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Abstract
Developmental machine learning studies how ar-
tificial agents can model the way children learn
open-ended repertoires of skills. Children are
known to use language and its compositionality
as a tool to imagine descriptions of outcomes they
never experienced before and target them as goals
during play. We introduce IMAGINE, an intrinsi-
cally motivated deep RL architecture that models
this ability. Such imaginative agents, like chil-
dren, benefit from the guidance of a social peer
who provides language descriptions. To take ad-
vantage of goal imagination, agents must be able
to leverage these descriptions to interpret their
imagined goals. This generalization is made pos-
sible by modularity: a decomposition between
learned goal-achievement reward function and
policy relying on deep sets, gated attention and
object-centered representations. We introduce the
Playground environment and study how this form
of goal imagination improves generalization and
exploration over agents lacking this capacity.

1. Introduction
Building autonomous machines that can discover and learn
a variety of skills is a long-standing goal in Artificial Intelli-
gence. In this quest, we can draw inspiration from the way
children learn and explore open-ended environments (Asada
et al., 2009). In such exploration, intrinsic motivations are
key to trigger spontaneous exploration, for the mere pur-
pose of experiencing novelty, surprise or learning progress
(Kaplan & Oudeyer, 2007; Kidd & Hayden, 2015).

Children also leverage the properties of language to as-
similate years of experience embedded in their culture, in
only a few years (Tomasello, 1999; Bruner, 1991). As they
discover language, their goal-driven exploration changes.
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Piaget (1926) identified a form of egocentric speech where
children narrate their ongoing activities. Later, Vygotsky
(1978) showed that they can generate novel plans and goals
by using the expressive generative properties of language.

This paper presents Intrinsic Motivations And Goal
INvention for Exploration (IMAGINE): a learning archi-
tecture which leverages natural language (NL) interactions
with a descriptive social partner (SP) to explore procedurally-
generated scenes and interact with objects. IMAGINE dis-
covers meaningful environment interactions through its own
exploration (Figure 1a) and episode-level NL descriptions
provided by SP (1b). These descriptions are turned into tar-
getable goals by the agent (1c). It learns to represent them
by jointly training a language encoder mapping NL to goal
embeddings and a goal-achievement reward function (1d).
The latter provides training signals for policy learning (ticks
in Figure 1d-e). More importantly, IMAGINE can invent
new goals by composing known ones, and trains on them
autonomously via internal signals (1f).

Related work. The idea that language understanding is
grounded in one’s experience of the world and should not be
secluded from the perceptual and motor systems has a long
history in Cognitive Science (Glenberg & Kaschak, 2002;
Zwaan & Madden, 2005). This vision was transposed to in-
telligent systems (Steels, 2006; McClelland et al., 2019), ap-
plied to human-machine interaction (Dominey, 2005; Mad-
den et al., 2010) and recently to deep RL via frameworks
such as BabyAI (Chevalier-Boisvert et al., 2019).

In their review of RL algorithms informed by NL, Luketina
et al. (2019) distinguish between language-conditional prob-
lems where language is required to solve the task and
language-assisted problems where language is a supple-
mentary help. In the first category, most works propose
instruction-following agents (R. K. Branavan et al., 2010;
Chen & Mooney, 2011; Bahdanau et al., 2019; Co-Reyes
et al., 2018; Jiang et al., 2019; Goyal et al., 2019; Cideron
et al., 2019). Although our system is language-conditioned,
it is not language-instructed: it is never given any instruc-
tion or reward but sets its own goals and learns its own in-
ternal reward function. Bahdanau et al. (2019) and Fu et al.
(2019) also learn a reward function but require extensive
expert knowledge (expert dataset and known environment
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Figure 1: IMAGINE overview. In the Playground environment, the agent (hand) can move, grasp objects and grow some
of them. Scenes are generated procedurally with objects of different types, colors and sizes. A social partner provides
descriptive feedback (orange), that the agent converts into targetable goals (red bubbles).

dynamics respectively), whereas our agent uses experience
generated by its own exploration.

Imagining goals by composing known ones only works
in association with systematic generalization (Bahdanau
et al., 2018; Hill et al., 2019): generalizations of the type
grow any animal + grasp any plant → grow any plant.
These were found to emerge in instruction-following agents,
including generalizations to new combinations of motor
predicates, object colors and shapes (Hermann et al., 2017;
Hill et al., 2019; Bahdanau et al., 2019). Because systematic
generalization can only occur when objects share common
attributes (e.g. type, color), we represent objects as single-
slot object files (Green & Quilty-Dunn, 2017): separate
entities characterized by shared attributes. We introduce a
new object-centered inductive bias: object-based modular
architectures based on Deep Sets (Zaheer et al., 2017).

Contributions. We introduce goal imagination using lan-
guage compositionality to drive exploration of intrisically
motivated agents and a modular architecture to enable it.

2. Problem Definition
Open-ended learning environment. We consider a setup
where agents evolve in an environment filled with objects
and without prior on the set of possible interactions. An
agent decides what to learn by setting its own goals, and has
no access to external rewards. However, to allow the agent to
learn relevant skills, a social partner (SP) watches the scene
to guide the agent. Following a developmental approach
(Asada et al., 2009), we propose a hard-coded surrogate SP
modelling important aspects of human development:
• At the beginning of each episode, the agent chooses

a goal by formulating a sentence. SP then provides

agents with optimal learning opportunities by organiz-
ing the scene with: 1) the required objects to reach the
goal (relevant scene) 2) procedurally-generated distract-
ing objects (new scene and providing further discovery
opportunities). This is close to a developmental scaf-
folding modelling the Zone of Proximal Development
(ZPD) introduced by Vygotsky to describe infant-parent
learning dynamics (Vygotsky, 1978).
• At the end of each episode, SP utters a set of sentences

describing achieved and meaningful outcomes (except
sentences from a test set). Linguistic guidance given
through descriptions are a key component of how par-
ents "teach" language to infants. It contrasts with in-
struction following (providing a linguistic command
and then a reward), rarely seen in real parent-child in-
teractions (Tomasello, 2009; Bornstein et al., 1992).

