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Abstract
Transformer architectures have shown impressive performance in multiple re-
search domains and have become the backbone of many neural network models.
However, there is limited understanding on how Transformer works. In particular,
with a simple predictive loss, how the representation emerges from the gradient
training dynamics remains a mystery. In this paper, we analyze the SGD training
dynamics for 1-layer transformer with one self-attention plus one decoder layer,
for the task of next token prediction in a mathematically rigorous manner. We open
the black box of the dynamic process of how the self-attention layer combines in-
put tokens, and reveal the nature of underlying inductive bias. More specifically,
with the assumption (a) no positional encoding, (b) long input sequence, and (c)
the decoder layer learns faster than the self-attention layer, we prove that self-
attention acts as a discriminative scanning algorithm: starting from uniform at-
tention, it gradually attends more to key tokens that are distinct for a specific next
token to be predicted, and pays less attention to common key tokens that occur
across different next tokens. Among distinct tokens, it progressively drops atten-
tion weights, following the order of low to high co-occurrence between the key
and the query token in the training set. Interestingly, this procedure does not lead
to winner-takes-all, but decelerates due to a phase transition that is controllable by
the learning rates of the two layers, leaving (almost) fixed token combination. We
verify this scan and snap dynamics on synthetic and real-world data (WikiText).

1 Introduction
The Transformer architecture [1] has demonstrated wide applications in multiple research domains,
including natural language processing [2, 3, 4], computer vision [5, 6, 7], speech [8, 9], multimodal-
ity [10, 11], etc. Recently, large language models (LLMs) based on decoder-only Transformer
architecture also demonstrate impressive performance [4, 12, 13], after fine-tuned with instruction
data [14] or reward models [15]. Why a pre-trained model, often supervised by simple tasks such
as predicting the next word [4, 3, 13] or filling in the blanks [2, 16, 17], can learn highly valuable
representations for downstream tasks, remains a mystery.

To understand how Transformer works, many previous works exist. For example, it has been shown
that Transformer is a universal approximator [18], can approximate Turing machines [19, 20], and
can perform a diverse set of tasks, e.g., hierarchical parsing of context-free grammar [21], if its
weights are set properly. However, it is unclear whether the weights designed to achieve specific
tasks are at a critical point, or can be learned by SoTA optimizers (e.g., SGD, Adam [22], AdaFac-
tor [23], AdamW [24]). In fact, many existing ML models, such as k-NN, Kernel SVM, or MLP, are
also universal approximators, while their empirical performance is often way below Transformer.

To demystify such a behavior, it is important to understand the training dynamics of Transformer,
i.e., how the learnable parameters change over time during training. In this paper, as a first step, we
formally characterize the SGD training dynamics of 1-layer position-encoding-free Transformer for
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next token prediction, a popular training paradigm used in GPT series [3, 4], in a mathematically
rigorous manner. The 1-layer Transformer contains one softmax self-attention layer followed by one
decoder layer which predicts the next token. Under the assumption that the sequence is long, and
the decoder learns faster than the self-attention layer, we prove the following interesting dynamic
behaviors of self-attention during training. Frequency Bias: it progressively pays more attention to
key tokens that co-occur a lot with the query token, and loses attention to tokens that co-occur less.
Discriminative Bias: it pays attention to distinct tokens that appear uniquely given the next token to
be predicted, while loses interest to common tokens that appear across multiple next tokens. These
two properties suggest that self-attention implicitly runs an algorithm of discriminative scanning,
and has an inductive bias to favor unique key tokens that frequently co-occur with the query ones.

Furthermore, while self-attention layer tends to become more sparse during training, as suggested
by Frequency Bias, we discover that it will not collapse to one-hot, due to a phase transition in the
training dynamics. In the end, the learning does not converge to any stationary points with zero
gradient, but ventures into a region where the attention changes slowly (i.e., logarithmically over
time), and appears frozen and learned. We further show that the onset of the phase transition are
controlled by the learning rates: large learning rate gives sparse attention patterns, and given fixed
self-attention learning rate, large decoder learning rate leads to faster phase transition and denser
attention patterns. Finally, the SGD dynamics we characterize in this work, named scan and snap,
is verified in both synthetic and simple real-world experiments on WikiText [25].

Concurrent works on Transformer dynamics. Compared to [26] that uses ℓ2 loss, our analysis
focuses on cross-entropy, which is more realistic, imposes no prior knowledge on possible attention
patterns inaccessible to training, and allows tokens to be shared across topics. Compared to [27] that
analyzes “positional attention” that is independent of input data with symmetric initialization, our
analysis focuses on attention on input data without symmetric assumptions. [28, 29, 30] give similar
conclusions that self-attention attends to relevant tokens. In comparison, our work analyzes richer
phenomena in 1-layer transformers related to frequency and discriminative bias, which has not been
brought up by these works. For example, sparse attention patterns are connected with co-occurrence
frequency of contextual token and query, characterization of such connection over training with
softmax, including two-stage behaviors of attention logits, etc. We also leverage analytical solu-
tions to certain nonlinear continuous dynamics systems that greatly simplifies the analysis. Detailed
comparison can be found in Appendix B.

2 Related Works

Expressiveness of Attention-based Models. A line of work studies the expressive power of
attention-based models. One direction focuses on the universal approximation power [18, 31, 32,
33, 20]. More recent works present fine-grained characterizations of the expressive power for certain
functions in different settings, sometimes with statistical analyses [34, 35, 36, 37, 21, 38, 39, 40]. In
particular, there is growing interest in explaining the capability of in-context learning [41] of Trans-
former, by mapping the gradient descent steps of learning classification/regression into feedforward
steps of Transformer layers [42, 43, 44, 45, 37, 46]. Different from our work, the results in these
papers are existential and do not take training dynamics into consideration.

Training Dynamics of Neural Networks. Previous works analyze the training dynamics in multi-
layer linear neural networks [47, 48], in the student-teacher setting [49, 50, 51, 52, 53, 54, 55,
56, 57], and infinite-width limit [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], including
extentions to attention-based models [72, 73]. For self-supervised learning, works exist to analyze
linear networks [74] and understand the role played by nonlinearity [75]. Focusing on attention-
based models, Zhang et al. [76] study adaptive optimization methods in attention models. Jelassi et
al. [27] propose an idealized setting and show the vision transformer [5] trained by gradient descent
can learn spatial structure. Li et al. [26] show that the 1-layer Transformer can learn a constrained
topic model, in which any word belongs to one topic, with ℓ2 loss, BERT [2]-like architecture and
additional assumptions on learned attention patterns. Snell et al. [77] study the dynamics of a single-
head attention head to approximate the learning of a Seq2Seq architecture. While these papers also
study the optimization dynamics of attention-based models, they focus on different settings and do
not explain the phenomena presented in our paper.
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3 Problem Setting
Notation. Let {uk}Mk=1 be d-dimensional embeddings, and {xt} be discrete tokens. For each
token, xt takes discrete values from 1 to M , denoted as xt ∈ [M ], and xt := ext

∈ RM is the
corresponding one-hot vector, i.e., the xt-th entry of xt is 1 while others are zero. uxt

is the token
embedding at location t in a sequence.

Let U = [u1, . . . ,uM ]⊤ ∈ RM×d be the embedding matrix, in which the k-th row of U is the
embedding vector of token k. X = [x1, . . . ,xT−1]

⊤ ∈ R(T−1)×M is the data matrix encoding the
sequence of length T − 1. XU ∈ R(T−1)×d is the sequence of embeddings for a given sequence
{x1, . . . , xT−1}. It is clear that X1M = 1T−1.

We use X[i] to denote i-th sample in the sequence dataset. Similarly, xt[i] is the token located at t
in i-th sample. Let D be the dataset used for training.

1-Layer Transformer Architecture. Given a sequence {x1, . . . , xT , xT+1}, the embedding after
1-layer self attention is:

ûT =

T−1∑
t=1

btTuxt , btT :=
exp(u⊤

xT
WQW

⊤
Kuxt/

√
d)∑T−1

t=1 exp(u⊤
xT
WQW⊤

Kuxt/
√
d)

(1)

Here btT is the normalized self-attention weights (
∑T−1
t=1 btT = 1). One important detail is that

we mask the weight that the query token attends to itself, which is also being used in previous
works (e.g., QK-shared architecture [78]). See Sec. 7 for discussions about residual connection. Let
bT := [b1T , . . . , bT−1,T ]

⊤ ∈ RT−1 be an attention vector, then b⊤T 1 = 1 and ûT = U⊤X⊤bT .

ℓ2-Normalization. We consider adding a normalization to the output of the self-attention layer:
ũT = U⊤LN(X⊤bT ), where LN(x) := x/∥x∥2. NormFormer and RMSNorm [79, 80] also
leverages this setting (up to a global constant). Our analysis can also be extended to standard Lay-
erNorm [81], which also subtracts the mean of x, while [80] shows that mean subtraction may not
affect the empirical results much. LLaMA [82] also uses RMSNorm. Empirically ûT (or WV ûT )
is normalized (instead of X⊤bT ) and here we use an approximation to facilitate analysis: when the
token embedding {um} are approximately orthogonal to each other, then ∥U⊤x∥2 ≈ ∥x∥2 and thus
ũT ≈ LN(ûT ).

Objective. We maximize the likelihood of predicted (T + 1)-th token using cross entropy loss:

max
WK ,WQ,WV ,U

J := ED

[
u⊤
xT+1

WV ũT − log
∑
l

exp(u⊤
l WV ũT )

]
(2)

For simplicity, we consider single-head attention setting, and multiple-head attention can be re-
garded as single-head setting with simultaneous different initializations (see Sec. 4). We call
xT = m as the query token of the sequence, and xT+1 = n as the next token to be predicted.
Other tokens xt (1 ≤ t ≤ T − 1) that are encoded in X are called contextual tokens. Both the
contextual and query tokens can take values from 1 to M (i.e., m ∈ [M ]) and next token takes
the value from 1 to K (i.e., n ∈ [K]) where K ≤ M . Fig. 1(a) shows the overall setting. For an
overview of the notation used in the paper, please check Tbl. 1 in the Appendix.

3.1 Reparameterization

Instead of studying the dynamics with respect to the parameters of token embedding U , key, value
and query projection matrices WK , WQ and WV , we study the dynamics of two pairwise token
relation matrices Y := UW⊤

V U
⊤ ∈ RM×M and Z := UWQW

⊤
KU

⊤/
√
d ∈ RM×M . Intuitively,

entries of Y and Z store the “logits” of pairs of tokens. We regard the empirical parameterization
using U , WK , WQ and WV as a specific way of parametrization of Y and Z, in order to reduce
the number of parameters to be estimated. Previous work also leverage similar parameterization for
self-attention layers [27, 46].

For real-world applications, the number of tokens M can be huge (e.g., the vocabulary size M =
50, 272 in OPT-175B [83] and M = 32, 000 in LLaMA [82]) and directly optimizing Y and Z
would be prohibitive. However, as we will show in this work, from the theoretical perspective,
treating Y and Z as independent variables has some unique advantages and leads to useful insights.
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Figure 1: Overall of our setting. (a) A sequence with contextual tokens {x1, . . . , xT−1} and query token xT is
fed into 1-layer transformer (self-attention, normalization and decoding) to predict the next token xT+1. (b) The
definition of sequence classes (Sec. 3.2). A sequence class specifies the conditional probability P(l|m,n) of the
contextual tokens, given the query token xT = m and the next token xT+1 = n. For simplicity, we consider
the case that the query token is determined by the next token: xT = ψ(xT+1) (and thus P(l|m,n) = P(l|n)),
while the same query token m may correspond to multiple next tokens (i.e., ψ−1(m) is not unique). We study
two kinds of tokens: common tokens (CT) with P(l|n) > 0 for multiple sequence class n, and distinct tokens
(DT) with P(l|n) > 0 for a single sequence class n only.

Lemma 1 (Dynamics of 1-layer Transformer). The gradient dynamics of Eqn. 2 with batchsize 1 is:

Ẏ = ηY LN(X⊤bT )(xT+1 −α)⊤, Ż = ηZxT (xT+1 −α)⊤Y ⊤ P⊥
X⊤bT

∥X⊤bT ∥2
X⊤diag(bT )X (3)

Here P⊥
v := I−vv⊤/∥v∥22 projects a vector into v’s orthogonal complementary space, ηY and ηZ

are the learning rates for the decoder layer Y and self-attention layer Z, α := [α1, . . . , αM ]⊤ ∈
RM and αm := exp(Y ⊤LN(X⊤bT ))/1

⊤ exp(Y ⊤LN(X⊤bT )).

Please check Appendix C for the proof. We consider Y (0) = Z(0) = 0 as initial condition. This
is reasonable since empirically Y and Z are initialized by inner product of d-dimensional vectors
whose components are independently drawn by i.i.d Gaussian. This initial condition is also more
realistic than [27] that assumes dominant initialization in diagonal elements. Since (xT+1−α)⊤1 =

0 and P⊥
X⊤bT

X⊤diag(bT )X1 = 0, we have Ẏ 1 = Ż1 = 0 and summation of rows of Z(t) and
Y (t) remains zero. Since xT is a one-hot column vector, the update of Z = [z1, z2, . . . ,zM ]⊤ is
done per row:

żm = ηZX
⊤[i]diag(bT [i])X[i]

P⊥
X⊤[i]bT [i]

∥X⊤[i]bT [i]∥2
Y (xT+1[i]−α[i]) (4)

where m = xT [i] is the query token for sample i, zm is the m-th row of Z and żm′ = 0 for row
m′ ̸= m = xT [i]. Note that if xT [i] = m, then bT [i] is a function of zm only (but not a function of
any other zm′ ). Here we explicitly write down the current sample index i, since batchsize is 1.

