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Abstract001

Effectively handling instructions with ex-002
tremely long context remains a challenge for003
Large Language Models (LLMs), typically ne-004
cessitating high-quality long data and substan-005
tial computational resources. This paper intro-006
duces Step-Skipping Alignment (SkipAlign), a007
new technique designed to enhance the long-008
context capabilities of LLMs in the phase of009
alignment without the need for additional ef-010
forts beyond training with original data length.011
SkipAlign is developed on the premise that012
long-range dependencies are fundamental to en-013
hancing an LLM’s capacity of long context. De-014
parting from merely expanding the length of in-015
put samples, SkipAlign synthesizes long-range016
dependencies from the aspect of positions in-017
dices. This is achieved by the strategic inser-018
tion of skipped positions within instruction-019
following samples, which utilizes the seman-020
tic structure of the data to effectively expand021
the context. Through extensive experiments022
on base models with a variety of context win-023
dow sizes, SkipAlign demonstrates its effective-024
ness across a spectrum of long-context tasks.025
Particularly noteworthy is that with a care-026
ful selection of the base model and alignment027
datasets, SkipAlign with only 6B parameters028
achieves it’s best performance and comparable029
with strong baselines like GPT-3.5-Turbo-16K030
on LongBench. The code and SkipAligned031
models will be open-sourced.032

1 Introduction033

The capacity to process and comprehend long con-034

texts is pivotal to large language models (LLMs),035

empowering them to tackle complex real-world036

applications involving extremely long context,037

such as questions answering or summarizing from038

multiple-document (Caciularu et al., 2023), un-039

derstanding and processing repository-level code040

(Jimenez et al., 2023). Recent advancements have041

significantly broadened the context window of042

LLMs, e.g. achieving a context window of 128K043

tokens through continuous pretraining (Fu et al., 044

2024). 045

Despite these advancements on extending con- 046

text window, the alignment of LLMs to leverage 047

their long-text capabilities to interpret long and 048

complex instructions remains an underexplored 049

area. A primary obstacle is the lack of high- 050

quality, open-source datasets with long instruc- 051

tions, along with the challenges associated with 052

annotating such data. A promising approach to 053

this challenge involves synthesizing long instruc- 054

tional samples from common short ones. However, 055

existing methods have primarily focused on sim- 056

ply extending the length of instructional samples, 057

neglecting the more critical aspect of effectively 058

building long-range dependency relations. For ex- 059

ample, methods like LongChat (Li et al., 2023) and 060

LongLLAMA(Tworkowski et al., 2024) concatenate 061

shorter samples to create longer ones. Yet, the long- 062

range relations constructed in these strategies are 063

derived from unrelated samples, which may not 064

effectively simulate the long-range dependencies 065

necessary for tasks involving long context. 066

To overcome these challenges, this paper in- 067

troduces a new method called Step-Skipping 068

Alignment (SkipAlign) which leverages positional 069

indices of short instructions to create samples 070

with meaningful long-range dependency relations. 071

Drawing inspiration from transformer’s reliance 072

on positional indices, SkipAlign manipulates posi- 073

tional indices to simulate long-range dependencies, 074

enhancing the model’s ability to process long con- 075

texts without the need for extensive data generation 076

or modifying architecture. Our technique involves 077

the strategic insertion of skipping steps within 078

the positional indices of instruction-response pairs. 079

This strategy is designed to ensure that the rela- 080

tive distances of synthesized indices are uniformly 081

distributed across an extended range of lengths, 082

while maintaining their continuity as much as pos- 083

sible. Leveraging the rich long-range dependencies 084
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within the synthesized positions, LLMs are better085