Learning objective. This paper investigates how goal imag-
ination can lead agents to creatively explore their envi-
ronment and discover interesting interactions with objects
around. In this quest, SP guides agents towards a set of
interesting outcomes by uttering NL descriptions. Through
compositional recombinations of these sentences, goal imag-
ination aims to drive creative exploration, to push agents to
discover outcomes beyond the set of outcomes known by
SP. We evaluate this desired behavior by two metrics: 1) the
generalization of the policy to new language goals unknown
to SP, (test set defined in Supp. Section 7) ; 2) goal-oriented
exploration metrics. We measure generalization for each
goal as the success rate SR over 30 episodes and report SR
the average over goals. We evaluate exploration with the in-
teresting interaction count (IC). Given a set of interaction,
IC measures the penchant of agents to explore interactions
of this set, (details in Supp. Section 8). We report means and
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std over 10 seeds and statistical significance using a two-tail
Welch’s t-test at level α=0.05 (Colas et al., 2019b).

3. Methods
3.1. The Playground environment

We introduce Playground, a simple environment designed
to study the impact of goal imagination on exploration and
generalization by disentangling it from the problems of per-
ception and fully-blown NL understanding. Playground is a
continuous 2D world, with procedurally-generated scenes
containing N =3 objects, from 32 different object types (e.g.
dog, cactus, sofa, water, etc.), organized into 5 categories
(animals, furniture, plants, etc), see Figure 1.

Agent perception and embodiment. Agents have access
to state vectors describing the scene: the agent’s body and
the objects. Each object is represented by a set of features
describing its type, position, color, size and whether it is
grasped. The agent can perform bounded translations in the
2D plane, grasp and release objects with its gripper. It can
make animals and plants grow by bringing them the right
supply (food or water for animals, water for plants).

Goal and description A simple grammar generates the de-
scriptions of the 256 achievable goals, such as go bottom
left, grasp red cat or grow green animal. Supp. Section 7
completely details the environment and the grammar

3.2. The IMAGINE Architecture

IMAGINE agents build a repertoire of goals and train two
internal models: 1) a goal-achievement reward functionR
to predict whether a given description matches a behavioral
trajectory; 2) a policy Π to achieve behavioral trajectories
matching descriptions. The architecture is presented in
Figure 2 and follows this logic:

1. The Goal Generator samples a target goal gtarget from
known and imagined goals (Gknown∪Gim).

2. The agent (RL Agent) interacts with the environment
using its policy Π conditioned on gtarget.

3. State-action trajectories are stored in mem(Π).
4. SP’s descriptions of the last state are considered as po-

tential goals GSP(sT ) = DSP(sT ).
5. mem(R) stores positive pairs (sT , GSP(sT )) and infers

negative pairs (sT , Gknown \GSP(sT )).
6. The agent then updates:
• Goal Gen.: Gknown ← Gknown∪GSP(sT ) and
Gim ← Imagination(Gknown).

• Language Encoder (Le) and Reward Function (R)
are updated using data from mem(R).

• RL agent: We sample a batch of state-action transi-
tions (s, a, s′) from mem(Π). Then, we use Hindsight
Replay andR to bias the selection of substitute goals
to train on (gs) and compute the associated rewards

(s, a, s′, gs, r). Finally, the policy and critic are
trained via RL.

batches 

Env.

Hindsight Replay

Goal Gen.

RL Agent

mem(    )

SP

mem(   )

traj: 

batches

batches

Figure 2: IMAGINE architecture. Colored boxes show
the different modules of IMAGINE. Lines represent update
signals (dashed) and function outputs (plain). The language
encoder Le is shared. See Supp. Section 11.1

Goal generator. It is a generative model of NL goals. It
generates target goals gtarget for data collection and substi-
tute goals gs for hindsight replay. When goal imagination is
disabled, the goal generator samples uniformly from the set
of known goals Gknown, sampling random vectors if empty.
When enabled, it samples with equal probability from Gknown
and Gim (set of imagined goals). Gim is generated using a
mechanism grounded in construction grammar that lever-
ages the compositionality of language to imagine new goals
from Gknown. The heuristic consists in computing sets of
equivalent words: words that appear in two sentences that
only differ by one word. For example, from grasp red
lion and grow red lion, grasp and grow can be considered
equivalent and from grasp green tree one can imagine a
new goal grow green tree (see Figure 1f). Among them,
some are meaningless, some are syntactically correct but
infeasible (e.g. grow red lamp) and some belong to G test, or
even to G train before they are encountered by the agent and
described by SP. The pseudo-code and all imaginable goals
are provided in Supp. Section 9.