3.2 Data Generation

Next we specify a data generation model (Fig. 1(b)), named sequence class, for our analysis.

Sequence Class. We regard the input data as a mixture of multiple sequence classes. Each se-
quence class is characterized by a triple sm,n := (P(l|m,n),m, n). To generate a sequence instance
from the class, we first set xT = m and xT+1 = n, and then generate the contextual tokens with
conditional probability P(l|m,n). Let supp(m,n) be the subset of token l with P(l|m,n) > 0.

In this work, we consider the case that given a next token xT+1 = n, the corresponding sequence
always ends with a specific query token xT = m =: ψ(n). This means that we could index sequence
class with next token xT+1 = n alone: sn := (P(l|ψ(n), n), ψ(n), n), P(l|m,n) = P(l|n) and
supp(n) := supp(ψ(n), n).

Note that |ψ−1(m)| = 1 means that the occurrence of token m alone decides next token n to be
predicted, regardless of other tokens in the sequence, which is a trivial case. When |ψ−1(m)| ≥ 2,
the same query token m, combined with other token l in the sequence with non-zero probability
P(l|m,n) > 0, determine the next token.

Overlapping sequence class. Two sequence classes sn and sn′ overlap if supp(n)∩ supp(n′) ̸= ∅.
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(b) Common Token Suppression

𝑐̃!|##

𝑐̃!|#$

(c) Winners-take-all

𝑐̃!|##

𝑐̃!|#$

(d) Attention frozen

Figure 2: Overview of the training dynamics of self-attention map. Here c̃l|m,n := P(l|m,n) exp(zml) is the
un-normalized attention score (Eqn. 5). (a) Initialization stage. zml(0) = 0 and c̃l|m,n = P(l|m,n). Distinct
tokens (Sec. 3.2) shown in blue, common tokens in yellow. (b) Common tokens (CT) are suppressed (żml < 0,
Theorem 2). (c) Winners-take-all stage. Distinct tokens (DT) with large initial value c̃l|m,n(0) start to dominate
the attention map (Sec. 5, Theorem 3). (d) Once passing the phase transition, i.e., t ≥ t0 = O(K lnM/ηY ),
attention appears (almost) frozen (Sec. 6) and token composition is fixed in the self-attention layer.

(Global) distinct and common tokens. Let Ω(l) := {n : P(l|n) > 0} be the subset of next tokens
that co-occur with contextual token l. We now can identify two kinds of tokens: the distinct token
l which has |Ω(l)| = 1 and the common token l with |Ω(l)| > 1. Intuitively, this means that there
exists one common token l so that both P(l|n) and P(l|n′) are strictly positive, e.g., common words
like ‘the’, ‘this’, ‘which’ that appear in many sequence classes. In Sec. 5, we will see how
these two type of contextual tokens behave very differently when self-attention layer is involved in
the training: distinct tokens tend to be paid attention while common tokens tend to be ignored.

3.3 Assumptions

To make our analysis easier, we make the following assumptions:
Assumption 1. We consider (a) no positional encoding, (b) The input sequence is long (T → +∞)
and (c) The decoder layer learns much faster than the self-attention layer (i.e., ηY ≫ ηZ).

Assumption 1(a) suggests that the model is (almost) permutation-invariant. Given the next token to
predict xT+1 = n and the query token xT = m acted as query, the remaining tokens in the sequence
may shuffle. Assumption 1(b) indicates that the frequency of a token l in the sequence approaches
its conditional probability P(l|m,n) := P(l|xT = m,xT+1 = n).

Note that the assumptions are comparable with or even weaker than previous works, e.g., [27] an-
alyzes positional attention with symmetric initialization, without considering input data and [28]
models the data distribution as discriminative/non-discriminative patterns, similar to our com-
mon/distinct tokens. Empirically, NoPE [84] shows that decoder-only Transformer models without
positional encoding still works decently, justifying that Assumption 1(a) is reasonable.

Given the event {xT = m,xT+1 = n}, suppose for token l, the conditional probability that it
appears in the sequence is P(l|m,n). Then for very long sequence T → +∞, in expectation the
number of token l appears in a sequence of length T approaches TP(l|m,n). Therefore the per-
token self-attention weight cl|m,n is computed as:

cl|m,n :=
TP(l|m,n) exp(zml)∑
l′ TP(l′|m,n) exp(zml′)

=
P(l|m,n) exp(zml)∑
l′ P(l′|m,n) exp(zml′)

=:
c̃l|m,n∑
l′ c̃l′|m,n

(5)

Here zml is zm’s l-th entry and c̃l|m,n := P(l|m,n) exp(zml) is un-normalized attention score.
Lemma 2. Given the event {xT = m,xT+1 = n}, when T → +∞, we have

X⊤bT → cm,n, X⊤diag(bT )X → diag(cm,n) (6)

where cm,n = [c1|m,n, c2|m,n, . . . , cM |m,n]
⊤ ∈ RM . Note that c⊤m,n1 = 1.

By the data generation process (Sec. 3.2), given the next token xT+1 = n, the query token xT = m
is uniquely determined. In the following, we just use cn to represent cm,n (and similar for c̃n).

4 Dynamics of Y
We first study the dynamics of Y . From Assumption 1(c), Y learns much faster and we can treat the
lower layer output (i.e., X⊤bT ) as constant. From Lemma 2, when the sequence is long, we know
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given the next token xT+1 = n, X⊤bT becomes fixed. Therefore, the dynamics of Y becomes:

Ẏ = ηY fn(en −αn)
⊤, αn =

exp(Y ⊤fn)

1⊤ exp(Y ⊤fn)
(7)

Here fn := X⊤bT

∥X⊤bT ∥2
→ cn

∥cn∥2
∈ RM . Obviously ∥fn∥2 = 1 and fn ≥ 0. Define

F = [f1, . . . ,fK ]. Since the vocabulary size M typically is a huge number, and different sequence
classes can cover diverse subset of vocabulary, we study the weak correlation case:
Assumption 2 (Weak Correlations). We assume M ≫ K2 and {fn}Kn=1 satisfies F⊤F = I + E,
where the eigenvalues of E ∈ RK×K satisfies |λ1| < 1

K and |λi(E)| ≥ 6√
M
,∀i ∈ [K].

Assumption 2 means that fn share some weak correlations and it immediately leads to the fact that
F⊤F is invertible and F is column full-rank. Note that the critical point Y ∗ of Eqn. 7 should satisfy
that for any given xT+1 = n, we need α = en. But such Y ∗ must contain infinity entries due to
the property of the exponential function in α and we can not achieve Y ∗ in finite steps. To analyze
Eqn. 7, we leverage a reparameterized version of the dynamics, by setting W = [w1, . . . ,wK ]⊤ :=
F⊤Y ∈ RK×M and compute gradient update on top of W instead of Y :
Lemma 3. Given xT+1 = n, the dynamics of W is (here αj = exp(wj)/1

⊤ exp(wj)):

ẇj = ηY I(j = n)(en −αn) (8)

While we cannot run gradient update on W directly, it can be achieved by modifying the gradient of
Y to be Ẏ = ηY (fn − FE′en)(en −αn)

⊤. If λ1 is small, the modification is small as well.

Please check Appendix D for the proof. Lemma 3 shows that for every fixed n, only the corre-
sponding row of W is updated, which makes the analysis much easier. We now can calculate the
backpropagated gradient used in Eqn. 3.
Theorem 1. If Assumption 2 holds, the initial condition Y (0) = 0, M ≫ 100, ηY satisfies
M−0.99 ≪ ηY < 1, and each sequence class appears uniformly during training, then after
t ≫ K2 steps of batch size 1 update, given event xT+1[i] = n, the backpropagated gradient
g[i] := Y (xT+1[i]−α[i]) takes the following form:

g[i] = γ

ιnfn −
∑
n′ ̸=n

βnn′fn′

 (9)

Here the coefficients ιn(t), βnn′(t) and γ(t) are defined in Appendix with the following properties:

• (a) ξn(t) := γ(t)
∑
n ̸=n′ βnn′(t)f⊤

n (t)fn′(t) > 0 for any n ∈ [K] and any t;

• (b) The speed control coefficient γ(t) > 0 satisfies γ(t) = O(ηY t/K) when t ≤ ln(M)·K
ηY

and γ(t) = O
(
K ln(ηY t/K)

ηY t

)
when t ≥ 2(1+δ′) ln(M)·K

ηY
with δ′ = Θ( ln lnM

lnM ).

In the remark of Lemma 5 in Appendix, we analyze the original dynamics (Eqn. 7) with identical
off-diagonal elements of E, and Theorem 1 still holds with a smaller effective learning rate.

5 The dynamics of Self-attention
Now we analyze the dynamics of self-attention logits Z, given the dynamics of upper layer Y .
Lemma 4 (Self-attention dynamics). With Assumption 1(b) (i.e., T → +∞), Eqn. 4 becomes:

żm = ηZγ
∑

n∈ψ−1(m)

diag(fn)
∑
n′ ̸=n

βnn′(fnf
⊤
n − I)fn′ , (10)

Please check Appendix E for the proof. Now we study the dynamics of two types of contextual
tokens (Sec. 3.2), namely distinct tokens (DT) which appear only for a single next token (i.e.,
|Ω(l)| = 1 with Ω(l) := {n : P(l|n) > 0}), and common tokens (CT) that appear across multi-
ple next tokens (|Ω(l)| > 1). We show their fates are very different: over training, distinct tokens
gain attention but common ones lose it.
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Theorem 2 (Fates of contextual tokens). Let GCT be the set of common tokens (CT), and GDT (n)
be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the
self-attention dynamics (Eqn. 10), we have:

• (a) for any distinct token l ∈ GDT (n), żml > 0 where m = ψ(n);

• (b) if |GCT | = 1 and at least one next token n ∈ ψ−1(m) has at least one distinct token,
then for the single common token l ∈ GCT , żml < 0.

Now we know DTs grow and a single CT will shrink. For multiple CTs to shrink, the condition
can be a bit involved (see Corollary 2 in Appendix E). The following theorem further shows that the
growth rates of DTs critically depend on their initial conditions:
Theorem 3 (Growth of distinct tokens). For a next token n and its two distinct tokens l and l′, the
dynamics of the relative gain rl/l′|n(t) := f2nl(t)/f

2
nl′(t)−1 = c̃2l|n(t)/c̃

2
l′|n(t)−1 has the following

analytic form (here the query token m = ψ(n) and is uniquely determined by distinct token l):

rl/l′|n(t) = rl/l′|n(0)e
2(zml(t)−zml(0)) =: rl/l′|n(0)χl(t) (11)

where χl(t) := e2(zml(t)−zml(0)) is the growth factor of distinct token l. If there exist a dominant
token l0 such that the initial condition satisfies rl0/l|n(0) > 0 for all its distinct token l ̸= l0, and all
of its common tokens l satisfy żml < 0. Then both zml0(t) and fnl0(t) are monotonously increasing
over t, and

e2f
2
nl0

(0)Bn(t) ≤ χl0(t) ≤ e2Bn(t) (12)

hereBn(t) := ηZ
∫ t
0
ξn(t

′)dt′. Intuitively, largerBn gives larger rl0/l|n and sparser attention map.

Self-attention as an algorithm of token scanning. From Eqn. 11, we could see that self-attention
performs token scanning. To see that, consider the simplest initialization that z(0) = 0, which means

that rl0/l|n(0) =
(

P(l0|m,n)
P(l|m,n)

)2
− 1. Therefore, distinct token l with low conditional probability

P(l|m,n) will have rl0/l|n(0) ≫ 0, According Eqn. 11, this leads to quickly growing ratio rl0/l|n(t),
which means that the corresponding component fnl will be quickly dwarfed by the dominating
component fnl0 . On the other hand, token with high conditional probability P(l|m,n) will have
smaller rl0/l|n(0), and the ratio rl0/l|n(t) grows slower, costing longer time for l0 to dominate l.

Initial value as prior information. From the theorems, it is clear that the initial value rl/l′|n(0) :=(
P(l|m,n) exp(zml(0))
P(l′|m,n) exp(zml′ (0))

)2
− 1 critically determines the fate of the dynamics. Two tokens l and l′ with

comparable conditional probability P(l|m,n) and P(l′|m,n) can be suppressed in either way, de-
pending on their initial logits zml(0) and zml′(0). In the empirical implementation, the initial value
of the logits are determined by the inner products of independently initialized high-dimensional
vectors, which fluctuate around zero.

The concept of “initial value as prior” can explain empirical design choices such as multi-head self-
attention [1]. From this perspective, each head h has its own Zh and is initialized independently,
which could enable more diverse token combination (e.g., a combination of 1st, 3rd, 5th tokens,
rather than a combination of 1st, 2nd, 3rd tokens).

