nq

where n1 :“ n ´ 2tn{3u, and for S „ Dn, with probability at least 1 ´ δ,
erDpA1

redpS,Hqq “ O ppβpH, n1q ` d log ppH, n1q ` logp1{δqq{nq . (6)

The proof of Theorem 2.7 is presented in Appendix C. Note that the order of the error rate upper
bound of the constructed multiclass learner is not smaller than that of the original list learner in the
above theorem. Thus, the list learner Ak of size k P N developed in Charikar and Pabbaraju [2023]
cannot lead to an improved error rate of multiclass learning using our current result. The construction
of Ared from Alist is shown in Algorithm 1.

Algorithm 1: Multiclass learner Ared using a list learner Alist

Input: List learner Alist, concept class H Ď YX , training sequence
S “ ppx1, y1q, . . . , pxn, ynqq P pX ˆ Yqn for n ě 3, test feature xn`1 P X .

Output: A label y P Y for the feature xn`1.
1 n1 Ð n ´ 2tn{3u, n2 Ð tn{3u;
2 S1 Ð ppxi, yiqqiPrn1s, S2 Ð ppxi, yiqqni“n1`1, x1 Ð pxn1`1, . . . , xn, xn`1q;
3 pµ Ð AlistpS

1,Hq, N Ð
ř

px,yqPS2 1yRpµpxq;
4 Hx1 Ð th|x1 : h P H, |ti P rn ` 1szrn1s : hpxiq R pµpxiqu| ď N ` 1u;
5 Sample pI1, . . . , In2q „ Unifpr2n2sqn2 ;
6 ph Ð AGpT,Hx1 q where T Ð ppIj , yIj`n1

qqjPrn2s;
7 return the label php2n2 ` 1q.

In step 6 of Algorithm 1, AG is a multiclass learner defined in Proposition H.5 in the appendix.
Moreover, we prove in Proposition H.5 that for any D P REpHq, n P N, δ P p0, 1q, and S „ Dn,
with probability at least 1 ´ δ, we have

erDpAGpS,Hqq “ O ppdimGpHq ` logp1{δqq {nq
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where dimGpHq is the graph dimension [Natarajan and Tadepalli, 1988] of H (see Definition H.1 in
the appendix). The above bound for classes of finite graph dimensions is also novel in the literature.

We briefly comment on the analysis of Algorithm 1. We first apply the list learner to the first third of
the training samples to obtain the menu pµ. Then, we count the number of errors (N ) made by pµ in
the last two thirds samples. Then, we consider Hx1 which is a subset of H|x1 such that the number
of errors on x1 is bounded by N ` 1. We show in Lemma H.9 that dimGpHx1 q is well controlled.
However, as we do not observe the label of the test point, we can only consider resampling from
elements in S2 as the new training sequence fed to AG together with the concept class Hx1 . Thus,
there still exist great challenges of upper bounding the error probability for the test point that will
never be sampled. We need to emphasize that the standard leave-one-out argument [Brukhim et al.,
2022, Fact 14] cannot be directly applied as the definition of N that determines Hx1 only depends on
S2 but not the test point pXn`1, Yn`1q. We tackle this challenge by proving that some permutation
of the error event together with the constraint on correctness of pµ on the last two points in x1 when
leaving the last element (i.e., the test point) out is a subset of the error event when leaving the previous
element (i.e., the point in S2) out. The details of the proof is presented in Appendix C.

2.3 Sampled boosting of list learners

We now build a list learner whose invocation to Theorem 2.7 yields the upper bound in Theorem
1.9. Brukhim et al. [2022, Lemma 39] proposed a list sample compression scheme of size r “

Opd3{2 logpnqq for concept classes of DS dimension d and sample size n. One can show that its error
rate is O ppr logpn{rq ` logp1{δqq{nq using standard techniques for sample compression schemes
[David et al., 2016], which however brings the extra log factor logpn{rq. Recently, da Cunha
et al. [2024] proposed stable randomized sample compression schemes for binary classification
whose generalization does not induce the extra log factor in n and used this framework to analyze a
subsampling-based boosting algorithm for weak learners. Motivated by its success, we extend their
boosting algorithm [da Cunha et al., 2024, Algorithm 1] for multilclass list learners in Algorithm
2. Before presenting the algorithm, we first need to define the majority vote of menus. For K P N
menus µ1, . . . , µK each of size p, we define their majority vote to be µ “ Majpµ1, . . . , µkq with

µpxq “ Majpµ1, . . . , µkqpxq :“ ty P Y : |tk P rKs : y P µkpxqu| ą K{2u , @x P X .

Note that µ has size 2p ´ 1. For p “ 1, the above definition recovers the majority vote of classifiers.

Algorithm 2: Sampled boosting Aboost of a list learner Alist

Input: List learner Alist, concept class H Ď YX , training sequence
S “ tpx1, y1q, . . . , pxn, ynqu P pX ˆ Yqn, γ P p0, 1{2q, ν P p0, γ{18s, δ P p0, 1q.

Output: Menu µ.
1 for i “ 1, . . . , n do
2 D1ptpxi, yiquq Ð 1{n;

3 α Ð 1
2 log pp1 ` γq{p1 ´ γqq, m Ð MAlist,Hp1{2 ´ γ, νq, K Ð r4 logpn{δq{γs;

4 for k “ 1, . . . ,K do
5 Draw m samples Sk „ Dm

k ;
6 µk Ð AlistpS

k,Hq;
7 for i “ 1, . . . , n do
8 Dk`1ptpxi, yiquq Ð Dkptpxi, yiquq exp

`

´α
`

21yiPµkpxiq ´ 1
˘˘

;

9 Dk`1 Ð Dk`1{
`
řn

i“1 Dkptpxi, yiquq exp
`

´α
`

21yiPµkpxiq ´ 1
˘˘˘

;

10 return µ Ð Maj
`

pµkqkPrKs

˘

.

Here, γ and ν are fixed constants, enabling us to invoke weak list learners (of constant error and
confidence levels) to Algorithm 2. Next, we upper bound the error rate of the boosted list learner.

Theorem 2.8. Assume that Alist is a list learner with MAlist,Hp1{2 ´ γ, νq ă 8 for some γ P

p0, 1{2q and ν P p0, γ{18s. Then, for any D P REpHq, n P N, and δ ą 0, sampling S „ Dn, with
probability at least 1 ´ δ, the menu µ produced by Aboost using Alist in Algorithm 2 satisfies that

erDpµq “ O
´

MAlist,Hp1{2´γ,νq logpn{δq

γn

¯

.
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The proof of Theorem 2.8 is a generalization of the proof of da Cunha et al. [2024, Theorem 1.1] and
is presented in Appendix D together with the proofs of other results in this section. Since multiclass
learners are list learners of size 1, we can also boost multiclass learners using Algorithm 2. For
instance, invoking the multiclass learner in Brukhim et al. [2022, Theorem 1] to Algorithm 2 and
applying Theorem 2.6, we achieve the following sample complexity in multiclass learning.

Corollary 2.9. There exists a multiclass learner A with εA,Hpnq “ O
`d3{2 log2

pdq logpnq

n

˘

and

MA,Hpε, δq “ O
`d3{2 log2

pdq logpd{εq`logp1{δq

ε

˘

for any n P N, pε, δq P p0, 1q2, and H Ď YX with
dimpHq “ d.

There is an extra logpdq factor in the above upper bound compared to that in Theorem 1.9, which
explains the reason of routing through list learning with our reduction in Theorem 2.7: the list
sample compression scheme in Brukhim et al. [2022] saves a logpdq factor compared to their
sample compression scheme. Therefore, we invoke their list sample compression scheme as Alist to
Algorithm 2 and build a list learner whose error rate depends on only one log factor in both n and d.
Theorem 2.10. There exists a list learner AL which for any H Ď YX with dimpHq “ d and sample

size n P N outputs a menu of size O
`

pe
?
dq

?
d logpnq

˘

with εAL,Hpnq “ O
`d3{2 logpdq logpnq

n

˘

.

2.4 Improved upper bounds on sample complexity

Applying the list learner AL in Theorem 2.10 to our reduction, Theorem 2.7 immediately implies the
following result.
Theorem 2.11. There exists a multiclass learner Amulti such that for any H Ď YX of DS dimension
d, D P REpHq, δ P p0, 1q, n ě d ` 1, and S „ Dn, with probability at least 1 ´ δ, we have

erDpAmultipS,Hqq “ O
´

d3{2 logpdq logpnq`logp1{δq

n

¯

, (7)

which implies that

MAmulti,Hpε, δq “ O
´

d3{2 logpdq logpd{εq`logp1{δq

ε

¯

, @ε, δ P p0, 1q. (8)

Furthermore, if there exists a list learner Agoodlist of size f1pdq and expected error rate
εAgoodlist,Hpnq ď f2pdq{n for some functions f1 : N Ñ N and f2 : N Ñ r0,8q, then, there
exists a multiclass learner Alin such that

MAlin,Hpε, δq “ O ppd logpf1pdqq ` f2pdq ` logp1{δqq{εq , @ε, δ P p0, 1q. (9)

The proof of Theorem 2.11 follows directly from Theorem 2.7 and Theorem 2.10 and is provided
in Appendix E. Moreover, observing that dimkpHq ě dimk1 pHq for k ă k1, our requirement on
Agoodlist does not violate the lower bound in Charikar and Pabbaraju [2023, Theorem 6].

Compared to the upper bound (1) by Brukhim et al. [2022], (7) improves the dependence of the
error rate on the sample size n from O

`

logplogpnqq log2pnq{n
˘

to O plogpnq{nq, which steps further
towards the goal of Op1{nq expected error rate (treating the DS dimension as a constant). Combining
(5) and (8), we arrive at (3) where the gap has been improved to the factor

?
d logpdq logpd{εq.

However, we are not aware of any existing list learner satisfying the requirements of Agoodlist in
Theorem 2.11. Thus, we leave the construction of Agoodlist as an open question.

Open Question 1. Does there exist a list learner such that given a concept class H Ď YX , its
size is f1pdimpHqq and its expected error rate is εAlist,Hpnq “ f2pdimpHqq{n for some functions
f1 : N Ñ N and f2 : N Ñ r0,8q?

Ideally, we would expect a list learner with size OpdimpHqq and expected error rate OpdimpHq{nq

as it immediately implies an upper bound MHpε, δq “ OppdimpHq logpdimpHqq ` logp1{δqq{εq

which matches the lower bound in (5) up to the factor logpdimpHqq.

3 Density, DS dimension, and pivot shifting

We now introduce an alternative route toward proving the optimal sample complexity of multiclass
PAC learning: bounding the density µH : N Ñ r0,8q (Definition 1.7) of concept classes H. The
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following proposition summarizes existing results that illustrate the role of density in multiclass
learning.
Proposition 3.1 (Daniely and Shalev-Shwartz 2014, Charikar and Pabbaraju 2023, Aden-Ali et al.
2023). For any H Ď YX and n P N, we have

µHpnq{p2enq ď εH ď εH,trans ď µHpnq{n. (10)

Assume that µHpnq ď fpdimpHqq for some function f : N Ñ r0,8q and all n P N. Then, there
exists a learner A based on orienting the one-clusion graph (Definition 1.5) of the projected concept
class (see Aden-Ali et al. [2023, Appendix A] for the formal definition of the algorithm) with sample
complexity MA,Hpε, δq “ O

` fpdimpHqq`logp1{δq

ε

˘

for all ε, δ P p0, 1q.1

In Proposition 3.1, the first inequality of (10) follows from Charikar and Pabbaraju [2023, Theorem
6], the last inequality of (10) follows from Daniely and Shalev-Shwartz [2014, Theorem 2], and
the last paragraph follows from Aden-Ali et al. [2023, Theorem 2.2]. Thus, for sharper multiclass
sample complexity, it suffices to bound the density of a concept class with some functions of its
DS dimension. Furthermore, by Definition 1.7 and (2), it suffices to bound the average out-degree
(Definition 1.6) of finite one-inclusion graphs. In fact, it has been conjectured that µHpnq ď c¨dimpHq

for some constant c ą 0 [Daniely and Shalev-Shwartz, 2014] and the question remained open since
then. A positive resolution of this conjecture would immediately imply that the MHpε, δq “

Θ ppdimpHq ` logp1{δqq{nq by Proposition 3.1 and Theorem 2.5. It is worth mentioning that for
H Ď t0, 1uX , Haussler et al. [1994] proved that µH ď 2dimpHq (for binary classes, the DS dimension
is the VC dimension), which also motivates the above conjecture. In this paper, we confirm the above
conjecture for concept classes of DS dimension 1.
Theorem 3.2. For any H Ď YX with dimpHq “ 1, we have µHpnq ď 2, @n P N. Thus, MHpε, δq “

Θ plogp1{δq{εq for any positive ε, δ P Op1q and any H with dimpHq “ 1.

