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Abstract001

Aligning large language models (LLMs) to ac-002
curately detect hallucinations remains a signifi-003
cant challenge due to the sophisticated nature004
of hallucinated text. Recognizing that halluci-005
nated samples typically exhibit higher decep-006
tive quality than traditional negative samples,007
we use these carefully engineered hallucina-008
tions as negative examples in the DPO align-009
ment procedure. Our method incorporates a010
curriculum learning strategy, gradually transi-011
tioning the training from easier samples, iden-012
tified based on the greatest reduction in prob-013
ability scores from independent fact checking014
models, to progressively harder ones. This015
structured difficulty scaling ensures stable and016
incremental learning. Experimental evalua-017
tion demonstrates that our HaluCheck mod-018
els, trained with curriculum DPO approach019
and high quality negative samples, significantly020
improves model performance across various021
metrics, achieving improvements of upto 24%022
on difficult benchmarks like MedHallu and023
HaluEval. Additionally, HaluCheck models024
demonstrate robustness in zero-shot settings,025
significantly outperforming larger state-of-the-026
art models across various benchmarks.027

1 Introduction028

Large language models (LLMs) have achieved im-029

pressive performance across numerous NLP tasks,030

yet their deployment is limited by a tendency to pro-031

duce fluent but factually incorrect “hallucinations.”032

Such errors erode trust and carry serious risks in do-033

mains with LLM applications like healthcare (Sing-034

hal et al., 2022), software-development (Krishna035

et al., 2024) and Law (Lai et al., 2024). Although036

various detection and mitigation strategies often037

based on external fact-checkers or simplistic nega-038

tive samples have been proposed, they struggle to039

identify sophisticated, plausibly crafted falsehoods.040

To address these challenges, we introduce a041

novel alignment strategy leveraging Direct Pref-042

Figure 1: Illustration of the qualitative difference be-
tween standard negative samples used in conventional
DPO alignment and our proposed method, which lever-
ages carefully curated hallucinated answers as high-
quality negative examples in DPO alignment.

erence Optimization (DPO) (Rafailov et al., 2023), 043

enhanced through a curriculum learning (Bengio 044

et al., 2009a) (Elman, 1993a) approach specifically 045

tailored for hallucination detection. Our approach 046

incorporates high quality hallucinated samples as 047

negative samples into the alignment process instead 048

of the usual low quality negative samples that are 049

often selected from failed generations. 050

We introduce HaluCheck, a family of Hallucina- 051

tion detection LLMs at two scales aligned via our 052

curriculum-based DPO framework. We conduct ex- 053

tensive evaluations on the MedHallu (Pandit et al., 054

2025) and HaluEval (Li et al., 2023) benchmarks 055

and zero-shot evaluation on DROP, CovidQA, and 056

PubMedQA, demonstrating that HaluCheck sub- 057

stantially outperforms existing baselines, including 058

the widely adopted Llama-3.2 (1B and 3B) models. 059

Notably, HaluCheck 3B yields up to a 24% rela- 060

tive gain across core detection metrics (accuracy, 061

precision, recall, and F1-score), while remaining 062

competitive with far larger models such as GPT-4o. 063

Our contributions are summarized as follows: 064

1. We introduce a novel curriculum based sam- 065
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Figure 2: Figure showing the pipeline for selecting high-quality hallucinated negatives for Direct Preference
Optimization (DPO). Each question and context is paired with a hallucinated answer and scored for grounded
factuality via MiniCheck, then ranked by difficulty. In each batch, gold references (chosen) and top-ranked
hallucinations (rejected) form preference pairs. These pairs optimize the DPO objective, ensuring training against
vetted, high-quality negatives rather than arbitrary failures.

