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ABSTRACT

State-of-the-art deep face recognition methods are mostly trained with a softmax-
based multi-class classification framework. Despite being popular and effective,
these methods still have a few shortcomings that limit empirical performance. In
this paper, we start by identifying the discrepancy between training and evaluation
in the existing multi-class classification framework and then discuss the potential
limitations caused by the “competitive” nature of softmax normalization. Motivated
by these limitations, we propose a novel binary classification training framework,
termed SphereFace2. In contrast to existing methods, SphereFace2 circumvents
the softmax normalization, as well as the corresponding closed-set assumption.
This effectively bridges the gap between training and evaluation, enabling the
representations to be improved individually by each binary classification task.
Besides designing a specific well-performing loss function, we summarize a few
general principles for this “one-vs-all” binary classification framework so that it can
outperform current competitive methods. Our experiments on popular benchmarks
demonstrate that SphereFace2 can consistently outperform state-of-the-art deep
face recognition methods. The code is available at OpenSphere.

1 INTRODUCTION

Recent years have witnessed the tremendous success of deep face recognition (FR), largely owing to
rapid development in training objectives [4, 16–18, 31, 32, 37–39, 42, 43]. Current deep FR methods
are typically based on a multi-class learning objective, e.g., softmax cross-entropy loss [4, 17, 18,
27, 37–39]. Despite its empirical effectiveness, there is an obvious discrepancy between such a
multi-class classification training and open-set pair-wise testing, as shown in Fig. 1. In contrast to
multi-class classification, pair-wise verification is a binary problem where we need to determine
whether a pair of face images belongs to the same person or not. This significant discrepancy may
cause the training target to deviate from the underlying FR task and therefore limit the performance.
This problem has also been noticed in [29, 31], but they still try to address it under the multi-class (or
triplet) learning framework which still fundamentally differs from pair-wise verification in testing.
On the other hand, multi-class classification training assumes a closed-set environment where all the
training data must belong to one of the known identities, which is also different from open-set testing.
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Figure 1: Comparison between current multi-class classification training in deep face recog-
nition and our binary classification training.

In order to address these limita-
tions, we propose a novel deep
face recognition framework com-
pletely based on binary classifi-
cation. SphereFace [17] is one
of the earliest works that explic-
itly performs multi-class classifi-
cation on the hypersphere (i.e.,
angular space) in deep FR. In
light of this, we name our frame-
work SphereFace2 because it ex-
clusively performs binary classi-
fications (hence the “2”) on the hypersphere. Unlike multi-class classification training, SphereFace2
effectively bridges the gap between training and testing, because both training and testing perform
pair-wise comparisons. Moreover, SphereFace2 alleviates the closed-set assumption and views the
training as an open-set learning problem. For example, training samples that do not belong to any
class are still useful and can serve as negative samples in SphereFace2, while they cannot be used
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at all in the multi-class classification framework. Specifically, given K classes in the training set,
SphereFace2 constructs K binary classification objectives where data from the target class are viewed
as positive samples and data from the remaining classes are negative samples. The spirit is similar to
“one-vs-all” classification [28]. An intuitive illustration comparing typical multi-class training, our
proposed SphereFace2, and open-set evaluation is given in Fig. 1.

In multi-class classification training, the softmax (cross-entropy) loss introduces competition among
different classes, because the softmax normalization requires all the class logits are summed to
one. Therefore, increasing the confidence of one class will necessarily decrease the confidence
of some other classes, which can easily lead to over-confident predictions [6]. In contrast to the
competitive nature in all the softmax losses, our SphereFace2 encourages each binary classification
task to individually improve the discriminativeness of the representation without any competition.

w/o Proxy w/ Proxy

Triplet FaceNet [29]
VGGFace [26]

Triplet [23]
MTER [52]

DeepID [32]
DeepFace [35]
DeepID2* [31]

DeepID2+* [33]
SphereFace [17]
NormFace [38]

CosFace [37, 39]
ArcFace [4]

Ring Loss [51]
CurricularFace [10]

Circle Loss [34]

Pair

Siamese [3]
DeepID2* [31]

DeepID2+* [33]
Cont. CNN [8]

SphereFace2

Table 1: Overview of deep FR. * denotes that the
method uses a hybrid loss that combines a multi-
class softmax loss and a contrastive loss.

The significance of our method can also be understood from a
different perspective. Depending on how samples interact with
each other in training, deep FR methods can be categorized into
triplet-based learning and pair-based learning. Triplet-based
learning simultaneously utilizes an anchor, positive samples
and negative samples in its objective, while pair-based learning
uses either positive pairs or negative pairs in one shot. Based
on whether a proxy is used to represent a set of samples, both
triplet-based and pair-based methods can learn with or without
proxies. A categorization of deep FR methods is given in Ta-
ble 1. Proxy-free methods usually require expansive pair/triplet
mining and most of them [8, 23, 26, 31, 33, 52] use a hybrid
loss that includes the standard softmax loss. Typical examples
of triplet-based learning with proxy include the softmax loss and
its popular variants [4, 17, 37–39] where a classifier is a class
proxy and the learning involves an anchor (i.e., the deep feature
x), the positive proxy (i.e., the target classifier Wy) and the negative proxies (i.e., the other classifiers
Wj , j 6= y). Most popular deep FR methods use proxies by default, since they greatly speed up
training and improve data-efficiency (especially on large-scale datasets). Distinct from previous deep
FR, we believe SphereFace2 is the first work to adopt a pair-wise learning paradigm with proxies.
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Figure 2: Comparison between triplet-based and pair-based learning. Purple arrows denote
optimization directions. Triplet-based learning compares different similarity scores, while pair-
based learning compares similarity score and a threshold.

An outstanding difference be-
tween triplet-based and pair-
based learning is the usage
of a universal threshold. In
Fig. 2, we show that triplet-
based learning compares the
similarity scores between dif-
ferent pairs, while pair-based
learning compares a similarity
score and a universal thresh-
old. As a pair-based method,
SphereFace2 too optimizes the
difference between similarity
scores and a universal threshold. By learning the threshold to distinguish positive and negative
pairs during training, it naturally also generalizes to open-set FR.

In our framework, we cast a principled view on designing loss functions by systematically discussing
the importance of positive/negative sample balance, easy/hard sample mining and angular margin,
and combine these ingredients to propose an effective loss function for SphereFace2. In fact, most
popular variants of the softmax loss [4, 37–39] also perform easy/hard sample mining and incorporate
angular margin. Moreover, we observe that the distribution of similarity scores from positive pairs
is quite different from that of negative pairs, in that it exhibits larger variance, which makes the
threshold hard to determine. To address this, we propose a novel similarity adjustment method that
can adjust the distribution of pair similarity and effectively improve the generalizability.

