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ABSTRACT

Wasserstein distances define a metric between probability measures on arbitrary
metric spaces, including meta-measures (measures over measures). The resulting
Wasserstein over Wasserstein (WoW) distance is a powerful, but computation-
ally costly tool for comparing datasets or distributions over images and shapes.
Existing sliced WoW accelerations rely on parametric meta-measures or the exis-
tence of high-order moments, leading to numerical instability. As an alternative,
we propose to leverage the isometry between the 1d Wasserstein space and the
quantile functions in the function space L2([0,1]). For this purpose, we intro-
duce a general sliced Wasserstein framework for arbitrary Banach spaces. Due
to the 1d Wasserstein isometry, this framework defines a sliced distance between
1d meta-measures via infinite-dimensional Lo-projections, parametrized by Gaus-
sian processes. Combining this 1d construction with classical integration over
the Euclidean unit sphere yields the double-sliced Wasserstein (DSW) metric for
general meta-measures. We show that DSW minimization is equivalent to WoW
minimization for discretized meta-measures, while avoiding unstable higher-order
moments and computational savings. Numerical experiments on datasets, shapes,
and images validate DSW as a scalable substitute for the WoW distance.

1 INTRODUCTION

Optimal transport (OT) enables geometrically meaningful Wasserstein distances between probability
measures on arbitrary Polish spaces X (Villani, [2003)), while remaining computationally tractable.
This has had a profound impact on machine learning, where Wasserstein distances are used to train
neural networks (Tong et al.,2024) and to compare data distributions (Yang et al.,[2019). A key fea-
ture of OT is its applicability to non-Euclidean spaces, even allowing the definition of Wasserstein
distances on Wasserstein spaces P2 (X) (Bonet et al.| 2025b). This is particularly useful for com-
paring distributions over non-Euclidean objects. For example, Euclidean distances as ground metric
between two images often yield poor results (Stanczuk et al.| 2021)), whereas Wasserstein distances
are robust to small image perturbations (Beckmann et al., 2025). Similarly, comparing point clouds
(Nguyen et al.,|2021b)) is natural with OT but not even well-defined with Euclidean distances. While
most OT applications focus either on comparing pairwise objects or distributions over Euclidean
spaces, recent work leverages Wasserstein distances on Wasserstein spaces for non-Euclidean do-
mains, such as image (Dukler et al.,[2019) or point cloud (Haviv et al.|[2025) distributions.

The underlying concept of multilevel OT has been introduced under various names, including hier-
archical OT (Schmitzer & Schnorr, 2013 [Lee et al., |2019), mixture Wasserstein (Chen et al., [2018;
2019;|Delon & Desolneux,[2020), and Wasserstein over Wasserstein (WoW) (Bonet et al., 2025b)). It
has applications beyond images and shapes, including domain adaptation (Lee et al.,|2019; [El Hamri
et al.|[2022)), single-cell analysis (Lin et al.,|2023)), point cloud registration (Steuernagel et al.,|2023)),
Bayesian inference (Nguyen & Mueller, 2024), generative modelling (Atanackovic et al., 2025} |Ha-
viv et al.,[2025), document analysis (Yurochkin et al.,|2019), Gromov—Wasserstein approximations
(Mémoli, 201 1;|Piening & Beinert,|2025a), and reinforcement learning (Ziesche & Rozo,2023). Ex-
tending this framework with another Polish space ) for dataset labels yields the OT dataset distance
(OTDD), defined on P2(Y X Pa(X)) (Alvarez-Melis & Fusi,[2020). However, all these approaches
incur high computational cost due to repeated pairwise Wasserstein evaluations.
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Due to the complexity of OT, sliced Wasserstein distances (Bonneel et al 2015} [Nguyen, [2025)
provide efficient OT-based alternatives to standard Wasserstein distances. Initially developed for
probability measures on Euclidean spaces, they have since been extended to the sphere (Bonet et al.,
2023a; |Quellmalz et al., 2023)), manifolds (Bonet et al., [2025a), functions (Garrett et al.| [2024)),
hyperbolic spaces (Bonet et al., [2023b)), the rotation group (Quellmalz et al.l 2024), and matrices
(Bonet et al.l 2023c). Repeated sliced Wasserstein distances can be linearized by mapping mea-
sures onto function spaces (Naderializadeh et al., 2021} [Nguyen, [2025). For WoW-type distances,
sliced accelerations have been proposed for Gaussian mixtures (Nguyen & Mueller, 2024} |Piening &
Beinert| 2025b) and more generally for measures over measures (meta-measures) via sliced Wasser-
stein Busemann Gaussian (SWBDG/SWB1DG) distances (Bonet et al.,[2025c¢)) and the sliced OTDD
(s-OTDD) (Nguyen et al.l [2025). The SWBDG and SWB1DG, which appeared after the original
submission of our work, are based on Busemann functions whose level sets act as a natural gener-
alization of affine hyperplanes in the space of meta-measures. The numerical implementation relies
on Gaussian approximations and a closed-form of the Busemann function. As an alternative, the
s-OTDD employs a hierarchical slicing approach based on the method of moments. However, it
is only well-defined for finite moments, and practical implementations are limited to the first few
moments because of numerical instability — originally, the first five.

In this paper, we aim to circumvent the issues of the s-OTDD. Therefore, we build on theoretical
ideas originally proposed in (Han), 2023)) to develop a computable sliced Wasserstein metric on gen-
eral Banach spaces. Employing the isometry between 1d probability measures in the Wasserstein
space and quantile functions embedded in the space of square-integrable functions L2([0, 1]), we uti-
lize this to define a sliced Wasserstein metric on the space of 1d meta-measures via Lo-projections.
Due to the lack of a uniform distribution on the unit ball of infinite-dimensional function spaces,
we parametrize our projection directions as Gaussian processes (Kanagawa et al.,[2018). To extend
this idea to multi-dimensional meta-measures, we combine this approach with a classical slicing ap-
proach, mapping these meta-measures to 1d meta-measures. Lastly, we prove that the minimization
of our sliced distance results in WoW minimization. This leads to the following contributions:

* We generalize the sliced Wasserstein distance to arbitrary Banach spaces. Moreover, we
show how two distinct parameterizations of the random projections may result in equivalent
metrics. As a special case, this allows for a sliced distance between 1d meta-measures.

* Beyond 1d meta-measures, we extend our approach to the multivariate case by introducing
the double-sliced Wasserstein (DS metric between meta-measures. Illustrating the use-
fulness of our DSW metric as a WoW replacement, we prove a form of topological metric
equivalence between the two for discretized meta-measures.

* Lastly, we present various numerical experiments showcasing the advantages of our ap-
proach, allowing for meaningful distribution comparisons for datasets, shapes, and images.

2  WASSERSTEIN DISTANCES

The so-called Wasserstein distance or Kantorovich—Rubinstein metric is an optimal transport-based
similarity gauge between probabilities on a common Polish space. To this end, let X be a Pol-
ish space, let P(X) be the space of Borel probability measures on X with respect to the Borel
o-algebra induced by the underlying metric, and let P,(X) = {u € P(X) | Jz1 € X :
S dP(x1, x2) du(zz) < oo}, p € [1,00), be the subset of measures with finite pth moment. For
@ € P(X) and a second Polish space ), the push-forward by a measurable map T: X — ) is
defined by T} pu == po T=' € P(Y). The set of transport plans between i € P(X),v € P(Y) is
given by
D(p,v) ={y e P(X x V) | m37v=pm2pv=r},

where 7; denotes the canonical projection onto the ¢th component. For a complete, separable metric
space (X, d), the (2-)Wasserstein distance

3
W(p,v; X) = inf (/ d?(xy,20) d'y(a:l,:vg))
vl () N\ Jxxx

"Note that the acronym DSW is also used for the distributional sliced Wasserstein distance (Nguyen et al.,
2021a), which modifies the slicing distribution of the classical sliced Wasserstein distance.
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defines a metric on P5(X). More precisely, (P2(X), W) is again a complete separable metric
space, allowing the construction of the so-called Wasserstein over Wasserstein (WoW) distance
W, X) = W(:,;P2(X)), which is studied in (Bonet et al.,2025b).

In difference to other similarity gauges like the Kullback—Leibler divergence or the total variation,
Wasserstein distances leverage the underlying geometry, allowing for meaningful comparisons be-
tween empirical measures. Although the Wasserstein distance relies on a linear program, the ac-
tual calculation is computationally costly. For two empirical measures supported at n points in
R? equipped with the Euclidean metric, the exact computation has complexity O(n?logn). The
approximate computation based on entropic regularization still has complexity O(n?logn), see
(Peyré & Cuturil 2019). Notably, this computational burden becomes even more involved for non-
Euclidean metric spaces, where the computation of the underlying distance itself is challenging. For
instance, the computation of the WoW distance relies on the pointwise evaluations of Wasserstein
distances. If the empirical meta-measures in Py (P2(R%)) are supported on N empirical measures
on Py(R%), each with n support points, then the approximate calculation of the required distance
matrix already has complexity O(N2n?logn).