pling strategy that progressively selects hallu-066

cinated samples of increasing difficulty ranges067

obtained from fact verification models to en-068

hance alignment training.069

2. We introduce HaluCheck, a suite of 1B–3B070

parameter models aligned with our DPO cur-071

riculum that leverages high-quality negative072

samples to deliver hallucination detection073

gains outperforming state of the art LLMs.074

3. Results demonstrate strong transferability of075

HaluCheck across multiple benchmarks and076

domains (Sec. 5), including zeroshot evalua-077

tion, confirming robustness in hallucinations078

detection task on diverse datasets.079

2 Related Works080

Finetuning Models for Hallucination Detection081

Recent research shows that both model-centric fine-082

tuning and sampling-based methods effectively de-083

tect hallucinations. LYNX (Ravi et al., 2024), an084

open-source detector refined with distilled chain-of-085

thought reasoning, outperforms closed-source alter-086

natives and provides HaluBench(Ravi et al., 2024),087

a diverse benchmark of semantically perturbed hal-088

lucinations. FACTCHECKMATE (Alnuhait et al.,089

2024) preemptively flags hallucination risks via 090

a lightweight MLP on hidden states and uses an 091

intervention network to boost factuality with min- 092

imal overhead. SelfCheckGPT (Manakul et al., 093

2023) requires no output probabilities or external 094

knowledge: it samples multiple outputs and applies 095

consistency measures such as BERTScore (Zhang 096

et al., 2019a) at both sentence and passage levels. 097

Existing work does not exploit alignment methods 098

such as DPO (Rafailov et al., 2023), despite their 099

proven effectiveness. We introduce the first DPO 100

approach that leverages curated hallucinated nega- 101

tives, markedly improving hallucination detection. 102

Hallucination Detection Task Hallucination in 103

large language models (LLMs) has been exten- 104

sively documented across various natural language 105

processing tasks, such as machine translation (Lee 106

et al., 2019), dialogue systems (Balakrishnan et al., 107

2019), text summarization (Durmus et al., 2020), 108

and question answering (Sellam et al., 2020), as de- 109

tailed in recent survey literature (Ji et al., 2023). 110

Benchmarks like Hades (Liu et al., 2022) and 111

HaluEval (Li et al., 2023) offer strong hallucination- 112

detection protocols, and MedHallu (Pandit et al., 113

2025) provides carefully crafted adversarial an- 114

swers that are ideal for our alignment approach. 115
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Model Average F1 MedHallu (Pandit et al., 2025) HaluEval (Li et al., 2023)

F1 Precision Accuracy F1 Precision Accuracy

Qwen-2.5 1.5B 0.464 0.227 0.642 0.525 0.701 0.568 0.610
LLama-3.2 1B 0.237 0.108 0.406 0.494 0.366 0.450 0.466
Qwen-2.5 3B 0.638 0.606 0.495 0.492 0.671 0.506 0.512
LLama-3.2 3B 0.612 0.499 0.696 0.566 0.726 0.743 0.732
LLama-3.1 8B 0.571 0.522 0.791 0.608 0.620 0.903 0.711
Qwen-2.5 14B 0.720 0.619 0.691 0.633 0.821 0.862 0.829
GPT 4o 0.799 0.737 0.723 0.772 0.862 0.896 0.867

HalluCheck-Llama 1B 0.637 0.664 0.511 0.527 0.611 0.481 0.468
HalluCheck-Llama 3B 0.756 0.759 0.845 0.782 0.753 0.857 0.767

Table 1: Performance comparison of various models on the MedHallu and HaluEval hallucination detection
benchmarks. Our proposed HaluCheck variants (1B and 3B) consistently outperform significantly larger foundational
models. Notably, HaluCheck 3B demonstrates superior or comparable performance across both benchmarks,
highlighting its efficiency and effectiveness despite its smaller size. Best scores are bold, runners-up are underlined.