The flexibility of binary classifications in SphereFace2 brings a few additional advantages. First, in
contrast to the classifier layer with the softmax loss which is highly non-trivial to parallelize [1], the
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classifier layer in SphereFace2 can be naturally parallelized across different GPUs. While the gradient
update in the softmax loss needs to involve all the classifiers, the gradient update for classifiers in
SphereFace2 is independent and fully decoupled from each other. The gradient with respect to each
classifier only depends on the feature x and the binary classifier itself. Therefore, SphereFace2
naturally addresses the problem of the softmax loss in training on a large number of face identities [1].
Second, the pair-wise labels used in SphereFace2 are in fact a weaker form of supervision than
the class-wise labels used in all the softmax-based losses. This property is closely connected to
the open-set assumption and also makes SphereFace2 less sensitive to class-wise label noise. For
example, SphereFace2 does not require the class-wise labels of the negative samples in each binary
classification. Instead, as long as we know that the identities of negative samples are different from
the positive samples, SphereFace2 will still work well. Our experiments also empirically verify the
robustness of SphereFace2 against class-wise label noise. Our major contributions are:

• SphereFace2 constructs a novel binary classification framework for deep FR. To our knowledge,
SphereFace2 is the first work in deep FR to adopt a pair-wise learning paradigm with proxies. We
further summarize a series of general principles for designing a good loss function for SphereFace2.

• The decoupling of the binary classifications leads to a natural parallelization for the classifier layer,
making SphereFace2 more scalable than softmax-based losses.

• The pair-wise labels used in SphereFace2 are a weaker supervision than the class-wise labels used
in the softmax loss, yielding better robustness to class-wise label noise.

Related Work. Deep FR methods are either proxy-based or proxy-free, as shown in Table 1. Proxy-
free learning includes contrastive loss [3, 7, 31] and triplet loss [29]. Both losses directly optimize
the similarity between samples, so they are highly unstable and data-inefficient. Proxy-free learning
is more widely used in deep metric learning [25, 30, 36, 40, 41, 45]. Proxy-based learning uses a set
of proxies to represent different groups of samples and usually works better for large-scale datasets.
Typical examples include the softmax loss and its variants [4, 17, 32, 34, 35, 37–39] where each
proxy is used to represent a class. SphereFace [17] suggests that large-margin classification is more
aligned with open-set FR, and proposes to learn features with large angular margin. CosFace [37, 39]
and ArcFace [4] introduce alternative ways to learn large-margin features with improved stability.
Although large-margin classification brings the training target closer to the task of open-set FR, the
discrepancy still exists and it is unclear how much the margin should be to close the gap. Moreover, a
large margin inevitably leads to training instability. In contrast, SphereFace2 naturally avoids these
problems and aligns the training target with open-set FR by adopting pair-wise learning with proxies.

2 THE SPHEREFACE2 FRAMEWORK

2.1 OVERVIEW AND PRELIMINARIES

The goal of SphereFace2 is to align the training target with open-set verification so that our training is
more effective in improving open-set generalization in deep FR. To this end, SphereFace2 explicitly
incorporates pair-wise comparison into training by constructing K binary classification tasks (K is
the number of identities in the training set). The core of SphereFace2 is the binary classification
reformulation of the training target. In the i-th binary classification, we construct the positive samples
with the face images from the i-th class and the negative samples with face images from other classes.
Specifically, we denote the weights of the i-th binary classifier by Wi, the deep feature by x and its
corresponding label by y. A naive loss formulation is

Lf =log
(
1 + exp(−W>

y x− by)
)
+
∑
i 6=y

log
(
1 + exp(W>

i x+ bi)
)

which is a combination of K standard binary logistic regression losses. Instead of performing binary
classification in a unconstrained space, we perform binary classification on the unit hypersphere by
normalizing both classifiers Wi,∀i and feature x. The loss function now becomes

Ls = log
(
1 + exp(− cos(θy))

)
+
∑
i6=y

log
(
1 + exp(cos(θi))

)
(1)

where θi is the angle between the i-th binary classifier Wi and the sample x. The biases bi,∀i are
usually removed in common practice [4, 17, 19, 37, 39], since they are learned for a closed set and
cannot generalize to unknown classes. However, we actually find them very useful in SphereFace2,
as will be discussed later. For now, we temporarily remove them for notational convenience. One
of the unique advantages of such a parameterization for binary classifiers is that it constructs the
i-th class positive proxy with Wi and the negative proxy with −Wi. Depending on the label, the
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training will minimize the angle between x and Wi or between x and −Wi in order to minimize
the loss. This parameterization of positive and negative proxies immediately guarantees minimum
hyperspherical energy [12–15] that has been shown to effectively benefit generalization. Moreover,
our parameterization in SphereFace2 has the same number of parameters for the classifier layer as the
previous multi-class training, and does not introduce extra overhead. However, naively minimizing
the loss in Eq. (1) will not give satisfactory results. Therefore, we explore in the next subsection how
to find a desirable loss function that works well in the SphereFace2 framework.

2.2 A PRINCIPLED VIEW ON LOSS FUNCTION

We emphasize that the exact form of our loss function is in fact not crucial, and the core of SphereFace2
is the spirit of binary classification (i.e., pair-wise learning with proxies). Following such a spirit,
there are likely many alternative losses that work as well as ours. Besides proposing a specific loss
function, we summarize our reasoning for designing a good loss function via a few general principles.

Positive/negative sample balance. The first problem in SphereFace2 is how to balance the positive
and negative samples. In fact, balancing positive/negative samples has also been considered in
triplet loss, contrastive loss and softmax-based losses. Contrastive loss achieves the positive/negative
sample balance by selecting the pairs. Based on [34], triplet-based methods including both triplet
loss and softmax-based losses can naturally achieve positive/negative sample balance, since these
losses require the presentation of a balanced number of both positive and negative samples.

From Eq. (1), the gradients from positive samples and negative samples are highly imbalanced
because only one out of K terms computes the gradient for positive samples. A simple yet effective
remedy is to introduce a weighting factor λ to balance gradients for positive and negative samples:

Lb=λ log
(
1+exp(− cos(θy))

)
+ (1−λ)

∑
i6=y

log
(
1+exp(cos(θi))

)
where λ∈ [0, 1] is a hyperparameter that determines the balance between positive and negative
samples. One of the simplest ways to set λ is based on the fraction of the loss terms, i.e., λ = K−1

K
when there are K classes in total.
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Figure 3: Loss objective value under different target cosine values.