The above theorem follows from the following fact we prove for one-inclusion graphs of DS dimension
1 concept classes. The proofs of Theorem 3.2 and Proposition 3.3 are presented in Appendix F.
Proposition 3.3. For any n P N and Vn Ď Yn with |Vn| ă 8 and dimpVnq “ 1, there exists no
cycle (see Definition 3.4) in the one-inclusion graph GpVnq (see Definition 1.5).

Definition 3.4 (Cycle in finite hypergraph). A cycle of length m P Nzt1u in a finite hyergraph
G “ pV,Eq consists of pairwise different vertices v0, . . . , vm´1 P V and pairwise different edges
e0, . . . , em´1 P E such that vj , vpj`1q mod m P ej for all 0 ď j ď m ´ 1.

We prove Proposition 3.3 by contradiction and analyzing different cases of the cycle. However, it is
hard to extend such result to classes of higher DS dimensions. For general concept classes, motivated
by the proof for binary classes [Haussler et al., 1994, Lemma 2.4], we also consider proving by
induction on the size of the sequence the class projects to. Though the analysis for binary classes
does not apply to general concept classes, we discover that the analysis in the induction step proceeds
seamlessly for some special concept classes where a common label which we call a “pivot” exists for
each edge in the last dimension of size greater than 1 in its one-inclusion graph. Before summarizing
this result in Lemma 3.6 below, we first introduce the definition of a “pivot” formally.
Definition 3.5 (Pivot of finite concept class). For any n P Nzt1u and Vn Ď Yn, we define

PpVnq :“ YyPY Yy1PYztyu

␣

py1, . . . , yn´1q P Yn´1 : py1, . . . , yn´1, yq, py1, . . . , yn´1, y
1q P Vn

(

.

Then, a P Y is said to be a pivot of Vn if py1, . . . , yn´1, aq P Vn for any py1, . . . , yn´1q P PpVnq.
We emphasize that when PpVnq “ H, every a P Y is a pivot of Vn.

Then, we can present Lemma 3.6 whose proof is provided in Appendix G.
Lemma 3.6. Assume that for some n P Nzt1u, any d P N, any m P rn ´ 1s, and any H Ď Ym with
dimpHq ď d and |H| ă 8, we have avgoutdegpGpHqq ď d. Consider an arbitrary set Vn Ď Yn

such that |Vn| ă 8 and dimpVnq ď d. If Vn has a pivot, then we have avgoutdegpGpVnqq ď d.

1In Aden-Ali et al. [2023, Section 2.4], the label space considered is finite. However, extending the
compactness argument in Brukhim et al. [2022, Appendix B], we can prove that there exists an orientation of the
hypergraph with its maximum out-degree upper bounded by the ceiling of the density even when the graph is
infinite, which implies that the above sample complexity of the learner A still holds for infinite label spaces.
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Though it only works for special classes, Lemma 3.6 can serve as a building block in the induction
step for the proof of avgoutdegpGpHqq ď dimpHq for finite H Ď YnPNYn. Moreover, the base
case n “ d ` 1 has been verified in Brukhim et al. [2022, Lemma 13]. Consequently, it suffices
to extend the induction step for concept classes without a pivot. With Lemma 3.6, it is natural to
consider modifying the concept class to create a pivot for it while at the same time preserving the
DS dimension of the modified class nonincreasing. The technique used here is similar to shifting
[Haussler, 1995, Brukhim et al., 2022], though we do not shift the whole edge “downwards” but only
shift the last label in some vertex of the edge to a candidate pivot. The difference is necessary, as
it has already been shown that the DS dimension of a concept class can increase after the standard
shifting [Brukhim et al., 2022, Example 19]. Thus, we name the technique used here “pivot shifting”.
Definition 3.7 (Pivot shifting). For any n P Nzt1u, a P Y , and Vn Ď Yn with |Vn| ă 8, we define

PapVnq :“ YyPY
␣

py1, . . . , yn´1q P Yn´1 : py1, . . . , yn´1, yq P Vn, py1, . . . , yn´1, aq R Vn

(

.

For any y “ py1, . . . , yn´1q P PapVnq and the edge pen,y, nq in GpVnq, we define the set

Ly :“ ty P Y : py1, . . . , yn´1, yq P pen,y, nqu.

A mapping γ : PapVnq Ñ Y is called a pivot shifting on Vn to a if γpyq P Ly for all y P PapVnq.
Let Γa,Vn

denote the set of all pivot shifting on Vn to a. For any γ P Γa,Vn
, we define

V γ
n :“ pVnz tpy, γpyqq : y P PapVnquq Y tpy, aq : y P PapVnqu ;

i.e., Vn,γ is obtained by replacing the label γpyq in py, γpyqq with a for all y P PapVnq.

We prove that the average out-degree does not decrease after pivot shiftings in the following lemma.
Lemma 3.8. For any a P Y , V Ď Y8

n“2Yn with |V | ă 8, and γ P Γa,V , we have

avgoutdegpGpV γqq ě avgoutdegpGpV qq.

The proof is presented in Appendix G. A key observation for the proof is that by definition, only
edges of sizes greater than one contribute to the average out-degree. However, we are not able to
show that the DS dimension does not increase after some pivot shifting, which we leave as an open
question. Thus, whether pivot shifting is applicable to upper bounding density with DS dimension
remains open.
Open Question 2. For any d P N and any V Ď Y8

n“d`2Yn with |V | ă 8 and dimpV q “ d, are
there some a P Y and γ P Γa,V such that dimpV γq ď d?

Nevertheless, we have taken a further and specific step toward the verification of the conjecture
that µH ď 2dimpHq: a positive resolution of the above question would lead to the conclusion that
µH ď 2dimpHq by Lemma 3.6, Lemma 3.8, and Brukhim et al. [2022, Lemma 13].
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A Lower bound

Before proving Theorem 2.5, we first introduce two lemmas regarding k-pseudo-cubes that will be
used in the proof.
Lemma A.1. For any positive integers k, d, any label class Y , any k-pseudo-cube H Ď Yd of
dimension d, any j P rds, and any label y P Y , define Hj

y :“ th P H : hpjq “ yu. Then, we have

|Hj
y | ď

|H|

k ` 1
.

Proof. When d “ 1, the result follows trivially from the definition of k-pseudo-cubes. We prove the
result for d ě 2 by contradiction. Suppose on the contrary that there exist some j P rds and y P Y
such that |Hj

y | ą
|H|

k`1 . The definition of pseudo-cubes implies that |H| ě k ` 1. Then, there exist
h, h1 P Hj

y with h ‰ h1. Let tf1, . . . , fku and tf 1
1, . . . , f

1
ku denote the set of j-neighbors of h and

h1 in H respectively. Since h ‰ h1 and hpjq “ y “ h1pjq, there exists some j1 P rdsztju such that
hpj1q ‰ h1pj1q. It follows that fipj1q “ hpj1q ‰ h1pj1q “ f 1

l pj
1q and thus fi ‰ f 1

l for any i, l P rks.
Then, we have

|th P H : hpjq ‰ yu| ě k|Hj
y | ą

k|H|

k ` 1

and

|H| “ |th P H : hpjq ‰ yu| ` |Hj
y | ą |H|,

which is a contradiction. Thus, we must have |Hj
y | ď

|H|

k`1 .

Lemma A.2. For any integer k ě 1, d ě 2, n P rd´1s, and 1 ď j1 ă ¨ ¨ ¨ ă jn ď d, any label class
Y , any k-pseudo-cube H Ď Yd of dimension d, and any hypothesis g P H , define J :“ pj1, . . . , jnq

and K “ pk1, . . . , kd´nq such that 1 ď k1 ă ¨ ¨ ¨ ă kd´n ď d and tj1, . . . , jn, k1, . . . , kd´nu “ rds.
Then, Hg,J :“ th|K : h P H,hpjiq “ gpjiq,@i P rnsu is a k-pseudo-cube of dimension d ´ n.

Proof. For any f P Hg,J , there exists some h P H such that f “ h|K. Then, for any i P rd´ns, there
exists k distinct h1, . . . , hk P H such that hmpkiq ‰ hpkiq and hmplq “ hplq for all l P rdsztkiu and
m P rks. Since ki R tj1, . . . , jnu, we have h|J “ hm|J “ g|J and thus fm :“ hm|K P Hg,J for all
m P rks. Then, we have fpiq “ hpkiq ‰ hmpkiq “ fmpiq and fplq “ hpklq “ hmpklq “ fmplq for
any l P rd´nsztiu and m P rks, which implies that Hg,J is a k-pseudo-cube of dimension d´n.

Proof of Theorem 2.5. Consider an arbitrary k-nondegenerate concept class H Ď YX for some k P N.
Let x0, x1 P X and h1, . . . , hk`1 P H witness the k-nondegeneracy as specified in Definition 2.4.
For any ε P p0, 1{2pk`1qq and δ P p0, 1q, let I „ Bernoullippk`1qεq and J „ Unifprk`1sq. Then,
for any j P rk ` 1s, pxI , hjpxIqq follows the H-realizable distribution Pε,j over X ˆ Y defined by
Pε,jptpx0, hjpx0qquq “ 1 ´ pk ` 1qε and Pε,jptpx1, hjpx1qquq “ pk ` 1qε. Sample pI1, . . . , Inq „

Bernoullipεqn independent of pI, Jq and define S “ ppxI1 , hJpxI1q, . . . , pxIn , hJpxInqq and S1 “

ppx0, hJpx0q, . . . , px0, hJpx0qq. Then, for any k-list learner A, we have

PphJpxIq R ApS,HqpxIq|I1 “ 0, . . . , In “ 0q

ěPphJpx1q R ApS1,Hqpx1q, I “ 1q

“PpI “ 1qPphJpx1q R ApS1,Hqpx1qq

“pk ` 1qεErPphJpx1q R ApS1,Hqpx1q|ApS1,Hqqs

ěε,

where the last inequality follows from the facts that hJpx0q “ h1px0q, |th1px1q, . . . , hk`1px1qu| “

k ` 1, hJpx1q „ Unifpth1px1q, . . . , hk`1px1quq. Since J „ Unifprk ` 1sq, there exists j P rk ` 1s

such that

PphjpxIq R ApSj ,HqpxIq|I1 “ 0, . . . , In “ 0q

“PphJpxIq R ApS,HqpxIq|J “ j, I1 “ 0, . . . , In “ 0q ě ε,

12



where Sj :“ ppxI1 , hjpxI1qq, . . . , pxIn , hjpxInqqq „ Pn
ε,j is independent of pxI , hjpxIqq „ Pε,j .

Since 1
2pk`1qε ď

1´pk`1qε
pk`1qε ă 1

´ logp1´pk`1qεq
for ε P p0, 1{2pk ` 1qq, if n ď

logp1{δq

2pk`1qε ă

logpδq

logp1´pk`1qεq
, we have

PpI1 “ 0, . . . , In “ 0q “ p1 ´ pk ` 1qεqn ą δ.

Then, with probability greater than δ, we have erPε,j pApSj ,Hqq ě ε, which implies that

Mk
Hpε, δq ě

logp1{δq

2pk ` 1qε
.

Next, consider an arbitrary concept class H Ď YX such that dimkpHq “ dk P Nzt1u for some
k P N. Then, there exist a sequence x :“ px1, . . . , xdk

q P X dk and a k-pseudo-cube H Ď H|x of
dimension dk. Denote the elements in H with y1 “ py11 , . . . , y

1
dk

q, . . . , y|H| “ py
|H|

1 , . . . , y
|H|

dk
q. For

any ε P p0, 1{8pk ` 1qq, consider the categorical distribution Qε over rdks defined by Qεpt1uq “

1´4pk`1qε and Qεptiuq “
4pk`1qε
dk´1 for i P rdkszt1u. Let J „ Unifpr|H|sq. For any i P rdkszt1u and

I “ pi1, . . . , imq P prdksztiuqm with m P rdk ´1s and i1 ă ¨ ¨ ¨ ă im, define I 1 :“ pi1
1, . . . , i

1
dk´mq

such that i1
1 ă ¨ ¨ ¨ ă i1

dk´m and ti1, . . . , im, i1
1, . . . , i

1
dk´mu “ rdks. Then, we have that conditional

on pi1, y
J
i1

q, . . . , pim, yJimq, yJ |I1 follows the uniform distribution over the set HyJ ,I which is a
k-pseudo-cube by Lemma A.2. Consequently, we can apply Lemma A.1 to conclude that

|pHyJ ,Iqi
1

y | ď
|HyJ ,I |

k ` 1

for any y P Y and i1 P rdk ´ ms, which immediately implies that

PpyJi P tv1, . . . , vku|pi1, y
J
i1q, . . . , pim, yJimqq ď

k

k ` 1
. (11)

for any distinct v1, . . . , vk P Y .