From a computational point of view, the Wasserstein distance on (R, |- — -|) is a notable excep-
tion since this may be evaluated analytically. To this end, for u € P(R), its quantile function
Qu: (0,1) — Ris given by Q,(s) = inf {z € R | pu((—o0,2]) > s}. The Wasserstein distance
now becomes

W(u,v; R) </ 1Qu(s) Q. (s)|? ds)27 w, v € Pa(R),

meaning that the quantile mapping
q:IPQ(R)*)LQ([OJ-])a N”_)Q,u (1)

is an isometric embedding into the space of square-integrable functions, see (Villani, 2003). For
empirical measures, the quantile functions are piecewise constant and can be efficiently computed
by sorting the support points.

3 SLICED WASSERSTEIN DISTANCES

At their core, all sliced Wasserstein distances exploit easy-to-compute, 1d optimal transports to
define efficient alternatives to the standard Wasserstein distance. Originally, the sliced Wasserstein
distance has been studied for measures in P (R?) and is based on the slicing operator

m9: RT = R, z — (6, 2), 9 St i={zecR||z| =1}, (2)

with respect to the Euclidean inner product and norm. The sliced (2-)Wasserstein distance reads as

SWo) = ([ Womosn s R as0) ®

where we integrate with respect to the uniform probability on S¢~!. Similar to the Wasserstein
distance, SW metricizes the weak convergence (Bonnotte, 2013 Nadjahi et al., 2020). The spherical
integral is usually approximated by Monte Carlo schemes (Bonneel et al.,2015;|Nguyen et al., 2024;
Hertrich et al.| |2025) or Gaussian approximation (Nadjahi et al., [2021).

3.1 SLICING INFINITE DIMENSIONAL BANACH SPACES

As preliminary step towards an implementable sliced WoW distance, we consider the slicing on an
infinite dimensional, separable Banach space U with norm ||-||. We denote the continuous dual by
U* and equip it with the dual norm, i.e., ||v]| := sup{|v(u)| | v € U, ||u|| < 1} forall v € U*.
Relying on the dual pairing, we generalize the slicing operator (2) by

Tp: U =R, u— (v,u):=v(u), ve U™

The crucial point in defining a sliced distance on Py (U) = {u € P(U) | [ llul® du(z) < oo} is
that there exists no uniform probability measure on the infinite d1mens10na1 sphere. As remedy, we
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v]|?d¢(v) < oo} and define the ¢-based

choose an arbitrary £ € Po(U*) = {¢ € P(U*) | [,
sliced Wasserstein distance as

Wi €= ([ Womanmpi RaEw) g e PO) @

This approach extends the slicing on Hilbert spaces (Han, 2023). However, unlike (Han, [2023)),
we do not construct specific measures on the sphere. This allows the use of easy-to-sample slicing
measures. If the support of £ covers all directions in U™, the £-based SW distance becomes a metric.
Here, the crucial point is the definiteness. For this, we show the Lipschitz continuity of the integrant
in (@) and exploit the uniqueness of the characteristic function, see Appendix [A]

Theorem 3.1. For £ € Po(U™), the {-based SW distance defines a well-defined pseudo-metric. If
supp & Nspanv &€ {0, {0} } for all v € U* \ {0}, then @) defines a metric on Pa(U).

If the slicing measure ¢ has full support, then the assumption in Theorem is fulfilled, and the
&-based SW distance is a metric. Two measures &1, € Po(U™*) are equivalent if they are mutually
absolutely continuous. If their Radon-Nikodym derivatives d¢;/d&s and d&;/ d€; are bounded,
then the resulting SW distances are metrically equivalent. The proof is given in Appendix [A]
Proposition 3.2. Ler 1,8 € Po(U*) be equivalent. If d&1/ A&y and d€s/ A&y are bounded, then
we find c1, co > 0 such that

1 SW(p,v; &) < SW(p,v; &) < caSW(p,v; &) Yu,v € Pa(U).

In the finite-dimensional Euclidean setting, special cases of the £-based SW distance correspond,
for instance, to so-called energy measures on the sphere (Nguyen & Ho, [2023) and the standard
Gaussian (Nadjahi et al.}|2021). Relying on the latter, we obtain a strong equivalence to original SW
if £ is equivalent to the standard Gaussian. The short proof, which relies on Proposition and
the fact that the classical SW distance (3)) and the reference-based SW distance (4) with the standard
Gaussian reference coincide on P2 (R%), is given in Appendix @

Proposition 3.3. Let ¢ € Py(RY) be equivalent to n ~ N(0,14). If d¢/dn and dn/d¢ are
bounded, then we find c1, co > 0 such that

c1 SW(p,v3€) < SW(p,vim) = SW(p,v) < c2SW(p,136) VY, v € Po(RY).

Assuming that samples of ¢ are available, the &-based SW distance on every separable Banach
space can again be computed using the Monte Carlo scheme. If £ has a finite fourth moment, i.e.
& € P4(U™), the Monte Carlo scheme converges. The details are given in Proposition

3.2 SLICING THE 1D WASSERSTEIN SPACE

Exploiting the generalized SW distance in (@), we introduce a first slicing of the Wasserstein space
(P2(R), W), which later builds the foundation of our sliced WoW distance on Py (P2(R?)). Recall
that the quantile mapping (I) is an isometric embedding and thus measurable. Therefore, we can
push every meta-measure pt € P2(P2(R)) to gype € P2(L2(]0,1])). In this manner, the WoW
distance between p, v € Pa(P2(R)) becomes W (p, v; R) = W(gyp, gg; Po(L2([0,1])). Fixing
& € P2(L2(]0,1])), we introduce the sliced quantile WoW (SQW) distance:

SQW (k,v;€) = SW(gzp, qzv; €), g, € Po(P2(R)). (5)
If £ is positive, i.e., £ has full support, then the assumptions of Theorem [3.1]are satisfied.
Corollary 3.3.1. Let & € Py(L2([0,1])) be positive, then SQW is a metric on P2 (P2 (R)).

For the later implementation, we require an easy-to-sample slicing measure. To this end, we propose
to use Gaussians, i.e., measures £ € P(L2([0, 1])) such that 7, 3¢ is Gaussian for all v € Lo(([0, 1]),
see (Bogachev, [1998). On L ([0, 1]), there exists a one-to-one correspondence between Gaussian
measures and Gaussian processes (Rajput & Cambanis|,|1972, Thm. 2). In our numerics, we restrict
ourselves to the Gaussian process G that is related to the covariance kernel

ky:[0,1] x [0,1] = R, (t,5) — exp(—|t — s]|*/20?). (6)
This means that we consider the function-valued random variable G' with
(G(t1), ..., G(tn)) ~ N (0, (k(tist))ij=1,..m)  Vt1,...,t, €[0,1].
Since the kernel is smooth, the sample paths (realizations) of G are smooth too, i.e., G € C*([0,1])

almost surely, see (Da Costa et al) [2026, Cor. 1). Since k, is universal (Steinwart, |2001), the
corresponding Gaussian measure has full support (Van Der Vaart et al., 2008).
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4 DOUBLE-SLICING THE WASSERSTEIN SPACE

The slicing schemes in § [.1 and § 3.2] cannot directly be generalized to the multidimensional
Wasserstein space (Pa(R?), W) due to the lack of the Banach space structure and since we do not
have an adequate generalization of the quantile mapping. Instead of slicing the Wasserstein space
directly, in a first step, we therefore propose to slice the underlying domain using

mo: Pa(RY) = Py(R),  pu = moym, 0 e st

with mg from (2). Notice that 7y is continuous with respect to the Wasserstein distances and thus
measurable. This allows us to define the sliced WoW distance via

SW(u,v) = ( W2 (7o 41, mo 3v; R) de‘1(9)> , w, v € Py(Pa(RY)),
Sd—l

where we again integrate with respect to the uniform measure. Based on finite-dimensional slicing,
SW essentially reduces meta-measures p and v to a series of 1d meta-measures g 4 and g 4v.

As the computation of the 1d WoW distance remains challenging, we resort to a hierarchical slicing
approach, inspired by (Nguyen et all, 2025}, [Piening & Beinert, 2025b). Using quantile slicing (3]
with slicing measure & € Py (Ly([0, 1])), we introduce the double-sliced WoW distance

DSW(uv: €)= ([ SQW(mas mogwi d5710)) v € PalPalR))

By construction, the double-sliced WoW distance defines at least a pseudo-metric. If we restrict
ourselves to empirical meta-measure, DSW even becomes a metric that is weakly equivalent to W.
To be more precise, we denote the subset of empirical measures by P, and the Dirac measure by J,.
An empirical meta-measure p € Po(Pe(R?)) has the form

n;

N
1 1
_NE :am with  p; = § 6z, and ;€ RY (7
= v k=1

for arbitrary N and n;. For N and n; = 7 fixed, we denote g1 € PN (P(R?)) with p; € P2 (RY).

Theorem 4.1. For positive & € P2(Lx([0,1])), DSW defines a metric on Pe(Pe(R?)). Moreover,
for p, p € PN(PH(X)) with compact X C R? and positive Gaussian &, it holds

DSW (ptn, 5 £) = 0 <= SW(pt, pt; §) = 0 <= W(pn,p; RY) =0 as n— oc.