Easy/hard sample mining. An-
other crucial criterion for a good loss
function is the strategy for mining
easy/hard samples, since it is closely
related to the convergence speed and
quality. It is commonly perceived
that softmax-based losses are free
of easy/hard sample mining, unlike
triplet and contrastive losses. How-
ever, this is inaccurate. We construct
a simple example to illustrate how the softmax-based loss mines easy/hard samples. We assume
a set of cosine logits from four classes is [cos(θ1), cos(θ2), cos(θ3), cos(θ4)] and the target class is
y=1. Then we also compute the s-normalized softmax loss Ln=− log(

exp(s·cos(θy))∑
i exp(s·cos(θi))

) by fixing
cos(θi)=0.2, i 6=y and varying cos(θy) from −1 to 1. From the results shown in Fig. 3(a), we can
observe that as the scale s increases, the loss for hard samples will be higher and also more sensitive
than the loss for easy samples. This makes the neural network focus on optimizing the angles of hard
samples and therefore can improve convergence and generalization. The scaling strategy is widely
used as a common practice in most softmax-based margin losses [4, 34, 37–39], playing an implicit
role of easy/hard sample mining. For the standard softmax cross-entropy loss, easy/hard sample
mining is dynamically realized by the norm of features and classifiers.

In our framework, we need a similar strategy to mine easy/hard samples. Inspired by the rescaled
softplus function [5], we use an extra hyperparameter r to adjust the curvature of the loss function Lb:

Le =
λ

r
· log

(
1 + exp(−r · cos(θy))

)
+

1− λ

r
·
∑
i 6=y

log
(
1 + exp(r · cos(θi))

)
(2)

where larger r implies stronger focus on hard samples. We consider an example of one binary
classification and Le becomes 1

r · log
(
1+exp(−r ·cos(θy))

)
when λ=1. We then plot how the loss

value changes by varying cos(θy) from −1 to 1 under different r in Fig. 3(b). We observe that when
r becomes larger, the loss for easy samples gets closer to zero while the loss for hard samples remains
large. Therefore, r can help to mine and reweight easy/hard samples during training.
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Angular margin. Learning deep
features with large angular margin
is arguably one of the most effective
criteria to achieve good generaliz-
ability on open-set face recognition.
SphereFace [17] introduced angular
margin to deep face recognition by
considering a multiplicative margin.
CosFace [37, 39] and ArcFace [4]
further considered an additive angu-
lar margin which makes the loss function easier to train. In light of these works, we introduce a novel
two-sided angular margin with two adjustable parameters to the SphereFace2 framework:

La =
λ

r
· log

(
1 + exp(−r · (cos(θy)−mp))

)
+

1− λ

r
·
∑
i 6=y

log
(
1 + exp(r · (cos(θi) +mn))

)
(3)

where mp controls the size of the margin for positive samples and mn controls the size of the margin
for negative samples. Largermp and mn lead to larger additive angular margin, sharing similar spirits
to CosineFace [37, 39]. Our framework is agnostic to different forms of angular margin and all types
of angular margin are applicable here. We also apply ArcFace-type margin [4] and multiplicative
margin [16, 17] to SphereFace2 and obtain promising results. Details are in Appendix F.

However, quite different from the angular margin in the softmax-based losses, the angular margin in
Eq. 3 has a universal confidence threshold 0 (i.e., cos(θi)=0). Both angular margins mp and mn are
introduced with respect to this decision boundary cos(θi)=0, see Fig. 4(b). This property has both
advantages and disadvantages. One of the unique advantages is that our angular margin for each class
is added based on a universally consistent confidence threshold and does not depend on the other
classifiers, while the angular margin in softmax-based losses will be largely affected by the neighbor
classifiers. However, it is extremely challenging to achieve the universal threshold 0, which results
in training difficulty and instability. To improve training stability, the bias term that has long been
forgotten in softmax-based losses comes to the rescue. We combine the biases back:

Lb =
λ

r
· log

(
1+exp(−r · (cos(θy)−mp)−by)

)
+

1− λ

r
·
∑
i 6=y

log
(
1+exp(r · (cos(θi)+mn)+bi)

)
(4)

where bi denotes the bias term for the binary classifier of the i-th class. Since the class-specific bias
is not useful in the open-set testing, we will simply use the same bias b for all the classes. The bias b
now becomes the universal confidence threshold for all the binary classifications and the baseline
decision boundary becomes r ·cos(θy)+b=0 instead of r ·cos(θy)=0, making the training more
stable and flexible. The final decision boundary is r ·(cos(θy)−mp)+b=0 for the positive samples
and r ·(cos(θy)+mn)+b=0 for the negative samples. More importantly, the threshold b is still
universal and consistent for each class. An illustration of Eq. 4 is given in Fig. 4. Alternatively, we
can interpret Eq. 4 as a learnable angular margin where the confidence threshold is still 0. Then we
can view mp− b

r as the positive margin and mn+
b
r as the negative margin. Because b is learnable,

we only need to focus on mp+mn which yields only one effective hyperparameter. For convenience,
we simply let mp=mn=m and only need to tune m in practice.
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Figure 5: Similarity score distribution of positive and negative pairs trained with dif-
ferent t. The evaluation pairs are combined from 4 sets: LFW [9], Age-DB30 [24],
CA-LFW [49] and CP-LFW [50].

Similarity adjustment. In Fig. 5(a),
we observe a large inconsistency be-
tween positive and negative pairs in
the distribution of cosine similarity.
The similarity distribution of negative
pairs has smaller variance and is more
concentrated, while the positive pairs
exhibit much larger variation in sim-
ilarity score. The distributional dis-
crepancy between positive and nega-
tive pairs leads to a large overlap of
similarity scores between them, making it difficult to give a clear threshold to separate the positive
and negative pairs. This is harmful to generalization. Fig. 5(a) also empirically shows the similarity
scores mostly lie in the range of [−0.2, 1]. These observations motivate us to (1) reduce the overlap
of the similarity scores between positive and negative pairs, and (2) increase the empirical dynamic
range of the similarity score such that the pair similarity can be distributed in a larger space.
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To this end, we propose a novel similarity adjustment method. Our
basic idea is to construct a monotonic decreasing function g(z)
where z∈ [−1, 1] and g(z)∈ [−1, 1] and then use g(cos(θ)) instead
of the original cos(θ) to adjust the mapping from angle to similarity
score during training. Considering that the originally learned cos(θ)
mostly lies in the range of [−0.2, 1], we require g(z) to map [−0.2, 1]
to a larger range (e.g., [−0.9, 1]), so that if cos(θ) is learned similarly
as before and still gives the empirical dynamic range of [−0.2, 1], we
can end up with g(cos(θ)) whose empirical dynamic range becomes
[−0.9, 1]. Specifically, g(z) is parameterized as g(z)=2

(
z+1
2

)t−1
where we typically use z=cos(θ)∈ [−1, 1]. In practice, we simply replace the original cosine
similarity with g(cos(θ)) during training. t controls the strength of similarity adjustment. When t=1,
g(cos(θ)) reduces to the standard cosine similarity. In Fig. 5, we show that the similarity distribution
can be modified by increasing the parameter t. As t increases, the overlap between the positive and
negative pairs is reduced and their similarity distributions also become more separable. Moreover,
the empirical dynamic range of the similarity score is also approximately increased from [−0.2, 1] to
[−0.4, 1]. The empirical results validate the effectiveness of the proposed similarity adjustment.