Let pI, I1, . . . , Inq „ Qn`1
ε for n P N be independent of J . Define S :“ ppxI1 , y

J
I1

q, . . . , pxIn , y
J
In

qq.
For any k-list leaner A, by (11), we have

PpyJI R ApS,HqpxIq, I ‰ 1q

ěPpyJI R ApS,HqpxIq, I ‰ 1, I ‰ I1, . . . , I ‰ Inq

ě

dk
ÿ

i“2

PpyJI R ApS,HqpxIq, I “ i, I1 ‰ i, . . . , In ‰ iq

“

dk
ÿ

i“2

Er1I1‰i,...,In‰iPpyJi R ApS,Hqpxiq, I “ i|ApS,Hq, pI1, y
J
I1q, . . . , pIn, y

J
Inqqs

ě

dk
ÿ

i“2

PpI “ iq

k ` 1
PpI1 ‰ i, . . . , In ‰ iq

“4ε

ˆ

1 ´
4pk ` 1qε

dk ´ 1

˙n

.

Since J „ Unifpr|H|sq, there exists j “ jpA,Hq P r|H|s such that

PpyjI R ApSj ,HqpxIq, I ‰ 1q “ PpyJI R ApS,HqpxIq, I ‰ 1|J “ jq ě 4ε

ˆ

1 ´
4pk ` 1qε

dk ´ 1

˙n

,

where Sj :“ ppxI1 , y
j
I1

q, . . . , pxIn , y
j
In

qq. Note that if we define the distribution Pε,j over X ˆ Y by

Pε,jptx1, y
j
1uq “ 1 ´ 4pk ` 1qε and

Pε,jptxi, y
j
i uq “

4pk ` 1qε

dk ´ 1
, @i P rdkszt1u,
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then, we have pS, pxI , y
j
Iqq „ Pn`1

ε,j . For any n ď
pdk´1q logp2q

8pk`1qε ă
logp1{2q

logp1´4pk`1qε{pdk´1qq
, we have

´

1 ´
4pk`1qε
dk´1

¯n

ą 1
2 and

PpyjI R ApSj ,HqpxIq, I ‰ 1q ą 2ε.

Now, we define the algorithm A1 by

A1ps,Hqpx1q :“ tyj1u and A1ps,Hqpxq :“ Aps,Hqpxq, @x P X ztx1u

for any s P Y8
m“0pX ˆ Yqm. Then, we have

ErerPε,j
pA1pSj ,Hqqs ěPpyjI R A1pSj ,HqpxIq, I ‰ 1q

“PpyjI R ApSj ,HqpxIq, I ‰ 1q

ą2ε. (12)

On the other hand, the definition of A1 yields that yj1 P A1pSj , px1qq and hence

erPε,j pA1pSj ,Hqq ď Pε,jpX ztx1uq “ 4pk ` 1qε.

Suppose the following holds

PperPε,j
pApSj ,Hqq ą εq ď

1

4pk ` 1q
. (13)

Since erPε,j pA1pSj ,Hqq ď erPε,j pApSj ,Hqq, the above inequality implies that

PperPε,j
pA1pSj ,Hqq ą εq ď

1

4pk ` 1q

and therefore

ErerPε,j
pA1pSj ,Hqqs ďε ` E

”

erPε,j
pA1pSj ,Hqq1erPε,j

pA1pSj ,Hqqąε

ı

ďε ` 4pk ` 1qεPperPε,j
pA1pSj ,Hq ą εq

ď2ε,

which contradicts (12). Thus, we can conclude that (13) is false, i.e.,

PperPε,j pApSj ,Hqq ą εq ą
1

4pk ` 1q

for n ď
pdk´1q logp2q

8pk`1qε . For δ P p0, 1{4pk ` 1qs, we have PperPε,j pApSj ,Hqq ą εq ą δ and thus

Mk
Hpε, δq ě

pdk ´ 1q logp2q

8pk ` 1qε
.

In conclusion, for ε, δ “ Op1{kq, we have

Mk
Hpε, δq “ Ω

ˆ

dk ` logp1{δq

kε

˙

.

B Proof of Theorem 2.6

Proof. Consider an algorithm A : pY8
k“1pX ˆ Yqkq ˆ 2

YX
Ñ YX which for any hypothesis class

H Ď YX , H-realizable distribution D, and n P N, satisfies that

PpT,pX,Y qq„Dn`1pApT,HqpXq ‰ Y q ď
Mn

n
(14)

where Mn is nondecreasing in the sample size n.
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For an arbitrary sequence S “ ppx1, y1q, . . . , pxn, ynq, pxn`1, yn`1qq P pX ˆ Yqn`1, define S´i to
be the subsequence of S excluding pxi, yiq for any i P rn ` 1s. Let pTm, pX,Y qq „ UnifpSqm`1

where m P N, Tm P pX ˆ Yqm and pX,Y q P X ˆ Y . Moreover, for any i P rn ` 1s, let
T i
m „ UnifpS´iq

m. Then, for any algorithm A : Y8
k“1pX ˆ Yqk ˆ 2

YX
Ñ YX and concept class

H Ď YX , we have

PpApTm,HqpXq ‰ Y q “
1

n ` 1

n`1
ÿ

i“1

PpApTm,Hqpxiq ‰ yiq

ě
1

n ` 1

n`1
ÿ

i“1

E
“

1pxi,yiqRTm
1ApTm,Hqpxiq‰yi

‰

“
1

n ` 1

n`1
ÿ

i“1

Pppxi, yiq R TmqPpApTm,Hqpxiq ‰ yi|pxi, yiq R Tmq

ě
n ` 1 ´ m

n ` 1

1

n ` 1

n`1
ÿ

i“1

PpApTm,Hqpxiq ‰ yi|pxi, yiq R Tmq

“
n ` 1 ´ m

n ` 1

1

n ` 1

n`1
ÿ

i“1

PpApT i
m,Hqpxiq ‰ yiq. (15)

Note that if S is consistent with H, then UnifpSq is H-realizable.

Next, define the algorithm AMaj,m : pY8
k“1pX ˆ Yqkq ˆ 2

YX
Ñ YX by

AMaj,mpR,Hq :“ MajorityppApr,HqqrPRmq, @R P pX ˆ Yqn, @n P N.

By the definition above, for any permutation Rπ of R P pX ˆ Yqn, we have

AMaj,mpRπ,Hq “ AMaj,mpR,Hq. (16)

Moreover, for any i P rn ` 1s, the above definition yields that

1AMaj,mpS´i,Hqpxiq‰yi
ď1 1

nm |tsPSm
´i:Aps,Hqpxiq‰yiu|ě 1

2

ď
2

nm
|ts P Sm

´i : Aps,Hqpxiq ‰ yiu|

“2PpApT i
m,Hqpxiq ‰ yiq.

Then, by (15), we have

1

n ` 1

n`1
ÿ

i“1

1AMaj,mpS´i,Hqpxiq‰yi
ď

2pn ` 1q

n ` 1 ´ m
PpApTm.HqpXq ‰ Y q.

Choosing m “ tpn ` 1q{2u and defining AMaj :“ AMaj,tpn`1q{2u, for any H-realizable sequence S,
by (14) and the above results, we have

n`1
ÿ

i“1

1AMajpS´i,Hqpxiq‰yi
ď

2pn ` 1q2Mtpn`1q{2u

pn ` 1 ´ tpn ` 1q{2uqtpn ` 1q{2u
ď 8.34Mtpn`1q{2u (17)

for any n ě 4. (16) and (17) imply that the algorithm AMaj satisfies Assumptions 2.1 and 2.3 in
Aden-Ali et al. [2023].

Now, we can define the randomized algorithm ARan which given a sample S P pX ˆ Yqn with n P N
and a concept class H, outputs the classifier AMajpS,Hq if n ď 3 and outputs a random classifier
following the uniform distribution over the sequence pAMajpSďt,Hqqtn{4uďtď4tn{4u´1 if n ě 4, i.e.,

PpARanpS,Hq “ AMajpSďt,Hqq “
1

3tn{4u
, @t P rtn{4u, 4tn{4u ´ 1s,

where Sďt denotes the subsequence of S consisting of the first t elements in S. Then, by Aden-Ali
et al. [2023, Theorem 2.1], for any n ě 4, H-realizable distribution D, and confidence parameter
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δ P p0, 1q, given a training sample S „ Dn, we have

erDpARanpS,Hqq “
1

3tn{4u

4tn{4u´1
ÿ

t“tn{4u

erDpAMajpSďt,Hqq

ď4.82

ˆ

8.34Mtn{2u

n
`

1

n
log

ˆ

2

δ

˙˙

with probability at least 1 ´ δ.

C Proof of Theorem 2.7

The following proof requires several lemmas from Appendix H.

Proof of Theorem 2.7. Assume that we have access to a list learning algorithm Alist which for any
concept class H Ď YX of DS dimension d, any H-realizable distribution D, any n P N, and
pS, pX,Y qq „ Dn`1, outputs a menu AlistpS,Hq of size ppnq P N satisfying

PpY R AlistpS,HqpXqq ď
βpH, nq

n

for some function β : 2YX
ˆ N Ñ r0,8q.

For n1, n2 P N, let pS1, S2, pX,Y qq „ Dn1`2n2`1 where S1 P pX ˆ Yqn1 , S2 P pX ˆ Yq2n2 , and
pX,Y q P X ˆ Y . Let pµ “ AlistpS

1,Hq. According to the property of Alist, the size of pµ is ppn1q

and we have

PpY R pµpXqq ď
βpH, n1q

n1
.

For notational convenience, define S1 :“ pS2, pX,Y qq, S2 :“ pS1, S2, pX,Y qq, and enumerate the
elements of S1 as

ppX1, Y1q, . . . , pX2n2`1, Y2n2`1qq

where pX2n2`1, Y2n2`1q denotes pX,Y q. We now define

N :“
ÿ

iPr2n2s

1YiRpµpXiq

and

HS1 :“HpX1,...,X2n2`1q,pµ,N

“

!

h|pX1,...,X2n2`1q : h P H, |ti P r2n2 ` 1s : hpXiq R pµpXiqu| ď N ` 1
)

.

It follows from the property of pµ and Lemma H.9 that

ErN s “
2n2βpH, n1q

n1
(18)

and, conditional on S1,

dimGpHS1 q ď p2 log2 e ` 4qp5d log2pppn1qq ` 2N ` 2q.

Sample pI, Iq „ Unifpr2n2 ` 1sqn2`1 independent of S2 where I “ pI1, . . . , In2
q P r2n2 ` 1sn2

and I P r2n2 ` 1s. Then, we define the sequence T pS1, Iq :“ ppI1, YI1q, . . . , pIn2
, YIn2

qq and the
classifier

phS1,I :“ AG

`

T pS1, Iq,HS1

˘

for any i P r2n2 ` 1s, where AG is the algorithm specified in Proposition H.5. Since conditional on
S2, the distribution of each element in T pS1, Iq is HS1 -realizable, by Corollary H.6, there exists some
constant C 1 ą 0 such that

PpphS1,IpIq ‰ YI |S2q ď
C 1dimGpHS1 q

n2
ď

C1d logpppn1qq ` C2N ` C3

n2
. (19)

16



for some constant C1, C2, C3 ą 0.

For I1
“ pI 1

1, . . . , I
1
n2

q „ Unifpr2n2sqn2 independent of all other random variables, define
T ipS1, I1

q :“ ppρipI
1
1q, YρipI1

1qq, . . . , pρipI
1
n2

q, YρipI1
n2

qqq where ρi : r2n2s Ñ r2n2 ` 1sztiu,
k ÞÑ k1kăi ` pk ` 1q1kěi for all i P r2n2 ` 1s. Consider the classifier

rhS1,I1,i :“ AGpT ipS1, I1
q,HS1 q

for each i P r2n2 ` 1s. Since Yi is not used in the construction of rhS1,I1,i, we can also denote rhS1,I1,i

as rhS1
´i,Xi,I1,i, where S1

´i :“ ppX1, Y1q, . . . , pXi´1, Yi´1q, pXi`1, Yi`1q, . . . , pX2n2`1, Y2n2`1qq.
Thus, treating S :“ pS1, S2q „ Dn1`2n2 as the training sample, we can define the classifier
phS P YX by

phSpxq :“ rhS2,x,I1,2n2`1p2n2 ` 1q,

where we emphasize that the RHS depends on S1 through the construction of pµ. Then, recalling that
pX,Y q „ D is independent of S, our task is to upper bound the expectated error rate of phS :

P
´

phSpXq ‰ Y
¯

.