The detailed proofs are given in Appendix [B] There, a transport plan is constructed to rely on the
metric properties of WoW. The equivalence is then proven via a discretization of the Gaussian pro-
cess and the compactness of PN (P (X)). Numerically, DSW can be implemented combining
several integration techniques, see Appendix [C.1|and[C.2] Here, we con51der the Gaussian ¢ related
to the kernel in (6) and empirical meta-measures g, v € Po(Pe (]Rd) ) as in (7). To approximate the
outer integral over S?~! and the inner integral over ¢ simultaneously, we employ the Monte Carlo
method. For a sample path ¢ of the corresponding Gaussian process and a direction § € S9!,
we evaluate the integrand as follows: The first slicing gives 7rg st = (1 IN)S N 0ry ,p;» and the
quantile mapping gsmo it = (1/N) > N1 64(x, .u;)» Where the piecewise constant quantile func-
tions can be determined by sorting the support points. For the slicing on Ly([0, 1]), we employ a

quadrature to approximate the inner product. To this end, for knots ¢y, ...,tr € [0, 1] and weights
wi,...,WR, We estimate
1
Tg.40iTo,tHh = 25<4(ww)79> with  (g(mg 1), Zqu (mo,300)(tr) g(tr).
i—

Note that the samples g of the process G satisfy (G(t1),...,G(tr)) ~ N(0,k(t,, t,))F,_, and
can be easily generated. Finally, the double-sliced WoW distance is computed by

2

S
—— 1 e ——
DSW (p,v) := (g > W2 (Wgs,ﬁqwas,uu,Wgs,nqw@s,ﬁ'/;RD
s=1
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The remaining 1d Wasserstein distances can again be efficiently computed.

At its core, DSW requires the computation of the domain projection 7y and a quantile projection q.
As an alternative approach, s-OTDD considers a variation of 7ty with general 1d feature projections,
including convolutions, and a (finite) moment projection instead of quantiles (Nguyen et al., [2025).
Another concurrent work constructs a direct slicing of Py (P2 (R?)) via so-called Busemann projec-
tions onto geodesic rays and relies on Gaussian approximations (Bonet et al.,[2025c). Lastly, notice
that the collection of these push-forward g4y 4 can be interpreted as meta-measure version of the
so-called sliced-Wasserstein embedding (Kolouri et al., [2016} [Naderializadeh et al.| 2021; Nguyen,
2025) that maps a classical measure in Ps(R“) to the quantile functions of its slices.

5 NUMERICAL EXPERIMENTS

In this section, we aim to showcase the numerical properties and benefits of our sliced distances. We
start with the 1d case. Drawing a connection between meta-measures and the so-called Gromov—
Wasserstein (GW) distance, we consider a shape classification experiment from (Piening & Beinert,
2025a). Next, we compare our multidimensional sliced distance to the s-OTDD (Nguyen et al.,
2025). Finally, we present applications from the evaluation of point cloud distributions and percep-
tual image analysis. For all these experiments, we employ trapezoidal integration weights w,.. We
refer to Appendix for further experiments and detail

5.1 SHAPE CLASSIFICATION VIA LOCAL DISTANCE DISTRIBUTIONS

First, we repeat a shape classification experiment from (Piening & Beinert, 2025a) based on
parametrizing shapes as so-called metric measure (mm-)spaces. A mm-space is a tuple (X, dx, 1)
consisting of a compact metric space (X', dx) and a measure p € Pa(X). Modelling data as (finite)
metric spaces allows for invariance to isometric transformations such as rotations, often desirable
for shapes. Particularly, we may parametrize 2d shapes as point clouds with pairwise Euclidean
distances and 3d shapes as triangular meshes with pairwise surface distances (Beier et al., 2022).

While Gromov—Wasserstein (GW) distances define a metric between mm—spaces (Mémoli, 201 1),
computation is costly and relies on inexact non-convex minimization. As a remedy, alternatives em-
ploy pseudo-metrics via local distance distributions. Namely, they map a finite, uniformly-weighted
mm-space X = (z1,...,2x) With g € Pe(X) to Pe(Pe(R)) via the (non-injective) mapping

1Y 1Y
X pw= D San@iems Odnwiyen = N > bdr(aia)-
j=1

i=1

Now, we can represent two mm-spaces as ux, vy € Po(P.(R)) and compare them using the 1d
WoW distance (Mémoli, [2011} “Third Lower Bound’ (TLB’)), another SW-based distance (Piening
& Beinert, 2025a, ‘Sliced Third Lower Bound’ (STLB)) or a so-called energy distance (Sato et al.,
2020, ‘Anchor Energy’ (AE)). Alternatively, we may use our SQW distance.

Repeating experiments from (Piening & Beinert, [2025a), we precompute pairwise distance matri-
ces with respect to our SQW distance, TLB, STLB, AE, and the GW distance. Then, we estimate
the accuracy of a k-nearest neighbor (KNN) classification by assigning each test point to the ma-
jority class among its three nearest neighbors. We average the classification accuracy over 1000
random 25%/75% training/test splits on four datasets. Based on preprocessing from (Piening &
Beinert| 2025al), we employ the ‘2D Shapes’ dataset (Beier et al.| (2022), N = 50), the ‘Animals’
dataset (Sumner & Popovi¢| (2004), N = 50) and the ‘FAUST’ dataset (Bogo et al.l 2014) with
500 (‘FAUST-500) and 1000 (‘FAUST-1000) vertices per shape. Additionally, we report results
on a synthetic version of MNIST (LeCun et al.|[1998) denoted ‘MNIST-2000" (N = 100, 5 classes,
2000 points), whose details are given in Appendix We set the kernel parameter o to 0.01,
R = 10 and S = 100. We use the same integration grid and projection number for STLB. We
display the results in Table [I] where we additionally report the mean runtime of a single distance
computation. We observe comparable performance across all distances and a runtime advantage of
SQW and STLB for the large-scale FAUST-1000 and MNIST-2000 dataset, in particular against the
GW distance. See Appendix [C.4.2|for further studies.

2Code: https://github.com/MoePien/slicing_wasserstein_over_wasserstein
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Distance 2D shapes Animals FAUST-500 FAUST-1000 MNIST-2000

Acc. (%) Time (ms) Acc. (%) Time (ms) Acc. (%) Time (ms) Acc. (%) Time (ms) Acc. (%) Time (ms)

SQW (Ours) 99.5£1.2 09£03 99.1£13 09+0.1 38.6+57 9.8+£57 427459 13.8+15.1 84.8+4.7 48.6£2.8

TLB 100.0+0.3 0.54+0.4 100.0£0.0 0.440.1 36.7£5.6 27.24+15.8 40.2+6.0 60.1£9.6 88.7+4.5 298.74+25.8
STLB 99.5£1.2 08£1.0 993£1.8 08£0.1 37.6+£56 9.8£57 394£56 140149 84.1+£50 45.1+£28
AE 99.7£0.9 04£0.0 97.8£1.8 0440.1 37.7+£5.6 83£2.1 41.8+£53 252412.0 88.1+4.5 157.2+£16.6
GW 99.7£0.6 1.3£5.7 100.0+£0.0 2.5£1.1 29.2+4.4 266.44+94.7 33.0£5.3 1048.2+357.3 —timeout—

Table 1: Shape classification with KNN: Mean accuracy (Acc., 1) and runtime (Time).
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Figure 1: Left: Impact of projection number S, grid size R, and kernel parameter o on MNIST-2000
SQW classification. Right: Scatter plots and correlation between TLB (1d WoW, horizontal axis)
and SQW (vertical axis) for different parameters on MNIST-2000.

Based on MNIST-2000, we additionally perform a parameter study to analyze the impact of the pro-
jection number .S, grid size R, and kernel parameter . We again classify our MNIST-2000 dataset
via SQW, but with varying parameters. The accuracies are displayed in the table in Figure[I} where
we observe only slight variations of the resulting accuracies. Additionally, we analyze the correla-
tion between TLB and SQW in Figure[T] The SQW distance is meant to emulate the WoW distance
on Pa(P2(R)). Since TLB is exactly the WoW distance between pux and uy, we would therefore
hope for a linear relation between SQW and TLB. To analyze this relation, we produce a scatter
plot displaying all SQW-TLB pairs on MNIST-2000 for three different parameter configurations. In
addition, we compute the Pearson and Spearman correlation coefficients. Overall, we see a clear
linear relation with correlations coefficients of 0.99 or more. Changing the kernel parameter o does
not seem to impact this relation, but increasing the number of projections S reduces the variance
and raises the correlation from 0.99 to 1.0.

5.2 OPTIMAL TRANSPORT DATASET DISTANCE

Next, we consider a comparison with the OTDD (Alvarez-Melis & Fusil 2020)) and the s-OTDD
(Nguyen et al., |2025). These metrics have been developed to quantify the similarities between la-
belled datasets in a model-agnostic manner. Such similarity metrics are especially important for
applications in transfer learning. In this area, it has been shown empirically that the OTDD and s-
OTDD display a strong correlation with the performance gap in transfer learning and classification
accuracy in data augmentation, see (Alvarez-Melis & Fusi, 2020). To assess the suitability of our
DSW distance as a drop-in replacement for the computationally costly OTDD, we repeat an experi-
ment from (Nguyen et al., [2025). We randomly split MNIST (LeCun et al., [1998)), FashionMNIST
(Xiao et al.,|2017), and CIFAR10 (Krizhevskyl,|[2009) to create subdataset pairs, each ranging in size
from 500 to 1000, and compute the OTDD, the s-OTDD, and our DSW between subdataset pairs.

