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ABSTRACT

Causal discovery from observational data is an important problem in many applied
sciences. Incorporating a recently proposed smooth characterization of acyclicity,
gradient-based causal discovery approaches search for a Directed Acyclic Graph
(DAG) by optimizing various neural models. Although they show some inspir-
ing results given certain assumptions satisfied, their capability of modeling com-
plex nonlinear causal generative functions is still unsatisfactory. Motivated by
recent advances in deep generative models, we propose to use diffusion mod-
els for causal discovery, and search for the DAG under continuous optimization
frameworks. The underlying nonlinear causal generative process is modeled with
diffusion process, and with flexible parameter configurations, it has the ability to
represent various functions, and the proposed causal discovery approach are able
to generate graphs with satisfactory accuracy on observational data generated by
either linear or nonlinear causal models. This is evidenced by empirical results on
both synthetic and real data.

1 INTRODUCTION

Causal discovery from observational data is a research field that has received widespread attention in
recent years (Pearl, 2009; Spirtes et al., 2001; Peters et al., 2017) which aims to automatically learn
the causal relationship (directed acyclic graph, DAG) between variables from non-experimental data.
To tackle the NP-hard structure learning problem(Chickering et al., 2004), constraint-based meth-
ods uses conditional independence tests to locate causal edges between variable pairs admissible to
the given dependence measurements (Spirtes et al., 2001; Zhang, 2008). On the other hand, score-
based methods deploy a score to measure the fitness of a causal graph over data, with a suitable
search procedure such as greedy search (Chickering, 2002) and dynamical programming (Silander
& Myllymaki, 2012). Bayesian score criteria is usually adopted, including Bayesian information
criteria (BIC, (Maxwell Chickering & Heckerman, 1997)), Bayesian Gaussian equivalent (BGe)
score (Kuipers et al., 2014) and minimum description length (MDL, (Bouckaert, 1993)) with con-
sistency and equivalence property maintained. A common challenge is that the complexity of the
search space is superexponential with the number of variables, which poses a big challenge to the
optimization procedure.

Recently, an acyclic constraint of the adjacency matrix that is a continuous function is proposed
(Zheng et al., 2018). Transforming the traditional combinatorial nature of the acyclicity to a contin-
uous optimizable one, it triggers a series of differentiable causal discovery approaches, considering
various model settings (Zheng et al., 2018; Lee et al., 2019). Yu et al. (2019) incorporates the
acyclicity constriants with the framework of variational autoencoders (Kingma, 2013) for causal
discovery, and Zhu et al. (2019) uses reinforcement learning (Kaelbling et al., 1996) as the search
algorithm. Although the nonlinearity of the optimization problem often makes the solutions only
local optimal, empirical results show certain closeness to that obtained by performing exhaustive
combinatorial search (Zhu et al., 2019).

Nonetheless, most deep learning (generative) model based approaches tie to a specific functional
model class, the generalized linear causal models. The model assumptions already set limitations on
the representation capability, and may fail to model observational data distributions when they follow
a complicated underlying generative process. An example is the post-nonlieanr causal model (Zhang
& Hyvärinen, 2009), where a post-nonlinear transformation directly follows an additive noise model
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(Peters et al., 2014) due to reasons such as sensor bias. Admitting a more general nonlinear causal
models is thus helpful for wider applicability of differentiable algorithms. Meanwhile, learning a
DAG via optimizing the evidence lower bound of variational autoencoders (Yu et al., 2019), reward
function of reinforcement learning (Zhu et al., 2019), or the score function with the nonparametric
DAG constraint (Zheng et al., 2020) is known to suffer from certain unstability due to the richness
of the search space, presenting possible reliability issues on the results.

Motivated by remarkable success of deep generative models, we propose to use diffusion model
(Croitoru et al., 2023; Sohl-Dickstein et al., 2015) for causal discovery. The proposed approach has
a natural fit for the following nonlinear generative model

X = g((I −A)−1f(Z)) (1)

where X ∈ Rn and Z ∈ Rn are the n-dimensional observed variable and mutually-independent
noise, respectively, and f and g are some nonlinear functions. A is the n-square weighted adjacency
matrix. By the diffusion process represented by ordinary or stochastic differentiable equation (ODE
or SDE) (Ho et al., 2020; Song et al., 2020b; Karras et al., 2022), the model has the flexibility
of capturing the complex nonlinear causal functions by various denoising variance sequence, and
the DAG learning is via denoising score matching. Experiments on both synthetic and real world
data show that our approach has improved performance on several settings including models with
nonlinearity.

2 RELATED WORK

Constraint-based causal discovery methods initiate their process by leveraging conditional indepen-
dence tests to outline a causal skeleton. Edge orientation approaches are then applied to determine
DAGs up to Markov equivalence class. Examples include PC algorithm and SGS algorithm (Spirtes
et al., 2001) and several extensions when kernel based conditional independence measurements are
used (Zhang et al., 2011; Sun et al., 2007). Nonetheless, the accuracy of such methods heavily relies
on the reliability of the independence tests, and resolving possible conflicting constraints caused
by multiple independently-conducted tests remains substantially challenging (Tsamardinos et al.,
2012). The DAG identification framework with experimental data available is also considered (Hyt-
tinen et al., 2013).

Score-based causal discovery mainly uses a given score to measure the quality of the causal graph,
coupled with algorithms to search for the optimal graph (Rolland et al., 2022). Scores include BIC
(Maxwell Chickering & Heckerman, 1997) and MDL (Bouckaert, 1993), and the generalized kernel-
based scoring function (Huang et al., 2018). By incorporating additional assumptions about the data
distribution and/or underlying generative functions, scores based on well-defined functional causal
models are proposed. These methods differ from constraint-based approaches, which often pre-
sume faithfulness and are limited to identifying the Markov equivalence class. Given assumptions
satisfied, these functional causal model-based methods can effectively distinguish between distinct
directed acyclic graphs (DAGs) within the same equivalence class, with applications covering lin-
ear non-Gaussian model (Shimizu et al., 2006), the nonlinear causal models with additive noise
(Hoyer et al., 2008; Peters et al., 2014), and the post-nonlinear causal model (Zhang & Hyvärinen,
2009) which accommodates a post-nonlinear transformations after the nonlinear causal functions.
Recently, diffusion model based estimation of the Hessian matrix of the additive noise model has
also been investigated (Sanchez et al., 2022).