For the purpose of this work we choose MedHallu116

and HaluEval for the DPO alignment, as they have117

high quality hallucinated samples. Our proposed118

method is agnostic of task, and can be extended to119

other hallucination detection tasks like in summa-120

rization and dialogue answering setting.121

3 Hallucination Detection and Alignment122

Problem formulation For each sample i we de-123

fine Let x(i) denote the detection prompt (context +124

question + task instruction), y(i)
hall represent the hal-125

lucinated class completion, and y
(i)
true represent the126

factual class completion. We define l(i) ∈ {0, 1}127

as the gold label, where a value of 1 indicates hal-128

lucination. From every labelled example we obtain129

a preference pair (x(i),y
(i)
w ,y

(i)
l ), where130

(y(i)
w ,y

(i)
l ) =

{(
y
(i)
true,y

(i)
hall

)
131

MiniCheck-Based Grounding Difficulty scoring132

Before curriculum partitioning, we evaluate how133

well each hallucinated output is supported by its134

context using MiniCheck (Tang et al., 2024). For135

each example (x(i),y
(i)
hall), we treat question =136

y
(i)
hall and context = x(i), and compute the ground-137

ing probability138

p
(i)
l = F

(
question = y

(i)
hall

∣∣ context = x(i)
)
.139

We then use p
(i)
l to score difficulty and drive our140

curriculum stages. After sorting all examples141

by p
(i)
l (ascending), {Bs}Ss=1 ← split into S bins.142

Lower pl indicates easier hallucination cases,143

ensuring the curriculum starts with easy (high-144

grounding) and gradually moves to harder ones.145

DPO Objective for Hallucination Detection 146

Let πθ be the current policy and πref the frozen 147

reference model. With trust–region parameter β, 148

and σ(z) = 1/(1 + e−z) the batch loss is: 149

LDPO(θ) =−
∑

(x,yw,yl)∈B

log σ
(
β
[
log πθ(yw |x) 150

− log πθ(yl |x)
]
− β

[
log πref(yw |x) 151

− log πref(yl |x)
])

. (1) 152

We provide a detailed algorithm for this pipeline in 153

the supplementary (Alg. 1) 154

4 Experimental Setup 155

We describe the setup in the following section, and 156

have a detailed section in supplementary C and D 157

Model & Datasets We fine-tune Llama-3.2 158

backbones (1 B and 3 B parameters) with LoRA 159

adapters under the Direct Preference Optimization 160

objective, using a joint corpus drawn from Med- 161

Hallu and HaluEval. Hallucination detection is cast 162

as binary classification via task-specific prompts. 163

Sampling Strategy & Curriculum Learning 164

Negative examples are high-quality hallucinations 165

scored by the MiniCheck fact-verifier. We sort 166

them by decreasing MiniCheck confidence drop 167

and train with a curriculum that proceeds from the 168

easiest to the hardest negatives, yielding smoother 169

and more robust convergence. 170

5 Results 171

In the upcoming sections, 5.1 ➊ we demonstrate 172

that our HaluCheck models (1B and 3B) signifi- 173

cantly outperform foundation LLMs despite their 174
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Model DROP CovidQA PQA Avg

Llama 3.2 3B 52.50 56.10 55.20 54.60
HaluCheck 3B 57.30 62.50 57.70 59.16
GPT-3.5-Turbo 57.20 56.70 62.80 58.90

Table 2: Accuracy (%) on DROP, CovidQA and
PQA (PubMedQA) for the baseline Llama 3.2 3B,
our HaluCheck 3B, and GPT-3.5-Turbo (results from
HaluBench (Ravi et al., 2024)). Results indicate strong
performance of HaluCheck in zeroshot setting.