We plot the results of our DSW distance and the s-OTDD against OTDD for 100 dataset splits in
Figure [2] where we include the Pearson and the Spearman correlation coefficients between both
sliced distances and the OTDD. As our DSW distance is originally defined on Py(P2(R%)) and
OTDD and s-OTDD on P(Y x P(R%)), we compute OTDD and s-OTDD with the label metric
on Y set to zero for comparability, effectively representing each dataset as an empirial measure in
Py (Po(R?)) and computing the OTDD via WoW. To be precise, each class-conditional distribution
is modeled as p; € P.(R?) and the distribution over class-conditional distributions becomes our
meta-measure j, € Pc(’PC(]Rd)). Similar to (Nguyen et al.,[2025), we estimate both DSW (R = 10,
o = 0.1) and the s-OTDD (with Radon features) with S = 10,000 projections. Based on this
setting, we employ the original default implementation for the s-OTDD and the ‘exact’” OTDD.
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Figure 2: Scatter plots and correlations (1) between the s-OTDD and the OTDD (top) and our DSW
(‘Ours’) and the OTDD (bottom) for MNIST (]Za[), FashionMNIST @, and CIFAR-10 .

Treating OTDD as our ground truth, we clearly see a stronger correlation between DSW and OTDD
for all datasets. Additional experiments can be found in Appendix [C.3]

5.3 COMPARING DISTRIBUTIONS OF POINT CLOUDS

For our next experiment, we assess the potential of DSW for evaluating point cloud generative mod-
els, which aim to generate 3D shapes such as chairs or planes. Evaluating such models is challenging
since common quality metrics are insensitive to mode collapse (e.g., ‘coverage’) or tolerate low-
quality samples (e.g., ‘minimum matching distances’); see|Yang et al.| (2019) for details. A common
remedy is the OT nearest-neighbor accuracy (‘OT-NNA’) test, which uses 1-nearest-neighbor classi-
fication based on pairwise Wasserstein distances between real and generated point clouds. However,
for N real and M generated shapes, this requires (N + M — 1)2/2 OT computations, without
defining a true metric.

As a natural alternative, one might instead represent batches of real and generated point clouds
wi € Pe(R?) as empirical meta-measures in P (P, (R?)) and compute the WoW, respectively, the
DSW distance between a real and a generated batch. To assess the suitability of our resulting quality
metric, we consider shapes from ModelNet-10 (Wu et al., 2015) and construct meta-measures

N M
1 3 1 3
N:N;(S#i 6,Pe(lpe(R ))7 V:sz::léuj epe(Pe(R ))7
where the support points are again Euclidean empirical measures

1 : 1 — ,
pi=— ;ax €P(R?), wj=— ;axh# € Po(R?) € ~ N(0, 0% T3)-
Given a certain shape class, e.g., ‘chair’, we initialize p as our fixed reference meta-measure with
(downsampled) shapes from the ModelNet-10 training set and v as our varying target meta-measure
with shapes from the ModelNet-10 test set. To compare OT-NNA, WoW, and our DSW metric, we
independently vary the number of target shapes M, the level of Gaussian noise onoise, and the point
cloud discretization m while fixing the remaining parameters according to the reference p (Default
parameters: N = M, onoise = 0, m = n). The results of our experiment are visualized in FigureEL
where we display the average result of 5 runs with varying M, onoise, and n, and the reference
(‘ground truth’) parameter of p is marked with a dotted red line. Lower is better for all metrics.

Looking at the number of target shapes M in Subﬁgure@(Class: ‘bed’, N = 10, onoise = 0, n =
m = 50), we see that all metrics successfully capture mode collapse, i.e., M = 1, and decrease for a
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larger number of target shapes M. Unlike the plateauing WoW and DSW metrics, OT-NNA displays
an undesired behavior by increasing for M > N = 10, however. As for the random Gaussian
perturbations in Subfigure [3b] (Class: ‘sofa’, N = M = 10, n = m = 50), all three metrics
increase with increasing noise. Whereas OT-NNA is more sensitive to small noise levels, the WoW
and DSW metrics are more sensitive to high noise levels. Considering the point cloud resolution m
in Subﬁgure(Class: ‘monitor’, N = M = 10, n = 500), OT-NNA seems inconsistent regarding
the resolution. In contrast, the WoW and DSW metrics are higher for m < 100 and plateau after
a seemingly sufficient resolution has been reached. Overall, we see that WoW and DSW display
similar behavior as the OT-NNA and offer the advantage of being unbounded metrics. Additionally,
DSW (S = 10,000, R = 50, o = 0.1) offers computational advantages as it takes around 0.25
seconds for M = N = 10 and m = n = 500, where WoW takes about 4.5 seconds and OT-NNA
about 8.5 seconds (on our CPU). This makes it especially suitable for high-resolution point clouds
and large point cloud batches. Further studies are contained in Appendix [C.6]
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Figure 3: OT-NNA, WoW, and our DSW (‘Ours’)between target and reference point cloud batches
for varying numbers of shapes M in target batch (3a)), for Gaussian noise onoise for target points (3b)
and varying target point cloud resolution m . Fixed reference values are marked in red.

5.4 COMPARING IMAGE DISTRIBUTIONS VIA THEIR PATCH DISTRIBUTIONS

Given the importance of OT for imaging, we conclude with an imaging experiment. Interestingly,
OT is utilized on two levels in this area. On the one hand, it is used to compare two batches of
images using pairwise Euclidean distances (Genevay et al.;[2018)). On the other hand, using OT as a
distance between two individual images remains of relevance due to the disadvantages of Euclidean
distances. Those methods represent images as 2D histograms (Beier et al.,[2023; Geuter et al.| [2025)
or as patch distributions (Hertrich et al., 2022} |[Elnekave & Weiss, 2022} [Flotho et al.| [2025). Thus,
a natural combination is the comparison of image batches using WoW (Dukler et al., 2019).

Since patch-based OT distances serve as a perceptual metric between images (He et al.| [2024), we in-
corporate patch-based image representations into the WoW framework. This is based on parametriz-
ing images via their distribution of localized features. More concretely, we map each (grayscale)
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image to the empirical measure over all contained (overlapping) square-shaped image regions of
size p X p, see (Piening et al.,2024) for an in-depth description. Thus, we may represent each image

as an empirical measure p; € P, (RPZ) supported on vectorized patches and a batch of images as

an empirical meta-measure g € Po(Pe (sz )). In this experiment, we establish a quantitative com-
parison of image batches using our hierarchical OT framework as an alternative to comparing two
image batches using standard OT or a neural-network-based perceptual metric, such as the ‘Kernel
Inception Distance’ (Sutherland et al., 2018} ‘KID”).

To validate this approach, we consider synthetic 64 x 64 texture images based on random Perlin noise
(Perlin| [1985). This texture synthesis model is controlled by several parameters, among them the
lacunarity and the persistence, see Appendix [C.7] Similar to our previous experiment, we initialize
a reference meta-measure p over images represented as patch distributions according to some ref-
erence parameters and compare it to a target meta-measure v with varying lacunarity, respectively,
persistence. For batch size 32 and patch size p = 8, both meta-measures are initialized according
to 32 random images, where each image is represented by (64 — 7) x (64 — 7) = 3249 uniformly
weighted patches of dimension 8 x 8 = 64. In Figure ] we compare the average behavior over
five runs of the standard Wasserstein distance with Euclidean cost between our reference and target
images and our patch-based DSW distance (¢ = 0.1, S = 10, 000 projections, R = 10), where the
‘ground truth’ lacunarity and persistence reference parameters are again marked in red.

We observe that both distances are minimized for the ‘true’ reference parameters. Still, our patch-
based approach is more sensitive to parameter variation and better at discriminating between dif-
ferent batches, see also supplementary comparisons. Note that patch-based WoW calculation takes
about 40 seconds, whereas our DSW distance merely requires about one second.

oo = 0.002 + Reference C sw000] * . ® 0001 ¢
= . ® Means + Std .= 70.00 L) 0.001
% 80.00 PS ° * " oo % 60.00 * 0.001 :
£ i Sy
U 40.00 o.001 U 30,00 [)
© @© 0.000
=000 0,000 . . 20.00
it 10.00 0.000 .
0.000 1.0 12 1.4 .16 18 2.0 0.000 1.0 12 1.4 _16 18 2.0 000000 0.2 0.4 0.6 0.8 1.0 000000 0_2 0.4 0'6 0.8 1.0
Lacunarity in Target Lacunarity in Target Persistence in Target Persistence in Target
(a) Varying Lacunarity in Perlin Noise (b) Varying Persistence in Perlin Noise

Figure 4: Comparing synthetic texture image batches via Euclidean Wasserstein and our sliced
patch-based distance based on varying ‘lacunarity’ (@a) and ‘persistence’ (@b). Both distances are
minimized for ‘true’ parameters (red), but our DSW (‘Ours’) distance leads to clearer discrimination.

6 CONCLUSION

We introduce a general sliced OT framework for measures on arbitrary Banach spaces. Lever-
aging the isometry between 1d Wasserstein and L ([0, 1]), Gaussian-process—parametrized Lo-
projections, and classical spherical slicing, we define the DSW distance between meta-measures, a
well-posed, computationally efficient substitute for WoW. We prove that DSW minimization corre-
sponds to WoW minimization for discretized meta-measures and demonstrate practical effectiveness
on datasets, shapes, and images.