6 The Moment of Snapping: When Token Combination is fixed
Theorem 3 suggests two possible fates of the self-attention weights: if ξn(t) decays slowly (e.g.,
ξn(t) ≥ 1/t), then Bn(t) → +∞ and all contextual tokens except for the dominant one will drop
(i.e., fnl → 0) following the ranking order of their conditional probability P(l|m,n). Eventually,
winner-takes-all happens. Conversely, if ξn(t) drops so fast that Bn(t) grows very slowly, or even
has an upper limit, then the self-attention patterns are “snapped” and token combination is learned
and fixed.

The conclusion is not obvious, since ξn(t) depends on the decay rate of γ(t) and βnn′(t), which in
turns depends on the inner product f⊤

n (t)fn′(t), which is related to the logits of the common tokens
that also decays over time.

Here we perform a qualitative estimation when there is only a single common token l and every next
token shares a single token m (i.e., for any next token n, ψ(n) = m). We assume all normalization
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Figure 3: Growth factor χl(t) (Theorem 3) over time with fixed ηZ = 0.5 and changing ηY . Each solid line
is χl(t) and the dotted line with the same color corresponds to the transition time t0 for a given ηY .

terms in fn are approximately constant, denoted as ρ0, which means that f⊤
n fn′ ≈ exp(2zml)/ρ

2
0

and βnn′ ≈ E′
nn′ ≈ f⊤

n fn′ ≈ exp(2zml)/ρ
2
0 as well, and 1 − f⊤

n fn′ ≈ 1 due to the fact that
common token components are small, and will continue to shrink during training.

Under these approximations, its dynamics (Eqn. 10) can be written as follows (here C0 := ρ40/K):

żml = ηZγ
∑

n∈ψ−1(m)

fnl
∑
n′ ̸=n

βnn′(f2nl − 1)fnl′ ≈ −C−1
0 ηZγe

4zml , ξn(t) ≈ C−1
0 γe4zml (13)

Surprisingly, we now find a phase transition by combining the rate change of γ(t) in Theorem 1:
Theorem 4 (Phase Transition in Training). If the dynamics of the single common token zml satisfies
żml = −C−1

0 ηZγ(t)e
4zml and ξn(t) = C−1

0 γ(t)e4zml , then we have:

Bn(t) =


1
4 ln

(
C0 +

2(M−1)2

KM2 ηY ηZt
2
)

t < t′0 := K lnM
ηY

1
4 ln

(
C0 +

2K(M−1)2

M2
ηZ
ηY

ln2(MηY t/K)
)

t ≥ t0 := 2(1+o(1))K lnM
ηY

(14)

As a result, there exists a phase transition during training:

• Attention scanning. At the beginning of the training, γ(t) = O(ηY t/K) and Bn(t) ≈
1
4 lnK

−1(ρ40+2ηY ηZt
2) = O(ln t). This means that the growth factor for dominant token

l0 is (sub-)linear: χl0(t) ≥ e2f
2
nl0

(0)Bn(t) ≈ [K−1(ρ40 + 2ηY ηZt
2)]0.5f

2
nl0

(0), and the
attention on less co-occurred token drops gradually.

• Attention snapping. When t ≥ t0 := 2(1 + δ′)K lnM/ηY with δ′ = Θ( ln lnM
lnM ), γ(t) =

O
(
K ln(ηY t/K)

ηY t

)
and Bn(t) = O(ln ln t). Therefore, while Bn(t) still grows to infinite,

the growth factor χl0(t) = O(ln t) grows at a much slower logarithmic rate.

See proof in Appendix F. This gives a few insights about the training process: (a) larger learning
rate ηY of the decoder Y leads to shorter phase transition time t0 ≈ 2K lnM/ηY , (b) scaling up
both learning rate (ηY and ηZ) leads to larger Bn(t) when t → +∞, and thus sparser attention
maps, and (c) given fixed ηZ , small learning rate ηY leads to larger Bn(t) when t ≥ t0, and thus
sparser attention map. Fig. 3 shows numerical simulation results of the growth rate χl(t). Here we
set K = 10 and M = 1000, and we find smaller ηY given fixed ηZ indeed leads to later transition
and larger Bn(t) (and χl(t)).

7 Discussion and Limitations
Positional encoding. While our main analysis does not touch positional encoding, it can be added
easily following the relative encoding schemes that adds a linear bias when computing self atten-
tion (E.g., T5 [17], ALiBi [85], MusicTransformer [86]). More specifically, the added linear bias
exp(zml + z0) = exp(zml) exp(z0) corresponds to a prior of the contextual token to be learned in
the self-attention layer.
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Figure 4: Visualization of cn (n = 1, 2) in the training dynamics of 1-layer Transformer using SGD on
Syn-Small setting. Top row for query token n = 1 and bottom row for query token n = 2. Left: SGD training
with ηY = ηZ = 1. Attention pattern cn becomes sparse and concentrated on highest P(l|n) (rightmost)
for each sequence class (Theorem 3). Right: SGD training with ηY = 10 and ηZ = 1. With larger ηY ,
convergence becomes faster but the final attention maps are less sparse (Sec. 6).

Residue connection. Residue connection can be added in the formulation, i.e., ūT =
LN(LN(ũT )+uxT

), where ũT is defined in Eqn. 1, and ūT is used instead in the objective (Eqn. 2).
In this case, the βnn′ in Theorem 1 now is approximately βnn′ ∼ f⊤

n fn′ + I(ψ(n) = ψ(n′)), which
is much larger for sequence classes n and n′ that share the same query token xT than otherwise.
In this case, Theorem 1 now gives g[i] = γ

(
ιnfn −

∑
n ̸=n′∈ψ−1(ψ(n)) βnn′fn′

)
for xT+1[i] = n.

Due to the additional constraint n′ ∈ ψ−1(ψ(n)) (i.e., n and n′ shares the same query token), we
can define local distinct and common tokens to be within the sequence class subset ψ−1(m) and
Theorem 2 now applies within each subset. Empirically this makes more sense, since the query to-
ken xT = m1 orm2 alone can already separate different subsets ψ−1(m1) and ψ−1(m2) and there
should not be any interactions across the subsets. Here we just present the most straightforward
analysis and leave this extension for future work.

Possible future extension to multi-layer cases. For multilayer training, a lasting puzzle is to ex-
plain how the input tokens get combined together to form high-level concepts. The analysis above
shows that the training leads to sparse attention even among relevant tokens, and demonstrates that
there is a priority in token combinations for 1-layer attention based on their co-occurrence: even if
there are 10 relevant contextual tokens to the query, the self-attention may only pick 1-2 tokens to
combine first due to attention sparsity. This can be regarded as a starting point to study how tokens
are composed hierarchically. In comparison, [28, 29, 30] show that attention attends to all relevant
tokens, which may not suggest a hierarchical / multi-layer architecture.

8 Experiments

We conduct experiments on both synthetic and real-world dataset to verify our theoretical findings.

Syn-Small. Following Sec. 3.2, we constructK = 2 sequence classes with vocabulary sizeM = 30.
The first 10 tokens (0-9) are shared between classes, while the second and third 10 tokens (10-19
and 20-29) are distinct for class 1 and class 2, respectively. The conditional probability P(l|n)
for tokens 10-19 is increasing monotonously (the same for 20-29). The 1-layer Transformer is
parameterized with Y and Z (Sec. 3.1), is trained with initial condition Y (0) = Z(0) = 0 and SGD
(with momentum 0.9) using a batchsize of 128 and sequence length T = 128 until convergence.

Fig. 4 shows the simulation results. The attention indeed becomes sparse during training, and in-
creasing ηY with fixed ηZ leads to faster convergence but less sparse attention. Both are consistent
with our theoretical predictions (Theorem 3 and Sec. 6). Interestingly, if we use Adam optimizer
instead, self-attention with different learning rate ηY = ηZ picks different subsets of distinct tokens
to focus on, showing tune-able inductive bias (Fig. 5). We leave analysis on Adam for future work.

Syn-Medium. To further verify our theoretical finding, we now scale up K to create Syn-Medium
and compute how attention sparsity for distinct tokens (in terms of entropy) changes with the learn-
ing rates (Fig. 6). We can see indeed the entropy goes down (i.e., attention becomes sparser) with
larger ηZ , and goes up (i.e., attention becomes less sparse) by fixing ηZ and increasing ηY passing
the threshold ηY /ηZ ≈ 2, consistent with Sec. 6. Note that the threshold is due to the fact that our
theory is built on Assumption 1(c), which requires ηY to be reasonably larger than ηZ .
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Figure 5: Visualization of (part of) cn for sequence class n = 1 in the training dynamics using Adam [22] on
Syn-Small setting. From left to right: ηV = ηZ = 0.1, 0.5, 1. With different learning rate Adam seems to
steer self-attention towards different subset of distinct tokens, showing tune-able inductive bias.
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Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Real-world Dataset. We also test our finding on WikiText [25] using both 1-layer and multi-layer
Transformers with regular parameterization that computes Y and Z with embedding U . In both
cases, attentions of the first layer freeze (and become sparse) at some point (Fig. 7), even if the
learning rate remains the same throughout training. More results are in Appendix G.

9 Conclusion and Future Work

In this work, we formally characterize SGD training dynamics of 1-layer Transformer, and find that
the dynamics corresponds to a scan and snap procedure that progressively pays more attention to
key tokens that are distinct and frequently co-occur with the query token in the training set. To our
best knowledge, we are the first to analyze the attention dynamics and reveal its inductive bias on
data input, and potentially open a new door to understand how Transformer works.

Many future works follow. According to our theory, large dataset suppresses spurious tokens that are
perceived as distinct in a small dataset but are actual common ones. Our finding may help suppress
such tokens (and spurious correlations) with prior knowledge, without a large amount of data.
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Basic Notations
M Vocabulary size
T Sequence length
ek One-hot vector (1 at component k)
X ∈ RT−1×M Input sequence (of length T − 1)
bT ∈ RT−1 Vector of self-attention weights to predict the token at time T .
xt ∈ RM contextual token (0 ≤ t ≤ T − 2) (one-hot)
xT−1 ∈ RM Last/query token (one-hot)
xT ∈ RM Next token (class label) to be predicted (one-hot)
xt[i] ∈ RM i-th training sample of token at location t in the sequence
K Number of possible choices the next token could take.
α(t) Softmax score of the output layer.

Learnable Parameters
Y ∈ RM×M decoder layer parameters
Z ∈ RM×M self-attention logits
zm m-th row of Z (i.e., attention logits for a query/query token m)

Hyperparameters
ηY Learning rate of the decoder layer
ηZ Learning rate of the self-attention layer

Token Types and Distribution
ψ(n) Mapping from next token xT = n to its unique last/query token
ψ−1(m) The subset of next tokens for last/query token xT−1 = m
P(l|m,n) Conditional probability of contextual token l

given query token is m and next token to be predicted as n
GCT Subset of common tokens
GDT(n) Subset of distinct tokens for xT = n

Attention Score
c̃n ∈ RM Unnormalized attention score given next token xT = n
cn ∈ RM ℓ1-normalized attention score given next token xT = n
fn ∈ RM ℓ2-normalized attention score given next token xT = n
g ∈ RM Back-propagated gradient for fn
F Input matrix of the decoder layer. Each column of F is fn

Self-attention dynamics
rl′/l|n(t) Relative gain between distinct token l and l′ for next token n
Bn(t) Growth factor bound of the relative gain
γ(t) Speed control coefficient

Table 1: Overall notation table of the main symbols in the paper.

A Notation Table

Tbl. 1 gives the notation of the main quantities in the paper.

B Detailed comparison with the concurrent works

B.1 Comparison with [28]

Setting, Assumptions and Conclusions. [28] analyzes the SGD convergence of 1-layer ViT model
(1 layer self-attention + 2 layer FFN with ReLU, with the top layer of FFN fixed as random, token
embedding fixed). Under a specific binary data model in which the data label is determined by
counting the number of tokens that belong to positive/negative pattern, [28] gives a generalization
bound when the number of hidden nodes in FFN is large, and at the same time, shows that the self-
attention attends to relevant tokens and becomes sparse (if number of relevant tokens are small).

In comparison, our work focuses on language models, assume broader data distribution (e.g., multi-
ple classes, arbitrary conditional probability of token given class label) and incorporate LayerNorm
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naturally. We propose more detailed quantitative properties, e.g., attention sparsity even among
relevant tokens, two-stage evolution of attention scores, with a much simpler analysis.

Techniques. The techniques used in [28] are based on feature learning techniques applied to MLP
(e.g., [87]). It identifies lucky neurons if the number of hidden neurons is large enough. In compari-
son, our framework and analysis is much simpler by leveraging that certain nonlinear continuous dy-
namics systems can be integrated out analytically to yield clean solutions (e.g., Theorem 3 (Eqn. 11)
and Theorem 4 (Eqn. 128)), avoiding complicated bounds in [28]. This allows us to characterize the
converging behavior of self-attentions when t→ +∞.

B.2 Comparison with [29]

[29] focuses on 1-layer attention-based prompt-tuning, in which some parameters of the models
are fixed (Wp, Wq). The analysis focuses on the initial (3x one-step) SGD trajectory, and constructs
the dataset model containing specific context-relevant/context-irrelevant data, and the context-vector
indicates the token relevance. As a result, [29] shows the attention becomes sparse (i.e., attending to
context-relevant tokens) over time, which is consistent with ours, and shows that prompt-attention
can find the relevant tokens and achieve high accuracy while self-attention/linear-attention can’t.