smaller size. In Sec.5.2, we further show that175

➋ HaluCheck generalizes effectively to unseen176

datasets in a zero-shot setting, clearly outperform-177

ing its baseline model. In Sec.5.3, we validate the178

importance of using curated hallucinated samples179

rather than standard failed generations as negatives180

in DPO, showing that ➌ our model trained with181

curated hallucinated answers as negatives achieves182

superior performance. Finally, in Sec. A.1 and A.2,183

we conduct ablations demonstrating HaluCheck’s184

superior transferable skills when trained on in-185

dividual datasets, and highlight the benefits of186

curriculum-based sampling over random selection.187

5.1 HaluCheck vs Baseline188

As presented in Table 1 HaluCheck 3B, trained189

with DPO on hallucinated answers as high quality190

negative samples, significantly outperforms sim-191

ilar and larger sized models. On HaluEval, it192

achieves an F1-score of 0.753, surpassing the base-193

line LLama-3.2 3B (F1: 0.726). On MedHallu, it194

outperforms the base model by +26% F1 gain. Sim-195

ilarly, HaluCheck 1B shows strong performance196

on MedHallu (F1: 0.711), while baseline LLama-197

3.2 1B lags behind (F1: 0.366). ➊ These results198

highlight our curriculum-based DPO approach’s199

efficacy in enhancing hallucination detection while200

maintaining computational efficiency.201

5.2 Zero-shot evaluation202

To gauge out-of-domain robustness, we ran a203

strict zeroshot test of HaluCheck 3B without204

any extra tuning or prompt changes against the205

backbone model Llama-3.2 3B and much larger206

GPT-3.5-Turbo on three external QA style hallu-207

cination benchmarks taken from the HaluBench208

dataset (Ravi et al., 2024): DROP (Dua et al.,209

2019), COVIDQA (Möller et al., 2020), and PUB-210

MEDQA (Jin et al., 2019). As shown in Ta-211

ble 2, HaluCheck 3B outperforms the Llama212

3.2 3B model across the board, improving ac-213

curacy by +4.8%, +6.4%, and +2.5% on the214

Sample Type Easy Medium Hard

Mean Median Mean Median Mean Median

Standard Negative 0.282 0.202 0.273 0.201 0.248 0.182
Our Hallucinated 0.303 0.202 0.379 0.269 0.391 0.294

Table 3: Grounded factuality scores (MiniCheck
true_prob; higher is harder to spot) for standard nega-
tives versus our curated hallucinated negatives, averaged
over difficulty tiers for MedHallu dataset. The curated
set provides consistently higher means and medians,
confirming its superiority as training negatives for DPO.

respective datasets, and also outperforming the 215

GPT-3.5-Turbo on CovidQA by a substantial mar- 216

gin. ➋ These consistent gains achieved affirm that 217

our curriculum based DPO alignment with using 218

hallucinated samples as a high quality negative 219

samples confers transferable hallucination detec- 220

tion skills that scale to unseen datasets. 221

5.3 DPO using Hallucinated vs Standard 222

negative samples 223

We show the importance of choosing curated hal- 224

lucinated answers as a negative sample for DPO 225

alignment by comparing the performance of Llama- 226

3.2 3B model trained with standard negative sam- 227

ples. We sample these standard negative samples, 228

by querying LLM for the question, and keeping the 229

failed answers as negative samples, that is gener- 230

ally chosen as negative samples for DPO. We report 231

the results in Table 7, which clearly indicates that 232

➌ HaluCheck outperforms the later trained model. 233

Also, to further back this choice, we report the 234

grounded factuality score for the hallucinated an- 235

swers from MedHallu and the standard negative 236

samples we created, in Table 3, showing the superi- 237

ority of the samples as negatives for DPO, thereby 238

being a better choice for DPO. 239

6 Conclusion 240

We present HaluCheck a curriculum-guided Di- 241

rect Preference Optimization (DPO) framework 242

for training an LLM for reliable hallucination de- 243

tection task. A key contribution lies in replacing 244

generic, model-generated failures with carefully 245

curated, difficulty-ranked hallucinated samples as 246

negative preferences during DPO alignment. This 247

structured curriculum yields consistent gains, out- 248

performing larger state-of-the-art models on mul- 249

tiple benchmarks and zero-shot tasks. Ablation 250

results further validate that difficulty-aware nega- 251

tive sampling markedly strengthens the robustness 252

of smaller language models. 253
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Limitations254

