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Abstract

Adversarial attacks can mislead strong neural001
models; as such, in NLP tasks, substitution-002
based attacks are difficult to defend. Cur-003
rent defense methods usually assume that the004
substitution candidates are accessible, which005
cannot be widely applied against substitution-006
agnostic attacks. In this paper, we propose007
a Rebuild and Ensemble Framework to de-008
fend against adversarial attacks in texts with-009
out knowing the candidates. We propose a re-010
build mechanism to train a robust model and011
ensemble the rebuilt texts during inference to012
achieve good adversarial defense results. Ex-013
periments show that our method can improve014
accuracy under the current strong attack meth-015
ods.016

1 Introduction017

Adversarial examples (Goodfellow et al., 2014) can018

successfully mislead strong neural models in both019

computer vision tasks (Carlini and Wagner, 2016)020

and language understanding tasks (Alzantot et al.,021

2018; Jin et al., 2019). An adversarial example022

is a maliciously crafted example attached with an023

imperceptible perturbation and can mislead neural024

networks. To defend attack examples of images,025

the most effective method is adversarial training026

(Goodfellow et al., 2014; Madry et al., 2019) which027

is a mini-max game used to incorporate perturba-028

tions into the training process.029

Defending adversarial attacks is extremely im-030

portant in improving model robustness. How-031

ever, defending adversarial examples in natural032

languages is more challenging due to the discrete033

nature of texts. That is, gradients cannot be used di-034

rectly in crafting perturbations. The generation pro-035

cess of substitution-based adversarial examples is036

more complicated than using gradient-based meth-037

ods in attacking images, making it difficult for neu-038

ral networks to defend against these substitution-039

based attacks:040

It had nice picture quality, I’m glad I found this movie, I highly recommend it ! Positive

It had nice picture quality, I’m glad I found this movie, I inordinately recommend it ! Negative

Original

Adversary

Defensing-Model

Rebuild-Ensemble Defense Framework

Negative

It had nice picture quality, I’m glad I found this movie again,I highly fancy it !

It had nice picture quality, I’m glad I found this movie again,I inordinately recommend it !

It had good picture quality, I’m happy I found this movie again,I so recommend it !

… Positive

It had nice movie quality, I’m glad I found this movie again,I very recommend it !

multiple re-built texts ensemble prediction

It had nice picture quality, I’m glad I found this movie, I inordinately recommend it !

Figure 1: Illustration of Adversarial Defense

(A) The first challenge of defending against ad- 041

versarial attacks in NLP is that due to the discrete 042

nature, these substitution-based adversarial exam- 043

ples can have substitutes in any token of the sen- 044

tence and each substitute has a large candidate list. 045

This would cause a combinatorial explosion prob- 046

lem, making it hard to apply adversarial training 047

methods. Strong attacking methods such as Jin et al. 048

(2019) show that using the crafted adversarial ex- 049

amples as data augmentation in adversarial training 050

cannot effectively defend against these substitution- 051

based attacks. 052

(B) Further, the defending strategies such as ad- 053

versarial training rely on the assumption that the 054

candidate lists of the substitutions are accessible. 055

However, the candidate lists of the substitutions 056

should not be exposed to the target model; that 057

is, the target model should be unfamiliar to the 058

candidate-agnostic adversarial examples. In real- 059

world defense systems, the defender is not aware 060

of the strategy the potential attacks might use, so 061

the assumption that the candidate list is available 062

would significantly constrain the potential applica- 063

tions of these defending methods. 064

In this work, we propose a strong defense frame- 065

work, i.e., Rebuild and Ensemble. 066
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We aim to construct a defense system that can067