equipped to learn how to process long instructions086

during the alignment phase.087

Our evaluation of SkipAlign involved base mod-088

els with varying context window sizes, including a089

LLAMA-2 model featuring a 4096-token window090

and a Yi-6B-200K model with an 200K-token win-091

dow. On LongBench benchmark, SkipAlign ac-092

tivates long-context capabilities more effectively093

than conventional instruction finetuning and re-094

cent packing based methods. A SkipAlign model095

with 6 billion parameters, when integrated with096

high-quality base models and instruction datasets,097

matches the performance of GPT-3.5-Turbo-16k098

on the LongBench. Moreover, in the Needle-in-099

a-Haystack test, SkipAlign demonstrates its supe-100

rior performance in extending the context window101

size and highlights the critical importance of long-102

range dependencies in samples, rather than merely103

extending the sequence lengths. In summary, the104

advantages of SkipAlign are as follows: (1) En-105

hanced Long Context Capabilities: SkipAlign106

improves models’ long context capabilities by sim-107

ulating long-range dependencies, which is essential108

for effective long context alignment. (2) Compu-109

tational Efficiency: SkipAlign avoids the need for110

additional longer data for training or modifying the111

architecture of a LLM, making it a computationally112

efficient solution. (3) Extended Context Window:113

SkipAlign additionally helps LLM with small con-114

text window to handle inputs beyond their original115

context window.116

2 Related Work117

Long Context Scaling The goal of long context118

scaling is to empower current LLMs them with the119

ability to cope with long context tasks. This process120

involves two key steps: context window extension121

and instruction finetuning (Xiong et al., 2023). The122

majority of existing research has concentrated on123

the former, exploring techniques such as manipu-124

lating positional embeddings (Chen et al., 2023a;125

Peng and Quesnelle, 2023; Jin et al., 2024), inno-126

vating model architecture (Mohtashami and Jaggi,127

2023; Yang et al., 2023; Tworkowski et al., 2024),128

and continue pretraining (Chen et al., 2023b). In129

contrast, this study delves into the latter step, focus-130

ing on long context instruction finetuning. To the131

best of our knowledge, previous research has ap-132

proached this stage by generating additional long-133

input data (Bai et al., 2024). Our method, however,134

relies solely on the available short instruction data. 135

Long Context Evaluation Initial studies have 136

predominantly evaluated LLMs based on their abil- 137

ity to maintain perplexity over extended context 138

(Chen et al., 2023a; Peng et al., 2023). However, 139

recent findings have revealed that perplexity alone 140

is insufficient to reflect the long context capabilities 141

of language models (Fu et al., 2024). As a result, 142

two alternative evaluation methods have emerged. 143

One approach involves comprehensive evaluation 144

methods, such as LongBench (Bai et al., 2023) 145

and L-Eval (An et al., 2023), which assess long 146

context capabilities through various downstream 147

tasks, including question answering (QA) and text 148

summarization. The other approach, represented 149

by Needle-in-a-Haystack test1, applies synthetic 150

tasks to pressure test specific types of long context 151

capabilities at any given position. In addition to 152

assessing long context capabilities, it is crucial to 153

evaluate a model’s proficiency in managing short 154

texts effectively (Xiong et al., 2023). In this paper, 155

we conduct a comprehensive evaluation by employ- 156

ing both types of long context evaluation methods, 157

while also reporting on the performance of short 158

text tasks. 159

Skip Position Training The concept of skip po- 160

sition training has been previously utilized for con- 161

text window expansion. RandPos (Ruoss et al., 162

2023) randomly selects and projects an ordered 163

subset of position indices to accommodate longer 164

contexts. Subsequently, PoSE (Zhu et al., 2023) 165

refined this technique by dividing long inputs into 166

segments and randomly shifting their position in- 167

dices. The primary objective of these methods is 168

to enhance memory efficiency during the training 169

of extremely long sequences. Our approach, on the 170

other hand, aims to stimulate long-range dependen- 171

cies in long instruction-following data and utilizing 172

their inherent structure. 173

3 Methodology 174

3.1 Preliminary 175

Before introducing SkipAlign, we first introduce 176

the background knowledge and the important base- 177

lines of our method. 178

Instruction Tuning Pretrained models are often 179

finetuned with instruction-following samples for 180

alignment to learn to follow instructions. These 181

1https://github.com/gkamradt/LLMTest_NeedleInAHaystack.

2



x y

40960

SkipAlign

x

Target: 100K

100K0

y x y

Positional Indices  

Original:  4096

x y x y x y x y

Skip-ALL

Skip-Outter

Skip-Innerx y y x y

xyxyx

Positional Indices  

skipped!