Differentiable causal discovery is based on a recent smooth characterization of acyclicity constraint
(Zheng et al., 2018), which transforms the combinatorial DAG search problem to be continuously
optimizable. This enables searching for a DAG with gradient-based optimizations in an end-to-end
way (Geffner et al., 2022), using various black-box solvers. Different searching approaches have
been proposed, considering linear models (NOTEARS, (Zheng et al., 2018)), nonlinear variational
autoencoder-based models (DAG-GNN (Yu et al., 2019)) and reinforcement learning-based mod-
els (RL-BIC, (Zhu et al., 2019)). Wei et al. (2020) presents a theoretical perspective that the edge
missing in linear model equals to a non-satisfaction of KKT condition in optimization, motivating a
local search algorithm. Lee et al. (2019) and Lachapelle et al. (2019) utilize polynomial regression
and neural networks to deal with nonlinear causal relationships with flexibility to represent condi-
tional distributions, respectively. Zheng et al. (2020) reconsiders the algebraic smooth constraint
of acyclicity in the perspective of nonparametric structural equation models, via leveraging sparsity
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characterized by partial derivatives. Causal discovery via graph autoencoder (Ng et al., 2019) and at
latent conceptual level (Yang et al., 2021) are also studied.

Diffusion models are recently shown to be with superior performance on various application do-
mains upon content generations (Cao et al., 2024). Unlike generative adversarial networks (Good-
fellow et al., 2020) or variational authencoders (Kingma, 2013), it essentially consists of two in-
tricately linked processes: a predefined forward process and a corresponding reverse process. The
forward process transforms the data into a simple prior distribution, typically a Gaussian, while the
reverse process leverages a trained neural network to progressively reverse the effects of the forward
process following stochastic differential equations. The neural network for the denoising process
(usually Markovian) is trained under the denoising score-matching function (Song et al., 2020b).
The capability of the model on capturing complex nonlinear generative process is from the flexi-
bility of configuring the denoising variance sequences, with remarkable success on bio-informatics
(Xu et al., 2022), natural language processing (Li et al., 2022) and computer vision (Croitoru et al.,
2023). The property is possibly beneficial for representation learning (Abstreiter et al., 2021).

3 STRUCTURE LEARNING VIA DIFFUSION MODEL

In this section, we propose our diffusion model based causal discovery method. The basic idea
is to use the deep diffusion process to model nonlinear data generative mechanisms, incorporat-
ing the designed causal layer with an adjacency matrix being an learnable element. To start with,
we introduce the denoised diffusion probabilistic model (DDPM), which is a discrete approxima-
tion (Markov process) of the continuous diffusion process represented by stochastic differentiation
equation (Ho et al., 2020).

3.1 DENOISED DIFFUSION PROBABILISTIC MODEL

In diffusion models, the generative process unfolds over a direction of time. It represents a sequence
of data distributions that characterize the model’s gradual transformation from the initial data distri-
bution to a target noise distribution. Denote the initial state as Y0, sampled from the data distribution.
Noise is incrementally added at each subsequent time step to push the distribution to gradually con-
verge towards a known prior state Yt (normally following a Gaussian distribution). The evolution of
the data distribution is through the fine-gained sequence of intermediate states, each corresponding
to a specific time point within the process. By varying the setting of noise addition, the diffusion
model is able to capture a variety of underlying generative mechanisms. To be mathematically pre-
cise (Ho et al., 2020), we denote the forward process F and the reverse process R, and the diffusion
and reverse process then can be written as

F(Y0,Γ) = FT (YT−1, γT ) ◦ · · · ◦ Ft(Yt−1, γt) ◦ · · · ◦ F1(Y0, γ1),

R(YT ,Γ) = RT (Y1, γ1) ◦ · · · ◦ Rt(Yt, γt−1) ◦ · · · ◦ RT (YT , γT ),
(2)

where the transition kernels (function) at time step t are Ft for forward process and Rt for backward
process respectively, and Γ = {γi}Ti=1 are a sequence of variance that controls the diffusion process.
The possible choices of variance sequences are linear decreasing or cosine like schedules (Song
et al., 2020b). Following the DDPM, we define N the multivariate Gaussian distribution and q
being some distribution function, I the standard identity matrix. Then the forward transition kernel
is

Ft(Yt−1, γt) = q(Yt|Yt−1) = N (Yt;
√
1− γtYt−1, γtI). (3)

The concatenation of the transition kernels builds up the forward diffusion process, which transits
the initial state of the variable Y0 to be a predefined prior distribution YT . Correspondingly, the
reverse process consists of learnable Gaussian kernels parameterized by θ as

Rt(Yt,Σt−1) = pθ(Yt−1|Yt) = N (Yt−1;µθ(Yt, t),Σθ(Yt, t)), (4)
µθ and Σθ are parameterized Gaussian kernel determined by the reverse sequence distribution pθ. It
is shown that DDPM resembles to approximate the observed data distribution by the reconstructed
probability distribution (Song et al., 2020b) pθ(Y0) =

∫
pθ(Y0:T )dY1:T .

The training of the diffusion model is by minimizing the following variational bound on the negative
log likelihood, defined over KL-Divergence operators as

E[− log pθ(Y0)] ≤ Eq[D(q(YT |Y0)∥p(YT ))

+ Σt>1D(q(YT−1|Yt, Y0)∥pθ(YT−1|Yt))− log pθ(Y0|Y1)] ,
(5)
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D(·∥·) is the KL divergence of two distributions. The first and third term of the RHS of (5) are the
prior and reconstruction losses. The middle of the RHS of (5) denotes the divergence sum between
the posterior of the forward and reverse distributions over each time step t. Conditioning on some
simplifications, we can rewrite the posterior distribution as

q(Yt−1|Yt, Y0) = N (Yt−1; µ̃t(Yt, Y0), γ̃tI), (6)

where γ̃t is a function of γt. Then one can reparameterize the KL divergence to be a l2-loss betwen
the two mean coefficients

D(q(YT−1|Yt, Y0)∥pθ(YT−1|Yt)) = Eq[
1

2γ2
t

∥µ̃t(Yt, Y0)− µθ(Yt, t)∥2] + const. (7)

The optimization is then done by solving the denoised score matching (Ho et al., 2020) process
whose objective function sums over the single-step loss described by (7), and furthur simplifications
can be made to improve the training strategy (Cao et al., 2024).