On the practical side, future work could align DSW with the original OTDD by employing hybrid
slicing (Nguyen & Ho, [2024) to extend DSW to Py () x P2(R%)) or integrate convolutional projec-
tions (Nguyen & Hol 2022)) similar to the s-OTDD. Also, one might employ our Banach slicing for
infinite-dimensional generative models (Hagemann et al.l 2025)) or integrate dynamic transport into
our framework to enable applications in generative flow matching similar to (Chapel et al., 2025).

On the theoretical side, it would be of interest to analyze further topological properties similar to
Han|(2023). Another interesting direction is the question of sample complexity: In high-dimensional
Euclidean spaces, sliced Wasserstein distances require fewer samples to approximate a continuous
probability measure than the Wasserstein distance (Nadjahi et al., 2020). As WoW distances require
many samples to approximate a meta-measure (Catalano & Lavenant, [2024), it would be interesting
to analyze if our DSW distance displays better sample complexity properties.
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A NON-SPHERICAL SLICED WASSERSTEIN DISTANCE ON BANACH SPACES

Here, we present proofs for Section 3.1} For clarity, we restate and prove our statements from the
main paper as smaller statements.

Lemma A.1. For p,v € Po(U), 0 € U* — W(mg 4 1, T4 v; R) is Lipschitz continuous.
Proof. We generalize the proof of (Han, 2023, Lem. 2.3). For this, let #,,05 € U* be arbitrary.
Using the triangle inequality and its reverse, we have
(Wi(ma, 4 1y 7o, 5 v R) — W (o, 4 1, 9, 5 v R)|
< [W(me, g 1, Top,8 13 R) + W0, 1, o, 5 v5 R)|
- I:W(’/T027ﬁ , o, 4 V5 R) - W(’/Tghﬁ V, T, .4 Vs R)]
= W(ﬂ'el,ﬁ Hy To5,8 Hs R) + W(ﬂ'el,ﬁ V, T, Vs R)

For the first term on the left-hand side, it follows
W, o B) < [ 12 =t Aoy )yt 1) = [ (2,61~ 62} )
R2 U

2, /U ]2 dpu(er) = (16 — 6

where My (1) = [i;||[|Z dpu(x) is the second moment of 1. Using an analogous estimate for the
second term, we obtain

<61 — 62| b Ma(p),

W (0,5 11, 70y, v R) — W, 5 11, 0,5 v R)| < |61 — Oalu- (My/* (1) + My (v)). O

This allows us to prove the first part of Theorem [3.1]
Proposition A.2. For § € Po(U*), the {-based SW distance is well-defined.

Proof. The Lipschitz continuity in Lemma [A.T|implies that the integrand in the formulation of the
&-based SW (@) is measurable. To show that SW (u, v; £) is finite for p, v € Pa(U), let vy € I'(u, v)
realize W(p, v; U). Because of

W2 (g4 pt, gy v; R) < / (z1,0) — (x2,0)|* dy(21, 72)
UxU

<16l 2. W2 (s U),  (8)

b [ e = el da(an,a) = o
XXX
the &-based SW distance is bounded by SW (11, v; €) < W (u, v; U) Ma/?(€). O

Now, we prove the second part of Theorem 3.1

Theorem A.3. Let & € Po(U*) be such that supp& Nspan® & {0,{0}} for any 0 € U*, then
SW(-, -; €) defines a metric on Po(U). Otherwise, SW (-, -; £) defines at least a pseudo-metric.

Proof. Positivity, symmetry, and triangle inequality follow from the corresponding properties of
the Wasserstein distance. For the definiteness, assume that SW(u,v; ) = 0, which implies
W7o 4 pt, s v; R) = 0 for almost all # € U* with respect to {&. The Lipschitz continuity in
Lemma[A.1|implies W (mg 4 1, 9,5 v; R) = 0 and thus g 4 1 = g 4 v for all § € supp &. Now, let
0’ € U* be arbitrary. By assumption, we find ¢ € R \ {0} such that t¢’ € supp £. Furthermore, we
have

/ ei(z,@') d,LL(:L‘) _ / ei<m,t9/>% d‘u(x) = / eis% d’lrtg/’u /L(S)
U U R

:/eis% dﬂ—te’,ﬂ 1/(5):/ ei<ﬂ:,6”> dy(m)
R U

Since every measure on U has a unique characteristic function, see (Ledoux & Talagrand, 1991}
§ 2.1), we conclude p = v. ]
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We continue with Proposition 3.2}

Proposition Ad. Let &1,&5 € Po(U*) be equivalent. If d&1/ d&s and A€o/ A€y are bounded, then
we find c1,co > 0 such that

1 SW(p, v &1) < SW(p,v; &) < 2 SW(p,v; &1) Y, v € Po(U).
Proof. Exploiting the bounded Radon—Nikodym derivatives, we obtain

SW(, v; &2) = . W2 (g4 11, 0,4 v; R)G2(0) d€a (6) < H%ﬁf(@)HL?(U*) SW(p, v; &1).-
O

We employ this to prove Proposition

Proposition A.5. For ¢ € P(R?) absolutely continuous and d¢/dn, dn/d¢ bounded, for n ~
N(0,1,), there exist c1,ca > 0 such that

1 SW(p,v; §) < SW(p,vin) = SW(p,v) < 2 SW(p,v5 §)  Vp, v € Pa(RY).

Proof. This follows directly from Proposition and the identity SW(u,v) = SW{(u,v;n), see
(Nadjahi et al., 2021}, Prop. 1). O

We extend our findings from the main paper with a statement about the computational approximation
via Monte Carlo. In particular, the {-based SW distance can be numerically approximated by

s
—2 1 ..
SW (u,v; &) =~ 3 ZW2(7T95711 K, o, g v; R), 65~ iid.
s=1

It is well-known that such Monte Carlo estimates have a convergence rate of O(1/+/S) for S random
projections (Nadjahi et al.| 2020). Given suitable conditions, a similiar results holds for this estimate.

Proposition A.6. For & € Py(U*), it holds

—2
Eo,....05|SW (11,135 &) — SW? (1, v; €)| < —= stdg W (ma g pt, o4 v R).

1
VS
Proof. Using Holder’s inequality, and exploiting that the directions 6, are independent and identi-
cally distributed, we have

o, 05|SW2(, v €) — SW2(p, v; €))|

(.

1 S
=—= w? P R) — SW2(, v; €)| dE(0
75 (30 Wm0 ) - SWH s O ac6)

1
2

S
& D WA, 50,0, 05 B) — SW2 i )] dE(61) - dg(0))
s=1

[N

1
= ﬁ stdy W2(7T97ﬁ 1y To. 4 V5 R),

where the standard deviation exists due to W*(7g 4 1, 7.4 v; R) < [|0]|3. W (11,5 U), of. @). O
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B DOUBLE-SLICED WASSERSTEIN DISTANCE

B.1 METRIC PROPERTIES

To prove the positive definiteness of our double-sliced metric for empirical meta-measures, we uti-
lize an extension of the ‘Cramer—Wold’ theorem by |Cuesta-Albertos et al.| (2007) about the set of
projections required to separate measures on R?. The statement is based on the so-called Carleman
condition. A measure y € Po(R?) fulfills this condition if all moments

M, (i) = / lelPdu, p>1,

are finite and it holds that
o0
S M P — o
p=1

This condition is fulfilled for compactly supported measures (Schmiidgen et al., 2017, Ch. 14) and,
in particular, empirical measures. We also refer to (Heppes, |1956; Tanguy et al.l [2024)) for similar
results targeted at empirical measures.

Lemma B.1. (Cuesta-Albertos et al., 2007, Corr. 3.2) Given measures ji,v € Py(R?) that fulfill
the Carleman condition and a set S C S~ of positive surface measure with
W (mogp, mog; R) =0 forall 6 € S, 9)

it holds that p = v.

This allows us to prove the metric properties presented in Theorem (3.1
Proposition B.2. Given a positive ¢ € Py(L2(Y)), DSW defines a metric on Pe(Pe(R%)).

Proof. ‘Pseudo-metric’: The symmetry and triangle inequality are trivial and follow directly from
the ambient spaces of the embedded measures and the properties of the Wasserstein distance.

‘Positive Definiteness’: We aim to prove that
DSW(u,v;§) =0 < pu=v.
for empirical meta-measures. Therefore, assume that DSW (u, v; €) = 0 for p, v € Po(Po(RY)).

Due to DSW (p,v; £) = 0, we know that SQW (g s, g sv; £) = Oforalld € S~ except
for a zero measure set Z. Since SQW is a metric on Py (R), we thus know that T 4 = Ty for

every § € S%=1\ Z. Now, this means that there exists a ~5 € D(mo g, 7o 5v) C RLG™, such that

<75300> = Oa (10)

where Cy = (WQ(We,uMi, To,4V5))i,; C R%m and (-, -) denotes the Frobenius inner product. Here,
our costs and transport plans take matrix form due to the empirical measure structure.

We now want to find a suitable transport plan from this set of transport plans to construct
an upper bound for the meta-measure metric W (u,v;R?). Consider the set of index pairs
Idx = {(¢,4)|ps # v;}. If this set is empty, then we are done. Otherwise, we know from
Lemmathat there exists no set S C S of positive measure for (;,v;), (i,j) € Idx, such
that (9) 1s fulfilled for all € S. Conversely, for (7, j) € Idx, it holds that (Cy); ; > 0 for every
6 outside a zero measure set Z; ;. Subsequently, it has to hold that (v;); ; = 0 outside the zero
measure set Z U Z; ; due to (10).