Figure 1: SkipAlign modifies positional indices in instruction-following samples to simulate long-range dependency
relations. The provided example showcases how SkipAlign takes three distinct samples, each initially positioned
within a 4096-token, and independently applies three separate strategies to stretch their lengths to an impressive
100K tokens.

samples are structured as instruction-response182

pairs, arranged in continuous sequences (Wei et al.,183

2022). These sequences are structured as formal184

instruction-response pairs. To formalize, let m =185

(x1, y1, . . . , xi, yi) denote a sequence comprising186

i turns of such pairs. We train auto-regressive lan-187

guage models using the following objective func-188

tion:189

L = −
∑
m

log
∑
yj

p(yj |(x1, y1, . . . , xj)), (1)190

In this dialogue-formatted sample, the model is191

tasked with predicting each response yj condi-192

tioned on its preceding instruction xj and the193

sequence of prior pairs. This conventional ap-194

proach to instruction tuning is termed Normal-SFT195

throughout the remainder of this paper.196

Packed-SFT It is crucial to highlight that the197

majority of existing datasets used for instruction198

tuning are characterized by short instructions. To199

address this limitation, a straightforward method200

proposed in LongChat (Li et al., 2023) involves201

concatenating multiple short, unrelated instruction-202

following samples into a single sequence of k to-203

kens in length. We refer this baseline method as204

PackedSFT-k throughout the remainder of this pa-205

per.206

Position Indices Transformer-based language207

models utilize positional information to comple-208

ment the input tokens, and this information is en-209

coded through positional indices (Vaswani et al.,210

2017b). While a variety of positional embedding211

techniques have been proposed, they universally212

rely on positional indices to precisely convey the213

positional information of tokens (Raffel et al., 2020; 214

Su et al., 2024). By default, positional indices are 215

sequentially assigned as (0, 1, . . . , |m| − 1), with 216

|m| representing the length of the input sequence. 217

In this study, we concentrate on the recent popu- 218

lar relative positional embedding approach, with a 219

particular emphasis on the ROPE (Su et al., 2024). 220

This method characterizes the positional relation- 221

ship between two tokens at indices i and j by their 222

relative distance, denoted as |i− j|. 223

3.2 SkipAlign 224

In this section, we provide an in-depth explanation 225

of our proposed method, SkipAlign. To generate 226

a target response within an instruction-following 227

sample, the essential information relied upon is 228

scattered across its corresponding instruction and 229

the sequence of preceding dialogue turns, as elab- 230

orated in Section 3.1. SkipAlign operates on the 231

core assumption that expanding the relative dis- 232

tance of such semantic structure to encompass a 233

longer scale is essential for unlocking the long- 234

context capabilities of language models. SkipAlign 235

accomplishes this via strategically modifying posi- 236

tional indices. By selectively skipping over certain 237

positional indices in a instruction-following sam- 238

ple, we are able to extend the relative distance of 239

semantic dependencies, creating long-range depen- 240

dency relations. 241

Skipping Positions via Shifting Our aim is to 242

expand relative distances of semantic dependency 243

in an instruction dataset, surpassing the its maxi- 244

mum sample length l to reach an extended max- 245

imum length L, where L is significantly greater 246

than l. This is achieved by reassigning positional 247
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indices, spreading the original positions from the248