successfully defend the attacks launched by strong068

methods such as Textfooler (Jin et al., 2019) and069

BERT-Attack (Li et al., 2020) without expecting070

of the incoming of these attacks. We introduce071

a rebuild and ensemble process, we assume that072

we can reconstruct a clean input sample that does073

not the adversarial effect based on possible adver-074

sarial input. As seen in Figure 1, when the input075

is changed by the adversarial attack, we can first076

rebuild the input texts and then make predictions077

based on the rebuilt texts which will results in cor-078

rect predictions.079

To achieve this goal, we first reconsider the080

widely applied pre-trained models exemplified by081

BERT (Devlin et al., 2018) which introduces the082

masked language modeling task in the pre-training083

stage and can be used in fine-tuning on downstream084

tasks. During downstream task fine-tuning, these085

pre-train models throw away the the learned lan-086

guage modeling ability and focus on making down-087

stream task predictions. Instead of simply fine-088

tuning downstream tasks, we keep the mask predic-089

tion ability during fine-tuning, and use this ability090

to process the rebuilding of input texts. That is,091

we random mask the input texts and use the mask092

prediction to rebuild a text that does not have ad-093

versarial affect. Intuitively, the rebuild process in-094

troduces randomness since the masks are randomly095

selected, we can make multiple random rebuilt texts096

and apply an ensemble process to obatin the final097

model output predictions for better robustness. To098

train the defending framework, we introduce the099

rebuild training based on virtual input adversarial100

training methods to enhance both rebuilding and101

downstream task predicting abilities.102

Through extensive experiments, we prove that103

the proposed defense framework can successfully104

resist strong attacks such as Textfooler and BERT-105

Attack. Experiments results show that the accuracy106

under attack in baseline defense methods is lower107

than random guesses, while ours can lift the per-108

formances to only a few percent lower than the109

original accuracy when the candidates are limited.110

Further, extensive results indicate that the candidate111

size of the attacker score is essential for successful112

attacks, which is a key factor in maintaining seman-113

tics of the adversaries. Therefore we also recom-114

mend that future attacking methods can focus on115

achieving success attacks with tighter constrains.116

To summarize our contributions:117

• We raise the concerns of defending candidate- 118

agnostic attacks in NLP tasks. 119

• We propose a Rebuild and Ensemble frame- 120

work to defend against recently introduced 121

strong attack methods without knowing the 122

candidates and experiments prove the effec- 123

tiveness of the framework. 124

• We explore the key factors in defending 125

against score-based attacks and recommend 126

further research to focus on tighter constraint 127

attacks. 128

2 Related Work 129

2.1 Adversarial Attacks in NLP 130

In NLP tasks, current methods use substitution- 131

based strategies (Alzantot et al., 2018; Jin et al., 132

2019; Ren et al., 2019) to craft adversarial exam- 133

ples. Most works focus on the score-based black- 134

box attack, that is, the attacking method knows the 135

logits of the output prediction. These methods use 136

different strategies (Yoo et al., 2020; Morris et al., 137

2020b) to find words to replace such as generic 138

algorithm (Alzantot et al., 2018), greedy-search 139

(Jin et al., 2019; Li et al., 2020) or gradient-based 140

(Ebrahimi et al., 2017; Cheng et al., 2019) and get 141

substitutes using synonyms (Jin et al., 2019; Mrkšić 142

et al., 2016; Ren et al., 2019) or language models 143

(Li et al., 2020; Garg and Ramakrishnan, 2020; Shi 144

et al., 2019). 145

2.2 Adversarial Defenses 146

There are fewer methods focusing on defending 147

against adversarial attacks in NLP compared with 148

various types of adversarial attacks. 149

Under the candidate-agnostic attacker setting, 150

Samangouei et al. (2018) uses a defensive GAN 151

framework to build clean images to avoid adver- 152

sarial attacks; Xie et al. (2017) introduces random- 153

ness into the model predicting process to mitigate 154

adversarial affect. Ebrahimi et al. (2017); Cheng 155

et al. (2019) introduces gradient-based adversarial 156

training that craft adversarial samples by finding 157

the most similar word embeddings based on the 158

gradients. Further, gradient-based virtual adversar- 159

ial training could also be used in the NLP tasks: 160

Miyato et al. (2016) proposes a virtual adversarial 161

training process, which is later explored in model 162

robustness (Zhu et al., 2019; Li and Qiu, 2020). 163

Basically, they incorporate gradients to craft virtual 164

adversaries to apply robust training. 165
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To defend against adversaries under the166