Final loss function. After combining all the principles and simplifying hyperparameters, we have

L =
λ

r
·log

(
1+exp

(
−r·(g(cos(θy))−m)−b

))
+
1− λ

r
·
∑
i 6=y

log

(
1+exp

(
r·(g(cos(θi))+m)+b

))
(5)

where g(·) has a hyperparameter t. In total, there are four hyperparameters λ, r, m and t. Each has a
unique geometric interpretation, making them easy to tune. Following our design principles, there
could be many potential well-performing loss functions that share similar properties to the proposed
one. Our framework opens up new possibilities to advance deep face recognition.

2.3 GEOMETRIC INTERPRETATION

This subsection provides a comprehensive discussion and visualization to justify our designs and
explain the geometric meaning of each hyperparameter. By design, r is the radius of the hypersphere
where all the learned features live and is also the magnitude of the features. The bias b for the i-th
class moves the baseline decision boundary along the direction of its classifier Wi. The parameter m
controls the size of the induced angular margin. We set the output feature dimension as 2 and plot the
2D features trained by SphereFace2 with different margin m in Fig. 7. The visualization empirically
verifies the following arguments.
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Figure 7: 2D deep feature learned by SphereFace2. We construct a small dataset consisting
of 6 face identities from VGGFace2 [2]. Dots with the same color represent samples from
the same face identity.

The bias b moves the decision
boundary. From Fig. 7, we can
observe that the bias b can be ef-
fectively learned to move the de-
cision boundary along the classi-
fier direction and lead to a new
universal confidence −b for all the
classes. The bias b makes the train-
ing easier and more stable while
still preserving the unique property
that all classes share the same confi-
dence for classification. Compared
to other deep FR methods, the uni-
versal confidence in SphereFace2 can help to learn a consistent positive/negative pair separation and
explicitly encourage a unique and consistent verification threshold during training.

m, r control the angular margin. Fig. 7 visualizes the baseline decision boundary (denoted as
(2) in Fig. 7(b)) and the decision boundary for the positive/negative samples (denoted as (1)/(3) in
Fig. 7(b)). The distance between the positive and negative decision boundary is 2rm, producing an
effective angular margin. The results show that the empirical margin matches our expected size well.

Larger m leads to larger angular margin. From Fig. 7, we can empirically compare the deep
features learned with m=0 and m=0.2 and verify that larger m indeed incorporates larger angular
margin between different classes. Large inter-class separability is also encouraged.
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Figure 8: 3D features.

We also visualize 3D deep features and the decision planes for one class with
r=30 and m=0.2 in Fig. 8. We can observe that samples from each class
are well separated with large angular margins, which is consistent with the 2D
case. The empirical angular margin also perfectly matches the induced one
(i.e., the distance between the positive and negative plane). The results further
verify our empirical conclusions drawn from the 2D visualization.

2.4 EFFICIENT MODEL PARALLELIZATION ON GPUS

As it becomes increasingly important for deep FR methods to train on large-
scale datasets with million-level identities, a bottleneck is the storage of the
classifier layer since its space complexity grows linearly with the number of identities. A common
solution is to distribute the storage of the classifiersWi,∀i and their gradient computations to multiple
GPUs. Then each GPU only needs to compute the logits for a subset of the classes. However, the
normalization in softmax-based losses inevitably requires some data communication overhead across
different GPUs, resulting in less efficient parallelization. In contrast, the gradient computations
in SphereFace2 are class-independent and can be performed locally within one GPU. Thus no
communication cost is needed. The decoupling among different classifiers makes SphereFace2
suitable for multi-GPU model parallelization.

Specifically, the softmax normalization in the softmax loss involves the computation of all the
classifiers, so computing the gradient w.r.t. any classifier will still require the weights of all the
other classifiers, which introduces communication overhead across GPUs. In contrast, the loss for
SphereFace2 (Eq. (5)) can be rewritten as L =

∑K
i=1 fi(Wi,x) where fi(·, ·) is some differentiable

function. To compute ∂L
∂Wi

, we only need to compute ∂fi(Wi,x)
Wi

which does not involve any other
classifiers. Therefore, this gradient computation can be performed locally and does not require any
communication overhead. Appendix E compares the gradient of SphereFace2 and the softmax loss.

3 EXPERIMENTS AND RESULTS

Preprocessing. Each face image is cropped based on the 5 face landmarks detected by MTCNN [48]
using a similarity transformation. The cropped image is of size 112× 112. Each RGB pixel ([0, 255])
is normalized to [−1, 1]. We put the details of training and validation datasets in Appendix A.

CNNs. We adopt the same CNNs from [17, 39] for fair comparison. We use 20-layer CNNs in
ablations and 64-layer CNNs for the comparison to existing state-of-the-art methods.

Training and Testing. We use SGD with momentum 0.9 by default. We adopt VGGFace2 [2] as
the same training set for all the methods. VGGFace2 contains 3.1M images from 8.6K identities,
as shown in Table 9. The training faces are horizontally flipped for data augmentation. We strictly
follow the specific protocol provided in each dataset for evaluations. Given a face image, we extract a
512D embedding. The final score is computed by the cosine distance of two embeddings. The nearest
neighbor classifier and thresholding are used for face identification and verification, respectively.

3.1 ABLATION STUDY AND EXPLORATORY EXPERIMENTS

We perform an ablation study on four validation sets: LFW, AgeDB-30, CA-LFW, and CP-LFW. The
statistics of these datasets are summarized in Table 9. Following the provided evaluation protocols,
we report 1:1 verification accuracy of 6,000 pairs (3,000 positive and 3,000 negative pairs) for each
dataset. In addition, we combine these datasets and compute the overall verification accuracy, which
serves as a more accurate metric to evaluate the models.

PN EH AM SA LFW AgeDB-30 CA-LFW CP-LFW Combined
7 7 7 7 93.60 71.67 68.40 74.07 74.49
3 7 7 7 95.37 72.90 72.93 76.90 78.03
3 3 7 7 98.60 88.10 89.98 85.23 89.65
3 3 3 7 99.62 92.82 93.07 90.85 93.87
3 3 3 3 99.50 93.68 93.47 91.07 94.28

Table 2: Ablations of designing principles. PN, EH, AM and SA are the abbre-
viations for positive/negative sample balance, easy/hard sample mining, angular
margin, and similarity adjustment (%).

Design Principles. We start with abla-
tions on the designing principles of the
loss function. As shown in Table 2, it
is quite effective to improve the perfor-
mance following the principles to design
a loss function. Specifically, the naive
binary classification (Eq. 1) fails to con-
verge, since the learning objective and
the gradients are both dominated by the negative pairs. To address this, we set λ to K−1

K and report the
results in the first row of Table 2. As can be seen, while the model is trainable and starts to converge,
the results show significant room for improvement. After some tuning of the hyperparameter λ,
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SphereFace2 can achieve 78.03% accuracy on the combined dataset. Then we gradually incorporate
the hard sample mining and angular margin into SphereFace2, improving the verification accuracy
from 78.03% to 89.65%, and then to 93.87% With similarity adjustment, SphereFace2 yields 94.28%
accuracy on the combined dataset. Table 2 clearly shows the effectiveness of each ingredient.