Our proposed approach, while effective, exhibits255

certain limitations worth acknowledging. The256

curriculum-based Direct Preference Optimization257

(DPO) heavily relies on the quality and accuracy of258

the external fact-verification model (MiniCheck),259

potentially propagating any inherent biases or in-260

accuracies into our training process. Furthermore,261

our evaluations primarily focus on hallucinations262

within question-answering contexts, leaving unex-263

plored the effectiveness in other NLP tasks such264

as dialogue generation, summarization, or multi-265

lingual settings. Additionally, treating hallucina-266

tion detection purely as a binary classification task267

restricts the model’s ability to identify partial or268

span-level hallucinations, thus limiting fine-grained269

interpretability. Lastly, although zeroshot evalua-270

tions suggest good generalization, there remains271

a risk of overfitting to dataset-specific adversarial272

patterns used during training, which may affect273

broader applicability and robustness.274

Ethics statement275

Our work develops HaluCheck to improve reliable276

detection of hallucinations in LLM outputs, with277

the goal of reducing the risk of disseminating mis-278

leading or harmful information. Our work uses pub-279

licly available MedHallu, and HaluEval data under280

MIT licenses We acknowledge that our reliance on281

an external fact-verification model may introduce282

its own biases, and users should avoid treating au-283

tomated detectors as infallible; human oversight re-284

mains essential, especially in high-stakes domains285

like healthcare or law. We encourage ongoing eval-286

uation for fairness and transparency, and recom-287

mend that practitioners combine our approach with288

diverse verification methods to mitigate unintended289

biases or misuse.290
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A Ablations445

A.1 Training on individual datasets446

Only Train on MedHallu When we fine-tune the447

HaluCheck-Llama-3B detector exclusively on the448

MedHallu DPO set, the model achieves strong in-449

domain performance, with an F1 of 0.729, pre-450

cision of 0.892, and accuracy of 0.784 on the451

MedHallu benchmark. However, this specializa-452

tion comes at the expense of generalization: when453

evaluated on HaluEval, the same model’s F1 drops454

to 0.627, precision to 0.578, and accuracy to455

0.593. These results demonstrate that training456

solely on one dataset leads to overfitting to its457

particular style and content, limiting cross-dataset458

transfer.459

Only Train on HaluEval Conversely, training460

exclusively on the HaluEval DPO set yields a461

model that excels on HaluEval (F1 = 0.793, pre-462

cision = 0.794, accuracy = 0.793), but under-463

performs on MedHallu (F1 = 0.675, precision464

= 0.623, accuracy = 0.644). Although the in-465

domain metrics on HaluEval are highest among466

the single-dataset trainings, the drop in MedHallu467

performance again highlights the narrow adapta-468

tion of the model to the peculiarities of its training469

set.470

Training on each dataset in isolation yields high471

in-domain accuracy but poor transfer. In contrast,472

combining both DPO sets produces a model that473

maintains strong performance across MedHallu474

and HaluEval, underscoring the importance of di-475

verse hallucination examples for robust detector476

alignment.477

Figure 3: Figure showing the grounded factuality of the
hallucinated samples from MedHallu dataset. We keep
only the samples that have a score above 0.25.

Algorithm 1 Curriculum-Based DPO Alignment
for Hallucination Detection
Require: Detection data {(x(i),y

(i)
true,y

(i)
hall, l

(i))}Ni=1, fact-
checker F (using MiniCheck, returns probability), policy
πθ , frozen ref. policy πref, stages S

Ensure: Fine-tuned detector πθ

1: # Score difficulty
2: for each (x,ytrue,yhall, l) do
3: pl ← F(yl | x)
4: end for
5: # Partition into stages
6: sort by pl (asc.) and split into {Bs}Ss=1

7: # Generate preference pairs
8: for i = 1, . . . , N do
9: y

(i)
w ← y

(i)
true

10: y
(i)
l ← y

(i)
hall

11: store (x(i),y
(i)
w ,y

(i)
l )

12: end for
13: # Stage-wise DPO fine-tuning
14: for s = 1, . . . , S do
15: Define:
16: δθ(x,yw,yl) = log πθ(yw | x)− log πθ(yl | x)
17: δref(x,yw,yl) = log πref(yw | x)− log πref(yl | x)
18: Minimize over (x,yw,yl) ∈ Bs:

LDPO(θ) = −
∑

log σ
(
β δθ(x,yw,yl)

− β δref(x,yw,yl)
)