candidate-aware assumption, augmentation-based167

methods are the most direct defense strategies that168

use the generated adversaries to train a robsut169

model (Jin et al., 2019; Li et al., 2020; Si et al.,170

2020). Jia et al. (2019); Huang et al. (2019) intro-171

duces a certified robust model to defend against172

adversarial attacks by constructing a certified space173

that can tolerate substitutes. Zhou et al. (2020);174

Dong et al. (2021) construct a convex hull based175

on the candidate list of that can resist substitutions176

in the candidate list. Zhou et al. (2019) incorporate177

the idea of blocking adversarial attacks by discrim-178

inating perturbations in the input texts.179

3 Rebuild And Ensemble as Defense180

Defending against adversarial attacks without ac-181

cessing the candidate list is more applicable in real-182

world adversarial defenses. Therefore, we intro-183

duce Rebuild and Ensemble as an effective frame-184

work to defend strong adversarial attacks exempli-185

fied by substitution-based attacks in NLP without186

knowing the candidate list of substitutions.187

Without knowing the candidates, the model can-188

not resist the substitutes that have strong adversar-189

ial affect. Therefore, the model needs to avoid the190

adversaries by replacing them with clean texts. So191

we introduce the rebuild process therefore when192

the target model is facing adversaries, it can first193

reconstruct the inputs to avoid facing the spears of194

the adversarial examples.195

We suppose that the target model is a fine-tuned196

model that has been pre-trained by mask language197

models that may face the adversarial attack is a clas-198

sification model Fc(·). When given an input sen-199

tence X , the adversarial attack may craft an adver-200

sarial example Xadv that replaces a small propor-201

tion of tokens with similar texts. We only consider202

substitution-based adversaries since the strategy of203

defending other types of adversarial examples such204

as token insertion or deletion is exactly the same as205

defending substitution-based adversaries.206

3.1 Rebuild and Ensemble Framework207

We propose the rebuild and ensemble framework208

that first makes multiple input texts and then use209

these rebuilt texts to make predictions.210

We have a model that can re-build input texts211

and make predictions so we use Fm(·) to denote212

the mask prediction task that rebuild the input texts213

and use Fc(·) to denote the classification task.214

…

Inject 

Noise Rebuild

…

Input

Texts

…

Predict

X → X̃i Fm(X̃i) → ̂X i Fc( ̂X i) → Si ∑ (Si)
Ensemble

Figure 2: Rebuild And Ensemble Process

As seen in Figure 2, when given an input text 215

X = [w0, · · · , wn, ] that might have been attacked, 216

we random mask the input texts or insert addi- 217

tional masks to make N copies of noisy input 218

X̃i = [w0, · · · ,[MASK], wn, · · · , ]. We use two 219

simple strategies to inject noise into the input texts: 220

(1) Randomly mask the input texts; (2) Randomly 221

insert masks into the input texts. 222

After making multiple noisy inputs, we can run 223

the rebuild process first to get the rebuilt texts based 224

on the randomly masked inputs X̃: 225

X̂i = Fm(X̃i) (1) 226

Then we feed the rebuilt texts through the classi- 227

fier Fc(·) to calculate the final output score based 228

on the multiple rebuilt texts: 229

Si =
1

N

N∑
i=0

(
Softmax(Fc(X̂i))