λ LFW AgeDB-30 CA-LFW CP-LFW Combined
0.3 99.38 91.38 92.93 88.88 92.72
0.4 99.42 92.30 92.85 89.97 93.38
0.5 99.55 92.77 93.32 90.20 93.75
0.6 99.48 92.67 93.40 90.10 93.63
0.7 99.58 92.63 93.30 90.33 93.73
0.8 99.62 92.81 93.07 90.85 93.87
0.9 99.50 92.57 92.82 90.53 93.62
0.99 99.53 90.37 91.68 89.33 92.31

Table 3: Effect of different λ. We fix t=1 and explore how the
model performs with different λs. Results are in %.

λ t LFW AgeDB-30 CA-LFW CP-LFW Combined
0.6 2 99.53 93.30 93.37 90.65 94.02
0.6 3 99.48 93.80 93.53 91.08 94.28
0.7 2 99.62 93.22 93.35 91.02 94.05
0.7 3 99.50 93.68 93.47 91.07 94.28
0.8 2 99.57 93.55 93.28 90.72 94.03
0.8 3 99.62 93.58 93.38 91.12 94.23

Table 4: Effect of different t. We explore different ts for several
besting performing λs. Results are in % and higher is better.

Hyperparameters. There are four hyperparameters
(λ, r, m, and t) in SphereFace2. Since r and m
have been extensively explored in [4, 37–39], we
follow previous practice to fix r and m to 30 and
0.4 respectively. Our experiments mainly focus on
analyzing the effect of λ and t.

From Table 3, the performance of SphereFace2 re-
mains stable for λ from 0.5 to 0.9, where a good bal-
ance for the positive and negative pairs is achieved.
Then we evaluate different t for λ = [0.6, 0.7, 0.8]
and report the results in Table 4. As can be seen
from the results, adjusting the similarity scores fur-
ther boosts model accuracy. The effect of different
t is also illustrated in Fig. 5. More detailed ablation
studies are included in Appendix C and D.

Loss Function LFW AgeDB-30 CA-LFW CP-LFW Combined
Softmax Loss 98.20 87.23 88.17 84.85 89.05

Coco Loss [20] 99.16 90.23 91.47 89.53 92.4
SphereFace [16, 17] 99.55 92.88 92.55 90.90 93.75

CosFace [39] 99.51 92.98 92.83 91.03 93.89
ArcFace [4] 99.47 91.97 92.47 90.85 93.97

Circle Loss [34] 99.48 92.23 92.90 91.17 93.78
CurricularFace [10] 99.53 92.47 92.90 90.65 93.70

SphereFace2 99.50 93.68 93.47 91.07 94.28

Table 5: Comparison of different loss functions. We take the released source code
of these methods and carefully tune the hyperparameters to achieve optimal perfor-
mance. Results are in % and higher values are better.

State-of-art loss functions. We com-
pare SphereFace2 with current state-
of-art loss functions in Table 5. We
note that these current best-performing
methods [4, 17, 34, 39] are based on
multi-class classification and belong
to the triplet learning paradigm. In
contrast, our SphereFace2 is the only
method that is based on binary classi-
fication and adopts the pair-wise learn-
ing paradigm. Following [16], we re-
implement SphereFace [17] with hard feature normalization for fair comparison. We observe that
the verification accuracies on LFW are saturated around 99.5%. On both AgeDB-30 and CA-LFW
datasets, SphereFace2 achieves the best accuracy, outperforming the second best results by a signifi-
cant margin. The results on the combined datasets also validate the effectiveness of SphereFace2.

3.2 EVALUATIONS ON LARGE-SCALE BENCHMARKS

We use three challenging face recognition benchmarks, IJB-B, IJB-C, and MegaFace to evaluate
SphereFace2 (with λ=0.7, r=40,m=0.4, t=3). We use 64-layer CNNs for all the methods here.

1:1 Veri. TAR @ FAR 1:N Iden. TPIR @ FPIR
Method 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

VGGFace2 (SENet) [2] 67.1 80.0 88.8 90.1 70.6 83.9
MN-vc [47] - 83.1 90.9 - - -

Comparator Nets [46] - 84.9 93.7 - - -
SphereFace 80.75 89.41 94.18 93.49 73.49 87.70

CosFace 79.62 88.61 94.10 92.90 73.80 86.89
ArcFace 80.59 89.11 94.25 93.23 74.81 87.28

Circle Loss 78.34 88.56 94.12 92.54 72.54 86.46
SphereFace2 85.40 91.31 94.80 93.32 76.89 89.91

Table 6: Results on IJB-B. We cite the results from the original papers for [2, 46,
47]. For the re-implemented methods, we use the hyperparameters that lead to the
best results on the validation set. Results are in % and higher values are better.

IJB datasets. IJB-B [44] has 21.8K
still images (including 11.8K faces and
10k non-faces) and 55K frames from 7K
videos. The total number of identities
is 1,845. We follow the standard 1:1
verification and 1:N identification pro-
tocols for experiments. The protocol de-
fines 12,115 templates, where each tem-
plate consists of multiple images and/or
frames. Matching is performed based
on the defined templates. Specifically,
10,270 genuine matches and 8M impos-
tor matches are constructed in 1:1 verification protocol, and 10,270 probes and 1,875 galleries are
constructed in 1:N identification protocol. IJB-C is an extension of IJB-B, comprising 3,531 identities
with 31.3K still images and 117.5K frames from 11.8K videos. The evaluation protocols of IJB-C are
similar to IJB-B. The details of the protocols are summarized in Appendix. We report the true accept
rates (TAR) at different false accept rates (FAR) for verification, and true positive identification rates
(TPIR) at different false positive identification rates (FPIR) for identification, as shown in Table 6.
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1:1 Veri. TAR @ FAR 1:N Iden. TPIR @ FPIR
Method 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

VGGFace2 (SENet) [2] 74.7 84.0 91.0 91.2 74.6 84.2
MN-vc [47] - 86.2 92.7 - - -

Comparator Nets [46] - 88.5 94.7 - - -
SphereFace 86.07 91.96 95.66 94.83 83.15 89.45

CosFace 85.13 90.98 95.47 94.25 80.89 88.17
ArcFace 86.12 91.60 95.72 94.71 82.21 88.94

Circle Loss 84.05 90.83 95.44 93.64 80.07 87.61
SphereFace2 89.04 93.25 96.03 94.70 85.65 91.08

Table 7: Results on IJB-C. The testing instances of IJB-C are twice as many as
those in IJB-B. Results are in % and higher is better.