Object-centered modular architectures. The goal-
achievement reward function, policy and critic leverage
novel modular-attention (MA) architectures based on Deep
Sets (Zaheer et al., 2017), gated attention mechanisms
(Chaplot et al., 2017) and object-centered representations.
The idea is to ensure efficient skill transfer between objects,
no matter their position in the state vector. This is done
through the combined use of a shared neural network that
encodes object-specific features and a permutation-invariant
function to aggregate the resulting latent encodings. The
shared network independently encodes, for each object, an
affordance between this object (object observations), the
agent (body observations) and its current goal. The goal em-
bedding, generated by the language encoder Le, is first cast
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(c) Exploration metrics on testing set

Figure 3: Goal imagination drives exploration and generalization. Vertical dashed lines mark the onset of goal imagina-
tion. (a) SR on testing set. (b) Behavioral adaptation, empirical probabilities that the agent brings supplies to a plant when
trying to grow it. (c) IC computed on the testing set. Stars indicate significance (a and c are tested against never).

into an attention vector in [0, 1], then fused with the concate-
nation of object and body features via an Hadamard product
(gated-attention (Chaplot et al., 2017)). The resulting object-
specific encodings are aggregated by a permutation-invariant
function and mapped to the desired output via a final net-
work (e.g. into actions or action-values). Supp. Section 11.1
provides visual representations and details about the reward
function, policy and critic based on this architecture.

4. Experiments and Results
As IMAGINE achieve near perfect generalizations on train-
ing goals: SR = 0.95±0.05, we focus on the testing set
performance. Supp. Sections 8 to 10 provide more results.

Global generalization performance. Figure 3a shows SR
on the set of testing goals, when the agent starts imagining
new goals early (after 6 ·103 episodes), half-way (after 48 ·
103 episodes) or when not allowed to do so. Imagining goals
leads to significant improvements in generalization.

A particular generalization: growing plants. Agents
learn to grow animals from SP’s descriptions, but are never
told they could grow plants. When evaluated offline on the
growing-plants goals before goal imagination, agents’ poli-
cies perform a sensible zero-shot generalization and bring
them water or food with equal probability, as they would do
for animals (Figure 3b, left). As they start imagining these
goals, their behavior adapts (Figure 3b, right). A reward
function with good zero-shot abilities only provides positive
rewards when the agent brings water. The policy slowly
adapts to this internal reward signal and pushes agents to
bring more water. We name this: behavioral adaptation.

Exploration. Figure 3c presents the IC metric computed
on the set of interactions related to G test and demonstrates
the exploration boost triggered by goal imagination. Supp.
Section 8 additional results on exploration.

Modularity is Essential to Goal Imagination. Flat archi-
tectures (FA) consider the whole scene at once. We com-
pared policies based on MA and in Table 4. Both used MA
reward function as the FA reward function showed poor
performance on G train. MA shows stronger generalization
and is the only architecture allowing an additional boost

Figure 4: Policy architectures perfor-
mance. SRtest at convergence.

MA * FA

Im. 0.76±0.1 0.15±0.05
No Im. 0.51±0.1 0.17±0.04
p-val 4.8e-5 0.66

with goal imagi-
nation. Only MA
policy can lever-
age the novel re-
ward signals com-
ing from imag-
ined goals and
show behavioral
adaptation.

5. Discussion and Conclusion
IMAGINE is an autonomous learning architecture that lever-
ages NL interactions with a social partner. IMAGINE sets its
own goals and builds behavioral repertoires without external
rewards. As such, it is distinct from traditional instruction-
following RL agents. This is done through the joint training
of a language encoder for goal representation and a goal-
achievement reward function to generate internal rewards.
Our proposed modular architectures with gated-attention
enable efficient out-of-distribution generalization of the re-
ward function and policy. The ability to imagine new goals
by composing known ones leads to further improvements
over initial generalization abilities and fosters exploration
beyond the set of interactions relevant to SP. Our agent even
tries to grow pieces of furniture with supplies, a behavior
that can echo the way a child may try to feed his doll.

IMAGINE does not need externally-provided rewards but
learns which behaviors are interesting from language-based
interactions with SP. In contrast with hand-crafted reward
functions, NL descriptions provide an easy way to guide
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machines towards relevant interactions. In addition, Sec-
tion 10 shows that agents can learn to achieve goals from
a relatively small number of descriptions, paving the way
towards human-provided descriptions.
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Supplementary Material
This supplementary material provides additional methods,
results and discussion, as well as implementation details.

• Section 7 gives a complete description of our setup and
of the Playground environment.

• Section 8 presents a focus on exploration and how it is
influenced by goal imagination.

• Section 9 presents a focus on the goal imagination
mechanism we use for IMAGINE and identifies key
properties of imagination.

• In Section 10, we investigate the case of more realistic
feedback from SP.

• Section 11 gives all necessary implementation details.

7. Complete Description of the Playground
Environment and Its Language

Environment description. The environment is a 2D
square: [−1.2,1.2]2. The agent is a disc of diameter 0.05
with an initial position (0,0). Objects have sizes uniformly
sampled from [0.2,0.3] and their initial positions are ran-
domized so that they are not in contact with each other. The
agent has an action space of size 3 bounded in [−1,1]. The
first two actions control the agent’s continuous 2D trans-
lation (bounded to 0.15 in any direction). The agent can
grasp objects by getting in contact with them and closing
its gripper (positive third action), unless it already has an
object in hand. Objects include 10 animals, 10 plants, 10
pieces of furniture and 2 supplies. Admissible categories
are animal, plant, furniture, supply and living_thing (animal
or plant), see Figure 5. Objects are assigned a color attribute
(red, blue or green). Their precise color is a continuous
RGB code uniformly sampled from RGB subspaces asso-
ciated with their attribute color. Each scene contains 3 of
these procedurally-generated objects (see paragraph about
the Social Partner below).