)
(2) 230

Here, we use the average score from multiple 231

rebuilt texts predictions as the final output score 232

given to the score-based adversarial attackers. 233

Besides, in the rebuild process, we aim to make 234

best use of the mask prediction ability that the pre- 235

trained models possess since the fine-tuning pro- 236

cess only uses limited downstream task data while 237

the pre-training stage includes massive data and cal- 238

culation which can be helpful in better robustness 239

against text adversaries. 240

3.2 Rebuild Framework Training 241

We use the fine-tuned masked language model 242

while maintaining the mask language modeling 243

ability since we believe that (1) rebuild process can 244

help gain better robustness by mitigating the adver- 245

sarial affect in the input sequences; (2) maintain- 246

ing language modeling information helps improve 247

model robustness in the classification process. 248
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In order to fine-tune such a model F with param-249

eter θ containing two functions Fm(·) and Fc(·),250

we introduce a rebuild training process based on251

multi-task adversarial training. We use noisy texts252

as inputs to train the mask language modeling task253

and the downstream task fine-tuning simultane-254

ously so that the fine-tuning process can tolerate255

more noisy texts since the model might be attacked256

by adversaries.257

3.2.1 Mask LM Training Strategy258

In our model fine-tuning, we have both the mask259

language modeling training and the downstream260

task training. In the mask language model training,261

we also incorporate the gradient information in the262

rebuild training process to build a gradient-based263

noisy data to enhance the rebuilding ability.264

Therefore we have two language model training265

strategy:266

(1) Standard [MASK] Prediction: We randomly267

mask the input texts and make the masked language268

model to further pre-train the masks on the training269

dataset.270

(2) Gradient-Noise Rebuild: Previous pre-271

training process does not calculate loss on un-272

masked tokens. Instead we use a gradient-based273

adversarial training method to add perturbation δ274

on the embedding space of these un-masked to-275

kens and calculate the loss of the masked language276

model task on these tokens to make the model277

aware of the potential substitutes.278

3.2.2 Preliminary of Gradient-Based279

Adversarial Training280

Recent researches have been focusing on explor-281

ing the possibility of using gradient-based virtual282

adversaries in NLP tasks (Zhu et al., 2019; Li and283

Qiu, 2020). The core idea is that the adversarial284

examples are not real substitutions but virtual per-285

turbations:286

δ =
∏
||δ ||F≤ε

αg(δ)

||g(δ)||F
(3)287

288

g(δ) = 5δL(fθ(X + δ), y) (4)289

Here
∏
||δ||F≤ε

represents the process that projects290

the perturbation onto the normalization ball ε using291

Frobenius normalization ||δ||F . We update the per-292

turbation using a certain adversarial learning rate293

α. X is the word embedding of input sequence294

[w0, · · · , wn, ]. The perturbation is not actual sub- 295

stitutions, but adversarial embeddings. Then these 296

virtual adversaries are used in the training process 297

to improve model performances. 298

Algorithm 1 Rebuild Training

Require: Training Sample X
1: δ ← 1√

D
U(−σ, σ) // Initialize Perturbation

2: X̃ ← Random Mask X
3: Lc ← Using Equation 5
4: Lmlm ← Using Equation 6
5: // Get Perturbation
6: gδ ←5δ(Lc + Lmlm)
7: δ ←