In comparison, our work goes beyond the 2-classes model and further points out that the attention
weight will be relevant to the conditional probability of the contextual tokens, which is more detailed
than the sparse attention result in [29] that relies on the sparsity assumption of contextual tokens
itself. We also focus on the pre-training stage (training from scratch, predicting the next token),
characterize the entire trajectory under SGD for the self-attention layer, in particular its converging
behavior.

B.3 Comparison with [30]

Compared to [29], [30] also analyzes the dynamics of the query-key matrix and the embedding of
a single tunable token (often [CLS] token). It makes connection between the binary classification
problem with 1-layer transformer and max-margin SVM formulation, when the tokens are linearly
separable. The dynamics is characterized completely, which is nice. Note here is not an attention
since its norm can be shown to go to infinity over training.

In comparison, our work does not learn the embedding of an individual token, but focuses on the
dynamics of (all-pair) attention scores during training. We also work on multiple-class setup and do
not explicitly assume the linear separability among classes.

C Proof of Section 3

Lemma 1 (Dynamics of 1-layer Transformer). The gradient dynamics of Eqn. 2 with batchsize 1 is:

Ẏ = ηY LN(X⊤bT )(xT+1 −α)⊤, Ż = ηZxT (xT+1 −α)⊤Y ⊤ P⊥
X⊤bT

∥X⊤bT ∥2
X⊤diag(bT )X (3)

Here P⊥
v := I−vv⊤/∥v∥22 projects a vector into v’s orthogonal complementary space, ηY and ηZ

are the learning rates for the decoder layer Y and self-attention layer Z, α := [α1, . . . , αM ]⊤ ∈
RM and αm := exp(Y ⊤LN(X⊤bT ))/1

⊤ exp(Y ⊤LN(X⊤bT )).

Proof. With the reparameterization of Y and Z, the loss function is the following:

J(Y,Z) = ED
[
x⊤
T+1Y

⊤LN(X⊤bT )− log(1⊤ exp(Y ⊤LN(X⊤bT )))
]

(15)

and

αm =
exp(e⊤mY

⊤LN(X⊤bT ))

1⊤ exp(Y ⊤LN(X⊤bT ))
(16)

Therefore, taking matrix differentials, we have:

dJ = (xT+1 −α)⊤d(Y ⊤LN(X⊤b)) = (xT+1 −α)⊤

(
dY ⊤LN(X⊤b) + Y ⊤ P⊥

X⊤b

∥X⊤b∥
X⊤db

)
(17)
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since in general we have d(exp(a)/1⊤ exp(a)) = Lda withL := diag(b)−bb⊤, let a := XZ⊤xT
and we have:

dJ = (xT+1 −α)⊤

(
dY ⊤LN(X⊤b) + Y ⊤ P⊥

X⊤b

∥X⊤b∥
X⊤Ld(XZ⊤xT )

)
(18)

= (xT+1 −α)⊤

(
dY ⊤LN(X⊤b) + Y ⊤ P⊥

X⊤b

∥X⊤b∥
X⊤LXdZ⊤xT

)
(19)

Finally notice that P⊥
X⊤bX

⊤L = P⊥
X⊤bX

⊤diag(b) due to the fact that P⊥
v v = 0 and the conclusion

follows.

Lemma 2. Given the event {xT = m,xT+1 = n}, when T → +∞, we have

X⊤bT → cm,n, X⊤diag(bT )X → diag(cm,n) (6)

where cm,n = [c1|m,n, c2|m,n, . . . , cM |m,n]
⊤ ∈ RM . Note that c⊤m,n1 = 1.

Proof. Let p = [exp(zm1), . . . , exp(zmM )]⊤ ∈ RM , pxt
:= exp(zmxt

), and pX :=
[exp(zmx1

), . . . , exp(zmxT−1)]
⊤, then for any T we have

X⊤bT =

T−1∑
t=1

btTxt =

T−1∑
t=1

pxt
xt∑

t′ pxt′

=
X⊤pX

1⊤X⊤pX
(20)

Combining Lemma 18 and the definition of cl|m,n (Eqn. 5), we have that when T → +∞,

X⊤bT →
M∑
l=1

P(l|m,n) exp(zml)el∑
l′ P(l′|m,n) exp(zml′)

= cm,n (21)

Similarly:

X⊤diag(bT )X =
X⊤diag(pX)X

1⊤X⊤pX
(22)

Let T → +∞, then we also get

X⊤diag(bT )X → diag(cm,n) (23)

D Proof of Section 4

D.1 Notation

For convenience, we introduce the following notations for this section:

• Denote E′ := (I + E)−1 − I .

• Apply orthogonal diagonalization on E and obtain E = U⊤DU where U :=
[u1, ...,uK ] ∈ OK×K , D = diag(λ1, ..., λK) and |λ1| ≥ ... ≥ |λK | ≥ 0.

• Denote F ′ := [F, F ◦] ∈ RM×M where F ◦ ∈ RM×(M−K) is some matrix such that
rank(F ′) =M . This is possible since {fi}i∈[K] are linear-independent.

• Denote W ′ := (F ′)⊤Y = [F, F ◦]⊤Y = [W⊤, Y ⊤F ◦]⊤ = [w1, . . . ,wK ,wK+1, . . . ,
wM ]⊤ ∈ RM×M .

• Denote ζn := M
M−1 (en − 1

M 1) ∈ RM .

• Denote q1 := ζ⊤
i ζi = 1 + 1

M−1 , q0 := ζ⊤
j ζi = − M

(M−1)2 where i, j ∈ [M ], i ̸= j.

• Denote h to be a continuous function that satisfies h(0) = 0 and ḣ = ηY · (M − 1 +
exp(Mh))−1. Details in Lemma 6.

18



• Denote ω1 to be the constant defined in Lemma 8 that satisfies ω1 = Θ( ln ln(M)
ln(M) ).

• Denote Nn :=
∑N
i=1 I[xT+1 = n] to be the number of times the event xT+1 = n happens.

• Denote N̄ := ⌈N/K⌉ to be the average value of Nn when P(n) ≡ 1/K and ∆ :=

⌈
√
N ln( 1δ )⌉ to be the radius of confidence interval centered on N̄ with confidence 1 − δ.

Here ∆/N̄ ≍ K√
N

√
ln( 1δ ) ≪ 1 since N ≫ K2. Details in Lemma 10 and Remark 4.

• Denote W̄ ′(N) := [w̄1(N), ..., w̄K(N),0, ...,0]⊤ ∈ RM×M , where w̄n(N) := (M −
1)h(N̄)ζn, ∀n ∈ [K].

D.2 Proof of Lemma 3

We assume ∪m∈[M ]ψ
−1(m) = [K] for convenience, but we claim that our proof can be easily

generalized into the case where Ω ̸= [K] by reordering the subscript of the vectors. First, we prove
the dynamics equation of the reparameterized dynamics of Y .

Lemma 3. Given xT+1 = n, the dynamics of W is (here αj = exp(wj)/1
⊤ exp(wj)):

ẇj = ηY I(j = n)(en −αn) (8)

While we cannot run gradient update on W directly, it can be achieved by modifying the gradient of
Y to be Ẏ = ηY (fn − FE′en)(en −αn)

⊤. If λ1 is small, the modification is small as well.

Proof. We let F ′ := [F, F ◦] ∈ RM×M where rank(F ′) = M , this is possible since {fn}n∈[K]

are linear-independent. And we further define W ′ := (F ′)⊤Y = [F, F ◦]⊤Y = [W⊤, Y ⊤F ◦]⊤ =
[w1, . . . ,wK ,wK+1, . . . ,wM ]⊤ ∈ RM×M . When given xT+1 = n, the first term of the differen-
tial of loss function J is:

tr

(
dY ⊤ X⊤bT

∥X⊤bT ∥2
(xT+1 −α)⊤

)
= tr(dY ⊤F ′(F ′)−1fn(xT+1 −α)⊤)

= tr(d(W ′)⊤en(xT+1 −α)⊤)

(24)

So Ẇ ′ = en(xT+1 − α)⊤. This nice property will limit W to independently update its n-th row
for any xT+1 = n ∈ [K], and the last M −K rows of W ′ are not updated. Similarly for α we have

α =
exp(UWV ũT )

1⊤ exp(UWV ũT )
=

exp(Y ⊤fn)

1⊤ exp(Y ⊤fn)
=

exp(Y ⊤F ′(F ′)−1fn)

1⊤ exp(Y ⊤F ′(F ′)−1fn)
=

exp(wn)

1⊤ exp(wn)
(25)

We get Eqn. 8 by combining the above results.

If we don’t run gradient update on W directly, we can run a modified gradient update on Y :

Ẏ = ηY (fn − FE′en)(en −αn)
⊤ (26)

This will lead to (note that F does not change over time due to Assumption 1 (c)):

Ẇ = F⊤Ẏ = ηY F
⊤(fn − FE′en)(en −αn)

⊤ (27)

= ηY
[
F⊤fn − F⊤F (I − (I + E)−1)en

]
(en −αn)

⊤ (28)

= ηY
(
F⊤fn − F⊤Fen + en

)
(en −αn)

⊤ (29)

= ηY en(en −αn)
⊤ (30)

By Lemma 17, we know that if λ1 is small, so does maxi∈[K] |λi(E′)| and thus the modification is
small as well. In Lemma 5 Remark 1, we will show that the additional term −FE′en effectively
reduces the learning rate, if all off-diagonal elements of E are the same.

Lemma 3 shows that we can transfer the problem into solving K independent and similar non-linear
ODE. And we then show that such a problem can be well solved by following Lemma. Recall that
ζn := M

M−1 (en − 1
M 1) ∈ RM , we have:
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Lemma 5. Assume Y is initialized to be a zero matrix, Z is fixed, and the learning rate of Y is ηY .
Then if event xT+1 = n always holds at s step (s ≥ 1) we have

wn(s) = (M − 1)h∗(s)ζn (31)

αnj(s) =


exp(Mh∗(s− 1))

(M − 1) + exp(Mh∗(s− 1))
, j = n

1

(M − 1) + exp(Mh∗(s− 1))
, j ̸= n

(32)

And thus en −αn(s) =
M−1

M−1+exp(Mh∗(s−1))ζn. Here h∗(s) satisfies:

h∗(s) =

h
∗(s− 1) +

ηY
(M − 1) + exp(Mh∗(s− 1))

, s ≥ 1

0 , s = 0
(33)

Proof. We prove this Lemma by induction.

Step 1: Note that Y is initialized to be a zero matrix, then wi(0) = 0,∀i ∈ [K]. So we have

αn(1) =
1

M
, ∀j ∈ [K] (34)

ẇnj(1) =


1− 1

M
, j = n

− 1

M
, j ̸= n

(35)

wnj(1) =


ηY (1−

1

M
), j = n

− ηY
M
, j ̸= n

(36)

It’s easy to check that these equations match that of Lemma 5.

Step s: Assume the equations of Lemma 5 hold for step s− 1. Then at the s step, we have

αnj(s) =


exp((M − 1)h∗(s− 1))

exp((M − 1)h∗(s− 1)) + (M − 1) exp(−h∗(s− 1))
=

exp(Mh∗(s− 1))

exp(Mh∗(s− 1)) + (M − 1)
, j = n

exp(−h∗(s− 1))

exp((M − 1)h∗(s− 1)) + (M − 1) exp(−h∗(s− 1))
=

1

exp(Mh∗(s− 1)) + (M − 1)
, j ̸= n

(37)

ẇnj(s) =


M − 1

exp(Mh∗(s− 1)) + (M − 1)
, j = n

− 1

exp(Mh∗(s− 1)) + (M − 1)
, j ̸= n

(38)

wnj(s) =


(M − 1) · ( ηY

exp(Mh∗(s− 1)) + (M − 1)
+ h∗(s− 1)) =(M − 1)h∗(s), j = n

− (
ηY

exp(Mh∗(s− 1)) + (M − 1)
+ h∗(s− 1)) =− h∗(s), j ̸= n

(39)

And the equations of Lemma 5 also hold for step s. So we finish the proof.

Remark 1. If we following the original dynamics (Eqn. 7), then it corresponds to the W dynamics
as follows:

Ẇ = ηY (en + (I + E)E′en)(en −αn)
⊤ = ηY F

⊤fn(en −αn)
⊤ (40)

When all off-diagonal elements of E are identical, i.e., f⊤
n fn′ = ρ for n ̸= n′, then 0 ≤ ρ ≤ 1 and

we have

ẇn = ηY (en −αn)
⊤ (41)

ẇj = ηY ρ(en −αn)
⊤, j ̸= n (42)
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So if different sequence classes are sampled uniformly, then by similar induction argument, we will
have

wn(N) = (M − 1)h∗(N/K)

ζn + ρ
∑
n′ ̸=n

ζn′

 = (1− ρ)(M − 1)h∗(N/K)ζn (43)

where the last equation is due to the fact that
∑
n ζn = M

M−1

∑
n

(
en − 1

M 1
)
= M

M−1 (1−1) = 0.
This means that

∑
n′ ̸=n ζn′ = −ζn. Therefore, the effective learning rate is η′Y := (1−ρ)ηY ≤ ηY .

D.3 Property of h∗(s) and its continuous counterpart.