Agent perception. At time step t, we can define an ob-
servation ot as the concatenation of body observations (2D-
position, gripper state) and objects’ features. These two
types of features form affordances between the agent and
the objects around. These affordances are necessary to un-
derstand the meaning of object interactions like grasp. The
state st used as input of the models is the concatenation of
ot and ∆ot =ot−o0 to provide a sense of time. This is
required to acquire the understanding and behavior related
to the grow predicate, as the agent needs to observe and
produce a change in the object’s size.

Social Partner. SP has two roles:

• Scene organization: SP organize the scene according to
the goal selected by the agent. When the agent selects a

goal, it communicates it to SP. If the goal starts by the
word grow, SP adds a procedurally-generated supply
(water or food for animals, water for plants) of any size
and color to the scene. If the goal contains an object
(e.g. red cat), SP adds a corresponding object to the
scene (with a procedurally generated size and RGB
color). Remaining objects are generated procedurally.
As a result, the objects required to fulfill a goal are
always present and the scene contains between 1 (grow
goals) and 3 (go goals) random objects. Note that
all objects are procedurally generated (random initial
position, RGB color and size).

• Scene description: SP provides NL descriptions of inter-
esting outcomes experienced by the agent at the end of
episodes. By default, SP respects the 3 following prop-
erties: precision: descriptions are accurate, exhaustive-
ness: it provides all valid descriptions for each episode
and full-presence: it is always available. Section 10
investigates relaxations of the last two assumptions. It
takes the final state of an episode (sT ) as input and re-
turns matching NL descriptions: DSP(sT )⊂DSP. When
SP provides descriptions, the agent considers them as
targetable goals. This mapping DSP→G train simply
consists in removing the first you token (e.g. turning
you grasp red door into the goal grasp red door). Given
the set of previously discovered goals (Gknown) and new
descriptions DSP(sT ), the agent infers the set of goals
that were not achieved: Gna(sT ) = Gknown \ DSP(sT ),
where \ indicates the complement.

Grammar. We now present the grammar that generates
descriptions for the set of goals achievable in the Playground
environment (GA). Bold and { } refer to sets of words while
italics refers to particular words:

1. Go: (e.g. go bottom left)
• go + zone

2. Grasp: (e.g. grasp any animal)
• grasp + color ∪ {any} + object type ∪ object category
• grasp + any + color + thing

3. Grow: (e.g. grow blue lion)
• grow + color ∪ {any} + living thing ∪ {living_thing,

animal, plant}
• grow + any + color + thing

Word sets are defined by:

• zone = {center, top, bottom, right, left, top left, top
right, bottom left, bottom right}

• color = {red, blue, green}
• object type = living thing ∪ furniture ∪ supply
• object category = {living_thing, animal, plant, furni-

ture, supply}
• living thing = animal ∪ plant
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• animal = {dog, cat, chameleon, human, fly, parrot,
mouse, lion, pig, cow}

• plant = {cactus, carnivorous, flower, tree, bush, grass,
algae, tea, rose, bonsai}

• furniture = {door, chair, desk, lamp, table, cupboard,
sink, window, sofa, carpet}

• supply = {water, food}
• predicate = {go, grasp, grow}

Training and testing goals sets The set of achievable
goals is partitioned into training (G train) and testing (G test).
Goals from G test are intended to evaluate the ability of our
agent to explore the set of achievable outcomes beyond
the set of outcomes described by SP. G test maximizes the
compound divergence with a null atom divergence with
respect to G train: testing sentences (compounds) are out of
the distribution of G train sentences, but their words (atoms)
belong to the distribution of words in G train (Keysers et al.,
2019). SP only provides descriptions from G train. Note that
some goals might be syntactically valid but not achievable.
This includes all goals of the form grow + color ∪ {any} +
furniture ∪ {furniture} (e.g. grow red lamp).

Besides all goals related to the object flower are unknown to
the SP and cannot be uttered. The agent can encounter flower
but is never able to identify the object by its name. This will
prevent the agent to imagine new goals about flower object.

IMAGINE Pseudo-Code. Algorithm 1 outlines the
pseudo-code of our learning architecture. See Main Sec-
tion 3.2 for high-level descriptions of each module and
function.

Algorithm 1 IMAGINE

1: Input: env, SP
2: Initialize: Le,R, Π, mem(R), mem(Π), Gknown, Gim

# Random initializations for networks
# empty sets for memories and goal sets

3: for e=1:Nepisodes do
4: if Gknown 6=Ø then
5: sample gNL from Gknown∪Gim
6: g←Le(gNL)
7: else
8: sample g from N (0,I)
9: s0← env.reset()

10: for t=1:T do
11: at←π(st−1,g)
12: st← env.step(at)
13: memΠ.add(st−1,at,st)
14: GSP← SP.get_descriptions(sT )
15: Gknown←Gknown∪ GSP

16: mem(R).add(sT , gNL) for gNL in GSP

17: if goal imagination allowed then
18: Gim← Imagination(Gknown) # see Algorithm 2
19: BatchΠ← ModularBatchGenerator(mem(Π))

# BatchΠ={(s,a,s′)}
20: BatchΠ← Hindsight(BatchΠ,R,Gknown,Gim) #

BatchΠ={(s,a,r,g,s′)} where r=R(s,g)
21: Π←RL_Update(BatchΠ)
22: if e% reward_update_freq ==0 then
23: BatchR←ModularBatchGenerator(mem(R))
24: Le,R←LE&RewardFunctionUpdate(BatchR)
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Category

Object
Type

furnitureanimal plant

living thing

supply

dog
cat
chameleon
human
fly

cactus
carnivorous
flower
tree
bush

grass
aglae
tea
rose
bonsai

parrot
mouse
lion
pig
cow

cupboard
sink
window
sofa
carpet

door
chair
desk
lamp
table

water
food

Figure 5: Representation of possible objects types and categories.