Now, we have (7;):; = 0 or C; j = W?(u;, ;) = 0 for some 6 € S*~! outside the zero measure
set (Z U (Ui jyeraxZi,;))- Thus, it holds for almost every 6 that

{(v9,C) =0.
Since this expression is an upper bound of Wz(u7 v;RY), it follows that W (u, v; R?) = 0. This
concludes the proof since the Wasserstein distance is a positive definite metric. [
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Remark. Although we stated our statement for the empirical measures employed in our experi-
ments, our proof merely requires that all measures satisfy the Carleman condition. As an exam-
ple, this would be fulfilled for mixtures of compactly supported measures, i.e., for P.(P2(X)),
X C R? compact. Note that P.(P2(X)) is dense in P (P2 (X)) (Villani, 2003, Ch. 6). Moreover,
Lemma [A.1]allows us to show the Lipschitz continuity of DSW on P5(P(X)). Combining all of
this with statements on continuous extensions of metrics on topological spaces Engelking| (1989),
we can expect DSW to be a metric on Py (P2(X)).

B.2 RELATIONSHIPS BETWEEN METRIC

In this section, we aim to prove our convergence result. We point out that (Han, 2023, Thm. 3.4)
contains a proof of weak convergence for measures on general Hilbert spaces. However, the un-
derlying argument appears to rely on an application of a convergence result in infinite-dimensional
settings whose validity in this context is, to the best of our understanding, not fully clear.

To prove our convergence statement, we separate the proof into a couple of smaller statements. As
a first step, we show that our sliced metrics produce lower bounds for W. We continue with a
lemma that relates the subset of P2(L2([0, 1])) supported on piecewise constant step functions to
Euclidean measures. Based on this, we prove a statement about the equivalence between DSW and
SW. Lastly, we prove a statement about the equivalence between SW and W, which utilizes the
compactness of the support.

First, we state a proposition that allows us to bound W from below via DSW and SW.

Proposition B.3. It holds C¢ DSW (u,v; &) < SW(p,v; &) < W(u,v; RY) for pv €
Po(Po(R?)) and € € Pa(La(]0,1))).

Proof. DSW is essentially a double integral. For v € Ly([0,1]), € S¥~! and 4 € I'(p,v), the
DSW integrand can be estimated using the Cauchy-Schwarz inequality by

W2 (04 (qs (0,5 18) ), o (g (g 512); R) < / [{q(mog1) — q(mo,5v),0)|* A (,v)
P2 (R%) x P2 (R%)

I?

< / la(mo.2t0) — (o) |2 0]2 45, v).
Po (]Rd) X Po (]Rd)

Subsequently, it holds
W2 (10,55 (70,410)), 70,3(a5 (70,40); R) < [[0l|P W3 (00,001, g 4175 R) < [0 *W5 (s, 5 RY).

The last inequality follows from W (g spt, mgs; R) < W(u,v; RY) for p,v € Py(RY) and
6 € S?1. Because of & € Py(L2([0,1])), we know that ng([o ) [v]|?dé(v) = Ma(€) < oo.

Integration with respect to ¢ and the uniform measure on S?~! gives the statement with C¢ =

1/v/ Ms(&). O

From this relation, we can easily see that W (., ; R?) — 0 results in SW (g, 5 €) — 0 and
that SW (ay,, o5 €) — 0 results in DSW (e, 15 €) — 0.

In the following statement, we use indicator functions 1,¢g that take the value 1 for z € S and 0
otherwise.

Lemma B.4. For p,, 1 € Pa2(La([0,1])) only supported on fixed-length step functions, i.e., sums
of indicator functions of the form

Sp = {Zfilmep,; D fi € R}
=1

for a fixed partition U?:lPi = [0, 1], and a positive Gaussian measure § € P2(L2([0,1])), we have
SW(pn, 5 §) = 0 == W(pn, p15 Lo([0,1]) — 0.
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Proof. To prove the statement, we want to leverage the established metric equivalence between the
Wasserstein and the classical sliced Wasserstein distance on P»(R™). Therefore, we construct an
isometric mapping IMp : Sp — R similar to (Piening & Beinert, 2025a). Instead of consid-
ering probability measures on the infinite-dimensional space L2 ([0, 1]), this allows us to consider
Euclidean probability measures. We define our Sp-isometric mapping on the space Ly ([0, 1]) via

IMp : Ly([0,1]) — R™,

o (190 [ swas)  ew
P; i=1
This is an isometry on S,, because for f(), f(2) € Sp it holds that

n

1O = @17 =S IPIY — i) = [IM(FD) = (@)

i=1
Now, this means that
W2 (i, i La([0,1])) = W2(IMpyg 1, IMpg 3 R™). (11)

Now, we aim to construct a similar relation for the £-based sliced Wasserstein distance. We require
Ep € Po(R™) based on £ € Po(L2([0, 1])). Therefore, we again employ our mapping to link the Lo-

projection to a projection on R™. For f € Sp, g € La2([0,1]), we have (f, g} = (IMp(f),IMp(g)).
Hence, we define {p := IMp4 £. As asliced counterpart of , we get that
SW (b, 115 €) = SW2(IMy 11, IM 15 ).
Now, we want to utilize Proposition to connect our &-based sliced Wasserstein to the classi-
cal sliced Wasserstein distance. Indeed, since £ is a Gaussian measure and IMp is linear, £p is
Gaussian by definition of a Gaussian measure. Moreover, it is a nondegenerate Gaussian since &
is positive. Thus, SW(IMy p,,, IMg 115 €p) is topologically equivalent to the classical sliced dis-
tance SW (IMy p,,, IMy 1) by Proposition Since SW and W induce the same weak topology on
Po(R™) (Nadjahi et al.,|2020), we overall conclude that
SW (i, 13 €) — 0

< SW(IM; pin, IMy p1;€p) — 0

<= SW(IM; pir,, IMy 1) — 0

= WM pn, IM p1; R™) — 0

= W(tn, 5 L2([0,1])) — 0.

O

Proposition B.5. Given a positive Gaussian { € Pa(L2([0,1])) and empirical meta-measures
tn, b € PN (P(X)), X C R compact, we have that

DSW(pp, p; &) =0 <= SW(n, p; §) — 0.

Proof. We assume that
DSW?(u,v; €) = /SH SW? (g5 (ma.phen ). a5 (mappe); €) AST(6) = 0.
It follows that
SW(gsmo,sben, qgmo gpts §) — 0

for almost any § € S9~1. Since we are dealing with fixed, uniform weights, all quantile functions
are piecewise constant step functions with a fixed step length. By Lemma[B.4] it thus follows that

W(qsmo,ptin, @50 84tn; L2([0,1]) = W (g gptn, T 515 §) — 0

for almost every 6 € S?~!. Since the compact support results in boundedness, it thus follows from
the dominated convergence theorem that

SW2(p, s €) = . W2(7r9’ﬂu,7rg7ﬁu; R) dS?=1(h) — 0.
-
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Now, we state the last result. Note that our proof is inspired by a proof in (Piening & Beinert,
2025b).

Proposition B.6. Given p.,,, u € PN (PR X)), X C R? compact, it holds that
SW (pn, p; &) = 0 <= W(pn, u; RY) —= 0.

Proof. We write
N
1 1
anﬁzéun,m N:sz::léﬂj‘

Now, we assume that

N N
SW? (g, pt; €) —/ SN A W3 (mo s i o5 s R) ASTH(B) — 0,
R
where v,"" € T'(mg g, o ppt) C ]R N denotes the optimal projected WoW plan for a fixed
co

6 € S%1. Because of Ly(S?!) co nvergence for any subsequence of u,, we find a further
subsequence ({4, )men such that

N N
ZZ%’;ZL% W3 (7o.4 tin,, ki, To 4 fie; R) — 0 for almost every 6 € S*! (12)
k=1 (=1

pointwisely. Since X is compact, (ftn,, )men can be chosen such that p,  , converges to some
fir € Po(R?). Moreover, since p, and p are both empirical meta-measures with N sup-
port points, we can assume without loss of generality that ~,7 , is a permutation matrix, i.e.,

3

Yore € {0, 5}V with only one positive value per row or column (Peyré & Cuturi, 2019,
Prop 2.1).

For any ¢ € S%! such that (T2) holds true, it follows that v5% 7, — # in the case of
wog iy = oy and v, 7, — 0 otherwise. It follows that either 799";:@ — 0 or

W2 (4, k> pte) — 0. Due to the compactness assumption, we know that Yoy and W2 (s, ks fhe)
are bounded and thus

K K
W2 (3 RY) <3N A0 W (ot RY) -0 as n— oo,
k=1 /4=1

Because this holds true for any subsequence of (), en, the statement follows. O

Combining Proposition [B.5]and Proposition [B.6| gives the second statement of Theorem
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C ADDITIONAL DETAILS AND EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

All experiments were conducted with Python on a system equipped with a 13th Gen Intel Core
15-13600K CPU and an NVIDIA GeForce RTX 3060 GPU with 12 GB of memory. For all exper-
iments concerning the s-OTD[ﬂ OTDD, and STLBE[, we employ the official implementations for
algorithms and experiments based on the corresponding public GitHub repositories. Unless stated
in the experimental description, we use the default hyperparameters for algorithms, including the
entropic regularization parameter for OTDD computation. For all other Euclidean Wasserstein com-
putations, we employ the geomloss package (Feydy et al.l[2019) to estimate entropically regularized
Wasserstein distances, where we set the entropic ‘blur’ parameter to 0.01. All WoW distances are
calculated by estimating a pairwise Wasserstein cost matrix using this geomloss geomloss and finally
solving the unregularized OT problem given this cost matrix using the POT package.