3.2 REPRESENTING STRUCTURAL CAUSAL MODEL BY DIFFUSION PROCESS

In this section, we describe the nonlinear structural causal models (SCM). Recall (1) introduced in
section 1, we follow the settings and present a linear SCM as

X = AX + Z. (8)

A is the weighted adjacency matrix associated with a directed acyclic graph, with Aij non-zero
indicating a causal edge from node i to node j. The acyclicity of A corresponds to the fact that A
can be permuted to be strictly upper (or lower) triangular. NOTEARS (Zheng et al., 2018) generates
the adjacency matrix by searching for a solution that results in minimum linear reconstruction error
over data, subject to A being acyclic, under a smooth characterization of acyclicity. Assuming the
Z to be non-Gaussian, the model (8) becomes the linear non-Gaussian acyclic model, where graph
learning can be solved by independent component analysis (Shimizu et al., 2006), because we can
transform the problem as

X = (I −A)−1Z (9)

assuming invertibility. The uniqueness of the solution is based on non-Gaussianity of the inde-
pendent source (noise) variables (Hoyer et al., 2008). In this paper, we consider a more general
nonlinear extension of (8)

X = g((I −A)−1f(Z)). (10)

where f and g are variable wise (multidimensional) functions. The noise passes through a nonlin-
ear transformation, and then a mixing process, a post-nonlinear transformation to be the observed
variables X with causal structures. When f and g are invertible, we can write the causal model as

g−1(X) = Ag−1(X) + f(Z). (11)

Unlike the work (Yu et al., 2019) in which the f is suggested to be an identity function, we here
put f to be some nonlinear function, admitting a richer class of joint distributions. Then consider a
diffusion process that simulates the aforementioned structural causal model (11) as

X → diffusion → (I −A) → diffusion → Z → reverse︸ ︷︷ ︸
f

→ (I −A)−1 → reverse︸ ︷︷ ︸
g

→ X̄, (12)

where the forward diffusion process simulates the model that can be a reformulation of equation
(10)

Z = f−1((I −A)g−1(X)). (13)

Then we formally define the diffusion model for causal discovery, by reformulating the T -step
diffusion process by (2) with graph associated weighted adjacency matrix A in the function

FG(X,A,Γ) = FT (XT−1, γT ) ◦ · · · ◦ (I −A) ◦ · · · ◦ F1(X0, γ1),

RG(Z,A,Γ) = R1(X̄1, γ1) ◦ · · · ◦ (I −A)−1 ◦ · · · ◦ RT (Z, γT ).
(14)

X0 = X is the initial state of variable X enrolled in the diffusion process, and X̄t is the recon-
structed Xt at time stamp t. Under this formulation, the underlying generative functions of the
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Figure 1: Illustration of the diffusion based causal modeling.

causal model (10) can be modeled by a concatenation of transition kernels in the forward or back-
ward process. An example is

p(f(Z)) =

T∏
i=t

Ri(X̄i, γi) (15)

where Z (the mutually-independent multidimensional noise variables) is also represented by the
T -step transformation of X as X̄T . By different parameterization of the transition kernels includ-
ing the variance sequence Γ, one may get a rich class of functions that the diffusion process can
model. Some theoretical analysis shows that the discrete diffusion process is an approximation of
the stochastic differential equation (Song et al., 2020b), which simulates a Brownian movement
transforming the original variable to noise. In the next section, we will present a graph searching
strategy by incorporating the differentiable acyclicity constraint on A.

3.3 OPTIMIZATIONS

In this section, we discuss the core elements of the model based optimization for graph search, ba-
sically consisting of objective functions, acyclicity constraints and the acceleration strategies when
efficiency is also of consideration.

Acyclicity constraints. The acyclicity of the adjacency matrix A should be enforced in the graph
searching procedure. Approaches such as greedy equivalence search (Chickering, 2002) check ex-
plicitly for the satisfaction of acylic constraint when each edge operation is conducted, e.g., edge
addition, which is of high complexity when the number of node is large. In this work, we optimize
the matrix A as a whole under a continuous framework, admitting simultaneous change of multiple
entries in a single round, and we thus adopt the recently proposed smooth characterization of the
acyclicity (Zheng et al., 2018). A directed graph associated weighted adjacency matrix A is acyclic
if and only if

h(A) = trace(eA⊙A)− n = 0, (16)

where ⊙ is the Hadamard product and eA is the matrix exponential which can be interpreted as a
Taylor expansion of power series that ties to the reweighed number of closed walks in the matrix.

Objective function. Recall the modified diffusion process with the graph inserted, FG(X,A,Γ)
and RG(Z,A,Γ) in (14). The objective function is the evidence lower bound described in (5), with
single-step loss estimation approach as (7). Given an set of observational data of some variable X ,
denote the loss function over the samples as L(A,Θ) where Θ is a set of all editable parameters
needed to determine the diffusion process. Incorporating an acyclicity constraint, the optimization
problem becomes

min
A,Θ

L(A,Θ), subject to h(A) = 0. (17)

We can transform the constrained problem to an unconstrained one using the Lagrange multiplier
approach as

min
A,Θ

L(A,Θ) + λh(A). (18)
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Algorithm 1 Diffusion model based causal discovery

1: Initialize (A0,Θ0, λ1), progressive parameters c, ω, η;
2: for i = 1, 2, ... do
3: (Ai,Θi) = argminA,Θ L(A,Θ) + λih(A) ;
4: λi+1 = λi + ch(Ai);
5: if h(Ai) > ωh(Ai−1) then
6: c = ηc;
7: end if
8: Break if converged;
9: end for

10: Return the estimated adjacency matrix.