19: end for
20: return πθ

A.2 Random vs Curriculum learning DPO 478

As Table 5 shows, replacing the usual random se- 479

lection of negative samples with a curriculum that 480

feeds the model increasingly difficult hallucina- 481

tions produces a clear performance boost on both 482

benchmarks and at both parameter scales. With 483

just 1 B parameters, curriculum guided DPO lifts 484

F1 on MedHallu 0.528 for the random baseline to 485

0.664 and on HaluEval from 0.446 to 0.611 gains 486

that transform a lightweight detector from marginal 487

to competitive accuracy. The effect is even more 488

pronounced at 3 B curriculum training drives Med- 489

Hallu F1 to 0.759 and HaluEval F1 to 0.753, sur- 490

passing the random counterpart by a wide margin 491

and closing much of the gap to models an order of 492

magnitude larger. These results confirm the intu- 493

ition that hard, well vetted negatives presented in 494

a staged fashion teach the model subtler decision 495

boundaries than a grab-bag of arbitrary failures, 496

leading to more robust hallucination detection with 497

no increase in parameter count or compute budget. 498

B Additional Related Works 499

Curriculum learning Curriculum learning repre- 500

sents a training paradigm that strategically presents 501

data samples in a meaningful sequence, effec- 502
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Model DPO set MedHallu HaluEval

MedHallu HaluEval F1 Precision Accuracy F1 Precision Accuracy

HalluCheck-Llama 3B ✓ ✗ 0.729 0.892 0.784 0.627 0.578 0.593
HalluCheck-Llama 3B ✗ ✓ 0.675 0.623 0.644 0.793 0.794 0.793
HalluCheck-Llama 3B ✓ ✓ 0.759 0.845 0.782 0.733 0.857 0.767

Table 4: Performance over training with different train sets.

Model MedHallu F1 HaluEval F1

HalluCheck 1B (Random) 52.80 44.60
HalluCheck 1B (Curr.) 66.40 61.10
HalluCheck 3B (Random) 69.40 63.10
HalluCheck 3B (Curr.) 75.90 75.30

Table 5: F1 comparison of curriculum-guided vs. ran-
dom sampling for HalluCheck models on MedHallu and
HaluEval.