Before further investigation on Y , we need to get some basic properties of h∗, in particular, how fast
it grows over time. First, if we consider the continuous version of h∗, namely h, then we can directly
obtain the equation that h needs to satisfy by integrating the corresponding differential equation.
Lemma 6. If we consider the continuous version of h∗(s), namely h, as the following ODE:

dh

dt
=

ηY
(M − 1) + exp(Mh)

(44)

and assume h(0) = 0, then we have

exp(Mh(t)) + (M − 1)Mh(t) =MηY t+ 1 (45)

Then we will show that the h is actually almost the same as the original step function h∗.
Lemma 7. For h and h∗ we have:

• (a) For any s ∈ N, 0 ≤ h∗(s) − h(s) ≤ 2ηY
M . Then there exists some constant c = Θ(1)

such that for any s ≤ ln(M)/ηY , h(s+ c) ≥ h∗(s) ≥ h(s).

• (b) h∗(s)− h(s) → 0 when s→ +∞.

Proof. (a) First we show that h∗(s) ≥ h(s) for all s ∈ N, and the convex packet function of h∗ can
almost control the upper bound of h. Define h◦ : R+ → R+ as follows:

h◦(t) := (t− ⌊t⌋) · [h∗(⌈t⌉)− h∗(⌊t⌋)] + h∗(⌊t⌋), ∀t ∈ R+ (46)

Here ⌈·⌉ and ⌊·⌋ mean ceil function and floor function, respectively. It’s clear that h◦ is a strictly
monotonically increasing function, and for any s ∈ N, h◦(s) = h∗(s), while for any t /∈ N,
(t, h◦(t)) lies on the line connecting point (⌊t⌋, h∗(⌊t⌋)) and point (⌈t⌉, h∗(⌈t⌉)). To prevent ambi-
guity, we let ḣ◦(t) to be the left limit of h◦, i.e., ḣ◦(t) = limt′→t− ḣ

◦(t′).

We claim h(t) ≤ h◦(t), ∀t ∈ R+. We prove it by induction. First when t = 0, we have h◦(0) =
h∗(0) = h(0) = 0. Then we assume h(t′) ≤ h◦(t′) hold for time t′ ≤ t ∈ N and prove that
h(t′) ≤ h◦(t′) hold for t′ ∈ (t, t + 1]. If this is not true, then from the continuity of h◦ and h, we
know it must exist t′′ ∈ (t, t+1] such that h(t′′) ≥ h◦(t′′) and ḣ(t′′) > ḣ◦(t′′). The later condition
results that ηY [M − 1 + exp(Mh(t′′))]−1 > ηY [M − 1 + exp(Mh∗(⌊t′′⌋))]−1. So

h(t′′) < h∗(⌊t′′⌋) = h◦(⌊t′′⌋) ≤ h◦(t′′) (47)

This contradicts the hypothesis h(t′′) ≥ h◦(t′′). So h(t′) ≤ h◦(t′) hold for t′ ∈ (t, t + 1] and thus
for all t ∈ R+. Hence for any s ∈ N, we have h(s) ≤ h◦(s) = h∗(s). Actually, we can use the
similar method to prove that h(s) < h∗(s) for any s ∈ N+.

Then we show h∗(s)−h(s) ≤ 2ηY /M by proving that for any s ∈ N+, h(s) must meet at least one
of the following two conditions:

(i) h(s) ∈ [h∗(s− 1), h∗(s)].

(ii) h∗(s)− h(s) < h∗(s− 1)− h(s− 1).

If (i) doesn’t hold, then we have for any t ∈ [s−1, s), h(t) ≤ h(s) < h∗(s−1) = h◦(s−1), which
results that ḣ(t) > ḣ◦(t) for all t ∈ [s− 1, s). Therefore, h∗(s)−h∗(s− 1) = h◦(s)−h◦(s− 1) <
h(s)− h(s− 1) and thus h(s) meets condition (ii). It’s clear that h(0) and h(1) meet (i).
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Figure 8: Numerical simulation of h∗ and h with changing ηY . The stepped folded line represents h∗ and the
smooth curve represents h. The gap between h∗ and h is bounded and goes to zero when time grows.

These two conditions mean that the gap between h∗ and h will not grow if h(s) is smaller than
h∗(s − 1). Then for all h(s) that meet (i), we have h∗(s) − h(s) ≤ h∗(s) − h∗(s − 1) ≤ h∗(1) −
h∗(0) = ηY /M from Eqn. 33. And for any s ≥ 2, every time h(s) transfer from (i) to (ii) exactly at
s, which means that h(s− 1) meets (i) and thus no smaller than h∗(s− 2), we get h∗(s)− h(s) ≤
h∗(s)− h(s− 1) ≤ h∗(s)− h∗(s− 2) ≤ h∗(2)− h∗(0) ≤ 2ηY /M .

Finally from Eqn. 53 in Lemma 9, when s ≤ lnM
ηY

, we get h(s) = Θ(ηY t/M) and thus there exist
some constant c = Θ(1) such that h(s+ c) ≥ h(s) + 2ηY /M ≥ h∗(s) ≥ h(s).

(b) Assume that there exist ϵ ∈ (0, 2ηY /M ] such that h∗(s) − h(s) ≥ ϵ for all s ∈ N. Since h is
unbounded, then ḣ(t) → 0 when t → ∞ from Eqn. 33, so there exist some s′0 ∈ N such that when
s ≥ s′0, h(s+1)−h(s) ≤ ϵ+ln(1/2)/M . Also, from Lemma 9 we know that exists s′′0 = (3+δ) ln(M)

ηY

where δ > 0, δ = Θ(1) such that when s ≥ s′′0 , exp(Mh(s)) > 2(M − 1). Since s → ∞, we just
consider the case that s = ⌊t⌋ ≥ s0 := max(s′0, s

′′
0). Then denote ∆1 := 2(M−1)

exp(Mh(s)) < 1, we have:

ḣ◦(t)− ḣ(t) =
ηY

M − 1 + exp(Mh∗(s))
− ηY
M − 1 + exp(Mh(t))

≤ ηY
M − 1 + exp(M(h(s) + ϵ))

− ηY
M − 1 + exp(Mh(s+ 1))

= − ηY exp(Mh(s)) · [exp(Mϵ)− exp(Mh(s+ 1)−Mh(s))]

[M − 1 + exp(M(h(s) + ϵ))] · [M − 1 + exp(Mh(s+ 1))]

≤ − ηY exp(Mh(s)) · exp(Mϵ)

2[M − 1 + exp(M(h(s) + ϵ))] · [M − 1 + 1
2 exp(M(h(s) + ϵ))]

≤ − ηY exp(Mϵ)

(1 + ∆1)2 exp(Mh(s)) exp(4ηY )
, (s ≥ s0 = max(s′0, s

′′
0))

≤ − exp(Mϵ)

4 exp(4ηY )M
· 1
t
=: −C

t

(48)

Here C = exp(Mϵ)
4 exp(4ηY )M > 0 and for the last inequality, we use the fact that t ≥ s′0 >

3 lnM
ηY

and thus

h(s) ≤ h(t) = O( ln(MηY t)
M ) from Lemma 9. So we get

[h◦(t)− h(t)]− [h◦(s0)− h(s0)] ≤ −
∫ ∞

t′=s0

Cdt

t
→ −∞ (49)

This contradicts h◦(t) − h(t) ≥ 0! So the original assumption doesn’t hold, which means that
h∗(s)− h(s) → 0 when s→ ∞.

Remark 2. By some qualitative estimation, we claim that if ηY = O(1), then there exists some
constant c = O(lnM) such that h(s) ≤ h∗(s) ≤ h(s + c) for all s > s1 := 2 ln(1+ω1)

ηY
where

ω1 = Θ(ln lnM/ lnM) is defined in Lemma 8. Denote δh(t) := h◦(t)− h(t), when δh(t) ≪ h(t),
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we have ˙δh(t) = ḣ◦(t) − ḣ(t) ≍ −ηYM · δh(t) · exp(−Mh(t)) ≍ −δh(t)/t by computing the
second-order derivative of δh, and thus h◦(t)−h(t) ≍ 2ηY s0/(Mt) = O(lnM/(Mt)). Combining
this with the fact that h(t) = Θ(ln(MηY t)/M) when t > s1, we prove our claim. The results of
Lemma 7 and Remark 2 are also confirmed by the numerical simulation results as Fig. 8.

So from Lemma 7 and Remark 2, we just assume ηY < 1 and replace h∗ with h in the latter parts
for convenience. Then we further investigate the properties of Eqn. 45.

Lemma 8. There exists ωi, 0 < ωi ≪ 1, i = 2, 3, such that for h ∈ J1 := [ 1
M2−ω0

, (1+ω1) ln(M)
M ],

we have exp(Mh(t)) ≤ (M − 1)Mh(t). And for h /∈ J1, we have exp(Mh(t)) > (M − 1)Mh(t).
Here ω1 = Θ( ln ln(M)

ln(M) ), and if M ≫ 100, we have ω0 ≲ ( 1
M0.99 lnM ) ≪ 0.01.

Proof. It’s obvious that exp(Mh(t)) − (M − 1)Mh(t) has two zero points in R+. Let h(t) =
M−(2−ω0), we get

ω0 =
1

lnM
(ln(

M

M − 1
) +

1

M1−ω0
) = O(

1

M0.99 ln(M)
) (50)

For another zero point, let ω1 ∈ (0, 1) to be some constant such that h(t) = (1+ω1) ln(M)
M satisfies

exp(Mh) = (M − 1)Mh , then we get

Mω1 = (1 + ω1) ln(M)
(M − 1)

M
= c′ · ln(M)

(M − 1)

M

⇒ ω1 = Θ(
ln ln(M)

ln(M)
)

(51)

where c′ ∈ (0.5, 2) is some universal constant.

Remark 3. From Lemma 8, if we assume M ≫ 100, then ω0 ≪ 0.01, and if we assume ηY ≫
1

M1−ω0
> 1

M0.99 , then h(1) ≳ ηY
M ≫ 1

M2−ω0
and function exp(Mh(t))− (M − 1)Mh(t) has only

one zero point (1+ω1) lnM
M in [1,∞). For convenience, we just assume M ≫ 100 and 1 > ηY ≫

1
M0.99 and thus focus on the unique zero point (1+ω1) lnM

M of h in the latter parts.

We can then show the properties of speed control coefficient γ(t) := (M−1)2h(t/K)
(M−1)+exp(Mh(t/K)) as below.

Lemma 9. We have two stage for h and γ:

• When t ≤ K ln(M)
ηY

, we have exp(Mh(t/K)) ≤ min(M − 1, (M − 1)Mh(t/K)), h =

O(ηY t/(MK)) and γ(t) = O(ηY t/K).

• When t ≥ 2(1+ω1)K ln(M)
ηY

where ω1 = Θ( ln lnM
lnM ) is defined in Lemma 8, we have

exp(Mh(t/K)) ≥ max(M − 1, (M − 1)Mh(t/K)), h = O( 1
M ln(MηY t/K)) and

γ(t) = O(K ln(MηY t/K)
ηY t

).

Proof. For convenience, we just let K = 1. And the proof for K ̸= 1 is similar. We denote
∆1(h) :=

exp(Mh)
M−1 and ∆2(h) :=

exp(Mh)
(M−1)Mh .

Step 1: t ≤ ln(M)
ηY

. If h ≥ ln(M−1)
M , from Eqn. 45 we have:

t ≥ M − 2 + (M − 1) ln(M − 1)

MηY
>

ln(M)

ηY
(52)

So when t ≤ ln(M)
ηY

we have h < ln(M−1)
M , and thus exp(Mh(t)) ≤ min(M − 1, (M − 1)Mh(t)),

i.e., ∆1,∆2 ≤ 1. Then from Eqn. 45 we get

h =
MηY t+ 1

(1 + ∆2)M(M − 1)
= O

(
1

M
ηY t

)
(53)

γ =
(M − 1)h

1 + ∆1
=

MηY t+ 1

(1 + ∆1)(1 + ∆2)M
= O(ηY t) (54)
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Step 2: t > 2(1+ω1) ln(M)
ηY

where ω1 = Θ( ln ln(M)
ln(M) ). So now h > ln(M−1)

M and thus ∆1 > 1

from Eqn. 52. Then if exp(Mh) ≤ M(M − 1)h, i.e. ∆2 ≤ 1, from Lemma 8 we have h =
MηY t+1

(1+∆2)M(M−1) ≤
(1+ω1) ln(M)

M . Therefore,

t ≤ 1

ηY
((1 + ω1)(1 + ∆2)

M − 1

M
lnM − 1

M
) <

2(1 + ω1) ln(M)

ηY
. (55)

Contradiction! So when t ≥ 2(1+ω1) ln(M)
ηY

, we have ∆2 > 1. Then from Eqn. 45 we get:

h =
1

M
ln

(
MηY t+ 1

1 +∆−1
2

)
= O

(
1

M
ln(MηY t)

)
(56)

γ =
M − 1

M

(M − 1) ln(MηY t+1

1+∆−1
2

)

(1 + ∆−1
1 )(MηY t+1

1+∆−1
2

)
= O

(
ln(MηY t)

ηY t

)
(57)

D.4 The dynamics under multiple uniformly sampled sequence classes

We then generalize our analysis of W to the case where xT+1 can be any value in [K] rather than
fixing xT+1 = n with the key observation that the row vectors of W ′ can be independently updated.
Before formalizing this result, we first conduct the concentration inequality of the sampling number
for each next-token case. Let Nn :=

∑N
i=1 I[xT+1 = n] to be the number of times the event

xT+1 = n happens, then we have:

Lemma 10. For δ ∈ (0, 1), with probability at least 1− δ we have

|Nn − ⌈NP(n)⌉| ≤
√
N

2
ln(

2

δ
) + 1 <

√
N ln(

2

δ
) (58)

Proof. From Hoeffding’s inequality, we have

P
(∣∣∣Nn

N
− P(n)

∣∣∣ > t

)
≤ 2 exp(−2Nt2) (59)

Let t =
√

1
2N ln( 2δ ) and we can get the results by direct calculation.