∏
||δ ||F<ε

(δ + α · gδ/||gδ||F )
8: // Rebuild with Noise
9: Lnoise ← Using Equation 8

10: g = 5θ(Lc + Lmlm + Lnoise)
11: θ ← θ − g // Update model parameter θ

3.2.3 Overall Process of Rebuild Training 299

Given input texts X , we first make noisy copies 300

X̃ , for notation convenience, here X and X̃ are the 301

embedding output of the input texts. Then we can 302

calculate the gradients of the fine-tuning classifi- 303

cation task gc as well as the mask-prediction task 304

gmlm. 305

Lc = L(Fc(X̃), y, θ) + L(Fc(X), y, θ) (5) 306

Lmlm = L(Fm(X̃), X, θ) (6) 307

Here, L is the cross entropy loss function for 308

both masked language model task Lmlm and clas- 309

sification task Lc. As seen in Algorithm 1 line 6, 310

we run the fine-tuning process based on the noisy 311

input and the original input and we run the mask 312

prediction task simultaneously. We assume that 313

with the mask prediction task also involved in fine- 314

tuning, the model will not be focusing on fitting the 315

classification task only, which can help maintain 316

the entire semantic information and mitigate the 317

adversarial affect from the adversaries. 318

Further, we use gradients to craft virtual adver- 319

saries δ and calculate loss based on these adver- 320

saries Lnoise: 321

δ ←
∏
||δ ||F<ε

(δ + α · gδ/||gδ||F ) (7) 322

Lnoise = L(Fm(X̃ + δ), X, θ) (8) 323
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Here the cross entropy loss L is calculated based324