We first relate phS1,I to rhS1,I1,i for i P r2n2 ` 1s:

PpphS1,IpIq ‰ YI |S2q ě
1

2n2 ` 1

2n2`1
ÿ

i“1

E
”

1iRI1phS1,Ipiq‰Yi
|S2

ı

“
1

2n2 ` 1

2n2`1
ÿ

i“1

Ppi R IqE
”

1
phS1,Ipiq‰Yi

|S2, i R I
ı

ě
1

2p2n2 ` 1q

2n2`1
ÿ

i“1

E
”

1
rhS1,I1,ipiq‰Yi

|S2
ı

,

which implies that

PpphS1,IpIq ‰ YI |S1q ě
1

2p2n2 ` 1q

2n2`1
ÿ

i“1

E
”

1
rhS1,I1,ipiq‰Yi

|S1
ı

“
1

2p2n2 ` 1q

2n2`1
ÿ

i“1

E
”

E
”

1
rhS1,I1,ipiq‰Yi

|S1, I1
ı
ˇ

ˇ

ˇ
S1

ı

.

Conditional on I1 and S1, for any i P r2n2 ` 1s and any sequence s P pX ˆ Yq2n2`1, we let rhs,I1,i

denote the classifier when replacing S1 with s in rhS1,I1,i, i.e., rhs,I1,i “ AGpT ips, I1
q,Hsq. For any

i P r2n2 ` 1s, define the set

Bi :“
!

s “ ppx1, y1q, . . . , px2n2`1, y2n2`1qq P pX ˆ Yq2n2`1 : rhs,I1,ipiq ‰ yi

)

and the permutation

πi : pX ˆ Yq2n2`1 Ñ pX ˆ Yq2n2`1, pz1, . . . , z2n2`1q ÞÑ pz1, . . . , zi´1, z2n2`1, zi, . . . , z2n2
q.

We also define the set

B :“
!

s “ ppx1, y1q, . . . , px2n2`1, y2n2`1qq P pX ˆ Yq2n2`1 :

y2n2
P pµpx2n2

q, y2n2`1 P pµpx2n2`1q, and rhs,I1,2n2`1p2n2 ` 1q ‰ y2n2`1

)

.

We would like to show that πipBq Ď Bi for all i P r2n2s. For any s “

ppx1, y1q, . . . , px2n2`1, y2n2`1qq P B, we let pxi
j , y

i
jq P X ˆ Y denote the j-th element of πipsq for

each j P r2n2 ` 1s. By the definition of πi and T i, we have

T 2n2`1ps, I1
q “ ppI 1

1, yI1
1
q, . . . , pI 1

n2
, yI1

n2
qq and

T ipπipsq, I1
q “ ppρipI

1
1q, yI1

1
q, . . . , pρipI

1
n2

q, yI1
n2

qq.
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Define

ns :“
ÿ

jPr2n2s

1yjRpµpxjq.

Since y2n2 P pµpx2n2q and y2n2`1 P pµpx2n2`1q, we have

nπipsq :“
ÿ

jPr2n2s

1yi
jRpµpxi

jq “
ÿ

jPr2n2`1szt2n2u

1yjRpµpxjq “ ns

and therefore,

Hπipsq “Hpxi
1,...,x

i
2n2`1q,pµ,nπipsq

“Hpxi
1,...,x

i
2n2`1q,pµ,ns

“

!

h|px1,...,xi´1,x2n2`1,xi,...,x2n2
q : h P H, |tj P r2n2 ` 1s : hpxjq R pµpxjqu| ď ns ` 1

)

“ tκiphq : h P Hsu

where for any h P Y2n2`1, κiphq P Y2n2`1 is defined by

κiphqpjq :“ hpρ´1
i pjqq1j‰i ` hp2n2 ` 1q1j“i, @j P r2n2 ` 1s,

i.e., hpjq “ κiphqpρipiqq for j P r2n2s and hp2n2 ` 1q “ κiphqpiq. Note that κi is a bijection from
Hs to Hπipsq. Thus, for any h P Hπipsq, we have

hpρipI
1
jqq “ κ´1

i phqpI 1
jq, @j P rn2s, and hpiq “ κ´1

i phqp2n2 ` 1q.

Similarly, for any h P Hs, we have

hpI 1
jq “ κiphqpρipI

1
jqq, @j P rn2s, and hp2n2 ` 1q “ κiphqpiq.

Given the above analysis, we have

rhs,I1,2n2`1p2n2 ` 1q “AGpT 2n2`1ps, I1
q,Hsqp2n2 ` 1q

“AGpT ipπipsq, I1
q,Hπipsqqpiq

“rhπipsq,I1,ipiq,

which immediately implies that

rhπipsq,I1,ipiq “ rhs,I1,2n2`1p2n2 ` 1q ‰ y2n2`1 “ yii

and thus πipsq P Bi. Since i P r2n2s and s P B is arbitrary, we have πipBq Ď Bi for any i P r2n2s.
Then, conditional on I1 and S1, we have

D2n2`1pBiq ě D2n2`1pπipBqq “ D2n2`1pBq

Since B Ď B2n2`1 holds trivially, we have

PpphS1,IpIq ‰ YI |S1q ě
1

2p2n2 ` 1q

2n2`1
ÿ

i“1

E
”

E
”

1
rhS1,I1,ipiq‰Yi

|S1, I1
ı
ˇ

ˇ

ˇ
S1

ı

ě
1

2
E
”

1Y2n2PpµpX2n2 q1Y2n2`1PpµpX2n2`1q1rhS1,I1,2n2`1p2n2`1q‰Y2n2`1

ˇ

ˇ

ˇ
S1

ı

.

Taking expectation on both sides and applying (18) and (19), we have

C1d log ppn1q ` 2C2βpH, n1qn2{n1 ` C3

n2

“
C1d log ppn1q ` C2ErN s ` C3

n2

ěPpphS1,IpIq ‰ YIq

ě
1

2
E
”

1Y2n2
PpµpX2n2

q1Y2n2`1PpµpX2n2`1q1rhS1,I1,2n2`1p2n2`1q‰Y2n2`1

ı

18



which leads to

P
´

phSpXq ‰ Y
¯

“P
´

rhS1,I1,2n2`1p2n2 ` 1q ‰ Y2n2`1

¯

ďE
”

1 ´ 1Y2n2
PpµpX2n2

q1Y2n2`1PpµpX2n2`1q

ı

` E
”

1Y2n2
PpµpX2n2

q1Y2n2`1PpµpX2n2`1q1rhS1,I1,2n2`1p2n2`1q‰Y2n2`1

ı

ďP pY2n2
R pµpX2n2

qq ` P pY2n2`1 R pµpX2n2`1qq

`
2pC1d log ppn1q ` 2C2βpH, n1qn2{n1 ` C3q

n2

ď
2pβpH, n1qn2{n1 ` C1d log ppn1q ` 2C2βpH, n1qn2{n1 ` C3q

n2
.

Now, for any n P N such that n ě 3, setting n1 “ n ´ 2tn{3u, n2 “ tn{3u, pS, pX,Y qq „ Dn`1

with S P pX ˆ Yqn and pX,Y q P X ˆ Y , we have

P
´

phSpXq ‰ Y
¯

“ O

ˆ

βpH, n1q ` d log ppn1q

n

˙

.

Then, when βpH, nq and ppnq are nondecreasing in n, by Theorem 2.6, there exists a learner A1 such
that for any n ě 4 and δ P p0, 1q, with probability at least 1 ´ δ over S „ Dn, we have

erDpA1pS,Hq “ O

ˆ

βpH, n1q ` d log ppn1q ` logp1{δq

n

˙

.

D Proofs of the results in Section 2.3

In this section, we provide the proofs of Theorem 2.8, Corollary 2.9, and Theorem 2.10 in Section 2.3.

Proof of Theorem 2.8. Assume that Alist satisfies that MAlist,Hp1{2 ´ γ, νq ă 8 for some γ P

p0, 1{2q and ν P p0, γ{18s. Define the random variable Jk :“ 1erDk
pµkqą1{2´γ for any k P rKs.

Then, we have

ErJks “ PpJk “ 1q ď ν.

Define the event E :“
!

řK
k“1 Jk ě 2νK

)

. By the multiplicative Chernoff bound, we have

PpEq “ P

˜

K
ÿ

k“1

Jk ě 2νK

¸

ď e´νK{3 ď δ

as K ě
3 logp1{δq

ν . Define Zk :“
řn

i“1 Dkptpxi, yiquq exp
`

´α
`

21yiPµkpxiq ´ 1
˘˘

for all k P rKs.
Since DK`1 is a probability distribution over S, we have

1 “

n
ÿ

i“1

DK`1ptpxi, yiquq

“

n
ÿ

i“1

Dkptpxi, yiquq exp
`

´α
`

21yiPµkpxiq ´ 1
˘˘

ZK

“
1

n

n
ÿ

i“1

exp
´

´α
řK

k“1

`

21yiPµkpxiq ´ 1
˘

¯

śK
k“1 Zk

,

which implies that

n
K
ź

k“1

Zk “

n
ÿ

i“1

exp

˜

´α
K
ÿ

k“1

`

21yiPµkpxiq ´ 1
˘

¸

. (20)
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For any k P rKs, we have

Zk “

n
ÿ

i“1

Dkptpxi, yiquq exp
`

´α
`

21yiPµkpxiq ´ 1
˘˘

“
ÿ

iPrns:yiPµkpxiq

Dkptpxi, yiquqe´α `
ÿ

iPrns:yiRµkpxiq

Dkptpxi, yiquqeα

“p1 ´ erDk
pµkqqe´α ` erDk

pµkqeα “ erDk
pµkqpeα ´ e´αq ` e´α.

If Jk “ 0, we have

Zk ď γeα ` p1 ´ γqe´α “
a

1 ´ γ2.

If Jk “ 1, we have

Zk ď eα “

c

1 `
γ

1{2 ´ γ{2
ď
a

1 ` 4γ.

Then, under the event Ec, we can upper bound

K
ź

k“1

Zk ďp1 ´ γ2qp1{2´νqKp1 ` 4γqνK

ď exp
´

´γK
´γ

2
´ pγ ` 4qν

¯¯

ď exp

ˆ

´
γK

4

˙

ď
δ

n
.

where the second last inequality follows from ν ď
γ
18 ď

γ
4pγ`4q

and the last inequality follows from

K ě
4 logpn{δq

γ . By (20) and the above inequality, we have that on Ec,

n
ÿ

i“1

exp

˜

´α
K
ÿ

k“1

`

21yiPµkpxiq ´ 1
˘

¸

ď δ,

which implies that exp
´

´α
řK

k“1

`

21yiPµkpxiq ´ 1
˘

¯

ď δ for all i P rns. It follows that

expp´fpxi, yiqq ď δ1{αK

for fpx, yq :“ 1
K

řK
k“1

`

21yPµkpxq ´ 1
˘

, @px, yq P X ˆ Y . Thus, we have

fpxi, yiq ě
logp1{δq

αK
“

2 logp1{δq

log
´

1{2`γ
1{2´γ

¯

r4 logpn{δq{γs

ą 0, @i P rns.

Since by definition,

fpx, yq ą 0 ô y P µpxq, @px, yq P X ˆ Y,

we can conclude that on Ec,

yi P µpxiq, @i P rns,

i.e., with probability at least 1 ´ δ, yi P µpxiq for all i P rns. Moreover, by da Cunha
et al. [2024, Lemma 3.3], the randomized compression scheme S ÞÑ pS1, . . . , SKq is stable.
Thus, we can apply da Cunha et al. [2024, Theorem 1.2] with compression size sn “ mK “

O
´

MAlist,Hp1{2´γ,νq logpn{δq

γ

¯

to conclude the proof.

For the proofs of Corollary 2.9 and Theorem 2.10, we will need the following Lemma.

Lemma D.1. If x ą 0 satisfies x ď a logpx{aq ` b for some a, b ą 0, then, we have x ď 2a ` 2b.
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Proof. Define fpxq :“ x ´ a logpx{aq ´ b for x ą 0. Then, we have f 1pxq “ x´a
x , which implies

that f decreases with x for x P p0, aq and increases with x for x ą a. Since 2a ` 2b ą a, it suffices
to prove that fp2a ` 2bq ě 0. Indeed,

fp2a ` 2bq “ p2 ´ log 2qa ` b ´ a logppa ` bq{aq ą a ppa ` bq{a ´ logppa ` bq{aqq ě 0.