interval [0, l] to the extended interval [0, L]. We249

treat an instruction or response as a basic unit250

and shift all of their positional indices simultane-251

ously. Formally, given an i turn sample m, let252

P (m) = (c1, c2, . . . , c2i−1, c2i) represent its orig-253

inal positional indices which is concatenated by the254

positional indices of each block in a instruction-255

response pair. In P (m), odd and even numbered256

subscript separately correspond to instructions and257

responses. We create larger relative positions by258

shifting each positional block to the right by a bias259

vector u = (u1, u2, . . . u2i), where each constant260

u ∈ u is a constant bias for the shift. By shifting261

different block by a various scale, we can create262

skipping positions between them. The reassigned263

positional indices of m are now given by:264

Pu(m) = P (m) + u265

= (c1 + u1, c2 + u2, . . . , c2i + u2i). (2)266

Because the basic requirement for valid position267

indices is incrementality, which requires the min-268

imum shifting bias ui is set to accumulated shift-269

ing bias of previous tokens uai =
∑

j<i uj . We270

introduce a skipped step denote as si, such that271

ui = uai−1 + si. A si of zero means no skip occurs272

between ci and its precedent ci−1. A positive si273

introduces a skip of si positional indices between274

these two positions. To achieve a uniform distribu-275

tion of relative distances within [0, L] after shifting,276

we sample si from a uniform distribution:277

si ∼ U{1, L− |m| − uai−1}, (3)278

where L − |m| − uai represents the maximum al-279

lowable skip length, taking into account the sample280

length |m| and the already skipped positions uai−1.281

The remaining critical task is to devise a skipping282

strategy for determining when to set si > 0 to283

introduce skipping steps.284

Skipping Strategy We investigate three distinct285

skipping strategies, to study the contributions of286

various semantic dependencies on the model’s long287

context capability. These strategies apply skipped288

distances selectively to particular structures within289

the sample:290

1. Skip-All: This strategy applies skipping291

across all roles within a sample, without any292

selection.293
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Figure 2: The frequency of relative distance in the Tülu
V2 dataset. Comparing with the original distribution,
SkipAlign redistribute a small subset of samples into a
longer context.

2. Skip-Inner: This strategy adds skipping steps 294

exclusively within pairs, i.e., between an in- 295

struction and its response. Concisely, such 296

strategy only adds si when ci is from a re- 297

sponse. 298

3. Skip-Otter: This strategy introduces skipping 299

steps only between separate dialogue turns. 300

Concisely, such strategy only adds si when ci 301

is from a instruction. 302

A straight forward illustration of how these strate- 303

gies on positional indices is presented in Figure 1. 304

We use an indicator function DO_SKIP() to deter- 305

mine if ci meets the criteria for adding skipping 306

step. The function returns 1 if the conditions are 307

met, and 0 otherwise. Furthermore, to control the 308

number of synthesized positions, we sub-sample 309

p% of valid position to add skipping steps. The 310

overall rule are summarized as followings: 311

ui =


uai−1 + 1(ϵi ≤ p) ∗ si

i > 0 and DO_SKIP (ci)

0 i = 0
(4) 312

where ϵi is uniformly sampled from [0, 1] and deter- 313

mined by the indicator function 1(·), which decides 314

whether to add the skipped distance si. We apply 315

Skip-Outer as our default strategy as it achieve a 316

better performance in both long context and short 317

context capability by ablation studies (2). 318

Frequency of Relative Distances Distribution 319

of relative distances within a dataset is the key to 320
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understand the impact of the SkipAlign. This sec-321