For our own implementation, we employ linear interpolation between the two closest support points
for our quadrature grid points. Moreover, instead of sampling the Gaussian processes v and the
unit directions 6 completely independently, we sample 10 or 100 random Gaussian processes v
for each sampled unit direction 6 to reduce the number of quantile computations. For our low-
dimensional point cloud experiment and our mid-dimensional patch experiment, we employ 100
random ‘outer projections’ 6 and 100 random ‘inner projections’ v per 6 (10,000 in total). For
the high-dimensional (s-)OTDD experiments, we employ 1000 random ‘outer projections’ ¢ and 10
random ‘inner projections’ v per 6 (also 10, 000 in total).

C.2 PRACTICAL GUIDE ON PARAMETER CHOICE

The numerical implementation depends on multiple parameters, namely the kernel parameter o, the
grid size R, and the projection number S. We conduct multiple parameter studies that can be found

in Sections[C.3] [C.3] and[C.6]

For the parameters S and R, we note that both of them are essentially integration parameters of a
Monte Carlo integration. The parameter R is the size of the quantile integration grid, and S is the
number of Monte Carlo steps. Thus, we would generally expect better results for higher choices
of R and S. However, the runtime scales linearly with the number of Monte Carlo steps S and
Monte Carlo typically converges with a rate of O(S~'/2). Thus, choosing S is mainly a question
of balancing performance and runtime, where the marginal value of an additional Monte Carlo
projection decreases for high S. As for the grid size R, we note that the quantile functions we aim
to integrate are rather simple. In particular, they are monotonically increasing step functions. In
line with this observation, we only found small marginal performance increases for R > 10 in most
experiments. Moreover, we note that high choices of R result in sampling from highly correlated,
high-dimensional Gaussians, which might become numerically unstable for some implementations.

During our experiments regarding SQW for the shape experiment in Section we only found a
small impact of o. This is in line with Proposition [3.2] showing that variations of o result in an
equivalent metric. While ¢ = 0 works for our discretization in practice and essentially reduces to
the slicing approach discussed in (Piening & Beinert, |2025a), it corresponds to sampling a white
noise process that is not contained in Lo ([0, 1]). Therefore, o = 0 is not covered by our theory. The
limit ¢ — oo leads to an increasing correlation and to sampling constant test functions. However,
as constant functions are not dense in L2 ([0, 1]), the conditions of Theorem [3.1) would not be met
anymore. Hence, SQW might lose its metric properties. Thus, we generally recommend choosing o
as a value from [0.001, 0.1].

3Code: https://github.com/hainn2803/s-OTDD.
4Code: https://github.com/MoePien/slicing_fused_gromov_wasserstein.
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C.3 SLICED FUNCTIONAL OPTIMAL TRANSPORT ON Ly([0, 1])

Both of our introduced sliced distances, SQW and DSW, rely on the £-based SW distance on
P2(L2(]0,1])) and its numerical implementation. We study the impact of our parameter choices
on this distance by looking at increasingly finer function discretizations R for different kernel pa-
rameters 0. We consider two empirical measure pair in P2 (L2([0, 1])) defined via

F(x) = cos(iz), B (x) = sin(jz+jm), [ () = cos(iz+i)+sin(z), A (x) = sin(jz)’

and
1 5 1 10
W =52 G V=2 G, k=12
i= j=1

In Figure @ we plot our Monte Carlo estimate for the £-based SW between (1) and (V) resp. p(?
and v estimates for different Gaussian bandwidth parameters o and equispaced discretization
grids with varying size R (20 < R < 100). To investigate the limit case for o — 0, we also include
the case of isotropic Gaussian slicing directions 6; ~ N'(0,1Ix) due to (ko (vi,y;))1<ij<n — In.
While this limit case is well-defined for finite discretization, the limit process would be a white
noise process, i.e., a process with sample paths outside of L2 ([0, 1]). On the one hand, we observe
that the SW estimate depends heavily on the grid resolution R, especially for isotropic Gaussian
directions and for o small. On the other hand, we see that our numerical estimate is less sensitive
to the discretization for larger o and remains stable given a sufficiently large grid. To get accurate
estimates for our comparison, we employ S = 10, 000. We plot all employed functions in Figure 5]

In the main paper, we only employed the radial basis function (RBF) kernel k,. However, we point
out that we might use other kernels, such as the Brownian motion (BM) kernel (s, t) = min({s,t}).
As an example, we repeat the experiment portrayed in Figure [6] with the BM kernel and plot the
results in the last column of Figure [6] Similar to an RBF kernel with high o, we see that the
resulting sliced distance is invariant to the discretization.
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Figure 5: Plots of the support functions of the two empirical measure pairs from Section
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less correlated Gaussian slicing directions for the k, kernel, where we include the limit case of
fully uncorrelated Gaussian slicing directions in the first column. For such small o, the numerical
estimator depends heavily on the discretization.
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C.4 EXTENSION OF SECTION[5.1]ON SHAPE CLASSIFICATION
C.4.1 MNIST-2000

MNIST-2000 used in Section[5.1]is a synthetic dataset, which we build based on the training samples
of MNIST. For each of the five digits 0—4, we first compute the mean image. From each digit, we
generate 20 empirical point clouds consisting each of 2000 points. For this, we sample the mean
image proportionally to pixel intensity. Afterwards, we disturb the point clouds by Gaussian noise
and apply a random rotation. The points clouds are equipped with Euclidean distance, which are
represented by matrices. In total, this yields 20 almost isometric shapes per digit. We show one
sample per class in Figure[7]

Class 0 Class 1 Class 2 Class 3

Figure 7: MNIST-2000 Samples.

C.4.2 STABILITY ANALYSIS OF CLASSIFICATION PIPELINE

The shape classification experiment presented in Table [T depends on a random initialization deter-
mined by a random seed and on the choice of the k-nearest-neighbor (k-NN) algorithm. Since each
dataset includes only about 100 shapes, cross-validation offers too little statistical support for select-
ing k. For this reason, we fix k a priori. We perform an additional experiment to demonstrate the
impact of k and the random seed.

For our main experiment, we choose k = 3 instead of £ = 1 to mitigate the impact of small outliers.
Additionally, we aim for a small k due to the limited number of samples per class, e.g., 10 samples
per class for the ‘2D Shapes’ dataset. To illustrate the impact of the choice of k and the random
initialization, we rerun our classification pipeline for the ‘2D Shapes’ and the ‘Animals’ dataset with
a different initialization and report the resulting accuracies for k = 1, 3, 5. The results are presented
in Table 2] and are in line with those presented in Table [T]in the main text. We observe a drop in
performance for k = 5, presumably due to limited data per class.

k 1-NN Acc. (%) 3-NN Acc. (%) 5-NN Acc. (%) 1-NN Acc. (%) 3-NN Acc. (%) 5-NN Acc. (%)

SQW (Ours) 99.9 £ 0.6 99.4 +1.3 98.6 £ 2.1 99.5 £+ 0.9 99.1+1.3 68.5 + 2.1

TLB 100.0 £ 0.1 100.0 £ 0.3 99.9+ 0.4 100.0 £ 0.0 100.0 £ 0.0 70.9 £ 0.0

STLB 99.8 £ 0.6 99.4+1.3 98.3 + 2.2 99.8 £ 0.7 99.3+ 1.1 69.2 + 1.7

AE 99.9+0.4 99.7 £ 1.0 99.0£1.9 98.9+1.4 97.8 £1.9 67.6 £2.3

GW 100.0 £ 0.2 99.8 £ 0.6 989+ 1.1 100.0 £ 0.0 100.0 £ 0.0 70.9+ 0.0
(a) 2D Shapes (b) Animals

Table 2: Classification accuracies for the nearest-neighbor algorithm (‘A-NN Acc.’) for varying
neighborhood definitions k£ and a random seed that is different from the one used in Table
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C.5 EXTENSION OF SECTION[5.2]ON DATASET COMPARISON
C.5.1 RELATION BETWEEN CLASSIFICATION ACCURACY AND DATASET DISTANCES

Originally, the OTDD and the s-OTDD have been introduced to estimate the difficulty of transfer
learning. Therefore, we extend the experiment presented in Figure [2] to consider the connection
between the different dataset distances and classifier accuracy. As a simple experiment, we consider
the accuracy of a 5-nearest-neighbor (5-NN) MNIST classifier as our target. In particular, for each
of our 100 MNIST splits, we average the two accuracies of classifying the first split based on the
second split and vice versa. Now, this averaged accuracy is our target quantity.