Proof of Corollary 2.9. By Brukhim et al. [2022, Theorem 36] (choosing t “ r
?
ds), there exists an

n Ñ r sample compression scheme AM for any H Ď YX of DS dimension dimpHq “ d ă 8 where

r “ Oppd3{2 ` d logppqq logpnqq with p “ Oppe
?
dq

?
d logpnqq. (21)

Then, by David et al. [2016, Theorem 3.1], there exists a universal constant C ą 0 such that for
any D P REpHq, δ P p0, 1q, n P N large enough, and S „ Dn, letting hS :“ AM pS,Hq denote the
output classifier of the above n Ñ r sample compression scheme AM , we have that

erDphSq ď
Cpr logpn{rq ` logp1{δqq

n

with probability at least 1 ´ δ. Thus, for any ε P p0, 1q, if

n ě
Cr

ε
logpn{rq `

C logp1{δq

ε
“

Cr

ε
log

ˆ

n

Cr{ε

˙

`
Cr

ε
log

ˆ

C

ε

˙

`
C logp1{δq

ε
,

we have erDphSq ď ε with probability at least 1 ´ δ. By Lemma D.1, it suffices to require

n ě
2Cr

ε
log

ˆ

Ce

ε

˙

`
2C logp1{δq

ε
“

2C

ε

ˆ

r log

ˆ

Ce

ε

˙

` log

ˆ

1

δ

˙˙

.

Applying the upper bound of r in (21), it suffices to require

n ě C 1

ˆ

pd3{2 ` d logppqq logp1{εq

ε
logpnq `

logp1{δq

ε

˙

for some universal constant C 1 ą 0. By Lemma D.1 again, it suffices to require

n ě
2C 1pd3{2 ` d logppqq logp1{εq

ε
log

ˆ

eC 1pd3{2 ` d logppqq logp1{εq

ε

˙

`
2C 1 logp1{δq

ε
.

Since logplogp1{εq{εq “ logp1{εq ` log logp1{εq ď 2 logp1{εq, it suffices to require

n ě C2

ˆ

pd3{2 ` d logppqq logp1{εq

ε
log

ˆ

d3{2 ` d logppq

ε

˙

`
logp1{δq

ε

˙

for some universal constant C2 ą 0. Applying the upper bound of p in (21), it suffices to require that

n ě C3

ˆ

pd3{2 logpdq ` d log logpnqq logp1{εq

ε
log

ˆ

d3{2 logpdq ` d log logpnq

ε

˙

`
logp1{δq

ε

˙

for some universal constant C3 ą 0. For ε “ 1{6 and δ “ 1{54, we require that

n ě C1pd3{2 logpdq ` d log logpnqq log
´

d3{2 logpdq ` d log logpnq

¯

for some universal constant C1 ą 0. If C1p
?
2C1 ` 1qd3{2 logpdq log

`

p
?
2C1 ` 1qd3{2 logpdq

˘

ď

n ď ed
?

2C1d

, we have
?
2C1d

3{2 logpdq ě d log logpnq and

C1pd3{2 logpdq ` d log logpnqq logpd3{2 logpdq ` d log logpnqq

ďC1p
a

2C1 ` 1qd3{2 logpdq log
´

p
a

2C1 ` 1qd3{2 logpdq

¯

ď n.

If n ą ed
?

2C1d

, we have logplogpnqq ą
?
2C1d logpdq, logplogpnqq2 ą 2C1d log

2
pdq ě

2C1pd logp2dq ` dq, and

C1pd3{2 logpdq ` d log logpnqq logpd3{2 logpdq ` d log logpnqq

ď2C1d logplogpnqq logp2d log logpnqq

“2C1d logp2dq logplogpnqq ` 2C1d logplogpnqq logplog logpnqq

ď logplogpnqq3 logplog logpnqqq ď n.
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Therefore, we can conclude that if n ě C1p
?
2C1 ` 1qd3{2 logpdq log

`

p
?
2C1 ` 1qd3{2 logpdq

˘

“

Θpd3{2 log2pdqq, we have PperDphSq ą 1{6q ď 1{54, i.e.,

MAM ,Hp1{2 ´ 1{3, 1{54q “ Opd3{2 log2pdqq.

Let AB denote the multiclass learner output by Aboost in Algorithm 2 using AM as the weak list
learner of size 1. Then, by Theorem 2.8, we have

εAB ,Hpnq “ O

ˆ

d3{2 log2pdq logpnq

n

˙

, @n P N.

Next, by Theorem 2.6, there exists a multiclass learner A such that for any D P REpHq, δ P p0, 1q,
n P N, and S „ Dn, with probability at least 1 ´ δ, we have

erDpApS,Hqq “ O

ˆ

d3{2 log2pdq logpnq ` logp1{δq

n

˙

.

Setting δ “ 1{n and observing that erD P r0, 1s, it follows that εA,Hpnq “ O
´

d3{2 log2
pdq logpnq

n

¯

.

Moreover, by Lemma D.1, for any ε P p0, 1q, n ě O
´

d3{2 log2
pdq logpd{εq`logp1{δq

ε

¯

implies that
erDpApS,Hqq ď ε with probability at least 1 ´ δ. Thus, we have

MA,Hpε, δq “ O

ˆ

d3{2 log2pdq logpd{εq ` logp1{δq

ε

˙

.

Proof of Theorem 2.10. By Brukhim et al. [2022, Theorem 39] (choosing t “ r
?
ds), there exists an

n Ñ r list sample compression scheme Alist of size p “ Oppe
?
dq

?
d logpnqq for any H Ď YX of

DS dimension dimpHq “ d ă 8 where

r “ Opd3{2 logpnqq. (22)

Define the following loss function for menus µ,

ℓpµ, px, yqq :“ 1yRµpxq, @px, yq P X ˆ Y.

Then, we can apply the proof of David et al. [2016, Theorem 3.1] with the loss function ℓ to show
that there exists a universal constant C ą 0 such that for any n Ñ r list sample compression
scheme ALSC for H, any D P REpHq, δ P p0, 1q, n P N large enough, and S „ Dn, letting
µS :“ ALSCpS,Hq denote the output menu, we have

erDpALSCpS,Hqq “ EpX,Y q„DrℓpALSCpS,Hq, pX,Y qq | Ss ď
Cpr logpn{rq ` logp1{δqq

n

with probability at least 1 ´ δ. Thus, for any ε P p0, 1q, if

n ě
Cr

ε
logpn{rq `

C logp1{δq

ε
“

Cr

ε
log

ˆ

n

Cr{ε

˙

`
Cr

ε
log

ˆ

C

ε

˙

`
C logp1{δq

ε
,

we have erDpALSCpS,Hqq ď ε with probability at least 1 ´ δ. By Lemma D.1, it suffices to require

n ě
2Cr

ε
log

ˆ

Ce

ε

˙

`
2C logp1{δq

ε
“

2C

ε

ˆ

r log

ˆ

Ce

ε

˙

` log

ˆ

1

δ

˙˙

.

Since Alist is an n Ñ r list sample compression scheme for H with r bounded in (22), The above
results imply that in order for PperDpAlistpS,Hqq ą εq ď δ, it suffices to require

n ě C 1

ˆ

d3{2 logp1{εq

ε
logpnq `

logp1{δq

ε

˙

for some universal constant C 1 ą 0. By Lemma D.1 again, it suffices to require

n ě
2C 1d3{2 logp1{εq

ε
log

ˆ

eC 1d3{2 logp1{εq

ε

˙

`
2C 1 logp1{δq

ε
.
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Since logplogp1{εq{εq “ logp1{εq ` log logp1{εq ď 2 logp1{εq, it suffices to require

n ě C2

ˆ

d3{2 logpd{εq logp1{εq ` logp1{δq

ε

˙

for some universal constant C2 ą 0, which implies that

MAlist,Hp1{2 ´ 1{3, 1{54q “ O
´

d3{2 logpdq

¯

.

Now, we can define AL to be the list learner output by Aboost in Algorithm 2 using Alist as the weak
list learner of size Oppe

?
dq

?
d logpnqq for training sample size n P N. Then, by Theorem 2.8, we

have that for any training sample size n P N,

εAL,Hpnq “ O

ˆ

d3{2 logpdq logpnq

n

˙

and the size of AL is also Oppe
?
dq

?
d logpnqq.

E Proof of Theorem 2.11

Proof. By Theorem 2.10, there exists a list learner AL with ppH, nq “ O
`

pe
?
dq

?
d logpnq

˘

and
βpH, nq “ O

`

d3{2 logpdq logpnq
˘

for any n P N and concept class H Ď YX with dimpHq “ d P N
in the context of Theorem 2.7. Thus, by Theorem 2.7, there exists a multiclass learner Amulti “ A1

red
such that for any D P REpHq, any δ P p0, 1q, S „ Dn, and n1 “ n ´ 2tn{3u, with probability at
least 1 ´ δ,

erDpAmultipS,Hqq “O

ˆ

βpH, n1q ` d log ppH, n1q ` logp1{δq

n

˙

“O

˜

d3{2 logpdq logpnq ` d3{2 logpe
?
d logpnqq ` logp1{δq

n

¸

“O

ˆ

d3{2 logpdq logpnq ` logp1{δq

n

˙

.

For any ε P p0, 1q, by Lemma D.1, if

n ě
2d3{2 logpdq

ε

ˆ

1 `
5

2
logpd{εq

˙

`
2 logp1{δq

ε

ě
2d3{2 logpdq

ε

ˆ

1 `
3

2
logpdq ` log logpdq ` logp1{εq

˙

`
2 logp1{δq

ε

ě
2d3{2 logpdq

ε
log

ˆ

ed3{2 logpdq

ε

˙

`
2 logp1{δq

ε
,

then, we have

n ě
d3{2 logpdq

ε
logpnq `

logp1{δq

ε
i.e.,

d3{2 logpdq logpnq ` logp1{δq

n
ď ε.

It follows that

MAmulti,Hpε, δq “ O

ˆ

d3{2 logpdq logpd{εq ` logp1{δq

ε

˙

.

(9) follows directly from (6) by plugging in ppH, nq “ f1pdq and βpH, nq “ f2pdq for d “ dimpHq

and any n P N.

23



F Classes of DS dimension 1

In this section, we present the proof of Proposition 3.3 and Theorem 3.2.

Proof of Proposition 3.3. Let En denote the edge set of the hypergraph GpVnq. Suppose on the
contrary that there exists a cycle consisting of pairwise different vertices y0, . . . , ym´1 P Vn and
pairwise different edges e0 “ pei0,f0 , i0q, . . . , em´1 “ peim´1,fm´1 , im´1q P En for some m P

t4, . . . , |Vn|u such that yj , ypj`1q mod m P peij ,fj , ijq for all 0 ď j ď m ´ 1. Since the edges are
pairwise different, by the definition of En, we have ij ‰ ipj´1q mod m for all 0 ď j ď m ´ 1.

Define a :“ im´1 P rns, b :“ i0 P rns, p0 :“ y0a “ y1a, p´1 :“ ym´1
a ‰ p0, and q0 :“ y0b “ ym´1

b .
Then, we have a ‰ b.

For any k P N, we define

jk :“ maxtj P N0 : j ď m ´ 1, yja “ pk´1u,

pk :“ y
pjk`1q mod m
a , and qk :“ yjkb “ y

pjk`1q mod m
b because ijk “ a. Define

K :“ mintk P N : pk “ p´1u.

By definition, we have p0, . . . , pK are pairwise different. There are two cases depending on the
values of q1, . . . , qK as follows.

1. Suppose that there exists some k P rKs such that qk ‰ q0. Define l0 :“ 0 and

lw :“ mintk P rKs : k ą lw´1, qk ‰ qlw´1
u

for all w P N with the convention that inf H “ `8. Define

v :“ maxtw P N : lw ‰ `8u.

We have v P rKs and qlw ‰ qlw´1 for all w P rvs. Note that

p´1 “ pK “ ym´1
a , q0 “ ym´1

b ,

pl0 “ p0 “ y0a, ql0 “ q0 “ y0b ,

plw´1 “ y
jlw´1`1
a , qlw´1 “ y

jlw´1`1
b ,

plw´1 “ y
jlw
a , qlw “ y

jlw
b ,

plw “ y
jlw`1
a , qlw “ y

jlw`1

b

for all w P rvs, and

pK “ p´1 “ yjK`1
a , qK “ yjK`1

b .

Since it always holds that qK “ qlv , there are two cases depending on the value of qlv and
q0 as follows.