tion provides a statistical analysis of the frequency322

of relative distances at the dataset level. We be-323

gin by explaining the methodology to quantify the324

range of relative distances present in an individual325

sample. In the most straightforward scenario, a326

single-turn dialogue (x1, y1) with a length of l, the327

set of possible relative distances for generating yi328

is {0, 1, . . . , |l| − 1}. However, if a skipped step329

si is inserted between x1 and y1, the minimum dis-330

tance between them is now si, the revised range of331

relative distances is {si, si +1+ . . . , si + |l| − 1},332

which expands the relative distance of such depen-333

dency. For more complex cases involving multiple334

turns, we consider the union of the relative distance335

sets for generating responses in each turn.336

Following the aforementioned mehotd, we cal-337

culate the frequency of relative positions in dataset-338

level. As depicted in Figure 2, Tülu V2 dataset’s339

initial relative distances are confined to the interval340

[0, 4096]. After SkipAlign the distribution is ex-341

tended to [0, 100K], with the extended range from342

4096 to 100K nearly uniform. This observation343

suggests that the SkipAlign extends the positional344

indices of a p% of the dataset, making them to345

evenly distributed to relative distances across the346

expanded interval.347

4 Experimental Setup348

Training Data Our experiments leverage the349

Tülu V2 2 dataset, which is a high-quality data350

mixture consisting of manually annotated and GPT-351

generated conversational data. This dataset pro-352

vides a rich and diverse source for model training.353

Following their settings, we truncate input samples354

to 4096 tokens. For the SkipAlign, we introduce355

additional positional indices during pre-processing.356

The parameters for the SkipAlign are as follows:357

the maximum extend length L is set to 100K, the358

sub-sampling ratio p is 0.5, and the default skipping359

strategy is Skip-Outter.360

Training Settings In response to the recent361

progress in extending the context window, our362

study investigates the influence of these models363

on the alignment of long contexts. We conduct364

our SFT experiments using two base models with365

varying context window sizes: 1. The LLAMA-2366

model (Touvron et al., 2023), which has a context367

window of 4094 tokens, serves as our baseline for368

2https://huggingface.co/datasets/allenai/Tülu-v2-sft-
mixture

comparison. 2. The Yi-6B-200K model 3, which 369

significantly extends the Yi-6B model’s context 370

window to an impressive 200K tokens through con- 371

tinuous pre-training (AI et al., 2024). For models 372

based on LLAMA-2, we employ the Neural Tan- 373

gent Kernel (NTK) (Peng and Quesnelle, 2023) 374

to extend positional embeddings to the maximum 375

training or inference length prior to training. In con- 376

trast, for Yi-6B-200K models, additional positional 377

extension is unnecessary as the model’s inherent 378

maximum embedding length is already 200K. 379

All models are trained for two epochs with a 380

learning rate of 1e-5, without weight decay, and us- 381

ing a linear learning rate decay and linear warmup 382

for 3% of the total training steps. Training is con- 383

ducted on an 8-GPU setup with NVIDIA A100 384

GPUs, utilizing the DeepSpeed library (Aminabadi 385

et al., 2022) and the ZeRO optimizer Vaswani et al. 386

(2017a) for efficient and stable training. 387

Evaluation The evaluation of our models’ perfor- 388

mance with long contexts is conducted using Long- 389

Bench (Bai et al., 2023), a comprehensive bench- 390

mark suite that encompasses 16 distinct datasets 391

spread across 6 different task categories. These 392

datasets are designed to assess models with in- 393

put lengths varying from 4K to 20K tokens. In 394

the course of our experiments, we observed sig- 395

nificant instability in the performance of synthetic 396

tasks within LongBench when tested across multi- 397

ple models and even at different checkpoints within 398

the same model. This variability prompted us to 399

exclude synthetic tasks and any Chinese-language 400

datasets from our evaluation to ensure a more reli- 401

able and focused assessment. We set the maximum 402

testing length to 16K tokens. 403

5 Results 404

5.1 Results on LongBench 405

We present the results of our comprehensive exper- 406

iments on LongBench in Table 1. 407

SkipAlign further benefits long context capabil- 408

ity The results presented in the second and third 409

blocks of Table 1 highlight the consistent advantage 410

of SkipAlign over Normal-SFT and Packed-SFT on 411

average scores. This is particularly evident when 412

comparing with Noraml-SFT, where SkipAlign al- 413

most demonstrates its superiority in every subtasks. 414

Utilizing the Yi-6B-200K model, SkipAlign outper- 415

3https://huggingface.co/01-ai/Yi-6B-200K
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Model Avg. S-Doc QA M-Doc QA Summ Few-shot Code

GPT-3.5-Turbo-16k 44.6 39.7 38.7 26.5 67.0 54.2

LLAMA-2-7B Based Models
LLAMA-2-7B-chat-4k 35.2 24.9 22.5 25.0 60.0 48.1
SEext-LLAMA-2-7B-chat-16k 38.7 27.3 26.2 24.8 64.2 57.5
LongChat1.5-7B-32k 36.9 28.7 20.6 26.6 60.0 54.2
LLAMA-2-7B-NTK32k 31.7 16.2 7.3 15.4 66.7 63.4

+ Normal-SFT 41.5 31.3 32.7 26.0 65.3 57.4
+ PackedSFT-16k 42.6 31.6 32.8 26.2 67.9 60.5
+ PackedSFT-32k 41.6 30.0 32.2 26.2 67.3 58.0
+ PackedSFT-50k 43.6 36.0 37.0 27.7 63.8 58.5
+ SkipAlign 44.1 38.6 33.8 26.1 67.6 59.6

Yi-6B-200K Based Models
Yi-6B-200K 39.1 25.1 33.8 25.6 56.6 62.0

+ Normal-SFT 43.7 37.0 35.0 26.8 65.8 59.0
+ PackedSFT-16k 44.1 33.1 38.2 27.4 67.4 59.7
+ SkipAlign 45.3 40.3 38.7 26.1 66.3 60.0

Table 1: Results on LongBench, we report the average performance on all datasets and each sub tasks of various
long context alignment settings.