The problems (17) and (18) are basically equivalent when some conditions are satisfied. To be
mathematically precise, we present the following proposition which can be proved under the logic
of showing some equivalence between the minimizers of the two problems following Zhu et al.
(2019). A proof is provided in Appendix A.

Proposition 1. Let h∗ > 0 be the minimum of h(A) over all direct cyclic graphs, i.e., h∗ =
infA/∈DAGs h(A). Assume that the loss function L(A,Θ) is bounded with Ll = inf L(A,Θ) and
Lu = supL(A,Θ). Then problems (17) and (18) are equivalent if

λh∗ ≥ Lu − Ll. (19)

The proposition provides a principled guide for the choices of some parameters such as the penalty
parameters. Although accurate estimations of the optimal values are non-trivial, one may get a rough
guess of these parameters via some approaches. For example, feeding DAGs generated randomly
or by linear methods (such as NOTEARS (Zheng et al., 2018)) may help to guess the bounds of
the loss function. In fact, the important intuition the proposition carries is that with large enough
λ, the equivalence of the problems are with full guarantee. This motivates us to use the augmented
Lagrangian which optimizes a series of subproblems, with their exact solutions converging to a
stationary point of the original constrained problem under certain conditions (Bertsekas, 1997). This
enables adaptive updating of the penalty parameters to enforce acyclicity, similar to the approach
used by Zheng et al. (2018); Yu et al. (2019). Each subproblem (augmented Lagrangian) writes as

min
A,Θ

L(A,Θ) + λih(A) +
ci
2
h(A)2. (20)

ci is some penalty parameters. Parameter updating is performed after sub-problem i resolved and
we progress to the state i+1. The solution of the previous problem is used as the initialization point
of the next subproblem, so that the optimization procedure enjoys certain consistency. Common
non-convex optimization solvers are applied to approximately solve the problems, e.g., RMSprop
(Hinton et al., 2012) and Adam (Kingma, 2014), where stochastic gradient descent is normally
employed for searching a local minimum. We detail the approach in Algorithm 1.

Acceleration. The diffusion models are normally with deep layers compared to encoder-decoder
based generative models like variational autoencoders. One important issue is to maintain efficiency
under a certain standard of accuracy. The work (Song et al., 2020b) extends DDPM to a continuous
stochastic differential equation based framework, and further shows that a probability flow ordi-
nary differential equation, supporting the deterministic diffusion process, shares the same marginal
distribution of X . We here treat X as a continuous time-dependent variable in the diffusion process.

dX = {k1(X, t)− 1

2
k2(t)

2∇X log pt(X)}dt, (21)

where k1(, t) is the drift coefficient of X(t), and k2 is some diffusion coefficients, pt(X) is the
marginal distribution. By reparameterizing the ODE-based sampling process, the Denoising Dif-
fusion Implicit Model (Song et al., 2020a) is proposed to accelerate the process. Utilizing a non-
Markovian sampling process, it is able to achieve inference using less steps, with applicable mature
solvers (Lu et al., 2022). In experimental section, we adopt DDIM for higher efficiency. Depending
on the application scenarios, one should be aware of the possibility of applying other SDE or ODE
based samplers, e.g., analytical method (Bao et al., 2022) and dynamic programming adjustments
(Watson et al., 2021).
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Table 1: Empirical results on linear models with Gaussian noise.

nodes DAG-Diffusion PC CAM ICA-LiNGAM DAG-GNN NOTEARS NOTEARS-MLP GAE DiffAN

10

TPR 0.92 ±0.004 0.44 ±0.16 0.55±0.16 0.18 ±0.02 1 ±0 0.89 ±0.05 0.94 ±0.12 0.87±0.06 0.45±0.17
FDR 0.04 ±0.06 0.46 ±0.17 0.52 ±0.16 0.86 ±0.02 0.03 ±0.03 0.03 ±0.01 0.05 ±0.10 0.19±0.18 0.69±0.15
SHD 1.3 ±0.5 24 ±5 7 ±2 24 ±6 0.5 ±0.4 2 ±1.8 0.7 ±1.42 4± 3 14±6

F1 score 0.93 ±0.03 0.42 ±0.19 0.46 ±0.19 0.05 ±0.01 0.98 ±0.02 0.92 ±0.05 0.94 ±0.11 0.83±0.13 0.3±0.2

50

TPR 0.85 ±0.05 0.8 ±0.05 0.62 ±0.05 0.19 ±0.03 0.95 ±0.02 0.98 ±0.01 0.92±0.03 0.67±0.05 0.37±0.02
FDR 0.16 ±0.08 0.27 ±0.06 0.47 ±0.07 0.88 ±0.05 0.03 ±0.03 0.03 ±0.01 0.11±0.06 0.3±0.08 0.85±0.01
SHD 15 ±6 23 ±5 29±6 82 ±18 4 ±3 1 ±0.9 9±7 30±6 106±19

F1 score 0.83 ±0.05 0.78 ±0.05 0.56 ±0.06 0.04 ±0.01 0.96 ±0.03 0.98 ±0.011 0.9±0.05 0.68±0.05 0.11±0.01

Table 2: Empirical results on linear models with non-Gaussian noise.

nodes DAG-Diffusion PC CAM ICA-LiNGAM DAG-GNN NOTEARS NOTEARS-MLP GAE DiffAN

10

TPR 0.95 ±0.05 0.74 ±0.19 0.22±0.13 0.02 ±0.05 0.98 ±0.03 0.97 ±0.05 0.89 ±0.15 0.73±0.09 0.58±0.13
FDR 0.12 ±0.12 0.38 ±0.118 0.8 ±0.09 0.97 ±0.04 0.02 ±0.02 0.03 ±0.02 0.10 ±0.14 0.26±0.15 0.67±0.11
SHD 1.5 ±0.5 7±3 12 ±4 12 ±3 0.5 ±0.4 0.5 ±0.3 1.4 ±2.06 5±3 13±5