Table 1: Testing goals in G test.

Non-imaginable
goals

Grasp any flower, Grasp blue flower, Grasp green flower, Grasp red flower,
Grow any flower, Grow blue flower, Grow green flower, Grow red flower

Imaginable goals

Grasp blue door, Grasp green dog,Grasp red tree, Grow green dog
Grasp any animal, Grasp blue animal, Grasp green animal, Grasp red animal
Grasp any fly, Grasp blue fly, Grasp green fly, Grasp red fly
Grow any algae, Grow any bonsai, Grow any bush, Grow any cactus
Grow any carnivorous, Grow any grass, Grow any living_thing, Grow any plant
Grow any rose, Grow any tea, Grow any tree, Grow blue algae
Grow blue bonsai, Grow blue bush,Grow blue cactus, Grow blue carnivorous
Grow blue grass, Grow blue living_thing, Grow blue plant, Grow blue rose
Grow blue tea, Grow blue tree,Grow green algae, Grow green bonsai
Grow green bush, Grow green cactus, Grow green carnivorous, Grow green grass
Grow green living_thing, Grow green plant, Grow green rose, Grow green tea
Grow green tree, Grow red algae, Grow red bonsai, Grow red bush
Grow red cactus, Grow red carnivorous, Grow red grass, Grow red living_thing
Grow red plant, Grow red rose, Grow red tea, Grow red tree



Language-Goal Imagination to Foster Creative Exploration in Deep RL

8. Focus on exploration
Interesting Interactions. Interesting interactions are tra-
jectories of the agent that humans could infer as goal-
directed. If an agent brings water to a plant and grows
it, it makes sense for a human. If it then tries to do this
for a lamp, it also feels goal-directed, even though it does
not work. This type of behavior characterizes the penchant
of agents to interact with objects around them, to try new
things and, as a result, is a good measure of exploration.

Sets of interesting interactions. We consider three sets
of interactions: 1) interactions related to training goals; 2)
to testing goals; 3) the extra set. This extra set contains in-
teractions where the agent brings water or food to a piece of
furniture or to another supply. Although such behaviors do
not achieve any of the goals, we consider them as interesting
exploratory behaviors. Indeed, they testify that agents try to
achieve imagined goals that are meaningful from the point
of view of an agent that does not already know that doors
cannot be grown, i.e. corresponding to a meaningful form
of generalization after discovering that animals or plants
can be grown (e.g. grow any door).

The Interesting Interaction Count metric. We count
the number of interesting interactions computed over all fi-
nal transitions from the last 600 episodes (1 epoch). Agents
do not need to target these interactions, we just report the
number of times they are experienced. Indeed, the agent
does not have to target a particular interaction for the trajec-
tory to be interesting from an exploratory point of view. The
HER mechanism ensures that these trajectories can be re-
played to learn about any goal, imagined or not. Computed
on the extra set, the Interesting Interaction Count (IC) is
the number of times the agent was found to bring supplies
to a furniture or to other supplies over the last epoch:

ICtrain =
∑

i∈I=Gextra

600∑
t=1

δi,t,

where δi,t =1 if interaction i was achieved in episode t, 0
otherwise and I is the set of interesting interactions (here
from the extra set) performed during an epoch.

Agents that are allowed to imagine goals achieve higher
scores in the testing and extra sets of interactions, while
maintaining similar exploration scores on the training set,
see Figures 6a to 6c.
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Figure 6: Exploration metrics (a) Interesting interaction
count (IC) on training set, (b) IC on testing set, (c) IC
on extra set. Goal imagination starts early (vertical blue
line), half-way (vertical orange line) or does not start (no
imagination baseline in green).
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9. Focus on Goal Imagination
9.1. Goal Imagination Algorithm

Algorithm 2 presents the algorithm underlying our goal
imagination mechanism. This mechanism is inspired from
the Construction Grammar (CG) literature and generates
new sentences by composing known ones (Goldberg, 2003).
It computes sets of equivalent words by searching for sen-
tences with an edit distance of 1: sentences where only one
word differs. These words are then labelled equivalent, and
can be substituted in known sentences. Note that the goal
imagination process filters goals that are already known.
Although all sentences from G train can be imagined, there
are filtered out of the imagined goals as they are discov-
ered. Imagining goals from G train before they are discovered
drives the exploration of IMAGINE agents. In our setup,
however, this effect remains marginal as all the goals from
G train are discovered in the first epochs.

Imagined goals. We run our goal imagination mechanism
based on the Construction Grammar Heuristic (CGH) from
G train. After filtering goals from G train, this produces 136
new imagined sentences. Table 2 presents the list of these
goals while Figure 7 presents a Venn diagram of the various
goal sets. Among these 136 goals, 56 belong to the testing
set G test. This results in a coverage of 87.5% of G test, and a
precision of 45%. In goals that do not belong to G test, goals
of the form Grow + {any} ∪ color + furniture ∪ supplies
(e.g. Grow any lamp) are meaningful to humans, but are not
achievable in the environment (impossible).

Figure 7: Venn diagram of goal spaces.