We make several observations based on
the evaluation results of IJB-B (Table 6).
First, SphereFace2 produces significant
improvements over other state-of-the-art
methods, especially at low FARs and
FPIRs. Specifically, SphereFace2 outper-
forms CosFace by 5.37% at FAR=1e-5
and 2.70% at FAR=1e-4 in 1:1 verifica-
tion, 3.09% at FPIR=1e-2 and 3.02% at
FPIR=1e-1 in 1:N identification. These
significant performance gains suggest
that the pair-wise learning paradigm is very useful in improving the robustness of a face recog-
nition system. Similar observations can also be found in the results of IJB-C (Table 7) and the ROC
curves results (Fig. 9). Second, the performance is getting saturated for verification rate at FAR=1e-3.
Compared to other methods, SphereFace2 can still improve the results by 0.67% - 1.02% on IJB-B
and 0.43% - 1.04% on IJB-C. Third, the rank-1 identification performance of SphereFace2 is slightly
better than CosFace, ArcFace, Circle Loss, and comparable to SphereFace. Overall, SphereFace2
performs significantly better than current best-performing methods on these two challenging datasets.

Iden. (106 Distractors) Veri. (FPR=1e-6)
label refined 7 3 7 3

SphereFace 71.53 86.49 85.02 88.48
CosFace 71.65 86.21 85.45 88.35
ArcFace 73.65 87.88 87.77 89.88

Circle Loss 71.32 85.94 84.34 87.96
SphereFace2 74.38 89.84 89.19 91.94

Table 8: Results on MegaFace. Because of mislabeled samples in
MegaFace, we present the results before and after label refinement.

MegaFace. We further evaluate SphereFace2 on
the MegaFace dataset. This is a challenging test-
ing benchmark to evaluate the performance of face
recognition methods at the million scale of distrac-
tors. It contains a gallery set with more than 1
million images from 690K different identities, and
a probe set with 3,530 images from 530 identities.
MegaFace provides two testing protocols for iden-
tification and verification. We evaluate on both and
report the results in Table 8. The gains are consistent with the IJB datasets. Under the same training
setup, SphereFace2 outperforms current state-of-the-art methods by a large margin.

3.3 NOISY LABEL LEARNING
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Figure 9: The ROC curves of SphereFace2 and other start-of-art methods on IJB-B
(left) and IJB-C (right) datasets.

Since the pair-wise labels used in
SphereFace2 provide weaker supervi-
sion than the class-wise labels, we per-
form experiments to evaluate the ro-
bustness of SphereFace2 in label-noisy
training. We randomly alter 20%, 40%,
60% and 80% of the labels for each
class. The four noisy datasets are
used to train CosFace, ArcFace, and
SphereFace2 separately. We evaluate the trained models on the combined validation set. From Fig
10 (left), SphereFace2 shows stronger robustness to noisy labels than CosFace and ArcFace, as its
performance degrades significantly more slowly as the ratio of noisy labels increases from 0 to 0.8.

3.4 MODEL PARALLELIZATION
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Figure 10: Left: evaluations on the robustness to noisy labels. Right: evaluations on
the multi-GPU model parallelization.

We follow [4] to parallelize the loss
computations for CosFace, ArcFace,
and SphereFace2. These methods are
trained with 1 million identities. Fig. 10
(right) shows how the number of pro-
cessed images per second changes with
different numbers of GPUs. Note that
we do not include the feature extraction
here. CosFace and ArcFace have negli-
gible difference on running time. When a single GPU is used (i.e., no model parallelization), CosFace
and ArcFace are slightly faster than SphereFace2. As the number of GPUs increases, the acceleration
of SphereFace2 is more significant, due to less communication cost over GPUs. The near linear
acceleration for SphereFace2 is owing to its proxy-based pair-wise formulation.

9



Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENTS

AW acknowledges support from a Turing AI Fellowship under grant EP/V025379/1, The Alan Turing
Institute, and the Leverhulme Trust via CFI. RS is partially supported by the Defence Science and
Technology Agency (DSTA), Singapore under contract number A025959, and this paper does not
reflect the position or policy of DSTA and no official endorsement should be inferred.

REFERENCES

[1] Xiang An, Xuhan Zhu, Yang Xiao, Lan Wu, Ming Zhang, Yuan Gao, Bin Qin, Debing Zhang, and Ying Fu.
Partial fc: Training 10 million identities on a single machine. arXiv preprint arXiv:2010.05222, 2020. 2, 3

[2] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE international conference on automatic face &
gesture recognition (FG 2018), pages 67–74. IEEE, 2018. 6, 7, 8, 9, 13

[3] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In CVPR, 2005. 2, 3

[4] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In CVPR, 2019. 1, 2, 3, 4, 5, 8, 9, 14, 15

[5] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In AISTATS,
2011. 4

[6] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
ICML, 2017. 2

[7] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping.
In CVPR, 2006. 3

[8] Chunrui Han, Shiguang Shan, Meina Kan, Shuzhe Wu, and Xilin Chen. Face recognition with contrastive
convolution. In ECCV, 2018. 2

[9] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Technical report, Technical Report,
2007. 5, 13

[10] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue
Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In CVPR, 2020. 2, 8,
15

[11] Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard. The megaface bench-
mark: 1 million faces for recognition at scale. In CVPR, 2016. 13

[12] Rongmei Lin, Weiyang Liu, Zhen Liu, Chen Feng, Zhiding Yu, James M Rehg, Li Xiong, and Le Song.
Regularizing neural networks via minimizing hyperspherical energy. In CVPR, 2020. 4

[13] Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning towards
minimum hyperspherical energy. In NeurIPS, 2018.

[14] Weiyang Liu, Rongmei Lin, Zhen Liu, James M Rehg, Liam Paull, Li Xiong, Le Song, and Adrian Weller.
Orthogonal over-parameterized training. In CVPR, 2021.

[15] Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schölkopf, and Adrian Weller. Learning with
hyperspherical uniformity. In AISTATS, 2021. 4

[16] Weiyang Liu, Yandong Wen, Bhiksha Raj, Rita Singh, and Adrian Weller. Sphereface revived: Unifying
hyperspherical face recognition. TPAMI, 2022. 1, 5, 8, 14, 15

[17] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In CVPR, 2017. 1, 2, 3, 5, 7, 8, 13, 14, 15

[18] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolutional
neural networks. In ICML, 2016. 1

[19] Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, and Le Song. Deep
hyperspherical learning. In NIPS, 2017. 3

10



Published as a conference paper at ICLR 2022

[20] Yu Liu, Hongyang Li, and Xiaogang Wang. Learning deep features via congenerous cosine loss for person
recognition. arXiv preprint arXiv:1702.06890, 2017. 8, 15