tively managing and optimizing the information503

a model encounters at each training step (Elman,504

1993b; Bengio et al., 2009b). Research has demon-505

strated the effectiveness of progressing from sim-506

ple to complex examples across various NLP tasks,507

including language modeling (Choudhury et al.,508

2017; Xu et al., 2020), reading comprehension509

(Tay et al., 2019), question answering (Sachan and510

Xing, 2016), and machine translation (Zhang et al.,511

2019b). In the context of LLM alignment, cur-512

riculum learning applications remain limited, with513

(Pattnaik et al., 2024) applying curriculum learning514

principles within the DPO framework for align-515

ment.516

C Detailed experimental setup517

C.1 Model and Dataset Details518

We adopt the publicly released Llama-3.2 check-519

points at two scales (1 B and 3 B parameters).520

LoRA hyper-parameters follow Hu et al. (2022):521

rank=8, α=32, dropout=0.05, and target modules522

q_proj, k_proj, v_proj, and o_proj. Training523

data comprise 9 000 examples from MedHallu’s524

pqa_artificial split plus 8 000 items (80 %)525

from the HaluEval training partition, forming 17526

000 DPO preference pairs. Evaluation is conducted527

on the 1 000-example MedHallu pqa_labeled set528

and the held-out 2 000 HaluEval test items.529

C.2 Curriculum Construction530

For every hallucinated answer hi paired with con-531

text ci, the MiniCheck verifier returns a grounding532

probability pi. Examples with pi < 0.25 (very poor533

grounding) are discarded. The remainder are sorted534

by ascending values of pi. DPO training proceeds 535

batch wise on the sorted data for four epochs, with 536

all batches trained per epoch, thereby gradually ex- 537

posing the model to increasingly difficult negatives. 538

Table 6 in the main paper reports ablations over al- 539

ternative cut-offs; the chosen 0.25–1.0 range yields 540

the highest F1 scores, consistent with the grounded 541

factuality distribution visualized in Figure 3. 542

D Implementation details 543

Training was performed using Direct Preference 544

Optimization (DPO) with hyperparameters set as 545

follows: learning rate = 1× 10−5, beta = 0.1, gra- 546

dient accumulation steps = 4, per-device batch size 547

= 4, and total epochs = 25. We used a paged 548

AdamW optimizer with 8-bit quantization and 549

mixed-precision training (FP16) for computational 550

efficiency. Sequential sampling was used during 551

training to maintain curriculum learning order. The 552

model’s performance was periodically assessed on 553

the MedHallu labeled validation set. Evaluation 554

metrics included accuracy, precision, recall, and 555

F1-score, computed both overall and separately by 556

difficulty (easy, medium, hard). 557

E LLMs Used in Discriminative Tasks 558

GPT-4o and GPT-4o mini. GPT-4o (OpenAI et al., 559

2024) are a series of commercial LLMs developed 560

by OpenAI. Renowned for their state-of-the-art per- 561

formance, these models have been extensively uti- 562

lized in tasks such as medical hallucination detec- 563

tion. Our study employs the official API provided 564

by the OpenAI platform to access these models. 565

For all other models below, we implement them 566

through Hugging Face package. 567

Llama-3.1 and Llama-3.2. Llama-3.1 and 568

Llama-3.2 (Meta, 2024) are part of Meta’s open- 569

source multilingual LLMs, Llama 3.1 (July 2024) 570

includes 8B, 70B, and 405B parameter models 571

optimized for multilingual dialogue. Llama 3.2 572

(September 2024) offers 1B, 3B, 11B, and 90B 573

models with enhanced accuracy and speed. We use 574

Llama 3.2 1B and 3B models as our backbone for 575
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Split Range Model Avg F1 MedHallu HaluEval

F1 Prec Acc F1 Prec Acc

0.00–0.75 HaluCheck 1B 0.499 0.404 0.717 0.596 0.595 0.491 0.458
HaluCheck 3B 0.714 0.729 0.892 0.784 0.699 0.812 0.728

0.25–1.00 HaluCheck 1B 0.637 0.664 0.511 0.527 0.611 0.481 0.468
HaluCheck 3B 0.756 0.759 0.845 0.782 0.753 0.857 0.767

0.25–0.75 HaluCheck 1B 0.625 0.651 0.501 0.511 0.599 0.512 0.469
HaluCheck 3B 0.712 0.696 0.727 0.704 0.728 0.824 0.739

0.00–1.00 HaluCheck 1B 0.614 0.622 0.601 0.459 0.606 0.494 0.455
HaluCheck 3B 0.743 0.743 0.905 0.770 0.744 0.829 0.759

Table 6: Ablation over curriculum difficulty cut-offs. Each split indicates the MiniCheck grounding-probability
interval used when selecting hallucinated negatives. “Avg F1” is the mean F1 score across MedHallu and HaluEval;
higher is better for all metrics.

Model F1 Precision Accuracy

HaluCheck 1B 0.664 0.511 0.527
Llama-3.2 1B-SN 0.622 0.494 0.491

HaluCheck 3B 0.729 0.845 0.782
Llama-3.2 3B-SN 0.691 0.772 0.717

Table 7: Hallucination detection on the MedHallu
dataset. “SN” models were aligned with standard neg-
ative samples in DPO, while HaluCheck models were
aligned with curated hallucinated negatives. Higher is
better on all metrics.

training DPO, and also use the Llama 3.1 8B model576

in our evaluation table for performance comparison577

Qwen2.5. Qwen2.5 (Team, 2024) is an advanced578

LLM designed to handle complex language tasks579

efficiently. It has been applied in various domains,580

including medical hallucination detection. We use581

the 3B, 7B and 14B variants in our work.582

F Hardware Resources and583

Computational Costs584

During the DPO training process using LoRA, we585

primarily used the Llama-3.2 1B and Llama-3.2586

3B model as a base model for our HaluCheck587

Model, running it for 12 hours on an NVIDIA RTX588

A6000 GPU with 48,685 MiB of RAM. Addition-589

ally, we employed models such as Qwen2.5-1.5B,590

3B, 14B, and GPT models as evaluators for bench-591

markings. To enhance the efficiency and speed of592

our code execution, we utilized software tools like593

vLLM and implemented batching strategies. These594

optimizations were critical for managing the com-595

putational load and ensuring timely processing of596

our experiments.597
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