forms GPT-3.5-Turbo-16k in the overall average416

performance on LongBench.417

Task-level Analysis After alignment, there is a418

noticeable enhancement in performance across all419

sub-tasks, with the exception of a slight decline420

in the coding subtask. This is largely attributed to421

the fact that the coding tasks in LongBench pre-422

dominantly involve continuous code generation,423

a type of task that aligns more closely with the424

pretraining. Models need to pay “alignment tax”425

for this task. In task-level comparisions, the im-426

provements brought by SkipAlign, in descending427

order, are single-document QA, multi-document428

QA, few-shot learning, and lastly, summarization.429

The driving force behind these improvements is430

SkipAlign’s proficiency in simulating long-term431

dependencies. Conversely, the gains observed in432

summarization tasks were more modest. This can433

be explained by the complex nature of information434

aggregation inherent in summarization. The task re-435

quires identifying salient information that is evenly436

dispersed throughout a long context. Constructing437

this type of long-term structure is challenging for438

current skipping strategies, which are constrained439

by the given short data and the necessity to main-440

tain consistency of their positional indices.441

Quality of base model and alignment dataset is442

important to the long context capability Our443

investigation has revealed key insights into how 444

the quality of base models and alignmnt datasets 445

significantly influence a language model’s ability 446

to handle long contexts. Notably, when using the 447

same SFT dataset, Noraml-SFT, PackedSFT-16K, 448

and SkipAlign consistently show more improve- 449

ments when they are based on the Yi-6B-200K 450

model rather than the LLAMA-7B model. More- 451

over, despite employing a similar packing strategy 452

and training sequence length, the PackedSFT-32K 453

model, trained with the Tülü V2 dataset, outper- 454

forms the LongChat1.5-7B-32k model, which was 455

trained using ShareGPT, by a notable 4.7 points. 456

This observation underscores the importance of 457

both a high-quality alignment dataset and s base 458

model with inherent strong long context capabili- 459

ties in achieving superior overall performance. 460

5.2 Testing with Needle-in-a-Haystack 461

Settings To gain a clearer insight into the en- 462

hancement of long context capabilities by SFT and 463

our proposed SkipAlign, we conduct a Needle-in-a- 464

Haystack test. This test evaluates a model’s ability 465

to retrieve information from any position within 466

the context, as depicted in Figure 3. We use a color 467

scale ranging from deep red, indicating a 100% 468

successful recall, to green, representing a 0% com- 469

plete failure. Given that the Yi-6B-200K model 470

has already achieved near-perfect performance in 471
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(a) LLAMA-2-7B-NTK-50K (b) Normal-SFT-NTK-50K

(c) PackedSFT-50K (d) SkipAlign

Figure 3: Needle in the Haystack test for LLAMA-2-7B based models: LLAMA-2-7B-NTK-50K denotes the
straightforward expansion of LLAMA-2-7B using NTK to accommodate 50K tokens without further tuning. Normal-
SFT-NTK-50K represents the adaptation of a standard fine-tuned model for this extended context. PackedSFT-50K
indicates the fine-tuning process using samples artificially extended to 50K tokens for training.

this test, we focus our evaluation on LLAMA-2-7B472

based models.473

SkipAlign is better at extending context window474

Directly applying NTK for inference, as shown in475

Figure 3(a), yields suboptimal results. While initial476

fine-tuning followed by NTK, as depicted in Figure477

3(b), slightly expands the context window beyond478

the initial 4096 token limit. Conversely, fine-tuning479

with packed samples to accommodate a 50K token480

context, as illustrated in Figure 3(c), manages to481

extend the successful retrieval window to around482

20K tokens, achieving an average accuracy score483

of 50. However, SkipAlign (Figure 3(d)), which484

does not rely on samples exceeding 4096 tokens,485

not only extends the retrieval window to a extent486

of 28K but also significantly improves the average487

accuracy score to 61.6. This outcome demonstrates488

SkipAlign’s superior ability to enhance the context489

window without the need for excessively long input490

samples.491

Long-term dependency are more important492

than sample’s length A detailed comparison493

between PackedSFT-50K and SkipAlign reveals494

the critical role of long-term dependencies. With495

PackedSFT-50K, the input sample size is uniformly 496

concatenated to 50K tokens, ensuring that each 497

sample reaches this length. In contrast, SkipAlign 498

employs a strategic approach to enhance long-term 499

dependencies without necessitating the creation of 500

actual long samples. From the perspective of rel- 501

ative distance, although PackedSFT-50K samples 502

are longer, the effective dependency relationships 503

they capture are confined within a 4096 token rela- 504

tive distance. SkipAlign, on the other hand, explic- 505

itly extends these relationships to a much broader 506

range. This under-scoring the notion that the ef- 507

fective long-term dependencies is a more critical 508

factor than the mere length of the input sequences. 509

5.3 Ablation Study on short text capability 510

and on skipping strategy 511

Evaluation Settings In addition to the long con- 512

text evaluation previously discussed, we conducted 513

further tests to determine the influence of various 514

SFT configurations on a model’s fundamental short 515

text processing capabilities. Following the evalu- 516

ation settings in Wang et al. (2023), we validate 517

on 6 datasets: Massive Multitask Language Under- 518

standing dataset (MMLU (Hendrycks et al., 2020)) 519

for measuring models’ factual knowledge, and Big- 520
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Model LongBench MMLU BBH TydiQA Codex-Eval