[21] Brianna Maze, Jocelyn Adams, James A Duncan, Nathan Kalka, Tim Miller, Charles Otto, Anil K Jain,
W Tyler Niggel, Janet Anderson, Jordan Cheney, et al. Iarpa janus benchmark-c: Face dataset and protocol.
In 2018 International Conference on Biometrics (ICB), pages 158–165. IEEE, 2018. 13

[22] Daniel Miller, E Brossard, S Seitz, and I Kemelmacher-Shlizerman. Megaface: A million faces for
recognition at scale. arXiv preprint:1505.02108, 2015. 13

[23] Zuheng Ming, Joseph Chazalon, Muhammad Muzzamil Luqman, Muriel Visani, and Jean-Christophe
Burie. Simple triplet loss based on intra/inter-class metric learning for face verification. In ICCVW, 2017.
2

[24] Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia, and
Stefanos Zafeiriou. Agedb: the first manually collected, in-the-wild age database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 51–59, 2017. 5, 13

[25] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured
feature embedding. In CVPR, 2016. 3

[26] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In BMVC, 2015. 2

[27] Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. L2-constrained softmax loss for discriminative
face verification. arXiv preprint arXiv:1703.09507, 2017. 1

[28] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. JMLR, 2004. 2

[29] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, 2015. 1, 2, 3

[30] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings of the
30th International Conference on Neural Information Processing Systems, pages 1857–1865, 2016. 3

[31] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation by joint
identification-verification. In NIPS, 2014. 1, 2, 3

[32] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation from predicting 10,000
classes. In CVPR, 2014. 1, 2, 3

[33] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned face representations are sparse, selective, and
robust. In CVPR, 2015. 2

[34] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen Wei.
Circle loss: A unified perspective of pair similarity optimization. In CVPR, 2020. 2, 3, 4, 8, 15

[35] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In CVPR, 2014. 2, 3

[36] Evgeniya Ustinova and Victor Lempitsky. Learning deep embeddings with histogram loss. In NIPS, 2016.
3

[37] Feng Wang, Weiyang Liu, Haijun Liu, and Jian Cheng. Additive margin softmax for face verification.
arXiv preprint arXiv:1801.05599, 2018. 1, 2, 3, 4, 5, 8, 14

[38] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere embedding for
face verification. In ACM-MM, 2017. 2

[39] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.
Cosface: Large margin cosine loss for deep face recognition. In CVPR, 2018. 1, 2, 3, 4, 5, 7, 8, 14, 15

[40] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. Deep metric learning with angular loss.
In ICCV, 2017. 3

[41] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss with
general pair weighting for deep metric learning. In CVPR, 2019. 3

[42] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach for
deep face recognition. In ECCV, 2016. 1

11



Published as a conference paper at ICLR 2022

[43] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A comprehensive study on center loss for deep
face recognition. IJCV, 2019. 1

[44] Cameron Whitelam, Emma Taborsky, Austin Blanton, Brianna Maze, Jocelyn Adams, Tim Miller, Nathan
Kalka, Anil K Jain, James A Duncan, Kristen Allen, et al. Iarpa janus benchmark-b face dataset. In
proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 90–98,
2017. 8, 13

[45] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep
embedding learning. In ICCV, 2017. 3

[46] Weidi Xie, Li Shen, and Andrew Zisserman. Comparator networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 782–797, 2018. 8, 9

[47] Weidi Xie and Andrew Zisserman. Multicolumn networks for face recognition. arXiv preprint
arXiv:1807.09192, 2018. 8, 9

[48] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and alignment using
multi-task cascaded convolutional networks. arXiv preprint:1604.02878, 2016. 7

[49] Tianyue Zheng and Weihong Deng. Cross-pose lfw: A database for studying cross-pose face recognition
in unconstrained environments. Beijing University of Posts and Telecommunications, Tech. Rep, 5, 2018. 5,
13

[50] Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age lfw: A database for studying cross-age face
recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017. 5, 13

[51] Yutong Zheng, Dipan K Pal, and Marios Savvides. Ring loss: Convex feature normalization for face
recognition. In CVPR, 2018. 2

[52] Yaoyao Zhong and Weihong Deng. Adversarial learning with margin-based triplet embedding regulariza-
tion. In ICCV, 2019. 2

12



Published as a conference paper at ICLR 2022

Appendix

A STATISTICS FOR THE USED DATASETS

Dataset # of ID # of img split

VGGFace2 [2] 8.6K 3.1M train
LFW [9] 5,749 13,233 val
Age-DB30 [24] 568 16,488 val
CA-LFW [49] 5,749 11,652 val
CP-LFW [50] 5,749 12,174 val
IJB-B [44] 1,845 76.8K test
IJB-C [21] 3,531 148.8K test
MegaFace (pro.) [11] 530 3,530 test
MegaFace (dis.) [22] 690K 1M test

Table 9: Statistics for the used datasets.

B STATISTICS OF IJB TEST PROTOCOLS

IJB-B [44] IJB-C [21]

# of templates 12,115 23,124

1:1 Verification
# of genuine matches 10,270 19,557
# of imposter matches 8M 15M

1:N Identification
# of probes 10,270 19,593
# of galleries 1,875 3,531

Table 10: The evaluation statistics of the IJB datasets.

C MORE HYPERPARAMETER EXPERIMENTS

We additionally provide the results under different hyperparameters. We follow the same settings as
in the main paper by training a 20-layer CNN [17] on VGGFace2. First, we vary the hyperparameter
r from 20 to 50 and the results in Table 11 show that both r = 30 and r = 40 work reasonably well.
Second, we vary the hyperparameter m from 0.2 to 0.5 and evaluate how the size of margin affects
the performance. The results in Table 11 show that m = 0.3 generally achieves the best performance.
Last, we evaluate how the hyperparameter t in similarity adjustment may affect the performance.
Table 11 shows that similarity adjustment is generally helpful for performance (i.e., t = 2, 3, 4, 5
works better than t = 1) and t = 3 achieves the best combined performance.

λ r m t LFW AgeDB-30 CA-LFW CP-LFW Combined
0.7 20 0.4 3 99.56 92.97 92.85 90.97 93.96
0.7 30 0.4 3 99.62 93.22 93.35 91.02 94.28
0.7 40 0.4 3 99.55 93.92 93.73 90.98 94.34
0.7 50 0.4 3 99.48 93.42 93.53 91.07 94.22
0.7 30 0.2 3 99.47 92.45 93.40 90.80 93.93
0.7 30 0.3 3 99.53 93.47 93.83 91.58 94.52
0.7 30 0.4 3 99.50 93.68 93.47 91.07 94.28
0.7 30 0.5 3 99.57 92.82 92.97 90.82 93.38
0.7 30 0.4 0.3 98.83 86.03 87.48 86.21 89.00
0.7 30 0.4 0.5 99.06 86.46 88.88 87.20 89.57
0.7 30 0.4 0.7 99.60 92.36 93.11 90.96 93.57
0.7 30 0.4 1 99.58 92.63 93.30 90.33 93.73
0.7 30 0.4 2 99.62 93.22 93.35 91.02 94.05
0.7 30 0.4 3 99.50 93.68 93.47 91.07 94.28
0.7 30 0.4 4 99.50 93.58 93.48 90.98 94.17
0.7 30 0.4 5 99.58 92.90 93.45 91.12 94.16

Table 11: Ablations on parameter r, γ, and t. Results are in % and higher values are better.
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D SIMILARITY ADJUSTMENT FOR OTHER METHODS

To empirically show the comparison between SphereFace2 and other methods with SA, we present
the experiments on IJBB and IJBC datasets. As shown in Table 12, similarity adjustment works well
for SphereFace2, and applying it to multi-class classification losses is not as useful as in SphereFace2.