F1 score 0.9±0.04 0.66±0.15 0.09±0.07 0.01±0.01 0.98±0.01 0.97±0.05 0.89±0.14 0.73±0.11 0.36±0.16

50

TPR 0.82 ±0.07 0.82 ±0.1 0.39 ±0.05 0 ±0 0.93 ±0.01 0.93 ±0.04 0.89±0.05 0.63±0.06 0.43±0.11
FDR 0.08 ±0.07 0.3 ±0.06 0.7 ±0.05 1 ±0 0.13 ±0.02 0.03±0.01 0.15±0.05 0.2±0.09 0.79±0.09
SHD 13 ±5 25 ±6 53 ±13 61 ±5 8 ±1 4 ±4 8±5 27±9 100 ±34

F1 score 0.86 ±0.05 0.75 ±0.08 0.23 ±0.06 0 ±0 0.9±0.01 0.95 ±0.04 0.86±0.03 0.7±0.07 0.19±0.14

4 EXPERIMENTS

In this section, we report empirical results on synthetic and real datasets, comparing performance of
our proposed method to both score-based and constraint-based methods, including PC (with Fisher
independence test upon threshold on p-value 0.01) (Spirtes et al., 2001), Causal Additive Model
(Bühlmann et al., 2014), ICA-LiNGAM (Shimizu et al., 2006), DAG-GNN (Yu et al., 2019) and
GraN-DAG (Lachapelle et al., 2019), NOTEARS-MLP (Zheng et al., 2020), GAE (Ng et al., 2019)
and DiffAN (Sanchez et al., 2022). The implementations of all these algorithms are from available
online source and more details are provided in Appendix C. Unless stated, default settings of the al-
gorithms are used in the experiments. The thresholding method for graph pruning (e.g., abandoning
an edge if the estimated (absolute) value of the corresponding entry in the adjacency matrix is less
than a threshold) is adopted for ICA-LiNGAM, NOTEARS and DAG-GNN, NOTEARS-MLP and
GAE. For CAM, DiffAN and GraN-DAG, the significance testing of covariates is applied and the
threshold of p-values for declaration of significance is 0.001.

The proposed diffusion based algorithm named DAG-Diffusion is implemented based on PyTorch
implementations of denoised diffusion probabilistic models (Ho et al., 2020). The forward and
reverse process are then reformed as described by (14). The reverse process is accelerated by imple-
menting DDIM modules for efficient sampling. More details are reported in Appendix B.

The evaluation metrics include False Discovery Rate (FDR), True Positive Rate (TPR), F1 score
and the Structural Hamming Distance (SHD) which is the minimum number of edge operations
(including additions, deletions and reversals) needed to convert the estimated graph to the given
true DAG. The SHD is a comprehensive measurement considering both the false positives and false
negatives, and it is widely used for quantifying the accuracy of causal discovery algorithms. A lower
SHD indicates a better estimated graph.

4.1 LINEAR MODEL WITH ADDITIVE NOISE

Given a dimension of matrix n, we generate the n-node graphs using the Erdős-Rényi approach,
which randomly samples a topological order and adds directed edges independently. The degree of
each node is set to be 2. Given a graph, the associated weighted adjacency matrix A is obtained by
assigning the edge weights independently from a uniform distribution on [0.5, 2] with random signs.
Standard Gaussian or non-Gaussian noise Z is then sampled to generate the data following the linear
model

X = AX + Z. (22)
For non-Gaussian noise, the distribution is set to be Gumbel distribution with parameter (loca-
tion,scale) to be (0, 1). Sample size is fixed to be 1000 over all experiments and the sampling
procedure is similar to that used by Yu et al. (2019). The identifiability of Gaussian and non-
Gaussian models are discussed in several works (Shimizu et al., 2006; Bühlmann et al., 2014). We
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Table 3: Empirical results on nonlinear models with Gaussian noise.

nodes DAG-Diffusion PC CAM ICA-LiNGAM DAG-GNN NOTEARS NOTEARS-MLP GAE DiffAN

10

TPR 0.66±0.21 0.6±0.16 0.59±0.1 0.23±0.09 0.15±0.12 0.15±0.07 0.33 ±0.14 0.41±0.17 0.56±0.18
FDR 0.43±0.1 0.5±0.09 0.28±0.06 0.7±0.1 0±0 0±0 0.0 ±0.0 0.13±0.16 0.3±0.22
SHD 8±1 10±3 6±1 11±2 10±2 10±2 7 ±3 6±4 5±2

F1 score 0.59±0.1 0.52±0.1 0.63±0.06 0.15±0.07 0.24±0.2 0.25±0.13 0.48 ±0.16 0.55±0.17 0.58±0.21

50

TPR 0.62±0.1 0.73±0.05 0.54±0.1 0.26±0.03 0.06±0.05 0.1±0.05 0.51±0.06 0.41±0.12 0.41±0.04
FDR 0.31±0.03 0.51±0.04 0.34±0.09 0.73±0.08 0.05±0.02 0.05±0.05 0.16±0.08 0.31±0.16 0.56±0.05
SHD 32±7 47±4 29±3 55±3 53±8 51±8 23±1 42±4 36±3

F1 score 0.66±0.1 0.57±0.03 0.58±0.05 0.15±0.06 0.12±0.1 0.17±0.08 0.62±0.05 0.48±0.06 0.36±0.06

Table 4: Empirical results on nonlinear models with non-Gaussian noise.

nodes DAG-Diffusion PC CAM ICA-LiNGAM DAG-GNN NOTEARS NOTEARS-MLP GAE DiffAN

10

TPR 0.65±0.17 0.63±0.19 0.49±0.13 0.17±0.13 0.1±0.06 0.13±0.12 0.43 ±0.05 0.43±0.13 0.5±0.2
FDR 0.28±0.1 0.47±0.04 0.4±0.1 0.77±0.1 0±0 0±0 0.05 ±0.07 0.46±0.28 0.39±0.19
SHD 8±1 11±3 5±1 10±2 10±2 9±3 5 ±1 9±5 5±2