on all tokens not just the masked ones. In this325

way, the masked language model prediction task is326

modified to make the model tolerate more noises327

and therefore more robust.328

The difference between our rebuild-training and329

traditional virtual adversarial training is that we al-330

low the perturbations to be extremely large. That is,331

the adversarial learning rate α and the perturbation332

boundary ε are larger than those used in the FreeLB333

and TAVAT method. Therefore, some of the tokens334

are seriously affected by gradients, which is an ef-335

fective method for further pre-training the model336

to tolerate adversaries. Further, the perturbations δ337

are based on both prediction loss and the language338

model loss, which cover a wider range so that the339

model can be more resilient.340

Given training batch B, we calculate all the341

losses of prediction task, rebuild task and gradient-342

based noise rebuild task and update the model pa-343

rameter. Therefore, we can train a model that can344

rebuild the input texts from a noisy input, also it345

can make robust predictions based on the rebuilt346

texts.347

With the proposed rebuild training, we can im-348

prove the model robustness in two perspectives: (1)349

we have a more robust forward process since the350

model will first rebuild the potentially sabotaged351

texts and predict the model label based on the re-352

built texts; (2) we have a more robust model since353

the fine-tuned model possesses more semantic in-354

formation than normal fine-tuned models;355

4 Experiments356

4.1 Datasets357

We use two widely used text classification tasks:358

IMDB 1 (Maas et al., 2011) and AG’s News 2359

(Zhang et al., 2015) in our experiments. The IMDB360

dataset is a bi-polar movie review classification361

task; the AG’s News dataset is a four-class news362

genre classification task. The average length is363

220 words in the IMDB dataset, and 40 words in364

the AG’s News dataset. We use the test set fol-365

lowing the Textfooler 1k test set in the main re-366

sult and sample 100 samples for the rest of the367

experiments since the attacking process is seriously368

slowed down when the model is defensive.369

1https://datasets.imdbws.com/
2https://www.kaggle.com/amananandrai/ag-news-

classification-dataset

4.2 Attack Methods 370

Popular attack methods exemplified by Generic 371

Algorithm (Alzantot et al., 2018), Textfooler (Jin 372

et al., 2019) and BERT-Attack (Li et al., 2020) can 373

successfully mislead strong models of both IMDB 374

and AG’s News task with a very small percentage 375

of substitutions. Therefore, we use these strong 376

adversarial attack methods as the attacker to test 377

the effectiveness of our defense method. The hyper 378

parameters used in the attacking algorithm vary in 379

different settings: we choose candidate list size K 380

to be 12 and 48 typically which are used in the 381

Textfooler and BERT-Attack methods. 382

We use the IMDB task and the AG’s News task 383

since the average sequence length is relatively long. 384

These long-texts tasks are more vulnerable under 385

adversarial attacks since the perturbation rate is 386

considerably small. Normally, we assume that a 387

small percent of substitutes should not drastically 388

change the classification results. 389

4.3 Victim Models and Defense Baselines 390

The victim model is the fine-tuned pre-train mod- 391

els exemplified by BERT and RoBERTa, which we 392

implement based on Huggingface Transformers 3 393

(Wolf et al., 2020). As discussed above, there are 394

few works concerning adversarial defenses against 395

candidate-agnostic attacks in NLP tasks. Moreover, 396

previous works do not focus on recent strong at- 397

tack algorithms such as Textfooler (Jin et al., 2019), 398

BERT-involved attacks (Li et al., 2020; Garg and 399

Ramakrishnan, 2020) Therefore, we use methods 400

that can defend candidate-agnostic adversarial at- 401

tacks as our baselines: 402

Adv-Train (HotFlip): Ebrahimi et al. (2017) 403

introduces the adversarial training method used 404

in defending against substitution-based adversar- 405

ial attacks in NLP. It uses gradients to find actual 406

adversaries in the embedding space. 407

Virtual-Adv-Train (TAVAT): Token-Aware 408

VAT (Li and Qiu, 2020) use virtual adversaries 409

(Zhu et al., 2019) to improve the performances in 410

fine-tuning pre-trained models, which can also be 411

used to deal with substitute-agnostic attacks. We 412

follow the standard TAVAT training process to re- 413

implement the defense results. 414

Further, there are some works that require candi- 415

date list, it is not a fair comparison with candidate- 416

agnostic defense methods, so we list them sepa- 417

rately: 418

3https://github.com/huggingface/transformers
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Methods Origin Textfooler(K=12) BERT-Atk(K=12) Textfooler(K=48) BERT-Atk(K=48)

IMDB

BERT 94.1 20.4 18.5 2.8 3.2
RoBERTa 97.3 26.3 24.5 25.6 23.0
Adv-HotFlip (BERT) 95.1 36.1 34.2 8.1 6.2
TAVAT (BERT) 96.0 30.2 30.4 7.3 2.3
Rebuild & Ensemble (BERT) 93.0 81.5 76.7 51.5 44.5
Rebuild & Ensemble (RoBERTa) 96.1 84.2 82.0 55.3 52.2

AG’s News

BERT 92.0 32.8 34.3 19.4 14.1
RoBERTa 90.1 29.5 30.4 17.9 13.0
Adv-HotFlip (BERT) 91.2 35.3 34.1 18.2 8.5
TAVAT (BERT) 90.5 40.1 34.2 20.1 8.5
Rebuild & Ensemble (BERT) 90.6 61.5 49.7 34.9 22.5
Rebuild & Ensemble (RoBERTa) 90.8 59.1 41.2 34.2 19.5

Table 1: After-Attack Accuracy compared with defense methods that can defend candidate-agnostic attacks.

Methods Origin Textfooler(K=48) Generic

IMDB

BERT 94.0 2.0 45.0
Augmentation 93.0 18.0 53.0
ADA 93.5 17.0 -
ASCC 77.0 - 71.0
R & E 93.0 52.0 79.0

Table 2: After-Attack Accuracy compared with previ-
ous access-candidates methods based on BERT model.
- means that the results are not reported in the corre-
sponding papers.

Adv-Augmentation: We generate adversarial419

examples of the training dataset as a data augmen-420

tation method. We mix the generated adversarial421

examples and the original training dataset to train422

a model in a standard fine-tuning process.423

ASCC: Dong et al. (2021) also use a convex-424

hull concept based on the candidate vocabulary as425

strong adversarial defense.426

ADA: Si et al. (2020) use a mixup-strategy based427

on the generated adversarial examples to achieve428

adversarial defense.429

4.4 Implementations430

We use BERT-BASE and RoBERTa-BASE models431

based on the Huggingface Transformers 4. We mod-432

ify the virtual adversarial training process based433

on the implementation of FreeLB 5 and TAVAT 6.434

The adversarial training hyper-parameters we use is435

different from FreeLB and TAVAT, since we aim to436

find large perturbations to simulate adversaries. We437

4https://github.com/huggingface/transformers
5https://github.com/zhuchen03/FreeLB
6https://github.com/LinyangLee/Token-Aware-VAT