Goal Imagination Pseudo-Code. The pseudo-code of
the goal imagination mechanism is presented in Algorithm 2.
The edit distance between two sentences refers to the num-
ber of words to modify to transform one sentence into the
other.

Algorithm 2 Goal Imagination.

1: Input: Gknown (discovered goals)
2: Initialize: word_eq (list of sets of equivalent words,

empty)
3: Initialize: goal_template (list of template sentences

used for imagining goals, empty)
4: Initialize: Gim (empty)
5: for gNL in Gknown do {Computing word equivalences}
6: new_goal_template = True
7: for gm in goal_template do
8: if edit_distance(gNL,gm)<2 then
9: new_goal_template = False

10: if edit_distance(gNL,gm)==1 then
11: w1,w2← get_non_matching_words(gNL,gm)
12: if w1 and w2 not in any of word_eq sets then
13: word_eq.add({w1,w2})
14: else
15: for eq_set in word_eq do
16: if w1∈eq_set or w2∈eq_set then
17: eq_set = eq_set ∪ {w1,w2}
18: if new_goal_template then
19: goal_template.add(gNL)
20: for g in goal_template do {Generating new sentences}
21: for w in g do
22: for eq_set in word_eq do
23: if w∈ eq_set then
24: for w′ in eq_set do
25: gim← replace(g, w, w′)
26: if gim /∈Gknown then
27: Gim =Gim∪ {gim}
28: Gim =Gim \Gknown {filtering known goals.}
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Table 2: All imaginable goals G im generated by the Construction Grammar Heuristic.

Goals from G train G train. (Note that known goals are filtered from the set of imagined goals.
However, any goal from G train can be imagined before it is encountered
in the interaction with SP.)

Goals from G test All goals from G test that are imaginable, see Table 1

Syntactically
incorrect goals

Go bottom top, Go left right, Grasp red blue thing,
Grow blue red thing, Go right left, Go top bottom,
Grasp green blue thing, Grow green red thing, Grasp green red thing
Grasp blue green thing, Grasp blue red thing, Grasp red green thing.

Syntactically
correct but

unachievable goals

Go center bottom, Go center top, Go right center, Go right bottom,
Go right top, Go left center, Go left bottom, Go left top,
Grow green cupboard, Grow green sink, Grow blue lamp, Go center right,
Grow green window, Grow blue carpet, Grow red supply, Grow any sofa,
Grow red sink, Grow any chair, Go top center, Grow blue table,
Grow any door, Grow any lamp, Grow blue sink, Go bottom center,
Grow blue door, Grow blue supply, Grow green carpet, Grow blue furniture,
Grow green supply, Grow any window, Grow any carpet, Grow green furniture,
Grow green chair, Grow green food, Grow any cupboard, Grow red food,
Grow any table, Grow red lamp , Grow red door, Grow any food,
Grow blue window, Grow green sofa, Grow blue sofa, Grow blue desk,
Grow any sink, Grow red cupboard, Grow green door, Grow red furniture,
Grow blue food, Grow red desk , Grow red table, Grow blue chair,
Grow red sofa, Grow any furniture, Grow red window, Grow any desk,
Grow blue cupboard, Grow red chair, Grow green desk, Grow green table,
Grow red carpet, Go center left, Grow any supply, Grow green lamp,
Grow blue water, Grow red water, Grow any water, Grow green water,
Grow any water, Grow green water.
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9.2. How Does Goal Imagination Properties Impact
Performance?

Properties of imagined goals. We propose to characterize
goal imagination mechanisms by two properties:

1. Coverage: the fraction of G test found in Gim

2. Precision: the fraction of the imagined goals that are
achievable.

We compare our goal imagination mechanism based on the
construction grammar heuristic (CGH) to variants character-
ized by:

1. Lower coverage: To reduce the coverage of CGH while
maintaining the same precision, we simply filter half of
the goals that would have been imagined by CGH. This
filtering is probabilistic, resulting in different imagined
sets for different runs. It happens online, meaning that
the coverage is always half of the coverage that CGH
would have had at the same time of training.

2. Lower precision: To reduce precision while maintain-
ing the same coverage, we sample a random sentence
(random words from the words of G train) for each goal
imagined by CGH that does not belong to G test. Goals
from G test are still imagined via the CGH mechanism.
This variants only doubles the imagination of sentences
that do not belong to G test.

3. Oracle: Perfect precision and coverage is achieved by
filtering the output of CGH, keeping only goals from
G test. Once the 56 goals that CGH can imagine are
imagined, the oracle variants adds the 8 remaining
goals: those including the word flower that the agent
cannot imagine.

4. Random goals: Each time CGH would have imagined
a new goal, it is replaced by a randomly generated
sentence, using words from the words of G train. It leads
to near null coverage and precision and works as a
baseline.

Note that all variants imagine goals at the same speed as the
CGH algorithm. They simply filter or add noise to its output.
For each variant, we measure the precision and coverage at
the end of experiments, when all goals from G train have been
discovered and report them in Figure 3.

CGH vs Oracle Figure 9a shows that CGH achieves a gen-
eralization performance on par with the oracle. Reducing
the coverage of the goal imagination mechanism still brings
significant improvements in generalization.