1.1 Suppose that qlv ‰ q0. Then, Vn|pa,bq contains the following pseudo-cube of dimension
2:

ppl1´1, q0q,

ppl1´1, ql1q,

ppl2´1, ql1q,

ppl2´1, ql2q,

...
pplv´1, qlv´1

q,

pplv´1, qlv q,

pp´1, qlv q,

pp´1, q0q,

which contradicts the assumption that dimpVnq “ 1.
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1.2 Suppose that qlv “ q0. Then, Vn|pa,bq contains the following pseudo-cube of dimension
2:

ppl1´1, q0q,

ppl1´1, ql1q,

ppl2´1, ql1q,

ppl2´1, ql2q,

...
pplv´1, qlv´1

q,

pplv´1, qlv “ q0q,

which contradicts the assumption that dimpVnq “ 1.

Thus, Case 1 does not exist.

2. Suppose that qk “ q0 for all k P rKs. Since y0a “ p0 “ pj1a , y0b “ q0 “ q1 “ pj1b , and
y0 ‰ yj1 , there must exist some c P rnszta, bu such that ym´1

c “ y1c “ y0c ‰ yj1c “ yj1`1
c .

We define r0 :“ y0c and rk :“ yjkc “ yjk`1
c for k P rKs. There are two cases depending on

the value of rk for k P rKs as follows.

2.1 Suppose that there exists some k P rKs such that rk ‰ r1. Similar to Case 1, we define
l0 :“ 1 and

lw :“ mintk P rKs : k ą lw´1, rk ‰ rlw´1
u

for w P N. Define v :“ maxtw P N : lw ‰ `8u. We have v P rKs and rlw ‰ rlw´1

for all w P rvs. Note that

p´1 “ pK “ ym´1
a , r0 “ ym´1

c ,

p0 “ y0a, r0 “ y0c ,

p0 “ yj1a , rl0 “ r1 “ yj1c ,

plw´1 “ y
jlw´1`1
a , rlw´1 “ y

jlw´1`1
c ,

plw´1 “ y
jlw
a , rlw “ y

jlw
c ,

for all w P rvs, and

pK “ p´1 “ yjK`1
a , rK “ yjK`1

c .

Since it always holds that rK “ rlv , there are two cases depending on the value of qlv
and q0 as follows.

2.1.1 Suppose that rlv ‰ r0. Then, Vn|pa,cq contains the following pseudo-cube of
dimension 2:

pp0, r0q,

pp0, rl0 “ r1q,

ppl1´1, rl0q,

ppl1´1, ql1q,

...
pplv´1, rlv´1

q,

pplv´1, rlv q,

pp´1, rlv q,

pp´1, r0q,

which contradicts the assumption that dimpVnq “ 1.
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2.1.2 Suppose that rlv “ r0. Then, Vn|pa,cq contains the following pseudo-cube of
dimension 2:

pp0, r0q,

pp0, rl0 “ r1q,

ppl1´1, rl0q,

ppl1´1, ql1q,

...
pplv´1, rlv´1q,

pplv´1, rlv “ r0q,

which contradicts the assumption that dimpVnq “ 1.
2.2 Suppose that rk “ r1 for all k P rKs. Then, we have

p´1 “ ym´1
a , r0 “ ym´1

c ,

p0 “ y0a, r0 “ y0c ,

p0 “ yj1a , r1 “ yj1c ,

p´1 “ yjK`1
a , r1 “ yjK`1

c ,

which implies that Vn|pa,cq contains a pseudo-cube of dimension 2.

Thus, Case 2 does not exist either.

In conclusion, there exists no cycle in the hypergraph GpVnq “ pVn, Enq.

Proof of Theorem 3.2. It suffices to show that the for any n P N and Vn Ď Yn, the average degree of
G “ GpVnq “ pVn, Enq with |Vn| ă 8 and dimpVnq “ 1 is at most 2.

We prove by induction on |Vn|. When |Vn| “ 1, we have En “ H and avgdegpGq “ 0 ă 2. When
|Vn| “ 2, we have

ř

ePEn:|e|ě2 |e| ď 2 and avgdegpGq ď 1 ă 2. Suppose that avgdegpGq ď 2

for any Vn of size |Vn| ď m with some m P N. When |Vn| “ m ` 1, since there is no cycle in G
according to Proposition 3.3, the set of vertices of degree 1 pV 1

n :“ ty P Vn : degpyq “ 1uq is not
empty. Define V 2

n :“ VnzV 1
n and E2

n to be the edge set such that pV 2
n , E

2
nq is the one-inclusion graph

on V 2
n . Then, we have |V 2

n | “ |Vn| ´ |V 1
n | ď m and

ÿ

ePEn:|e|ě2

|e| ď
ÿ

ePE2
n:|e|ě2

|e| ` 2|V 1
n |

because deleting a vertex of degree 1 decreases the total degree by at most 2. By the induction
hypothesis, we have

ř

ePE2
n

|e| ď 2|V 2
n |. Thus,

ÿ

ePEn:|e|ě2

|e| ď 2p|V 1
n | ` |V 2

n |q “ 2|Vn|

which implies that avgdegpGq ď 2. By induction, avgdegpGq ď 2 for any Vn with |Vn| ă 8 and
dimpVnq “ 1.

G Pivot shifting

In this section, we present the proofs of Lemma 3.6 and Lemma 3.8.

Proof of Lemma 3.6. For notational convenience, we let V 1
n´1 denote PpVnq which is defined in

Definition 3.5. Define

Vn´1 :“
ď

yPY

␣

py1, . . . , yn´1q P Yn´1 : py1, . . . , yn´1, yq P Vn

(
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and

V 2
n´1 :“ Vn´1zV 1

n´1.

Let En denote the edge set in GpVnq and En´1 denote the edge set in GpVn´1q. For any y P Y ,
define

Vn,y :“
␣

py1, . . . , ynq P Vn : yn “ y, py1, . . . , yn´1q P V 1
n´1

(

.

By the assumption on a P Y , we have |Vn| “ |V 2
n´1| `

ř

yPY |Vn,y|, |V 1
n´1| “ |Vn,a|, and |Vn| ´

|Vn´1| “
ř

yPYztau |Vn,y|. Defining

En
n :“ tpei,f , iq P En : i “ nu,

we have
ÿ

ePEn
n

p|e| ´ 1q “ |Vn| ´ |Vn´1|.

For any y P Y , we define

En,y :“ tpei,f , iq P En : fpnq “ y, i P rn ´ 1su

and let E1
n,y denote the edge set in GpVn,yq; for any e “ pei,f , iq P En,y , we define

s1peq :“ |ty P ei,f : y P Vn,yu| and s2peq :“ |ty P ei,f : y R Vn,yu|.

Then, we have |e| “ s1peq ` s2peq, En “ pYyPYEn,yq Y En
n , and

ÿ

ePEn´1

p|e| ´ 1q

ě
ÿ

ePEn,a

p|e| ´ 1q `
ÿ

yPYztau

˜

ÿ

ePEn,y :s1peq“0

ps2peq ´ 1q `
ÿ

ePEn,y:s1peqě1

s2peq

¸

.

Note that by the induction hypothesis, we have
ÿ

ePEn´1

p|e| ´ 1q ď d|Vn´1|

and by definition, we also have
ÿ

ePE1
n,y

p|e| ´ 1q “
ÿ

ePEn,y :s1peqě2

ps1peq ´ 1q.

We claim that dimpVn,yq ď d´ 1 for all y P Yztau. Suppose on the contrary that dimpVn,yq ą d´ 1.
Since dimpVnq “ d, we have dimpVn,yq “ d and there exists a set i :“ ti1, . . . , idu Ď rns with
i1 ă i2 ă ¨ ¨ ¨ ă id such that Vn,y|i contains a pseudo-cube Hy of dimension d. Since for any
py1, . . . , ynq P Vn,y , we have yn “ y, it must hold that id ď n ´ 1. Now, we can define

Hy,a :“tpyi1 , . . . , yid , aq P Yd`1 : pyi1 , . . . , yidq P Hyu
ď

tpyi1 , . . . , yid , yq P Yd`1 : pyi1 , . . . , yidq P Hyu.

By the assumption that |V 1
n´1| “ |Vn,a|, we have |Hy,a| “ 2|Hy| and Hy,a Ď Vn|pi1,...,id,nq. For

any k P rds and any pyi1 , . . . , yid , yq, pyi1 , . . . , yid , aq P Hy,a, since there exists an k-neighbor
of pyi1 , . . . , yidq denoted by pyi1 , . . . , y

1
ik
, . . . , yidq in Hy, pyi1 , . . . , y

1
ik
, . . . , yid , y

1q P Hy,a is a k-
neighbor of pyi1 , . . . , yid , y

1q in Hy,a for y1 “ y, a. Moreover, pyi1 , . . . , yid , yq is a pd` 1q-neighbor
of pyi1 , . . . , yid , aq in Hy,a and vise-versa. Thus, Hy,a is a pseudo-cube of dimension d ` 1, which
contradicts the assumption that dimpVnq ď d. Therefore, we must have dimpVn,yq ď d ´ 1. Then,
by the induction hypothesis, we have for any y P Yztau,

ÿ

ePE1
n,y

p|e| ´ 1q ď pd ´ 1q|Vn,y|.
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Summarizing the results above, we have
ÿ

ePEn

p|e| ´ 1q

“
ÿ

ePEn
n

p|e| ´ 1q `
ÿ

yPY

ÿ

ePEn,y

p|e| ´ 1q

“
ÿ

ePEn
n

p|e| ´ 1q `
ÿ

ePEn,a

p|e| ´ 1q`

ÿ

yPYztau

˜

ÿ

ePEn,y:s1peq“0

ps2peq ´ 1q `
ÿ

ePEn,y :s1peq“1

s2peq `
ÿ

ePEn,y:s1peqě2

ps2peq ` ps1peq ´ 1qq

¸

“
ÿ

ePEn
n

p|e| ´ 1q `
ÿ

ePEn,a

p|e| ´ 1q `
ÿ

yPYztau

˜

ÿ

ePEn,y :s1peq“0

ps2peq ´ 1q `
ÿ

ePEn,y:s1peqě1

s2peq

¸

`
ÿ

yPYztau

ÿ

ePEn,y :s1peqě2

ps1peq ´ 1q

ď|Vn| ´ |Vn´1| `
ÿ

ePEn´1

p|e| ´ 1q `
ÿ

yPYztau

ÿ

ePE1
n,y

p|e| ´ 1q

ď|Vn| ´ |Vn´1| ` d|Vn´1| `
ÿ

yPYztau

pd ´ 1q|Vn,y|

“|Vn| ´ |Vn´1| ` d|Vn´1| ` pd ´ 1qp|Vn| ´ |Vn´1|q

“d|Vn|.

Proof of Lemma 3.8. Consider arbitrary n P Nzt1u and Vn Ď Yn. By the definition of PapVnq, we
have |V γ

n | “ |Vn|. Let En denote the edge set of GpVnq and En,γ denote the edge set of GpV γ
n q. It

suffices to prove that
ř

ePEn
p|e| ´ 1q ď

ř

ePEn,γ
p|e| ´ 1q. Define

Ei
n :“ tpek,f , kq P En : k “ iu and Ei

n,γ :“ tpek,f , kq P En,γ : k “ iu

for all i P rns. By the definition of V γ
n , we have

ÿ

ePEn
n

p|e| ´ 1q “
ÿ

ePEn
n,γ

p|e| ´ 1q. (23)

For any i P rns and f : rnsztiu Ñ Y , we define

ei,f :“ tpy1, . . . , ynq P Vn : yk “ fpkq @k P rnsztiuu and

eγi,f :“ tpy1, . . . , ynq P V γ
n : yk “ fpkq @k P rnsztiuu

to distinguish edges in En and En,γ . For any y P Y , i P rn ´ 1s, and f : rn ´ 1sztiu Ñ Y , define
fy : rnsztiu Ñ Y such that fy|rn´1sztiu “ f and fypnq “ y. Then, we have

ÿ

yPYztau:pei,fy ,iqPEn

p|ei,fy | ´ 1q ´
ÿ

yPYztau:peγi,fy ,iqPEn,γ

p|eγi,fy | ´ 1q

ď1peγi,fa ,iqPEn,γ
p|eγi,fa | ´ 1q ´ 1pei,fa ,iqPEn

p|ei,fa | ´ 1q

which implies that
n´1
ÿ

i“1

ÿ

ePEi
n

p|e| ´ 1q ď

n´1
ÿ

i“1

ÿ

ePEi
n,γ

p|e| ´ 1q.

and from (23),
ÿ

ePEn

p|e| ´ 1q ď
ÿ

ePEn,γ

p|e| ´ 1q.