F1 score 0.61±0.1 0.55±0.12 0.51±0.11 0.1±0.1 0.15±0.11 0.22±0.17 0.58 ±0.05 0.4±0.24 0.51±0.25

50

TPR 0.45±0.05 0.1±0.02 0.54±0.05 0.21±0.06 0.09±0.05 0.08±0.1 0.46±0.04 0.44±0.21 0.57±0.08
FDR 0.16±0.1 0.57±0.06 0.41±0.05 0.73±0.09 0±0 0.1±0.1 0.22±0.04 0.6±0.18 0.24±0.09
SHD 25±6 50±4 30±4 51±10 45±7 46±7 29±5 70±16 26±5

F1 score 0.6±0.05 0.48±0.05 0.56±0.06 0.12±0.07 0.15±0.09 0.14±0.1 0.57±0.04 0.35±0.16 0.65±0.07

use a thresholding based pruning method which truncates an estimated edge if the absolute value
of the corresponding entry is less than a threshold. The value is determined heuristically: after the
algorithm’s output, the average of all absolute values of predicted edges divided by 2 is calculated,
denoted as α. Then the threshold is round(10α)/10.

The empirical results on linear Gaussian and non-Gaussian models are reported in Table 1 and Table
2, respectively. The performance of PC, CAM and GAE is reasonable but less satisfactory. This is
possibly because these algorithms mostly target nonlinear cases. DiffAN sometimes has the wrong
direction estimations. This possibly relates to the identifiability problems of on observational data
in linear cases with Gaussian additive noise. ICA-LiNGAM performs poorly among all settings. In
linear Gaussian models, it is reasonable since the non-Gaussian assumptions of ICA-LiNGAM are
violated. The unsatisfactory performance in non-Gaussian models is possibly because the generative
model produces data distributions that are close to the indeterminacy cases of independent compo-
nent analysis, and ICA-LiNGAM is unable to recover the correct adjacency matrix. DAG-GNN and
NOTEARS, NOTEARS-MLP have best performance among all algorithms, showing their capabil-
ity of dealing with linear models with additive noise, which admits their model assumptions. Our
DAG-Diffusion has satisfactory performance in both Gaussian and non-Gaussian cases, showing the
possibility of diffusion process to model linear functions under various setting of node sizes (10 and
50).

4.2 NONLINEAR MODEL WITH ADDITIVE NOISE

We consider the nonlinear causal relationships with random nonlinear functions. The model is with
the following form

X = MLP ◦A(X + 0.5) + Z. (23)
The MLP is a multi-layer perception nets with weights randomly assigned. The number of layers is
3 for 10-node case and 2 for 50-node case. The noise Z is with distributions to be either standard
Gaussian or non-Gaussian for different model settings, and the sample size of the experiments is
fixed to be 1000 among all tests. Since the performance of diffusion model is known to be with
some sensitivity to the sample size, we also put down a sample size related study on Appendix D.

Empirical results on nonlinear models are reported in Table 3 and 4. In nonlinear cases, PC has
satisfactory performance among all algorithms. The performance of CAM, GAE and NOTEARS-
MLP are satisfactory among all methods, which are empirical evidences for their capability for
nonlinear modeling. DiffAN works also well on these cases, but its performance is with relatively
less stableness considering the variance. ICA-LiNGAM and NOTEARS have descent performance
in both Gaussian and non-Gaussian models. A large set of edges is not discovered by them correctly.
The performance deterioration is because of the violation of the linear model assumptions. DAG-
GNN’s experimental results are on par with NOTEARS. Combined with its outstanding performance
in linear settings (reported in Section 4.1), one may find that the variational autoencoder based
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Figure 2: Estimations of the graph on a nonlinear model with Gaussian noise (10 nodes).
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Figure 3: Learning process of DAG-Diffusion on a nonlinear model with Gaussian noise (50 nodes).

generative modeling for causal discovery seems to be better at dealing with simpler causal functions,
although the model assumption considers nonlinear ones. However, DAG-Diffusion is possibly a
good choice facing nonlinear models. This is evidenced by its more obvious empirical performance
advantage compared to linear cases.

We visualize one randomly picked example of causal graphs discovered by different algorithms in
10-node case in Figure 2. One can see that DAG-GNN and NOTEARS generate sparse predictions,
while PC tends to output relatively dense ones. LiNGAM generates a lot of wrong predictions.
Although the edge predictions of our algorithm are not always correct, the results are closest to
the given ground truth compared to others. An example learning curve is also reported in Figure
3. Initially, the loss value has a drastic increment due to the fact that the direction of optimization
is close to random guess. The generated graph is consequently distant from the ground truth, and
is cyclic evidenced by the high h(A) shown in the figure. Along with training procedure, the loss
value and h(A) decrease, with the adjacency matrix updated to be with higher similarity to the true
graph. Another observation is that although the single-step loss reduction becomes relatively minor
compared to its initial state, the F1 score progressively increases along with the training procedure.

4.3 REAL DATA

We use two real world datasets for algorithm evaluations. The first is the protein signaling network,
constructed by the data of different expression levels of proteins, Sachs (Sachs et al., 2005). The
annotations are widely accepted by the community, with edges at least partially verified by biolog-
ical experiments. The datasets contain both observational and interventional data, and we use the
observational data with totally 863 samples. The ground truth graph (Sachs et al., 2005) has 11
nodes with 17 edges.

The true graph is sparse so that an empty graph has a SHD as 17, and the causal relations are proba-
bly highly nonlinear due to the complex nature of biological systems. Instead of reporting the FDR
as those in previous sections, we record Number of Non-Zeros (NNZ) in the estimated adjacency
matrix to show the number of edges in the outputs. The empirical results are reported on Table 5. We
observe that PC and GraN-DAG output some edges that do not exist in the true graph, resulting in
unsatisfactory performance in terms of SHD. Our method, as well as DAG-GNN show some promis-
ing empirical records, compared to other approaches, providing partial evidence on these methods’
capability on nonlinear modeling. It is worth a discussion that NOTEARS also achieves the best
SHD. However, compared to the results of our approach, the smaller TPR indicates that the graph
generated by NOTEARS is relatively sparse with some undiscovered edges. It is a bit surprising
that NOTEARS-MLP gets the worst performance among all methods. Although the inclusion of
MLP modules to approximate the nonlinear functions makes the method theoretically applicable to
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Table 5: Empirical results on Sachs dataset.