Remark 4. From Lemma 10, if we consider the uniform sampling case where P(n) ≡ 1
K , then

NP(n) = N/K ≫
√
N . So Nn are all concentrated around NP(n). Recall the definition of

N̄ = ⌈N/K⌉ and ∆ = ⌈
√
N ln( 1δ )⌉, with probability at least 1− δ we have:

|Nn − N̄ | ≲ ∆ ≪ N̄ (60)

We then further investigate the concentration of h(Nn):

Lemma 11. For δ ∈ (0, 1), with probability at least 1− δ we have

|h(Nn)− h(N̄)| ≲ h(N̄) · ∆
N̄

(61)

| 1

M − 1 + exp(Mh(Nn))
− 1

M − 1 + exp(Mh(N̄))
|

≲
1

M − 1 + exp(Mh(N̄))
· σ′

(62)

where σ′ > 0 is some constant such that σ′ ≤ 1
3ηY∆ ≪ ln(M). And if N ≥ 2K(1+ω1) lnM

ηY
where

ω1 is defined in Lemma 8, then σ′ ≲ ∆
N̄

≪ 1.

24



Proof. First, we note that h has a decreasing gradient, so h(x) ≥ ḣ(x)×x and h(x1+x2)−h(x1) ≤
ḣ(x1)× x2 for any x1, x2 ≥ 0. So with probability at least 1− δ, we have:

|h(Nn)− h(N̄)| ≤ h(N̄)− h(N̄ −∆) ≤ ḣ(N̄ −∆)×∆ ≤ h(N̄)∆

N̄ −∆
≍ h(N̄) · ∆

N̄
(63)

For the second inequality, without loss of generality, we let Nn > N̄ . Denote g(s) := (M − 1 +
exp(Mh(s)))−1 and note that:

dg

ds
=

M exp(Mh(s))

(M − 1 + exp(Mh(s)))2
· dh
ds

=
1

M − 1 + exp(Mh(s))
· ηYM exp(Mh(s))

(M − 1 + exp(Mh(s)))2

≤ 1

M − 1 + exp(Mh(s))
· M

(M − 1)
· ηY
4

(64)

the last equality holds only when h(s) = ln(M−1)
M . So from |g(N̄ + ∆) − g(Nn)| ≤

maxs∈[Nn,Nn+∆] ġ(s) ·∆, we get:

| 1

M − 1 + exp(Mh(N̄ +∆))
− 1

M − 1 + exp(Mh(N̄))
| ≤ 1

M − 1 + exp(Mh(N̄))
· 1
3
ηY∆

(65)
If N̄ < 2(1+ω1) ln(M)

ηY
+ ∆ with ω1 = Θ( ln lnM

lnM ) defined in Lemma 8, we have σ′ ≤ ηY∆/3 ≪
ηY N̄ ≲ ln(M). If N̄ ≥ 2(1+ω1) ln(M)

ηY
+∆, we utilize the Eqn.45 and obtain:

| 1

M − 1 + exp(Mh(N̄ +∆))
− 1

M − 1 + exp(Mh(N̄))
|

=
1

M − 1 + exp(Mh(N̄))
· | exp(Mh(N̄ +∆))− exp(Mh(N̄))|

M − 1 + exp(Mh(N̄ +∆))

≤ 1

M − 1 + exp(Mh(N̄))
· MηY∆

M − 1 + exp(Mh(N̄ +∆))
, (Eqn. 45)

≤ 1

M − 1 + exp(Mh(N̄))
· MηY∆

M + 1
2 ·MηY (N̄ +∆)

, (Lemma 9, Nn ≥ 2(1 + ω1) ln(M)

ηY
+∆)

≲
1

M − 1 + exp(Mh(N̄))
· ∆
N̄

So σ′ ≤ ∆/N̄ . When Nn < N̄ , with probability at least 1− δ we have Nn ≳ N̄ −∆, and similar
inequalities also hold for such cases, so we finish the proof.

Recall that ζn ∈ RM is defined as ζn = M
M−1 (en − 1

M 1). And we have q1 := ζ⊤
i ζi = 1 +

1
M−1 , q0 := ζ⊤

j ζi = − M
(M−1)2 for all i, j ∈ [M ] where i ̸= j. For convenience, we denote

W̄ ′(N) := [w̄1(N), ..., w̄K(N),0, ...,0]⊤ ∈ RM×M , where w̄n(N) := (M − 1)h(⌈N/K⌉)ζn =
(M − 1)h(N̄)ζn. So using these concentration inequalities, we get:
Lemma 12. Assume the assumptions in Lemma 5 hold but we uniformly sample the training data.
Then if the total number of epochs N satisfies N ≫ K2, we have Y = (F ′)−⊤(I + Θ′)W̄ ′(N)
where Θ′ := diag(θ1, . . . , θK , 0, . . . , 0) ∈ RM×M and with probability at least 1 − δ we have

|θi| ≲ K√
N

√
ln(Kδ ),∀i ∈ [K].

Proof. From Lemma 5 and the first inequality of Lemma 11, we know that

wn(N) = (M − 1)h(Nn)ζn (66)
= (M − 1)h(N̄)ζn + (M − 1)(h(Nn)− h(N̄))ζn (67)
= (1 + θn) · (M − 1)h(N̄)ζn (68)
= (1 + θn)w̄n(N) (69)

25



where for any δ ∈ (0, 1), with probability at least 1 − δ we have |θi| ≲ K√
N

√
ln(Kδ ),∀n ∈ [K].

Therefore, W ′(N) = [w1(N), . . . ,wK(N),0, . . . ,0]⊤ = (I + Θ′)W̄ ′(N), then from W ′ =
(F ′)⊤Y , we finish the proof.

Then, we can give out the exact solution of Y by pointing out the properties of F ◦ and F ′ from the
observation that each row of Y should be the linear combination of vectors in {f⊤

n }n∈[K]:

Theorem 5. If Assumption 2 holds and Y (0) = 0. Furthermore, we assume the training data is
uniformly sampled and the total number of epochs N satisfies N ≫ K2 . Then the solution of
Eqn. 26 will be:

Y = (F †)⊤(I +Θ)W̄ (N) = F (I − E′)(I +Θ)W̄ (N) (70)

Here Θ := diag(θ1, . . . , θK) and for any δ ∈ (0, 1), with probability at least 1 − δ we have |θi| ≲
K√
N

√
ln(Kδ ),∀i ∈ [K].

Proof. Let qi, i ∈ [M ] be the i-th row vector of (F ′)−1, then we have q⊤
j fi = I[i = j]. From

Lemma 12 we get Y = (F ′)−⊤(I +Θ′)W̄ ′(N). And from Eqn. 26, we know all the columns of Y
are the linear combination of fn, n ∈ [K]. Note that W̄ (N) has only top K rows to be non-zero,
so we need to constrain that all the top K columns of (F ′)−⊤, i.e., qi, i ∈ [K], to be the linear
combination of fn, n ∈ [K], which means that q1, . . . , qK must be the basis of Ξ := span(fj ; j ∈
[K]) and thus qK+1, . . . , qM are the basis of Ξ′ := span(fj ;K ≤ j ≤ M). Therefore, we get
Ξ ⊥ Ξ′, and thus [q1, . . . , qK ] can only be (F †)⊤. So the proof is done.

Actually, we see that the result of Theorem 5 matches the modified gradient update on Y (Eqn. 26).
And we show that using such reparameterization dynamics, we can still approach the critical point
of Eqn. 7 in the rate of O( 1

N ):

Corollary 1. Assume assumptions in Theorem 5 hold, M ≫ 100 and ηY satisfies M−0.99 ≪ ηY <
1. Then ∀n ∈ [K], we have

(xT+1 −αn) =
M − 1

(M − 1) + exp(Mh(Nn))
ζn

=
M − 1

(M − 1) + exp(Mh(N̄))
· (1 + σ) · ζn

(71)

where σ > −1 and for any δ ∈ (0, 1), with probability at least 1− δ we have |σ| ≲ ηY

√
N ln( 1δ ),

and when N ≫ K(
√
N ln( 1δ ) +

2(1+ω1) lnM
ηY

) with ω1 defined in Lemma 8, |σ| ≲ K√
N

√
ln( 1δ ).

Further, to let ∥xT+1 − αn∥2 ≤ ϵ with probability at least 1 − δ for any n ∈ [K] and ϵ ≪ 1, we
need the total number of training epochs to be at most O( K

ϵηY
log(Mϵ )).

Proof. Note that xT+1 = en, then we just need to combine Lemma 5 and the second inequality of
Lemma 11, to get Eqn. 71. Denote Sn to be the number of training epochs that are needed to let
∥xT+1 −αn∥2 ≍ ϵ, then we have

h(Sn) ≍
1

M
ln(

M

ϵ
) (72)

But note that h(t+ 1)− h(t) ≥ ηY
M−1+exp(Mh(Sn))

≍ ηY ϵ
M−1 ,∀t ∈ [0, S − 1] from Eqn. 71, we have

Sn ≲
h(Sn)

ηY ϵ/(M − 1)
≍ 1

ϵηY
ln(

M

ϵ
) (73)

Note that ϵ≪ 1 and we have N ≫ K2, then we have S =
∑
n Sn ≲ K

ϵηY
ln(Mϵ ).
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D.5 Proof of Theorem 1

Finally, we turn to prove Theorem 1. Obviously, all the diagonal elements of E are zero and all
the off-diagonal elements of E are non-negative since cl|m,n ≥ 0. Note that E is a real symmetric
matrix, then it can be orthogonal diagonalization by E = U⊤DU where U := [u1, ...,uK ] ∈
OK×K , D = diag(λ1, ..., λK) and |λ1| ≥ ... ≥ |λK | ≥ 0. Then we can get the following properties
of E and E′:

Lemma 13. maxi,j∈[K](|Eij |) ≤ |λ1|.

Proof. We have:

|Eij | = u⊤
i Duj ≤ |λ1| · ∥ui∥2∥uj∥2, ∀i, j ∈ [K] (74)

Lemma 14. If E ∈ RK satisfies |λ1| ≤ λ < 1, then (I +E) is invertible and (I +E)−1 = I −E′

,where E′ satisfies E′ = U⊤D′U and D′ = diag(λ′1, ..., λ
′
K) and λ′i =

λi

1+λi
,∀i ∈ [K].

Proof. Since U is orthonormal and |λi| ≤ λ < 1, we have En = U⊤DnU → O. Then from the
property of the Neumann series, we get I + E is invertible and

(I + E)−1 = I +

∞∑
n=1

(−1)nEn (75)

= I + U⊤(

∞∑
n=1

(−Dn)U (76)

= I − U⊤D′U =: I − E′ (77)

Here we define D′ = diag(λ′1, ..., λ
′
K) and use the fact that

∑∞
n=1(−λi)n = − λi

1+λi

Lemma 15. If |λ1| ≤ λ < 1, then maxi∈[K] |λi(E′)| ≤ 1
1−λ |λ1| ≤

λ
1−λ .

Proof. We have

max
i∈[K]

|λi(E′)| = max
i∈[K]

| − λi
1 + λi

| ≤
maxi∈[K] |λi|

1−maxi∈[K] |λi|
≤ 1

1− λ
|λ1| (78)

Lemma 16. Assume that Assumption 2 holds, then all the diagonal elements of E′ are non-
positive,i.e., E′

ii ≤ 0,∀i ∈ [K]. Further, if there exist any k ̸= i ∈ [K] such that Eki > 0,
then E′

ii < 0.

Proof. Note that Eii =
∑K
k=1 λku

2
ik = 0 (here uik is the k-th component of eigenvector ui) and

|λk| < 1, we have

E′
ii =

K∑
k=1

λk
1 + λk

u2ik =

K∑
k=1

λku
2
ik −

K∑
k=1

λ2k
1 + λk

u2ik = −
K∑
k=1

λ2k
1 + λk

u2ik ≤ 0 (79)

When E′
ii = 0, then λ := (λ1, . . . , λK) must don’t have overlapping entries with respect to ui,

which results that Eij :=
∑K
k=1 λkuikujk = 0 holds for any j ∈ [K]. So we prove the results.