Thus, we can conclude that avgoutdegpGpV γ
n qq ě avgoutdegpGpVnqq for any γ P Γa,Vn

.
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H Lemmas regarding graph dimension

In this section, we provide the technical lemmas on learning with finite graph dimension and bounding
the graph dimension of certain classes. Those lemmas are used in the proof of Theorem 2.7.

H.1 Learning algorithm for classes with finite graph dimension

We first provide the definition of graph dimension.
Definition H.1 (Graph dimension). For H Ď YX and n P N, x “ px1, . . . , xnq P Xn is said to be
G-shattered by H is there exists f : rns Ñ Y such that for any i Ď rns, there exists g P H satisfying
gpxiq “ fpiq for all i P i and gpxiq ‰ fpiq for all i P rnszi. The graph dimension of H, denoted as
dimGpHq is the maximum size of a G-shattered sequence.

Define Log : r0,8q Ñ r1,8q, x ÞÑ logpx _ eq where x _ e “ maxtx, eu. For any H Ď YX ,
n P rdimGpHqs, and x “ tx1, . . . , xnu Ď X that is G-shattered by H, there exists f : rns Ñ Y such
that for any i Ď rns, there exists g P H satisfying gpxiq “ fpiq for all i P i and gpxiq ‰ fpiq for all
i P rnszi. Thus, we can define

Hpxq :“
!

h : rns Ñ t0, 1u, i ÞÑ 1
rhpxiq“fpiq

ˇ

ˇ rh P H
)

.

For general n P N, x Ď X with |x| “ n, and f P Yn, we define

Hf pxq :“
!

h : rns Ñ t0, 1u, i ÞÑ 1
rhpxiq“fpiq

ˇ

ˇ rh P H
)

and

τHpnq :“ sup
xĎX :|x|“n

sup
fPYn

|Hf pxq|.

Note that τHpnq “ |Hpxq| “ 2n for any n P rdimGpHqs. We have the following lemma.

Lemma H.2. For any H Ď YX with dimGpHq “ d, we have τHpnq ď
řd

i“0

`

n
i

˘

. In particular, if
n ě d, then τHpnq ď pen{dqd.

Proof. We first prove by induction on n that for any x “ tx1, . . . , xnu Ď X and f P Yn,

|Hf pxq| ď |tx1 Ď x : H G-shatters x1u|. (24)

For n “ 1, it is obviously that |Hf pxq| ď 2 and |tx1 Ď x : H G-shatters x1u| ě 1. If |tx1 Ď x :
H G-shatters x1u| “ 1, then x is not G-shattered by H, which implies that |Hf pxq| ď 1. Thus, (24)
holds. Now, suppose that (24) holds for any k ă n. Consider sx :“ tx2, . . . , xnu,

Y 0 :“ tpy2, . . . , ynq P t0, 1un´1 : p0, y2, . . . , ynq P Hf pxq or p1, y2, . . . , ynq P Hf pxqu, and

Y 1 :“ tpy2, . . . , ynq P t0, 1un´1 : p0, y2, . . . , ynq P Hf pxq and p1, y2, . . . , ynq P Hf pxqu.

We have |Hf pxq| “ |Y 0| ` |Y 1| and |Y 0| “ |Hf psxq|. Then, by the induction hypothesis, we have

|Y 0| ď |tx1 Ď sx : H G-shatters x1u| “ |tx1 Ď x : x1 R x1 and H G-shatters x1u|.

For any y P Y , define

Hy :“ th P H : Dh1 P H s.t. h|x and h1|x differs only at 1 and y P thpx1q, h1px1quu.

Then, Hy G-shatters x1 Ď sx implies that H G-shatters x1 Y tx1u. We also have Y 1 “ Hfp1q

f psxq. It
follows from the induction hypothesis that

|Y 1| “ |Hfp1q

f psxq| ď |tx1 Ď sx : Hfp1q G-shatters x1u| ď |tx1 Ď x : x1 P x1 and H G-shatters x1u|.

In conclusion, we have

|Hf pxq|

“|Y 0| ` |Y 1|

ď|tx1 Ď x : x1 R x1 and H G-shatters x1u| ` |tx1 Ď x : x1 P x1 and H G-shatters x1u|

“|tx1 Ď x : H G-shatters x1u|,
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which is exactly (24). By (24), we have

τHpnq ď |tx1 Ď x : H G-shatters x1u| ď

d
ÿ

i“0

ˆ

n

i

˙

.

For any (measurable) classifier h : X Ñ Y , define

ERphq :“ tpx, yq P X ˆ Y : hpxq ‰ yu.

Then, for any probability measure D over X ˆ Y , we can define

erDphq :“ DpERphqq “ PpX,Y q„DphpXq ‰ Y q.

Definition H.3. S Ď X ˆ Y is said to be a an ε-net (ε P p0, 1q) for H Ď YX with respect to a
distribution D over X ˆ Y if for any h P H,

erDphq ě ε ùñ ERphq X S “ tpx, yq P S : hpxq ‰ yu ‰ H.

For any integer n P N, set Z , and T “ pz1, . . . , znq P Zn, we say z P T if z “ zi for some i P rns

and use |T | to denote the length of the sequence T . For notational convenience, we use H to also
denote an empty sequence (a sequence of length 0). For any subset E Ď Z , we use T X E “ E X T
to denote the subsequence of T consisting of all elements in E, i.e., for I :“ ti P rns : zi P Eu,

T X E “ E X T “ pziqiPI .

Then, we have |T X E| “ |E X T | “ |I|.
Proposition H.4. For any H Ď YX with dimGpHq “ d, any H-realizable distribution D, any
δ P p0, 1s, any n P N, and any ERM algorithm A, consider Sn „ Dn. With probability at least 1 ´ δ,
we have

erDpApSn,Hqq ď
2

n

„

d _

ˆ

d log2

ˆ

2en

d

˙˙

` log2

ˆ

2

δ

˙ȷ

.

Proof. For any n ě 2 and ε P r2{n, 1s, define

B :“ tS P pX ˆ Yqn : Dh P H s.t. erDphq ě ε and ERphq X S “ Hu and

B1 :“
␣

pS, T q P pX ˆ Yq2n : |S| “ |T | “ |n|, Dh P H s.t.

erDphq ě ε, ERphq X S “ H, and |ERphq X T | ą εn{2
(

.

Let pS, T q „ D2n with S, T P pX ˆ Yqn. Since pS, T q P B1 implies that S P B, we have

PppS, T q P B1q “ Er1pS,T qPB11SPBs “ Er1SPBPppS, T q P B1|Sqs.

On S P B, there exists h P H such that erDphq ě ε and ERphqXS “ H. Then, |ERphqXT | ą εn{2
implies that pS, T q P B1. It follows that

1SPBPppS, T q P B1|Sq ě 1SPBPp|ERphq X T | ą εn{2|Sq.

Since T is independent of S, h is determined by S, and DpERphqq “ erDphq ě ε on S P B, we
know that on S P B, |ERphq X T | follows the Binomial distribution Bpn, erDphqq conditional on S,
and

1SPBEr|ERphq X T ||Ss “ erDphqn1SPB ě εn1SPB .

Thus, by Lemma H.8, since nε ě 2, we have

1SPBPp|ERphq X T | ď εn{2|Sq ď Pp|ERphq X T | ď erDphqn{2|Sq1SPB ă
1

2
1SPB ,

which implies that

PppS, T q P B1q ą
1

2
PpS P Bq.
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By the definition of B1, we have

PppS, T q P B1q “E
„

sup
hPH

1erDphqěε1ERphqXS“H1|ERphqXT |ąεn{2

ȷ

“E
„

sup
hPH

1erDphqěε1ERphqXS“H1|ERphqXpS,T q|ąεn{2

ȷ

ďE
„

sup
hPH

1ERphqXS“H1|ERphqXpS,T q|ąεn{2

ȷ

.

For any m P N, r “ ppx1, y1q, . . . , pxm, ymqq P pX ˆ Yqm, and h P YX , we define

hr : rms Ñ t0, 1u, i ÞÑ 1hpxiq“yi

and Hr :“ thr : h P Hu. Note that Hr “ Hpy1,...,ymqppx1, . . . , xmqq, which implies that

|Hr| ď τHpmq. (25)

For any k P rms and 1 ď i1 ă ¨ ¨ ¨ ă ik ď m, we use rpi1,...,ikq to denote a permutation of r where
pxj , yjq appears in the ij-th position for all j P rks, specifically, rti1,...,iku “ pxσpiq, yσpiqqiPrns

where σpijq :“ j for all j P rks and pσplqqlPrnszti1,...,iku :“ pk ` 1, . . . ,mq. Then, for any i Ď r2ns

with |i| “ n, we have

sup
hPH

1ERphqXS“H1|ERphqXpS,T q|ąεn{2 ď
ÿ

hPHpS,T q

1hpiq“1, @iPrns1
ř

iPr2ns hpiqăp2´ε{2qn

“
ÿ

hPHpS,T qi

1hpiq“1, @iPi1
ř

iPr2ns hpiqăp2´ε{2qn.

Since pS, T q „ D2n, we also have

E

»

–

ÿ

hPHpS,T qi

1hpiq“1, @iPi1
ř

iPr2ns hpiqăp2´ε{2qn

fi

fl “ E

»

–

ÿ

hPHpS,T q

1hpiq“1, @iPi1
ř

iPr2ns hpiqăp2´ε{2qn

fi

fl .

Thus,

E
„

sup
hPH

1ERphqXS“H1|ERphqXpS,T q|ąεn{2

ȷ

ď
1

`

2n
n

˘

ÿ

iĎr2ns:|i|“n

E

»

–

ÿ

hPHpS,T q

1hpiq“1, @iPi1
ř

iPr2ns hpiqăp2´ε{2qn

fi

fl

“E

»

–

ÿ

hPHpS,T q

1
ř

iPr2ns hpiqăp2´ε{2qn
1

`

2n
n

˘

ÿ

iĎr2ns:|i|“n

1hpiq“1, @iPi

fi

fl

ďE

»

–

ÿ

hPHpS,T q

1
ř

iPr2ns hpiqăp2´ε{2qn

`

tp2´ε{2qnu

n

˘

`

2n
n

˘

fi

fl

ď2´εn{2E

»

–

ÿ

hPHpS,T q

1
ř

iPr2ns hpiqăp2´ε{2qn

fi

fl (26)

ď2´εn{2E
“

|HpS,T q|
‰

ď2´εn{2τHp2nq, (27)

where (26) follows from Lemma H.7 and (27) follows from (25). Finally, we have proved that

DnpBq “ PpS P Bq ă 2PppS, T q P B1q ď 2τHp2nq2´εn{2. (28)

Since D is H-realizable and A is an ERM algorithm, we must have ApSn,Hq P H and

ERpApSn,Hqq X Sn “ H
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almost surely. Moreover, by the definition of B, if Sn R B, then ERpApSn,Hqq X Sn “ H implies
that erDpApSn,Hqq ă ε. Thus, we have

P perDpApSn,Hqq ă εq ě PpSn R Bq “ 1 ´ DnpBq.

Solving 2τHp2nq2´εn{2 “ δ, we get

ε “ 1 ^

„

2

n

ˆ

log2pτHp2nqq ` log2

ˆ

2

δ

˙˙ȷ

ď
2

n

„

d _

ˆ

d log2

ˆ

2en

d

˙˙

` log2

ˆ

2

δ

˙ȷ

where the last inequality follows from Lemma H.2. Note that 1^
“

2
n

`

log2pτHp2nqq ` log2
`

2
δ

˘˘‰

ě
2
n , which implies that the above choice of ε is legitimate. Applying (28), we can conclude that with
probability at least 1 ´ δ,

erDpApSn,Hqq ă
2

n

„

d _

ˆ

d log2

ˆ

2en

d

˙˙

` log2

ˆ

2

δ

˙ȷ

.

Proposition H.5. There exists a learning algorithm AG such that for any H Ď YX with dimGpHq “

d, any H-realizable distribution D, any δ P p0, 1s, and any n P N, given Sn „ Dn, it holds with
probability at least 1 ´ δ that

erDpAGpSn,Hqq “ O

ˆ

1

n

ˆ

d ` Log

ˆ

1

δ

˙˙˙

. (29)

Proof. The algorithm AG is the algorithm Sn ÞÑ MajoritypERMHpApSn;Hqqq defined in Hanneke
[2016], where ERMH denotes an ERM algorithm on the concept class H. Applying the error rate of
ERM algorithms proved in Proposition H.4 in the proof of Hanneke [2016, Theorem 2], we establish
(29).