set adversarial learning rate α 1e-1 to and normal- 438

ization boundary ε 2e-1 in all tasks. The ensemble 439

size we use is N = 16 for all tasks and we will 440

discuss the selection of N in the later section. 441

We use the TextAttack toolkit as well as the offi- 442

cial code to implement adversarial attack methods 443
7 (Morris et al., 2020a). The similarity thresholds 444

are the main factors of the attacking algorithm. We 445

tune the USE (Cer et al., 2018) constraint 0.5 for 446

the AG task and 0.7 for the IMDB task and 0.5 for 447

the cosine-similarity threshold of the synonyms em- 448

bedding (Mrkšić et al., 2016) which can re-produce 449

the results of the attacking methods reported. 450

4.5 Results 451

As seen in Table 1, the proposed Rebuild and En- 452

semble framework can successfully defend strong 453

attack methods. The accuracy of our defensing 454

method under attack is significantly higher than no- 455

defense models. Compared with previous defense 456

methods, our proposed method can achieve higher 457

defense accuracy in both IMDB task and AG’s 458

News task. The HotFlip and the TAVAT method 459

are effective but not enough, which indicates that 460

gradient-based adversaries are not very similar with 461

actual substitutions. We can see that HotFlip and 462

TAVAT methods achieve similar results which indi- 463

cates that gradient-based adversarial training meth- 464

ods have similar defense ability no matter the adver- 465

saries are virtual or real since they are both unaware 466

of the attacker’s candidate list. 467

Also, the original accuracy (on the clean data) 468

of our method is only a little lower than the base- 469

line methods, which indicates that the defensive 470

7https://github.com/QData/TextAttack
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Different Settings of R & E Origin Textfooler(K=12) BERT-Atk(K=12)

Train Inference
Joint VAT Ensemble Rebuild Insert

Rebuild and Ensemble Method
X X X X X 93.0 86.0 77.0

Rebuild Train No Ensemble
X X X X 93.0 63.0 52.0
X X X 93.0 42.0 29.0
X X X 95.0 45.0 34.0
X X 95.0 29.0 17.0

Inference Only
X X X 94.0 72.0 60.0

X X 87.0 20.0 13.0
X 92.0 11.0 3.0

X 96.0 75.0 62.0

Baseline
- - - - - 93.0 20.0 18.0

Table 3: Ablations results tested on attacking the IMDB task based on BERT models.