Methods 1:1 Veri. TAR @ FAR 1:N Iden. TPIR @ FPIR
on IJBB 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

CosFace w/o SA 79.35 88.05 93.71 92.54 72.20 86.40
CosFace w/ SA 75.72 86.57 93.07 92.59 68.48 84.38
ArcFace w/o SA 78.12 87.11 93.29 92.18 69.86 84.88
ArcFace w/ SA 78.88 88.06 93.71 92.65 71.62 86.08

SphereFace2 81.11 89.05 94.11 92.66 73.54 87.32

Methods 1:1 Veri. TAR @ FAR 1:N Iden. TPIR @ FPIR
on IJBC 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

CosFace w/o SA 84.20 90.53 95.12 93.73 80.04 87.46
CosFace w/ SA 82.92 89.83 94.54 93.77 78.46 86.26
ArcFace w/o SA 82.54 89.53 94.79 93.20 78.35 86.09
ArcFace w/ SA 84.62 90.53 95.12 93.78 80.52 87.55

SphereFace2 85.38 91.32 95.24 93.74 81.98 88.54

Table 12: Comparison of SphereFace2, CosFace and ArcFace (with or without similarity adjustment).

E GRADIENT COMPARISON

We compare the gradient between the multi-class softmax-based loss and SphereFace2 in Table 13.
We observe that the gradient updates in SphereFace2 can be performed with only the corresponding
classifier weights (i.e., no summation over classifier weights of different classes). Therefore, the
classifier layer in the SphereFace2 framework can be back-propagated with the local GPU and involve
no communication overhead.

Multi-class Softmax-based Loss SphereFace2
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Table 13: Gradient comparisons between the multi-class softmax-based loss and SphereFace2. Here we omit the constant terms, e.g. bias,
margin, etc., since they do not affect the conclusion.

F DIFFERENT FORMS OF ANGULAR MARGIN IN SPHEREFACE2

Although we use the additive margin as an example in the main paper, it is natural to consider the
other forms of angular margin in SphereFace2. Specifically, we first revisit the final loss function that
uses a particular type of additive margin [37, 39] (also used as the example in the main paper):

LSF2-C =
λ

r
·log

(
1+exp

(
−r·(g(cos(θy))−m)−b

))
+
1− λ

r
·
∑
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(
r·(g(cos(θi))+m)+b

))
.

For another type of additive margin [4] and the multiplicative margin [16, 17], we implement them
using the Characteristic Gradient Detachment (CGD) trick [16] to enable stable training. Therefore,
we use the following loss function to implement the ArcFace-type additive margin in SphereFace2:

LSF2-A =
λ

r
· log

(
1 + exp
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))
,

where Detach(·) is a gradient detachment operator that stops the back-propagated gradients. For
details of how CGD works, refer to [16]. For the multiplicative margin, we adopt an improved version
from SphereFace-R [16] (i.e., SphereFace-R v1), which yields

LSF2-M =
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For both ArcFace-type and multiplicative margin, we do not inject the angular margin to the negative
samples. Considering the two cases with or without angular margin for the negative samples, we note
that a learnable bias b makes both cases equivalent. The only difference is that the optimal choice for
the margin parameter m may vary for the two cases.

Then we conduct experiments to empirically compare them. We adopt the same training settings as Ta-
ble 5 (i.e., SFNet-20 [16, 17] without batch normalization). The results are given in Table 14, Table 15,
and Table 16. Here we term SphereFace2 with CosFace-type additive margin as SphereFace2-C,
SphereFace2 with ArcFace-type additive margin as SphereFace2-A and SphereFace2 with multiplica-
tive additive margin as SphereFace2-M. The margins for SphereFace2-A and SphereFace2-M are 0.5
and 1.7, respectively. We observe that different types of angular margin perform similarly in general.
Note that we did not carefully tune the hyperparameters for SphereFace2-A and Sphereface2-M
and the performance is already very competitive. We believe that the performance can be further
improved by a more systematic hyperparameter search.

Loss Function LFW AgeDB-30 CA-LFW CP-LFW Combined

Softmax Loss 98.20 87.23 88.17 84.85 89.05
Coco Loss [20] 99.16 90.23 91.47 89.53 92.4

SphereFace [16, 17] 99.55 92.88 92.55 90.90 93.75
CosFace [39] 99.51 92.98 92.83 91.03 93.89
ArcFace [4] 99.47 91.97 92.47 90.85 93.97

Circle Loss [34] 99.48 92.23 92.90 91.17 93.78
CurricularFace [10] 99.53 92.47 92.90 90.65 93.70

SphereFace2-C 99.50 93.68 93.47 91.07 94.28
SphereFace2-A 99.51 93.53 93.75 91.01 94.19
SphereFace2-M 99.58 93.63 93.66 90.95 94.19

Table 14: Comparison of different loss functions. Results are in % and higher values are better.

Methods 1:1 Veri. TAR @ FAR 1:N Iden. TPIR @ FPIR
on IJBB 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

CosFace 79.35 88.05 93.71 92.54 72.20 86.40
ArcFace 78.12 87.11 93.29 92.18 69.86 84.88

SphereFace2-C 82.36 89.54 93.94 92.61 72.52 88.22
SphereFace2-A 80.89 89.54 94.10 92.68 72.87 87.96
SphereFace2-M 81.20 89.29 94.10 92.53 74.52 87.95

Table 15: Comparison of CosFace, ArcFace, and SphereFace2 with different margin types on IJB-B dataset.

Methods 1:1 Veri. TAR @ FAR 1:N Iden. TPIR @ FPIR
on IJBC 1e-5 1e-4 1e-3 rank-1 1e-2 1e-1

CosFace 84.20 90.53 95.12 93.73 80.04 87.46
ArcFace 82.54 89.53 94.79 93.20 78.35 86.09

SphereFace2-C 86.78 91.78 95.26 93.77 83.20 89.36
SphereFace2-A 86.30 91.68 95.33 93.72 82.82 89.24
SphereFace2-M 86.38 91.61 95.38 93.72 82.71 89.29

Table 16: Comparison of CosFace, ArcFace, and SphereFace2 with different margin types on IJB-C dataset.
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