DAG-Diffusion PC CAM ICA-LiNGAM DAG-GNN GraN-DAG NOTEARS NOTEARS-MLP
TPR 0.47 0.41 0.35 0.17 0.58 0.23 0.35 0.47
NNZ 16 13 10 8 20 21 14 43
SHD 12 22 12 15 14 27 12 36

F1 score 0.47 0.24 0.42 0.15 0.54 0.09 0.3 0.17

Table 6: Empirical results on SynTReN (20 nodes) dataset.

DAG-Diffusion PC CAM ICA-LiNGAM DAG-GNN GraN-DAG NOTEARS NOTEARS-MLP
TPR 0.5 0.16 0.2 0.29 0.125 0 0.54 0.29
NNZ 35 48 36 88 20 21 76 115
SHD 33 57 45 90 43 43 70 115

F1 score 0.34 0.027 0.05 0.04 0.03 0 0.18 0.03

nonlinear cases, the actual performance in Sachs is worse than its linear version. The CAM’s per-
formance is satisfactory, considering the hardness of the data. This indicates the CAM’s ability in
dealing with complex situations with noise distributions unknown and possibly heterogeneous.

The results on another dataset SynTReN (Van den Bulcke et al., 2006) are reported in Table 6. It is
a synthetic transcriptional regulatory network generator that can produce synthetic gene expression
data to approximate experimental data. The network topology is sampled from previously known
regulatory networks. In this regard, the data can also be treated as pseudo real data due to some
randomness caused by artificial sampling. In the experiments, we follow the configurations of data
generation used by Lachapelle et al. (2019) (setting probability for complex 2-regulator interactions
to be 1 with random seed 0) and draw 500 samples from a graph with 20 nodes to construct the
evaluation dataset.

In this data, the underlying distributions of variables are potentially quite complex due to the usually
sophisticated interactions between genes in whole genomes. Our approach achieves the best results
in terms of SHD among all compared approaches. It is noticeable that DAG-GNN tends to output
sparse graphs in this case, evidenced by the small reported NNZ value. On the contrary, NOTEARS
prefers a dense graph based on the principle of minimizing the reconstruction error under linear
model assumptions. ICA-LiGNAM fails to predict most edges, possibly due to the heavy violation
of their assumptions because of the inapproximability of underlying gene regulatory mechanisms by
simple linear functions. Although NOTEARS-MLP has consistently good performance in synthetic
data, it tends to output many edges in SynTReN network, and consequently with large recorded NNZ
values. This shows that NOTEARS-MLP still has certain limitations in modeling causal relations
that are of potentially high complexity.

5 CONCLUDING REMARKS

In this paper, we propose a novel approach for causal discovery utilizing diffusion models within a
continuous optimization framework. We integrate a smooth characterization of the acyclicity con-
straint into our objective function to generate acyclic adjacency matrices. The diffusion process’s
prowess in nonlinear modeling provides some theoretical justifications for our model’s capacity to
uncover causal graphs from observational data stemming from possibly intricate generative mech-
anisms. Extensive experiments on linear and nonlinear models with various types of noise, as well
as real world datasets, are conducted. The empirical results show that our proposed model achieves
satisfactory accuracy in causal discovery.

For future work, it is remarkable that training diffusion models, particularly those with deep layers,
remains a computational challenge. Improving the training efficiency of diffusion causal models is
consequently a promising direction for future research. Furthermore, determination of the config-
uration parameters of diffusion process, such as its depth, remains largely heuristic. Research on
techniques for automatic parameter tuning is thus important for its performance on various applica-
tion scenarios.
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APPENDIX

A PROOF OF PROPOSITION 1

The equivalence condition between unconstrained optimization problem and its transformed con-
strained optimization problem has been discussed in some literature (Boyd & Vandenberghe, 2004).
We follow a similar logic of (Zhu et al., 2019) to complete the proof. Suppose that A is a solution
to the problem (17). Then let L∗ = L(A,Θ∗) with Θ∗ being some coupled parameters for the min-
imization problem. Clearly, A is acyclic due to the hard constraint in (17). If A is not a solution to
the problem (18), then this indicates that there exist an adjacency matrix A′ such that

L∗ > min
Θ

L(A′,Θ) + λh(A′). (24)

By assumption, A′ cannot be acyclic, otherwise we have a directed acyclic graph that corresponds
to a score lower than the assumed minimum L∗. Then it follows that

min
Θ

L(A′,Θ) + λh(A′) ≥ Ll + λh∗ ≥ Lu, (25)

which violates the assumption that Lu upper-bounds the loss function.

Then we consider the other direction. Suppose there exists a solution A that satisfies problem (18)
but is not a solution to problem (17). Then there exist two cases: i) A is not acyclic; ii) A is
acyclic but yields a higher loss value than the assumed minimum. The second case makes a clear
contradiction of the definition of minimum loss. For the first case, assume that there is a acyclic
matrix A′ that achieves the minimum score. Then one can easily get the inequality of (24) since
h(A′) = 0 in this case, which leads to a contradiction that A minimizes the loss function.

B DETAILS ABOUT EXPERIMENTAL SETTINGS

The details of the experimental configurations are listed here.