The above proposition immediately implies the following corollary on the expected error rate of the
learning algorithm AG.
Corollary H.6. There exists a learning algorithm AG such that for any H Ď YX with dimGpHq “ d,
any H-realizable distribution D, and any n P N it holds that

ESn„Dn rerDpAGpSn,Hqqs “ EppSn,pX,Y qq„Dn`1 rAGpSn,HqpXq ‰ Y s “ O

ˆ

d

n

˙

. (30)

Proof. According to Proposition H.5, there exists some constant C ą 0 such that for any δ P p0, 1s,
it holds with probability at least 1 ´ δ that

erDpAGpSn,Hqq ď
C

n

ˆ

d ` log

ˆ

1

δ
_ e

˙˙

,

which implies that for any t ě
Cpd`1q

n ,

P perDpAGpSn,Hqq ą tq ď e´ nt
C `d.

Since erDpAGpSn,Hqq is nonnegative, we have

E rerDpAGpSn,Hqqs “

ż 8

0

P perDpAGpSn,Hqq ą tq dt

ď
Cpd ` 1q

n
`

ż 8

Cpd`1q

n

e´ nt
C `ddt

“
Cpd ` 1 ` e´1q

n

“O

ˆ

d

n

˙

.
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Lemma H.7. For any n P N and m P N X rn, 2ns, we have
`

m
n

˘

`

2n
n

˘ ď 2m´2n. (31)

Proof. Note that
`

m
n

˘

`

2n
n

˘ “
mpm ´ 1q ¨ ¨ ¨ pm ´ n ` 1q

2np2n ´ 1q ¨ ¨ ¨ pn ` 1q
.

We prove by induction on m. When m “ 2n, we have
`

m
n

˘

`

2n
n

˘ “ 1 “ 2m´2n.

Suppose that (31) holds for some m P N X rn ` 1, 2ns. Then, we have
`

m´1
n

˘

`

2n
n

˘ “
m ´ n

m

`

m
n

˘

`

2n
n

˘ ď
1

2
¨ 2m´2n “ 2m´1´2n.

Thus, by induction, (31) holds for any m P N X rn, 2ns.

Lemma H.8. For X „ Bpn, pq, if np ě 2, then

PpX ď np{2q ă 1{2.

Proof. If np ą 8, since ErXs “ np, by the multiplicative Chernoff bound, we have

PpX ď np{2q ď e´np{8 ă e´1 ď 1{2.

For 2 ď np ď 8, we have

PpX ď np{2q “

tnp{2u
ÿ

i“0

ˆ

n

i

˙

pip1 ´ pqn´i.

For 6 ď pn ď 8, we have 6{n ď p ď 8{n and n ě 6. Thus,

PpX ď np{2q “

3
ÿ

i“0

ˆ

n

i

˙

pip1 ´ pqn´i.

Consider

f3px, pq :“ logpxpx ´ 1qpx ´ 2qq ` px ´ 3q logp1 ´ pq, x ě 6, 1 ě p ě 6{x.

Fixing p P p0, 1s, we have x ě 6{p and for x ě 6{p,

B

Bx
f3px, pq “

1

x
`

1

x ´ 1
`

1

x ´ 2
` logp1 ´ pq ď

1

x
`

1

x ´ 1
`

1

x ´ 2
´ p

ď
p

6
`

p

6 ´ p
`

p

6 ´ 2p
´ p ă 0.

Thus, fixing p P p0, 1s, f3p¨, pq is a decreasing function on r6{p,8q. Therefore, we have

f3px, pq ď f3p6{p, pq,

which implies that

g3px, pq ď g3p6{p, pq

for

g3px, pq :“
xpx ´ 1qpx ´ 2q

6
p3p1 ´ pqx´3, p P p0, 1s, x ě 6{p.
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Since log z´z`1 ď 0 for z P p0, 1s and g1pzq “ log z´z`1 for gpzq :“ z logpzq`1´z´ 1
2 p1´zq2

defined on z P p0, 1s, we have

0 “ gp1q ď gpzq ď lim
zÑ0`

gpzq “ 1{2

for z P p0, 1s. Thus, we have

logpzq `
p1 ´ zqp1 ´ 1´z

2 q

z
ě 0.

Plugging in z “ 1 ´ 6{t for t ą 6, we have

logp1 ´ 6{tq `
6{tp1 ´ 3{tq

1 ´ 6{t
ě 0.

Then, defining

fptq :“ logptq ` logpt ´ 1q ` logpt ´ 2q ´ 3 logptq ` pt ´ 3q logp1 ´ 6{tq, t ą 6,

we have

f 1ptq “
1

t
`

1

t ´ 1
`

1

t
´

3

t
` logp1 ´ 6{tq `

6{tp1 ´ 3{tq

1 ´ 6{t
ą 0,

which implies that fptq increases with t for t ą 6. Since

g3p6{p, pq “
6{pp6{p ´ 1qp6{p ´ 2q

6
p3p1 ´ pq6{p´3

and

efptq “ tpt ´ 1qpt ´ 2qt´3p1 ´ 6{tqt´3,

we know that g3p6{p, pq decreases with p P p0, 1s. Thus,

f3p6{p, pq ď lim
pÑ0`

g3p6{p, pq “ lim
tÑ8

tpt ´ 1qpt ´ 2q

6
p6{tq3p1 ´ 6{tqt´3 “ 36e´6.

Following the above steps, for

g2px, pq :“
xpx ´ 1q

2
p2p1 ´ pqx´2,

g1px, pq :“ xpp1 ´ pqx´1, and
g0px, pq :“ p1 ´ pqx,

where p P p0, 1s, x ě 6{p,

it is easy to prove that for any i “ 0, 1, 2, and p P p0, 1s,

gipx, pq ď gip6{p, pq ď lim
pÑ0`

gip6{p, pq.

Specifically, we have

g2px, pq ď lim
tÑ8

tpt ´ 1q

2
p6{tq2p1 ´ 6{tqt´2 “ 18e´6,

g1px, pq ď lim
tÑ8

tp6{tqp1 ´ 6{tqt´1 “ 6e´6, and

g0px, pq ď lim
tÑ8

p1 ´ 6{tqt “ e´6.

Then, we can conclude that

PpX ď np{2q ď

3
ÿ

i“0

sup
pPp0,1s,xě6{p

gipx, pq “ p36 ` 18 ` 6 ` 1qe´6 ă
1

2
.
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Next, we consider the regime that 4 ď np ă 6. Now, we have

PpX ď np{2q “

2
ÿ

i“0

ˆ

n

i

˙

pip1 ´ pqn´i ď

2
ÿ

i“0

sup
pPp0,1s,xě4{n

gipx, pq.

Following the procedures in the previous case, it is not hard to verify that for i “ 0, 1, 2,

sup
pPp0,1s,xě4{n

gipx, pq “ lim
pÑ0

gip4{p, pq “ lim
tÑ8

4i

i!
p1 ´ 4{tqt´i “

4i

i!
e´4.

It implies that

PpX ď np{2q “

2
ÿ

i“0

ˆ

n

i

˙

pip1 ´ pqn´i ď

2
ÿ

i“0

4i

i!
e´4 ă

1

2
.

Finally, we consider the regime that 2 ď np ă 4. Now, we have

PpX ď np{2q “ p1 ´ pqn ` npp1 ´ pqn´1 ď

1
ÿ

i“0

sup
pPp0,1s,xě2{n

gipx, pq.

Following the previous procedures, it is not hard to verify that for i “ 0, 1,

sup
pPp0,1s,xě2{n

gipx, pq “ lim
pÑ0

gip2{p, pq “ lim
tÑ8

2i

i!
p1 ´ 2{tqt´i “

2i

i!
e´2.

It implies that

PpX ď np{2q ď

1
ÿ

i“0

2i

i!
e´2 ă

1

2
.

In conclusion, if np ě 2, then

PpX ď np{2q ă
1

2
.

H.2 Bounding the graph dimension

For any H Ď YX of DS dimension dimpHq “ d ă 8, sequence S “ px1, . . . , xnq P Xn, menu
µ : X Ñ tY Ď Y : |Y | ď pu of size p P N with n P N, and d1 P rns, define

HS,µ,d1 :“
␣

h|S : h P H, |ti P rns : hpxiq R µpxiqu| ď d1
(

,

HS,µ,i :“ th|S : h P H, ti P rns : hpxiq R µpxiqu Ď iu , and

H1
S,µ,i :“

!

h : rnszi Ñ Y, i ÞÑ rhpiq
ˇ

ˇ rh P HS,µ,i

)

for all i P 2
rns

d1 which denotes the collection of all subsets of rns of size d1. We have the following
lemma.
Lemma H.9. dimGpHS,µ,d1 q ď p2 log2peq ` 4qp5d log2ppq ` 2d1q for any d1 P rns.

Proof. For any i P 2
rns

d1 , by Bendavid et al. [1995], Daniely and Shalev-Shwartz [2014], we have

dimGpH1
S,µ,iq ď 5 log2ppqdimN pH1

S,µ,iq ď 5 log2ppqdimpHq “ 5d log2ppq.

For any j Ď rns that is G-shattered by HS,µ,i, define j1 :“ jzi. We have that |j1
| ě |j| ´ d1 and

j1 is G-shattered by H1
S,µ,i, which immediately implies that |j1

| ď dimGpH1
S,µ,iq ď 5d log2ppq and

|j| ď |j1
| ` d1 ď 5d log2ppq ` d1. It follows that

dimGpHS,µ,iq ď 5d log2ppq ` d1 “: d1.
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For any m P N and j “ tj1, . . . , jmu Ď rns that is G-shattered by HS,µ,d1 , there exists f : rms Ñ Y
such that for any K Ď rms, there exists g P HS,µ,d1 satisfying gpjkq “ fpkq for all k P K and
gpjkq ‰ fpkq for all k P rmszK. It follows that |HS,µ,d1 pjq| “ 2m. If m ą d1, by Lemma H.2, we
have

2m “ |HS,µ,d1 pjq| ď
ÿ

iP2j
d1

|pHS,µ,iqf pjq| ď
ÿ

iP2j
d1

τHS,µ,i pmq ď

ˆ

m

d1

˙

˜

2d1 _

ˆ

em

d1

˙d1
¸

,

which implies that

m ď d1

ˆ

1 _ log2

ˆ

em

d1

˙˙

` log2

ˆ

m

d1

˙

ď d1

ˆ

1 _ log2

ˆ

em

d1

˙˙

` d1 log2

´em

d1

¯

By Lemma H.11, we have

m ď p2 log2peq ` 4qpd1 ` d1q “ p2 log2peq ` 4qp5d log2ppq ` 2d1q,

which implies that

dimGpHS,µ,d1 q ď p2 log2peq ` 4qp5d log2ppq ` 2d1q.

Lemma H.10. If x ą 0 satisfies x ď a log2px{aq ` b for some a, b ą 0, then, we have x ď 2a ` 2b.

Proof. Define fpxq :“ x ´ a log2px{aq ´ b for x ą 0. Then, we have f 1pxq “ 1 ´ a
x logp2q

, which
implies that f decreases with x for x P p0, a{ logp2qq and increases with x for x ą a{ logp2q. Since
2a ` 2b ą a{ logp2q, it suffices to prove that fp2a ` 2bq ě 0. Indeed,

fp2a ` 2bq “ a ` b ´ a log2ppa ` bq{aq “ a ppa ` bq{a ´ log2ppa ` bq{aqq ě 0.

Lemma H.11. If x ą 0 satisfies x ď a log2px{aq ` b log2px{bq ` c for some a, b, c ą 0, then, we
have x ď 4a ` 4b ` 2c.

Proof. Since

x ďa log2px{aq ` b log2px{bq ` c

“pa ` bq log2
x

a ` b
` c ´ pa ` bq

„

a

a ` b
log2

a

a ` b
`

b

a ` b
log2

b

a ` b

ȷ

ďpa ` bq log2
x

a ` b
` c ` a ` b,

by Lemma H.10, we have

x ď 2pa ` bq ` 2pa ` b ` cq “ 4a ` 4b ` 2c.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In our abstract and introduction, we make the main claims that this paper
reduces the gap between the lower and upper bounds of the multiclass PAC sample com-
plexity and propose two possible routes towards completely resolving the optimal sample
complexity, which are the paper’s major contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As is shown in Theorem 1.9, though we have reduced a log factor, there is still
an Op

?
d logpdq logpd{εqq gap between our upper and lower bounds of the multiclass PAC

sample complexity. We leave the development of sharper sample complexity upper bound in
Open Question 1 and Open Question 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each of our theoretical results, we provide the full set of assumptions in its
statement as well as a complete and correct proof in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is fully theoretical and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

4.1 If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

4.2 If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

4.3 If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

4.4 We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper is fully theoretical and does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper is fully theoretical and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper is fully theoretical and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper is fully theoretical and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not include experiments and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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