Effect of lower coverage on generalization In Figure 9a,
the Low Coverage condition seems to achieve good results,

Table 3: Coverage and Precision for different imagination
mechanisms

Coverage Precision
CGH 0.87 0.45
Oracle 1 1
Low Coverage 0.44 0.45
Low Precision 0.87 0.30
Random Goal Imagination ≈0 ≈0

close to CGH. The Low Coverage variant of our goal imagi-
nation mechanism only covers 43.7% the test set with a 45%
precision. To further study the impact of a lower coverage,
we report in Figure 9b, success rates on testing goals of type
grow + plant and compare with the no imagination baseline
(green). We split in two: goals that were imagined (blue),
and goals that were not (orange). The generalization perfor-
mance on goals from G test that the agent imagined (blue) are
not significantly higher than the generalization performance
on goals from G test that were not imagined. As they are
both significantly higher than the no imagination baseline,
this implies that training on imagined goals boosts zero-shot
generalization on similar goals that were not imagined.

Effect of lower precision on generalization Reducing
the precision of imagined goals (gray curve) seems to im-
pede generalization (no significant difference with the no
imagination baseline), as shown in Figure 9a.

9.3. How Does Goal Imagination Properties Impact
Exploration?

Figure 9 presents the IC exploration scores on the training,
testing and extra sets for the different goal imagination
mechanisms above. Let us discuss each of these scores:

1. Training interactions. In Figure 9c, we see that de-
creasing the precision (Low Precision and Random
Goal conditions) affects exploration on interactions
from the training set, where it falls below the explo-
ration of the no imagination baseline. This is due to the
addition of meaningless goals forcing agent to allow
less time to meaningful interactions relatively.

2. Testing interactions. Figure 9d shows that all goal
imagination heuristics enable a significant exploration
boost. The random goal baseline acts as a control con-
dition. It demonstrates that the generalization boost is
not due to a mere effect of network regularization in-
troduced by adding random goals (no significant effect
w.r.t. the no imagination baseline). In the same spirit,
we also ran a control using random goal embedding,
which did not produce any significant effects. We also
see that the highest exploration scores on interactions
from the test set comes from the oracle. Because it
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shows high coverage and precision, its spends more
time on the diversity of interactions from the testing
set. What is more surprising is the exploration score of
the low coverage condition, higher than the exploration
score of CGH. With an equal precision, CGH should
show better exploration, as it covers more test goals.
However, the Low Coverage condition, by spending
more time exploring each of its imagined goals (it
imagined fewer), probably learned to master them bet-
ter, increasing the robustness of its behavior towards
those. This insight advocates for the use of goal selec-
tion methods based on learning progress (Forestier &
Oudeyer, 2016; Colas et al., 2019a). Agents could esti-
mate their learning progress on imagined goals using
their internal reward function and its zero-shot general-
ization. Focusing on goals associated to high learning
progress might help agents filter goals they can learn
about from others.

3. Extra interactions. Figure 9e shows that only the goal
imagination mechanisms that invent goals not covered
by the testing set manage to boost exploration in this
extra set. The oracle perfectly covers the testing set,
but does not generate goals related to other objects (e.g.
grow any lamp).

10. Focus on SP feedback
In this section, we study the relaxation of 2 of the 3 prop-
erties imposed on SP and wonder if we could Use More
Realistic Feedbacks. We study the relaxation of the full-
presence and exhaustiveness assumptions of SP. We first
relax full-presence while keeping exhaustiveness (blue, yel-
low and purple curves). When SP has a 10% chance of being
present (yellow), imaginative agents show generalization
performance on par with the unimaginative agents trained
in a full-presence setting (green), see Figure 8). However,
when the same amount of feedback is concentrated in the
first 10% episodes (purple), goal imagination enables signif-
icant improvements in generalization (w.r.t. green). This is
reminiscent of children who require less and less attention
as they grow into adulthood and is consistent with Chan
et al. (2019). Relaxing exhaustiveness, SP only provides one
positive and one negative description every episode (red)
or in 50% of the episodes (gray). Then, generalization per-
formance matches the one of unimaginative agents in the
exhaustive setting (green).
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Figure 9: Exploration metrics For different goal imagination mechanisms: (a) Interesting interaction count (IC) on
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differences w.r.t the no imagination condition.(as usual, 10 seeds).
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11. Architecture and implementation details
11.1. Architecture

Figure 2 shows the architecture of IMAGINE and its different
modules. In this section, we give more details on each
modules :

Language encoder. The language encoder (Le) embeds
NL goals (Le :GNL→R100) using an LSTM (Hochreiter
& Schmidhuber, 1997). It is trained jointly with the re-
ward function. Le acts as a goal translator, turning the
goal-achievement reward function, policy and critic into
language-conditioned functions.

Reward function. Learning a goal-achievement re-
ward function (R) is framed as binary classification:
R(s,g) : S×R100→{0,1}. We use the MA architecture
described in Section 3.2 with attention vectors αg , a shared
network NNR with output size 1 and a logical OR aggrega-
tion. NNR computes object-dependent rewards ri in [0,1]
from the object-specific inputs and the goal embedding. The
final binary reward is computed by NNOR which outputs 1
whenever ∃j : rj > 0.5. We pre-trained a neural-network-
based OR function to enable end-to-end training. Figure 10a
shows the detailed architecture of the reward function. The
overall reward function can be written as:

R(s,g) = NNOR([NNR(sobj(i)�αg)]i∈[1..N ])

Data. Interacting with the environment and SP, the agent
builds a set of entries [sT , g, r] with g ∈ Gknown where
r∈{0, 1} rewards the achievement of g in state sT : r = 1
if g∈GSP(sT ) and 0 otherwise. Le and R are periodically
updated jointly by backpropagation on this dataset.