Lemma 17. If λ1 < 1, then |E′
nn′ − Enn′ | ≤ |λ1|2(1− |λ1|)−1.
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Proof. From Lemma 14 we have:

|E′
nn′ − Enn′ | = |

K∑
k=1

λkunkun′k −
K∑
k=1

λk
1 + λk

unkun′k|

= |
K∑
k=1

λ2k
1 + λk

unkun′k|

≤ |λ1|2

1− |λ1|

K∑
k=1

|unk||un′k|

≤ |λ1|2

1− |λ1|

√√√√(

K∑
k=1

|unk|2)(
K∑
k=1

|un′k|2) =
|λ1|2

1− |λ1|

(80)

Finally we can prove our main theorem in Sec. 4.
Theorem 1. If Assumption 2 holds, the initial condition Y (0) = 0, M ≫ 100, ηY satisfies
M−0.99 ≪ ηY < 1, and each sequence class appears uniformly during training, then after
t ≫ K2 steps of batch size 1 update, given event xT+1[i] = n, the backpropagated gradient
g[i] := Y (xT+1[i]−α[i]) takes the following form:

g[i] = γ

ιnfn −
∑
n′ ̸=n

βnn′fn′

 (9)

Here the coefficients ιn(t), βnn′(t) and γ(t) are defined in Appendix with the following properties:

• (a) ξn(t) := γ(t)
∑
n ̸=n′ βnn′(t)f⊤

n (t)fn′(t) > 0 for any n ∈ [K] and any t;

• (b) The speed control coefficient γ(t) > 0 satisfies γ(t) = O(ηY t/K) when t ≤ ln(M)·K
ηY

and γ(t) = O
(
K ln(ηY t/K)

ηY t

)
when t ≥ 2(1+δ′) ln(M)·K

ηY
with δ′ = Θ( ln lnM

lnM ).

Proof. Note that if Assumption 2 holds, then F † = (I − E′)F⊤. Recall q1 := 1 + 1
M−1 ≈ 1 and

q0 := − M
(M−1)2 ≈ 0. Then given xT+1[i] = n, we get:

g[i] := Y (xT+1[i]−α[i]) (81)
= F (I − E′)(I +Θ)W̄ (N)(xT+1[i]−α[i]), (Theorem 5) (82)

= (1 + σ)γ ∗ F (I − E′)(I +Θ)[q0, . . . , q1, . . . , q0]
⊤, (Lemma 5,Corollary 1)(83)

= γ

ιnfn −
∑

n′ ̸=n,n′∈[K]

βnn′fn′

 (84)

where

γ(t) :=
(M − 1)2h(⌈t/K⌉)

(M − 1) + exp(Mh(⌈t/K⌉))
> 0 (85)

ιn := (1 + σ)[q1 · (1 + θn)(1− E′
nn)− q0

∑
k ̸=n,k∈[K]

(1 + θk)E
′
kn] (86)

= (1 + σ)[(1− E′
nn) · (1 + δ1) + δ2] (87)

βnn′ := (1 + σ)[q1 · (1 + θn)E
′
nn′ + q0((1 + θn′) +

∑
k ̸=n,k∈[K]

(1 + θk)E
′
kn′))] (88)

= (1 + σ)[E′
nn′ · (1 + δ1) + δ3] (89)
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Here σ is defined in Cor. 1 and satisfies −1 < σ ≪ lnM . |δ1| ≲ K√
N

√
ln( 1δ ) +

1
M ≪ 1 and

|δ2|, |δ3| ≤ M
(M−1)2 × 2(1 + 3|δ1|) < 3

M . Here we use the fact that |θ|, |θi| ≲ K√
N

√
ln( 1δ ),∑

k∈[K] λkujkujn′ = Ekn′ and the fact from Lemma 15:

|E′
kn| ≤ max

i∈[K]
|λi(E′)| ≤ 1

1− 1/K
|λ1| ≤

1

K − 1
(90)

(a) Now let’s prove that ξn(t) > 0. First from (I + E)(I − E′) = I we have E − E′ − EE′ = O.
Then use the symmetry of E and E′, we get

(EE′)nn =
∑
k=1

EnkE
′
kn =

∑
k=1

EnkE
′
nk =

∑
k=1

EnkE
′
nk =

∑
k ̸=n

EnkE
′
nk + EnnE

′
nn (91)

Note that F⊤F = I + E, we have Enn′ = f⊤
n fn′ ,∀n′ ̸= n and Enn = 0. Then

(E − E′ − EE′)nn = Onn = 0 ⇒
∑
k ̸=n

EnkE
′
nk = −E′

nn (92)

Note that |λi(E)| > 0,∀i ∈ [K] in Assumption 2 implies that Eki > 0 holds for some k ̸= i ∈ [K].
Then from (1) of Lemma 16 we get

∑
k ̸=nE

′
nn′f⊤

n fn′ > 0.

From Theorem 1 we have βnn′ = (1+ σ)[E′
nn′ · (1+ δ1) + δ3]. Note that 0 < 1+ σ ≪ ln(M), we

have:

∑
n′ ̸=n

βnn′f⊤
n fn′ = (1 + σ)[

∑
n′ ̸=n

[E′
nn′(1 + δ1) + δ3]Enn′ ]

= (1 + σ)[−(1 + δ1)E
′
nn + δ3

∑
n′ ̸=n

Enn′ ]

= (1 + σ)[(1 + δ1)

K∑
k=1

λ2k
1 + λk

u2nk + δ3
∑
n′ ̸=n

Enn′ ] (Eqn. 79)

≥ (1 + σ)[
1 + δ1
1− |λ1|

(min
i

|λi(E)|2)− 3

M
·K|λ1|], (Eqn. 90, |δ3| <

3

M
)

> (1 + σ)[
1

2
(min

i
|λi(E)|2)− 3

M
·K|λ1|], (|δ1| ≪ 1, |λ1| <

1

K
≪ 1)

> 0, (Assumption 2)
(93)

(b) We directly use Lemma 9, then we finish the proof.

E Proof of Section 5

Lemma 4 (Self-attention dynamics). With Assumption 1(b) (i.e., T → +∞), Eqn. 4 becomes:

żm = ηZγ
∑

n∈ψ−1(m)

diag(fn)
∑
n′ ̸=n

βnn′(fnf
⊤
n − I)fn′ , (10)

Proof. Taking long sequence limit (T → +∞), and summing over all possible choices of next
token xT+1 = n, plugging in the backpropagated gradient (Eqn. 9) into the dynamics of Z with
query token m (Eqn. 4), we arrive at the following:

żm = ηZ
∑

n∈ψ−1(m)

diag(cn)
P⊥
fn

∥cn∥2
Y (xT+1[i]−α[i]) (94)

= −ηZγ
∑

n∈ψ−1(m)

diag(fn)P
⊥
fn

∑
n′ ̸=n

βnn′fn′ (95)

= ηZγ
∑

n∈ψ−1(m)

diag(fn)(fnf
⊤
n − I)

∑
n′ ̸=n

βnn′fn′ (96)
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Note here we leverage the property that P⊥
f f = 0 and P⊥

cn
= P⊥

fn
.

Theorem 2 (Fates of contextual tokens). Let GCT be the set of common tokens (CT), and GDT (n)
be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the
self-attention dynamics (Eqn. 10), we have:

• (a) for any distinct token l ∈ GDT (n), żml > 0 where m = ψ(n);

• (b) if |GCT | = 1 and at least one next token n ∈ ψ−1(m) has at least one distinct token,
then for the single common token l ∈ GCT , żml < 0.

Proof. For any token l, we have:

żml = ηZγ
∑

n∈ψ−1(m)

fnl
∑
n′ ̸=n

βnn′
[
(f⊤
n fn′)fnl − fn′l

]
(97)

Distinct token. For a token l distinct to n, by definition, for any n′ ̸= n, P(l|m,n′) = 0 and
fn′l(t) ∝ P(l|m,n′) exp(zml) ≡ 0. Therefore, we have:

żml = ηZγf
2
nl

∑
n′ ̸=n

βnn′f⊤
n fn′ = ηZf

2
nlξn > 0 (98)

Note that żml > 0 is achieved by ξn > 0 from Theorem 1.

Common token. For any query token m, consider n ∈ ψ−1(m) and n′ ̸= n. if n and n′ does
not overlap then diag(fn)(fnf

⊤
n − I)fn′ = −diag(fn)fn′ = 0. When n and n′ overlaps, let

GCT (n, n
′) := {l : P(l|n)P(l|n′) > 0} be the subset of common tokens shared between n and n′,

since |GCT | = 1 and ∅ ̸= GCT (n, n
′) ⊆ GCT :=

⋃
n ̸=n′ GCT (n, n

′), we have |GCT (n, n′)| = 1

and l ∈ GCT (n, n
′), i.e., the common token l is the unique overlap. Then we have:

fnl
[
(f⊤
n fn′)fnl − fn′l

]
= (f⊤

n fn′)f2nl − f⊤
n fn′ = −(1− f2nl)(f

⊤
n fn′) (99)

So we have:

żml = −ηZγ
∑

n∈ψ−1(m)

(1− f2nl)
∑
n′ ̸=n

βnn′f⊤
n fn′ = −ηZ

∑
n∈ψ−1(m)

(1− f2nl)ξn ≤ 0 (100)

Since ξn(t) > 0, the only condition that will lead to żml = 0 is f2nl = 1. However, since at least
one such n has another distinct token l′, and thus fnl′ > 0, by normalization condition, fnl < 1 and
thus żml < 0.

Note that for multiple common tokens, things can be quite involved. Here we prove a case when the
symmetric condition holds.
Corollary 2 (Multiple CTs, symmetric case). If Assumption 2 holds and assume

• (1) Single query token m0. For any next token n ∈ [K], ψ(n) = m0.

• (2) Symmetry. For any two next tokens n ̸= n′, there exists a one-to-one mapping ϕ that
maps token l ∈ GDT (n) to l′ ∈ GDT (n

′) so that P(l|n) = P(ϕ(l)|n′);

• (3) Global common tokens with shared conditional probability: i.e., the global common
token set GCT satisfies the following condition: for any l ∈ GCT , P(l|n) = ρl, which is
independent of next token n;

• (4) The initial condition Z(0) = 0.

Then for any common token l ∈ GCT , żm0,l < 0.

Proof. Since there is a global query token m0, we omit the subscript m0 and let zl := zm0,l.

We want to prove the following induction hypothesis: for any t (a) zl(t) = zϕm(l)(t) for n, n′

which are next tokens that the distinct token l (and l′) belongs to, and (b) the normalization term
o2n(t) :=

∑
l c̃

2
l|n(t) = o2(t), i.e., it does not depend on n.
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We prove by induction on infinitesimal steps δt. First when t = 0, both conditions hold due to the
initial condition Z(0) = 0. Then we assume that both conditions hold for time t, then by symmetry,
we know that for any n1 and any distinct token l1 ∈ GDT (n1):

żl1(t) = ηZγf
2
n1l1

∑
n′ ̸=n1

βn1n′f⊤
n1
fn′ = ηZγf

2
n2l2

∑
n′ ̸=n2

βn2n′f⊤
n2
fn′ = żl2(t) (101)

where l2 = ϕ(l1) is the image of the distinct token l1. This is because (1) f⊤
n1
fn′ =∑

l∈GCT
ρ2l exp(2zl(t))/o

2(t) is independent of n1 and n′ by inductive hypothesis, therefore, β
is also independent of its subscripts. And (2) f2n1l1

:= c̃2l1|n1
/o2(t) = c̃2l2|n2

/o2(t) = f2n2l2
.

Therefore, żl1(t) = żl2(t), which means that zl1(t
′) = zl2(t

′) for t′ = t+ δt.

Let GCT (n1, n2) := {l : P(l|n1)P(l|n2) > 0} be the subset of common tokens shared between n1
and n2, then for their associated n1 and n2, obviously GCT (n1, n2) ⊆ GCT and we have:

on1
(t′) =

∑
l

c̃2l|n1
(t′) =

∑
l

P2(l|n1) exp(2zl(t′)) (102)

=
∑

l1∈GDT (n1)

P2(l1|n1) exp(2zl1(t′)) +
∑

l∈GCT (n1,n2)

P2(l|n1) exp(2zl(t′)) (103)

=
∑

l1∈GDT (n1)

P2(ϕ(l1)|n2) exp(2zϕ(l1)(t
′)) +

∑
l∈GCT (n1,n2)

ρ2l exp(2zl(t
′)) (104)

=
∑

l2∈GDT (n2)

P2(l2|n2) exp(2zl2(t′)) +
∑

l∈GCT (n1,n2)

P2(l|n2) exp(2zl(t′)) (105)

= on2(t
′) (106)

So we prove the induction hypothesis holds for t′ = t+ δt. Let δt→ 0 and we prove it for all t.

Now we check the dynamics of common token l ∈ GCT . First we have for any n ̸= n′, f2nl(t) =
c̃2l|n(t)/o

2(t) = ρ2l exp(2zl(t))/o
2(t) = c̃2l|n′(t)/o2(t) = f2n′l(t) and thus fnl(t) = fn′l(t) :=

fl(t) > 0, therefore:

fnl
[
(f⊤
n fn′)fnl − fn′l

]
= −f2l (1− f⊤

n fn′) < 0 (107)

On the other hand, from the proof on induction hypothesis, we know all off-diagonal elements of E
are the same and are positive. Then all all the off-diagonal elements of E′ are also the same and are
positive. Following Theorem 1, we know βnn′ > 0 and is independent of the subscripts. Therefore,
żl < 0.