• Diffusion process. Our settings of diffusion models vary across experiments on different
graph sizes. The parameters of diffusion model include the diffusion step T , the initializa-
tion of maximum and minimum variances and the design of the denoising neural networks.
The (I −A) is placed on the medium layer of the forward process, and the reverse process
is with a structure symmetrical to the forward process. The denoising network consists of
multiple layers, with structure

nn.Linear(64, 64)
nn.LeakyReLU(negative slope = 0.1)

Here, the variance sequence is initialized with (min, max) as (e−4, 0.2).
• Settings of MLP in (23). In the experiments on synthetic data, a MLP is used to simulate

nonlinear causal models. For each dimension of data, we use 3 layers with each edges
sampled randomly from normal distributions, with configurations below.

self.fc1 = nn.Linear(1, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)

The variable passes through a sin(X) function and a LeakyRelu with negative slope 0.3,
except for the output layer where a tanh is applied. Skipped connections as that used by
ResNet (He et al., 2016) are adopted to add the input directly to the last layer.

• Updating rules of augmented Lagrangian. Recall the ith subproblem as

min
A,Θ

L(A,Θ) + λih(A) +
ci
2
h(A)2. (26)

Parameter updating is performed after each subproblem resolved. Suppose the Ai is the
solution for subproblem i. Then the updating rules are

λi+1 = λt + cih(Ai),

ci+1 =

{
ηci, if h(Ai) > ωh(Ai−1),

ci, otherwise.
(27)
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We set (η, ω) = (5, 0.05) for the experiments. Each subproblem is with an initial point
inherited from the previous one Ai−1. The procedures are also recorded in Algorithm 1.

• Hyperparameter searching. Our method employes a hyperparameter search to optimize the
performance, which is similar to that used by GraN-DAG method. In the hyperparameter
search procedure, we select the combination of parameters by BIC score, in an unsuper-
vised manner. There are several hyperparameters including learning rate, batch size, search
times, hidden layers, hidden unit in denoising layers, length of forward process, and length
of reverse process. The possible values of different parameters are listed in Table 7.

Table 7: Hyperparameter search space.

Hyperparameter space

DAG-Diffusion

learning rate ∼ U [5e−5, 1e−4, 5e−4]
batch size ∼ U [20, 50]
search times ∼ U [10, 15, 30, 50]
number of hidden layers ∼ U [1, 2, 3]
number of hidden units in denoising layers ∼ U [16, 32, 64]
length of forward process ∈ {3, 4, . . . , 10}
length of reverse process ∈ {3, 4, . . . , 10}

C ALGORITHM IMPLEMENTATIONS

We use the exiting implementations of causal discovery algorithms for comparisons, as below:

• NOTEARS (Zheng et al., 2018) is a causal discovery algorithm targeting linear mod-
els. It recovers the causal graph by estimating a weighted adjacency matrix by optimiza-
tion under the least square reconstruction loss, combined with a smooth characterization
for the acyclicity constraint. Thresholding is applied on the estimated weights to pro-
duce the inferred directed acyclic graph. Codes are available at the GitHub repository
https://github.com/xunzheng/notears.

• NOTEARS-MLP (Zheng et al., 2020) extends NOTEARS to nonlinear cases in-
corporating nonlinear regression functions. It takes use of neural networks to
approximate arbitrary f . Codes are also available at the GitHub repository
https://github.com/xunzheng/notears.

• DAG-GNN (Yu et al., 2019) is a causal discovery algorithm that formulates the
problem within a variational autoencoder framework, utilizing graph neural networks
as its encoder and decoder structure. With a modified acyclicity constraint, the
weighted adjacency matrix is generated by optimizations with the evidence lower
bound as its loss function. The Python code is available at the GitHub repository
https://github.com/fishmoon1234/DAG-GNN.

• GAE (Ng et al., 2019) performs causal discovery via a graph auto-encoding
framework. The causal graph is obtained by optimizing a specially designed
encoder-decoder model. The implementation is available at the GitHub reposi-
tory https://github.com/huawei-noah/trustworthyAI/tree/master/
gcastle/castle/algorithms/gradient/gae.

• GraN-DAG (Lachapelle et al., 2019) is a causal discovery algorithm that employs feed-
forward neural networks to model causal relationships. The the (i, j)-th element of the
weighted adjacency matrix is determined by considering the sum of all product paths be-
tween variables xi and xj . Utilizing the acyclicity constraint introduced by NOTEARS
(Zheng et al., 2018), GraN-DAG identifies a directed acyclic graph (DAG) by maximum
likelihood estimations, over observed data. The implementation is available at the GitHub
repository https://github.com/kurowasan/GraN-DAG.

• PC (Spirtes et al., 2001) employs greedy search originated from the Greedy Equiv-
alence Search (GES) algorithm (Chickering, 2002). ICA-LiNGAM (Shimizu et al.,
2006) is a causal discovery algorithm that assumes a linear non-Gaussian additive

15

https://github.com/xunzheng/notears
https://github.com/xunzheng/notears
https://github.com/fishmoon1234/DAG-GNN
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle/castle/algorithms/gradient/gae
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle/castle/algorithms/gradient/gae
https://github.com/kurowasan/GraN-DAG


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

model, and employs independent component analysis to recover the weighted adja-
cency matrix. CAM (Bühlmann et al., 2014) searches for causal ordering among vari-
ables by applying feature selections and edge selections, under an assumption of non-
linearity on causal functions. All the algorithms use pruning methods as post-processing
steps. Codes of algorithms are accessible through the py-causal package, available at
https://github.com/FenTechSolutions/CausalDiscoveryToolbox.

• DiffAN (Sanchez et al., 2022) is a topological ordering search algorithm under the frame-
work of nonlinear additive noise model, with the Hessian matrix of data estimated by dif-
fusion models. The code is available at https://github.com/vios-s/DiffAN.

D SOME EXPERIMENTS AND DISCUSSIONS

We firstly discuss the type of models the functional formulation in (11) can adopt. If g and f are
identify functions, we get linear causal models such as LiNGAM. If g is some nonlinear function
and f is an identity function, we get nonlinear additive noise causal models with some linear mixing
mechanism (represented by mixing matrix A). More interestingly, let f be some mixing function.
We get additive noise model with noise post-processing, so that the ”added” variables can be mutu-
ally non-independent.

We also record the performance of the method on models with different sample size in Figure 4.

(a) Nonlinear model with Gaussian noise. (b) Nonlinear model with non-Gaussian noise.

Figure 4: F1 score versus sample size on different models.
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