Multi-goal RL agent. Our agent is controlled by a goal-
conditioned policy Π (Schaul et al., 2015) based on the MA
architecture (see Figure 10b). It uses an attention vector βg ,
a shared network NNΠ, a sum aggregation and a mapper
NNa that outputs the actions. Similarly, the critic produces
action-values via γg , NNQ and NNa-v respectively, see equa-
tions below. Both are trained using DDPG (Lillicrap et al.,
2015), although any other off-policy algorithm can be used.
Figure 10b shows the detailed architecture of the reward
function. The overall function can be written as

Π(s,g) = NNa(
∑

i∈[1..N ]

NNΠ(sobj(i)�βg))

(s,a,g) = NNa-v(
∑

i∈[1..N ]

NNQ([sobj(i), a]�γg))

Hindsight Experience Replay (HER). Our agent uses a
form of Hindsight Experience Replay (Andrychowicz et al.,

2017). In multi-goal RL with discrete sets of goals, HER is
traditionally used to modify transitions sampled from the
replay buffer. It replaces originally targeted goals by others
randomly selected from the set of goals (Andrychowicz
et al., 2017; Mankowitz et al., 2018). This enables to transfer
knowledge between goals, reinterpreting trajectories in the
light of new goals. In that case, a reward function is required
to compute the reward associated to that new transition (new
goal). To improve on random goal replay, we favor goal
substitution towards goals that actually match the state and
have higher chance of leading to rewards. In IMAGINE, we
scan a set of 40 goal candidates for each transition, and
select substitute goals that match the scene when possible,
with probability p = 0.5.

11.2. Implementation details

Reward function inputs and hyperparameters. The
following provides extra details about the inputs.

• The object-dependent sub-state sobj(i) contains infor-
mation about both the agent’s body and the correspond-
ing object i:

sobj(i) =[obody,∆obody,oobj(i),∆oobj(i)]

where obody and oobj(i) are body- and obji-dependent
observations, and ∆ot

body = ot
body−o0

body and
∆ot

obj(i) = ot
obj(i)−o0

obj(i) measure the difference be-
tween the initial and current observations.

• The attention vector αg that is integrated with sobj(i)

through an Hadamard product to form the model in-
put: xg

i =sobj(i)�αg . This attention vector is a simple
mapping from g to a vector of the size of sobj(i) con-
tained in [0,1]size(sobj(i)). This cast is implemented by
a one-layer neural network with sigmoid activations
NNcast such that αg =NNcast(g).

For the three architectures the number of hidden units of
the LSTM and the sizes of the hidden layers of fully con-
nected networks are fixed to 100. NN parameters are ini-
tialized using He initialization (He et al., 2015) and we
use one-hot word encodings. The LSTM is implemented
using rnn.BasicLSTMCell from tensorflow 1.15 based
on Zaremba et al. (2014). The states are initially set to
zero. The LSTM’s weights are initialized uniformly from
[−0.1,0.1] and the biases initially set to zero. The LSTM use
a tanh activation function whereas the NN are using ReLU
activation functions in their hidden layers and sigmoids at
there output.

Reward function training schedule. The architecture
are trained via backpropagation using the Adam Optimizer
(Kingma & Ba, 2014). The data is fed to the model in
batches of 512 examples. Each batch is constructed so that
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(a) MAR

(b)

Figure 10: Modular attention architectures: (a) Modular-attention reward function (MAR) (b) Complete Modular-
attention architecture MA reward + MA policy. In both figures, the reward function is represented on the right in green, the
policy on the left in pink, the language encoder in the bottom in yellow and the attention mechanisms at the center in blue.

it contains at least one instance of each goal description gNL
(goals discovered so far). We also use a modular buffer to
impose a ratio of positive rewards of 0.2 for each descrip-
tion in each batch. When trained in parallel of the policy,
the reward function is updated once every 1200 episodes.
Each update corresponds to up to 100 training epochs (100
batches). We implement a stopping criterion based on the
F1-score computed from a held-out test set uniformly sam-
pled from the last episodes (20% of the last 1200 episodes
(2 epochs)). The update is stopped when the F1-score on the
held-out set does not improve for 10 consecutive training
epochs.

RL implementation and hyperparameters. In the pol-
icy and critic architectures, we use hidden layers of size
256 and ReLU activations. Attention vectors are cast from
goal embeddings using single-layer neural networks with
sigmoid activations. We use the He initialization scheme for

(He et al., 2015) and train them via backpropagation using
the Adam optimizer (β1 =0.9,β2 =0.999) (Kingma & Ba,
2014).

Our learning algorithm is built on top of the OpenAI Base-
lines implementation of HER-DDPG.1 We leverage a parallel
implementation with 6 actors. Actors share the same policy
and critic parameters but maintain their own memory and
conduct their own updates independently. Updates are then
summed to compute the next set of parameters broadcast to
all actors. Each actor is updated for 50 epochs with batches
of size 256 every 2 episodes of environment interactions.
Using hindsight replay, we enforce a ratio p=0.5 of tran-
sitions associated with positive rewards in each batch. We
use the same hyperparameters as Plappert et al. (2018).

1The OpenAI Baselines implementation of HER-DDPG can be
found at https://github.com/openai/baselines, a link to our Github
repository will be added in the final version.
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Computing resources. The RL experiments contain 8
conditions of 10 seeds each, and 4 conditions with 5 seeds
(SP study). Each run leverages 6 cpus (6 actors) for about
36h for a total of 2.5 cpu years. Experiments presented in
this paper requires machines with at least 6 cpu cores.