Theorem 3 (Growth of distinct tokens). For a next token n and its two distinct tokens l and l′, the
dynamics of the relative gain rl/l′|n(t) := f2nl(t)/f

2
nl′(t)−1 = c̃2l|n(t)/c̃

2
l′|n(t)−1 has the following

analytic form (here the query token m = ψ(n) and is uniquely determined by distinct token l):

rl/l′|n(t) = rl/l′|n(0)e
2(zml(t)−zml(0)) =: rl/l′|n(0)χl(t) (11)

where χl(t) := e2(zml(t)−zml(0)) is the growth factor of distinct token l. If there exist a dominant
token l0 such that the initial condition satisfies rl0/l|n(0) > 0 for all its distinct token l ̸= l0, and all
of its common tokens l satisfy żml < 0. Then both zml0(t) and fnl0(t) are monotonously increasing
over t, and

e2f
2
nl0

(0)Bn(t) ≤ χl0(t) ≤ e2Bn(t) (12)

hereBn(t) := ηZ
∫ t
0
ξn(t

′)dt′. Intuitively, largerBn gives larger rl0/l|n and sparser attention map.

Proof. Let m = ψ(n) be the query token associated with next token n. For brievity, we omit
subscript m in the proof and let zl := zml.

First of all, for tokens l and l′ that are both distinct for a specific next token n, from Eqn. 98, it is
clear that

żl
żl′

= rl/l′|n(t) + 1 = (rl/l′|n(0) + 1)
e2(zl(t)−zl(0))

e2(zl′ (t)−zl′ (0))
(108)
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This means that
e−2(zl−zl(0))żl = (rl/l′|n(0) + 1)e−2(zl′−zl′ (0))żl′ (109)

Integrate both side over time t and we get:

e−2(zl(t)−zl(0)) − 1 = (rl/l′|n(0) + 1)
[
e−2(zl′ (t)−zl′ (0)) − 1

]
(110)

From this we can get the close-form relationship between rl/l′|n(t) and zl(t):

rl/l′|n(t) = rl/l′|n(0)e
2(zl(t)−zl(0)) (111)

Now let l0 be the dominating distinct token that satisfies rl0/l|n(0) > 0 for any distinct token l, then

• we have żl0 > 0 due to Theorem 2.

• for any token l′ ̸= l0 that is distinct to n, we have:

ṙl0/l′|n = rl0/l′|n(0)e
2(zl0 (t)−zl0 (0))żl0 > 0 (112)

• for any common token l′, since żl′ < 0, we have

ṙl0/l′|n =
d

dt

(
c̃2nl0
c̃2nl′

)
=

P2(l0|n)
P2(l′|n)

e2(zl0−zl′ ) · 2(żl0 − żl′) > 0 (113)

Therefore, we have:
d

dt
(f2nl0) =

d

dt

(
1

M +
∑
l′ ̸=l0 rl′/l0|n

)
> 0 (114)

Therefore, f2nl0(t) is monotonously increasing. Combined with the fact f2nl0(t) ≤ 1 due to normal-
ization condition ∥fn∥2 = 1, we have:

ξn(t) ≥
1

ηZ
żl0 = f2nl0(t)ξn(t) ≥ f2nl0(0)ξn(t) (115)

Integrate over time and we have:

B(t) ≥
∫ t

0

żl0(t
′)dt′ = zl0(t)− zl0(0) ≥ f2nl0(0)B(t) (116)

where B(t) := ηZ
∫ t
0
ξn(t

′)dt′. Plugging that into Eqn. 111, and we have:

e2f
2
nl0

(0)B(t) ≤ χl0(t) ≤ e2B(t) (117)

F Estimation in Sec. 6

Theorem 4 (Phase Transition in Training). If the dynamics of the single common token zml satisfies
żml = −C−1

0 ηZγ(t)e
4zml and ξn(t) = C−1

0 γ(t)e4zml , then we have:

Bn(t) =


1
4 ln

(
C0 +

2(M−1)2

KM2 ηY ηZt
2
)

t < t′0 := K lnM
ηY

1
4 ln

(
C0 +

2K(M−1)2

M2
ηZ
ηY

ln2(MηY t/K)
)

t ≥ t0 := 2(1+o(1))K lnM
ηY

(14)

As a result, there exists a phase transition during training:

• Attention scanning. At the beginning of the training, γ(t) = O(ηY t/K) and Bn(t) ≈
1
4 lnK

−1(ρ40+2ηY ηZt
2) = O(ln t). This means that the growth factor for dominant token

l0 is (sub-)linear: χl0(t) ≥ e2f
2
nl0

(0)Bn(t) ≈ [K−1(ρ40 + 2ηY ηZt
2)]0.5f

2
nl0

(0), and the
attention on less co-occurred token drops gradually.
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• Attention snapping. When t ≥ t0 := 2(1 + δ′)K lnM/ηY with δ′ = Θ( ln lnM
lnM ), γ(t) =

O
(
K ln(ηY t/K)

ηY t

)
and Bn(t) = O(ln ln t). Therefore, while Bn(t) still grows to infinite,

the growth factor χl0(t) = O(ln t) grows at a much slower logarithmic rate.

Proof. Since every next token n shares the same query token m, we omit the subscript m and let
zl := zml.

We start from the two following assumptions:

żl = −C−1
0 ηZγ(t) exp(4zl) (118)

ξn(t) = C−1
0 γ(t) exp(4zl) (119)

Given that, we can derive the dynamics of zl(t) and ξn(t):

exp(−4zl)żl = −C−1
0 ηZγ(t) (120)

d exp(−4zl) = 4C−1
0 ηZγ(t)dt (121)

exp(−4zl) = 4C−1
0 ηZ

∫ t

0

γ(t′)dt′ + 1 (use zl(0) = 0) (122)

Let Γ(t) := ηZ
∫ t
0
γ(t′)dt′, then Γ(0) = 0 and dΓ(t) = ηZγ(t)dt. Therefore, we have

ξn(t) = C−1
0 γ(t) exp(4zl) =

γ(t)

C0 + 4Γ(t)
(123)

and thus Bn(t) := ηZ
∫ t
0
ξn(t

′)dt′ can be integrated analytically, regardless of the specific form of
γ(t):

Bn(t) = ηZ

∫ t

0

γ(t′)dt′

C0 + 4Γ(t)
=

∫ t

0

dΓ

C0 + 4Γ
=

1

4
ln(C0 + 4Γ(t)) (124)

Recall that γ(t) = (M−1)2h(t/K)
M−1+exp(Mh(t/K)) (Theorem 1). Note that h (if treated in continuous time

step) is strictly monotonically increasing and satisfies h(0) = 0,dh(t/K) = ηY (M − 1 +

exp(Mh(t/K)))−1dt/K (Lemma 6 and Lemma 7), we can let γ(h) := (M−1)2h
M−1+exp(Mh) and get:

Γ(t) := ηZ

∫ t

t=0

γ(t′)dt′ (125)

= ηZK

∫ h(t/K)

h(0)

γ(h′) · M − 1 + exp(Mh′)

ηY
· dh′ (126)

=
ηZ
ηY

K(M − 1)2
∫ h(t/K)

h(0)

h′dh′ (127)

=
ηZ
ηY

· K(M − 1)2

2
h2(t/K) (128)

Therefore, Bn(t) has a close form with respect to h, regardless of the specific form of h(t):

Bn(t) =
1

4
ln

(
C0 + 2

ηZ
ηY

K(M − 1)2h2(t/K)

)
(129)

(1) When t < t′0 := K ln(M)/ηY , from Lemma 9 we have h(t/K) = (1+ o(1)) · ηY t/(MK). We
neglect the o(1) term and denote ν := ηY /ηZ , then we have when t ≤ t′0:

Bn(t) =
1

4
ln

(
C0 +

2(M − 1)2

νKM2
η2Y t

2

)
(130)

And Bn(t′0) =
1
4 ln

(
C0 + 2K(M − 1)2M−2ν−1 ln2(M)

)
.
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Figure 9: Numerical simulation of Bn(t) with changing ηZ and fixed ν = ηZ/ηY . The dotted line denotes
the transition time t0, and Bn(t0) marked with the solid dot is independent of ηZ .

(2) Similarly, when t > t0 := 2(1 + ω1)K lnM/ηY with ω1 = Θ(ln lnM/ lnM) is defined in
Lemma 8, from Lemma 9 we have h(t/K) = (1 + o(1)) ln(MηY t/K)/M . We neglect the o(1)
term and get when t > t0:

Bn(t) =
1

4
ln

(
C0 +

2K(M − 1)2

νM2
ln2(MηY t/K)

)
(131)

From this we know Bn(t0) = 1
4 ln(C0 + 2K(M − 1)2M−2ν−1 ln2(2(1 + ω1)M lnM)). It’s

interesting to find that Bn(t0) just depends on K,M and ν, and thus fixing ν and changing ηZ will
not influence the value of Bn(t0), which means that the main difference between Bn is arises at the
stage t > t0. This matches the results in Fig. 9.

(3) Finally, we estimate Bn(t) when t is large. When ν is fixed and t ≫ (MηY )
−1 exp(1/

√
2ν),

we have

Bn(t) = (1 + o(1)) ·
[
1

2
ln ln(MηY t/K) +

1

4
ln(2K(M − 1)2M−2ν−1)

]
(132)

= Θ

(
ln ln(

MηZνt

K
)− ln(

ν

K
)

)
(133)

Therefore, from Eqn. 133 we get:

(a) Fix ν, larger ηZ result in larger Bn(t) and sparser attention map.

(b) Fix ηZ , larger ν (i.e., larger ηY ) result in smaller Bn(t) and denser attention map since ln ln(x)
is much slower than ln(x).

These match our experimental results in the main paper (Fig. 6).

G Experiments

We use WikiText [25] dataset to verify our theoretical findings. This includes two datasets, Wiki-
Text2 and WikiText103. We train both on 1-layer transformer with SGD optimizer. Instead of using
reparameterization Y and Z (Sec. 3.1), we choose to keep the original parameterization with token
embedding U and train with a unified learning rate η until convergence. Fig. 10 shows that the av-
eraged entropy of the self-attention map evaluated in the validation set indeed drops with when the
learning rate η becomes larger.

Note that in the original parameterization, it is not clear how to set ηY and ηZ properly and we leave
it for future work.

Furthermore, we use the recall-threshold relationship to reshow that smaller ηY /ηZ and larger ηZ
will result in a sparser self-attention map as Fig. 11 and Fig. 12. Here we use some thresholds to retag
every entry of the attention as a 0-1 value based on its softmax value for every query token, and then
calculate the recall value by the average value of the proportion of the distinct tokens with new labels
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Figure 10: Average self-attention map entropy over the validation sets in 1-layer transformer after training,
when the learning rate ηY and ηZ changes. Note that higher learning rate η leads to higher Bn(t) and thus low
entropy (i.e., more sparsity), which is consistent with our theoretical finding (Sec. 6). All the experiments are
repeated in 5 random seeds. Error bar with 1-std is shown in the figure.

equal to 1 to the total number of distinct tokens. In the figures, the horizontal coordinates denote
the threshold values around 1/M for different last/next tokens setting, and the vertical coordinates
denote the recall rate. The dataset is Syn-Medium mentioned in Section 8, and every data point in
the figures is the mean value over 10 seeds. It’s obvious that a sparser attention map will result in a
slower descent rate of the recall-threshold line since sparser attention corresponds to fewer distinct
tokens with higher attention weights, and the results of Fig. 11 and Fig. 12 match that of Fig. 6.

H Technical Lemma

Lemma 18. Let h = [h1, h2, . . . , hM ]⊤ ∈ RM is some M -dimensional vector, hX :=
[hx1

, ..., hxT−1
]⊤ ∈ RT−1 is a vector selected by input sequence X , then given event xT =

m,xT+1 = n, there exists some qm,n = [q1|m,n, q2|m,n, . . . , qM |m,n]
⊤ ∈ RM so that q ≥ 0

and

1

T − 1
X⊤hX =

M∑
l=1

ql|m,nhlel = qm,n ◦ h (134)

1

T − 1
X⊤diag(hX)X =

M∑
l=1

ql|m,nhlele
⊤
l = diag(qm,n ◦ h) (135)

where ql|m,n satisfies
∑M
l=1 ql|m,n = 1. And with probability at least 1− δ we have

max

(
0,P(l|m,n)−

√
ln(2/δ)

2(T − 1)

)
≤ ql|m,n ≤ P(l|m,n) +

√
ln(2/δ)

2(T − 1)
(136)

And thus ql|m,n → P(l|m,n) when T → +∞.

Proof. Given that xT = m and xT+1 = n, then we have

1

T − 1
X⊤hX =

1

T − 1

T−1∑
t=1

hxtxt =

M∑
l=1

(
1

T − 1

T−1∑
t=1

I[xt = l]

)
hlel =:

M∑
l=1

ql|m,nhlel (137)

And similar equations hold for 1
T−1X

⊤diag(hX)X . Then we consider the case that the previous
tokens are generated by conditional probability P(l|m,n) as the data generation part, so I[xt =
l],∀t ∈ [T −1] are i.i.d. Bernoulli random variables with probability P(l|m,n) and Tql|m,n satisfies
binomial distribution. By Hoeffding inequality, we get

P(|ql|m,n − P(l|m,n)| ≥ t) ≤ 2 exp(−2(T − 1)t2) (138)
Then we get the results by direct calculation.
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Figure 11: Recall value of attention on all distinct tokens versus threshold with changing learning rate ratio
ηY /ηZ . Smaller ηY /ηZ corresponds to a smaller descent rate and thus sparser attention.
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Figure 12: Recall value of attention on all distinct tokens versus threshold with changing learning rate ηZ .
Larger ηZ corresponds to a smaller descent rate and thus sparser attention.
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