Again, we estimate the correlation between this target accuracy and various dataset distances. Here,
we would expect a negative correlation since the dataset splits that are further away from each other
should lead to worse training results. Beyond the previously reported OTDD, s-OTDD (S = 10°),
and our DSW (S = 10°, 1000 outer projections, 10 inner ones), we additionally report results for
the Gaussian OTDD, the s-OTDD with S = 104), our DSW with .S = 1000 (100 outer projections,
10 inner ones). Note that the Gaussian OTDD approximates all inner pairwise Wasserstein distances
via a Gaussian approximation (Alvarez-Melis & Fusi, 2020). Essentially, this distance reduces to
the mixture Wasserstein distance between Gaussian mixtures (Delon & Desolneux, 2020), since we
compute all distances without feature costs, i.e, on P(P(R?)) instead of P(Y x P(R?)).

Looking at the results in Figure[8] we observe the strongest correlation for the OTDD and the Gaus-
sian OTDD with values of =~ —0.5. Regarding the sliced metrics, we observe a stronger correlation
for our DSW (= —0.45) compared to the s-OTDD (= —0.35). As for the number of projections,
both distances seem to be stable with respect to the number of random projections .S, and we observe
only small differences between S = 10% and S = 10°.

Generally, we observe a clearly negative correlation of approximately —0.5 across metrics. While
these correlations are overall weaker than in other related experiments (Alvarez-Melis & Fusi, 2020;
Nguyen et al.,|2025)), we attribute this to the small variability of the 5-NN classifier accuracy (ranging
from 88% to 94%) and the omission of feature costs. Thus, we hypothesize that the inclusion of the
feature cost via hybrid hierarchical slicing (Nguyen & Hol [2024) would further strengthen these
correlations.
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Figure 8: Scatter plots and correlations (1) between the accuracy of a 5-NN MNIST classifier and the
OTDD (8a), the Gaussian-OTDD (8b), the s-OTDD with S = 10%,10° and DSW (“‘Ours’)
with S = 104,10° . All distances are computed without a feature cost on the labels.
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C.5.2 STABILITY ANALYSIS OF SLICING PARAMETERS

We investigate the impact of the projection number .S, grid size R and the kernel parameter o by
considering the correlation between DSW and OTDD on MNIST displayed in Figure As the
projection number S is a product of the number of outer and inner projections, see Section[C.1I] we
fix the number of inner projections to 10 and only vary the number of outer projections. In particular,
we simulate the DSW distance for all combinations of S = 103,10%,10°, R = 10, 100, 200, and
o =0.01,0.1.

For each simulation, we compute the Pearson and Spearman correlation coefficients and present the
results in Table 3] All coefficients are approximately in the range from 0.9 to 0.95. We see that the
number of slices S is by far the most important parameter, whereas the impact of the grid size R
and the kernel parameter o is more subtle. In particular, increasing S from 103 to 10% increases the
correlation significantly (from 0.9 to 0.94), whereas the increase from 104 to 10° only has a slight
impact (raising the correlation from 0.94 to 0.95).

S R o Pearson ~ Spearman

1000 10 0.1 0.9182 0.9187
1000 10 0.01 0.8966 0.8908
1000 100 0.1 0.9365 0.9385
1000 100 0.01 0.9270 0.9214
1000 200 0.1 0.9265 0.9283
1000 200  0.01 0.9063 0.9133
10000 10 0.1 0.9422 0.9369
10000 10 0.01 0.9453 0.9424
10000 100 0.1 0.9400 0.9402
10000 100 0.01 0.9513 0.9474
10000 200 0.1 0.9424 0.9392
10000 200  0.01 0.9536 0.9534
100000 10 0.1 0.9463 0.9451
100000 10 0.01 0.9524 0.9510
100000 100 0.1 0.9444 0.9438
100000 100  0.01 0.9508 0.9494
100000 200 0.1 0.9442 0.9427
100000 200  0.01 0.9533 0.9515

Table 3: Correlation between our DSW and OTDD (without feature cost) for various configurations
on MNIST, extending the results in Figure @
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C.6 EXTENSION OF SECTION[5.3]ON POINT CLOUD COMPARISON

We extend the point cloud experiments from Section by adding two experiments as an analysis
of the projection number and runtime. In particular, we vary only the number of ‘inner’ or ‘outer’
projections per experiment, see Section [C.1} In our point cloud experiments, the runtime hinges on
the number of shapes (/V and M) and the discretization of the shapes (n and m). For this analysis,
we sample only from the ‘chair’ class without Gaussian noise and R = 10. All results are averaged
over five runs.

For our first experiment, we set n = m = 50 and vary only
N = M = 10,20, 30,40, 50,60, 70,80,90,100. For each pair of sampled shape sets, we
then compute the WoW distance and our DSW distance. To analyze the impact of the projection
number, we calculate it with S = 100 (10 outer, 10 inner projections), S = 1000 (10 outer, 100
inner p.), and S = 5000 (10 outer, 500 inner p.). The results are visualized in Figure[9] Note that
we observed a rather high variance for WoW runtime in this experiment, generally. As a result,
the plotted WoW runtime estimates in Figure 0] vary rather drastically. Nevertheless, we observe
a seemingly polynomial runtime increase for WoW in terms of the number of shapes N = M,
whereas we only we observe a quasi-linear runtime increase for DSW in terms of N = M. As for
the projection number, we observe a linear runtime increase in terms of S. Moreover, we observe a
(small) reduction in the variance of the distance estimate for higher S.

For our second experiment, we set N = M = 10 and vary only
n = m = 100,200, 300, 400, 500, 600, 700, 800,900, 1000.  Again, we compute WoW and
DSW. For this experiment, we calculate DSW with S = 1000 (100 outer, 10 inner projections),
S = 10,000 (100 outer, 100 inner p.), and S = 50,000 (100 outer, 500 inner p.). The results are
visualized in Figure[I0] We observe similar results as before, i.e., polynomial runtime increase for
WoW and quasi-linear runtime increase for DSW.
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Figure 9: Averaged WoW and DSW (‘Ours’) estimates between sets of point clouds for 10 to 100
shapes and projection number S = 100, S = 1,000, S = 5, 000.
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Figure 10: Averaged WoW and DSW (‘Ours’) estimates between sets of point clouds with 100 to
1000 points per shape and projection number S = 1000, S = 10, 000, S = 50, 000.
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C.7 EXTENSION OF SECTION [5.4 ON IMAGE COMPARISON VIA PATCHES
C.7.1 REPRESENTING IMAGES VIA PATCHES
We formalize the patch extraction. For a grayscale image Img € R”*® define the patch extractor
Patch? : Rh> —>sz, kE=1,...,n,,
withn, = (h—p+ 1)(w —p+1). Write
2y, := Patch] (Img) € R,

so that the empirical patch distribution is

1 & 2
Himg = 77/7 Z(Szk S Pe(Rp )

P k=1
Its support is
2
supp(fimg) = {Patch} (Img) : k=1,...,n,} CRY,

and for a batch {Img; }Z | the meta-measure is
1< >
B= 5D O, € PelPe(RY)).
i=1

C.7.2 THE RELEVANCE OF PATCH DISTRIBUTIONS

Many advances in image processing rely on the importance of local image features (Zontak & Irani}
2011). Indeed, convolutional neural networks in computer vision repeatedly apply the same filter
to a small receptive field, and this receptive field can be understood as a patch. Moreover, vision
transformers decompose images into smaller patches (Dosovitskiy et al., 2021). The advantage of
this approach can be motivated by the relevance of small-range dependencies within images.

Notably, a key disadvantage of the standard MSE in imaging is its vulnerability to ‘small’ image
operations. A small shift of all pixels can lead to the explosion of the MSE. However, such operations
have only a small effect on the patch distributions. Indeed, the same goes for the translation of an
object within an image, see visualizations in (He et al., 2024)). In addition, the perceived style of
an image seems to be inherently linked to certain localized image features. As an example, style
transfer algorithms successfully capture certain artistic aspects of painting via such features (Gatys
et al., 2016). Moreover, texture images are characterized by a certain type of stationarity, where a
model can generate texture images by simply matching the patch distribution of a single exemplary
texture image (Houdard et al., 2023). This could explain why patch-based WoW-type methods lead
to clearer discriminiation than Euclidean Wasserstein methods, cf. Figure @

C.7.3 ADDITIONAL EXPERIMENTAL DETAILS

In the experiment from Section [5.4} we compare distributions over synthetic texture images. We
visualize samples from our random Perlin texture model (Perlin, [1985)) in Figure @ Note that
our images with varying lacunarity are all generated with the following Perlin parameters:
persistence of 1, scale of 100, 6 octaves. The generation model will be released with the code. For
our images with varying persistence (IIb), we use different Perlin parameters: lacunarity of 2.5,
scale of 100, 5 octaves. Note that while the resulting images in Figure and Figure look
rather similar, the ones from Figure[ITa|display a higher blur and less high-frequency artifacts.

Moreover, we extend Figure ] In addition to the Wasserstein distance between images represented
as Euclidean points and our patch-based DSW distance plotted in the original Figure 4] we present
the extended Figure[I2]by adding the patch-based WoW distance and the ‘Kernel Inception Distance’
(KID) between the distributions of texture images. The patch-based WoW distance is computed on
the same patch meta-measures as our patch-based DSW distance. The KID is based on the latent
space of a pretrained neural network, see (Sutherland et al.| [2018). We see that the DSW and the
WoW distance lead to similar results. Also, both are aligned with the KID.
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D USE OF LLMS

LLMs have been used to a limited extent to improve grammar and wording in this paper.
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