Yi-6B-200K 39.1 64.2 43.0 16.2 19.9
+Normal-SFT 43.7 60.5 44.6 32.6 30.4
+Skip-All 45.1 59.6 38.7 31.7 26.9
+Skip-Inner 42.4 59.5 41.5 31.0 29.3
+Skip-Outter (default) 45.3 61.1 42.6 30.3 28.5

Table 2: Results on both long and short tasks.

Bench-Hard (BBH (Suzgun et al., 2022)) to eval-521

uate models’ reasoning capabilities, TyDiQA to522

evaluate models’ multilingual capabilities (Clark523

et al., 2020), and Codex-Eval to evaluate coding524

capabilities.525

Trade-offs in SkipAlign’s Performance526

Since SkipAlign samples a subset of the data527

to synthesize long range dependency, thereby528

reallocating computational resources that would529

have been directed towards short-text processing530

to optimize the handling of longer sequences. As531

illustrated in Table 2, since the overall content of532

the data remaining unchanged, SkipAlign doesn’t533

affect the learning of factual knowledge and shows534

a improvement of 1.5 points on the MMLU metric535

when compared to Normal-SFT. For the perfor-536

mance on BBH (Resoning), TydiQA (multilingual)537

and Codex-Eval (Coding), SkipAlign witness a538

1-2 point decrease, which could potentially be539

attributed to the selective nature of SkipAlign.540

In summary, SkipAlign strategically shifts some541

of the short-text capabilities of Normal-SFT to542

enhance its long-context performance.543

Integrity of dialogue structure is crucial for544

SkipAlign The integrity of the dialogue struc-545

ture, specifically the consistency between instruc-546

tions and responses, is crucial for sustaining perfor-547

mance across both long and short text tasks. When548

skipping steps are applied within an instruction-549

response pair (Skip-Inner), it negatively impacts550

the model’s performance, regardless of the text551

length. Interestingly, the Skip-All strategy, which552

applies skipping without any constraints, achieves553

a performance that lies between the extremes of554

Skip-Inner and Skip-Outter. This observation high-555

lights the significance of maintaining the integrity556

of the dialogue structure.557

5.4 Analysis on Hyper-parameter558

L effects overall performance most, with 100K559

being the optimal setting Figure 4 demonstrates560

Figure 4: Average score on LongBench for SkipAlign
across various maximum extension length L and sub-
sampling ratio p p.

that, in comparison to p, severely affect the overall 561

performance of SkipAlign. Among the evaluated 562

lengths, L set to 100K stands out as the most effec- 563

tive, consistently delivering superior results to both 564

the Normal-SFT and the lengths of 50K and 150K. 565

It is noteworthy that the average testing length on 566

LongBench dataset is below 50k, suggesting that 567

utilizing a L that significantly larger l, such as 100K 568

or 150K, can lead to better performance. 569

A moderate setting of p yields optimal perfor- 570

mance With p across 0.2, 0.5, and 0.8, SkipAlign 571

consistently outperforms Normal-SFT and achieves 572

peak performance at a probability of 0.5. This 573

peak indicates that a moderate value of p enables 574

SkipAlign to optimize its performance effectively. 575

6 Conclusion 576

In this study, we introduce SkipAlign, a new 577

method designed to perform long context align- 578

ment only with short instruction datasets. This 579

technique employs a simple yet effective strategy 580

of manipulating position indices within instruction- 581

following samples, thereby facilitating the creation 582

of high-quality long dependency relations. 583

8



Limitation584

While SkipAlign has demonstrated impressive re-585

sults in tasks involving extensive context, it exhibits586

a slight decline in performance when processing587

short texts. We propose that additional research588

into data engineering, particularly the integration589

of synthesized data with authentic samples, may590

effectively address or potentially overcome this591

limitation.592
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