rebuild and ensemble strategy does not hurt the471

performances. The Roberta model also shows ro-472

bustness using both original fine-tuned model and473

our defensive framework, which indicates our de-474

fending strategy can be used in various pre-trained475

language models.476

Further, the candidate size is extremely impor-477

tant in defending adversarial attacks, when the can-478

didate size is smaller, exemplified by K = 12, our479

method can achieve very promising results. As480

pointed out by Morris et al. (2020b), the candidate481

size should not be too large that the quality of the482

adversarial examples is largely damaged.483

As seen in Table 2, we compare our method484

with previous access-candidates defense methods.485

When defending against the widely used Textfooler486

attack and Generic attack (Alzantot et al., 2018),487

our method can achieve similar accuracy even com-488

pared with known-candidates defense methods. As489

seen, data augmentation method cannot signifi-490

cantly improve model robustness since the candi-491

dates can be very diversified, using generated ad-492

versarial samples as an augmentation strategy does493

not guarantee robustness against greedy-searched494

methods like Textfooler and BERT-Attack.495

4.6 Analysis496

4.6.1 Ablations497

We run extensive ablation experiments to explore498

the working mechanism in defending adversaries.499

We run ablations in two parts: (1) using the rebuild-500

trained model; (2) using the ensemble inference501

without training the model specifically.502

Firstly, we test the model robustness without us- 503

ing ensemble inference, that is, during inference, 504

the ensemble size N is 1: We explore the effec- 505

tiveness of incorporating the gradient-noise rebuild 506

process. Also, we test the result of using the mask 507

and rebuild strategy as well as the insert and rebuild 508

strategy. Then we test the inference process: We 509

use the fine-tuned model and the original masked 510

language model as the prediction model and the 511

rebuild model to run inference. We test the effec- 512

tiveness of making multiple copies of rebuilt texts; 513

We also explore how the two operations: mask and 514

insert work during inference; Further, we setup an 515

experiment using the noisy texts without the rebuild 516

process. 517

As seen in the Table 3, we could explore 518

the working mechanism in defending against the 519

candidate-agnostic attacks via extensive results. 520

The observations indicate that: 521

(a) Rebuild Train is effective: The process in 522

rebuild training allows the trained model to be 523

aware of both the missing texts that need rebuilding 524

and the classification labels of the inputs, which 525

is helpful in rebuilding classification-aware texts. 526

Without the rebuild trained model, the accuracy 527

is even lower when rebuilding with the original 528

masked language model during ensemble inference. 529

However, rebuilding using the original MLM is not 530

very much helpful, which indicates that the model 531

trained with re-building process is important. 532

(b) Ensemble during inference is important: As 533

seen, with the ensemble strategy, even random 534

masking with an ensemble process can be helpful. 535
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Figure 3: Hyper-Parameter Selection Analysis

(c) Gradient-Noise Rebuild is helpful: without536

the gradient-noise rebuild process, the model can537

still defend adversaries.538

4.6.2 Candidate Size Analysis539

One key problem is that these attacking algorithms540

use a very large candidate size with a default set541

to around 50, which seriously harm the quality of542

the input texts. Therefore, we run experiments543

using different candidate size of these attacking al-544

gorithms to see how our defense strategy performs.545

As seen in Fig. 3 (a), when the candidate is 0, the546

accuracy is high on the clean samples. When the547

candidate is 6, the normal fine-tuned BERT model548

cannot correctly predict the generated adversarial549

examples. This indicates that normal fine-tuned550

BERT is not robust even when the candidate size551

is small. While our approach can tolerate these552

limited candidate size attacks. When the candidate553

size grows, the performances of our defense frame-554

work drop by a relatively large margin. We assume555

that large candidate size would seriously harm the556

semantics which is also explored in Morris et al.557

(2020b), while these adversaries cannot be well558

evaluated even using human-evvaluations since the559

change rate is still low.560

4.6.3 Ensemble Strategy Analysis561

One key problem is that how many copies we562

should use in the rebuilding process, since during563

inference, it is also important to maintain high effi-564

ciency. We use two attack methods withK = 12 to565

test how the accuracy varies when using different566

ensemble size N .567

As seen in Fig. 3 (b), the ensemble size is actu-568

ally not a key factor. Larger ensemble size would569

not result in further improvements. We assume that570

larger ensemble size will smooth the output score571

which will benefit the attack algorithm. When the572

Methods Origin Textfooler (K=12)

BERT 94.0 20.0
R & E (Mean) 93.0 82.0
R & E (Mean)(N=1) 93.0 42.0
R & E (Vote) 93.0 88.0
R & E (Vote)(N=1) 93.0 62.0

Table 4: Exploring the Ensemble Strategy

number of rebuild is not large, the inference effi- 573

ciency is bearable. 574

Further, we found that the ensemble strategy 575

could use a voting mechanism to construct a virtual 576

score as the final output. That is, the argmax votes 577

can be used to craft a confident score. When the 578

ensemble size N = 1, this process is a hard-score 579

attack that only gives 1 and 0 as the output. 580

As seen in Table 4, the defensive result using 581

the voting strategy is higher than using the average 582

logits. So we can assume that incorporating our 583

rebuild and ensemble strategy with output-score- 584

hiding strategies could further improve the model 585

robustness. 586

5 Conclusion and Future Work 587

In this paper, we introduce a novel rebuild and 588

ensemble defense strategy against current strong 589

adversarial attacks. The rebuild trained model can 590

improve the model robustness since it maintains 591

more semantic information while it also introduces 592

a rebuild text process. The ensemble inference is 593

also effective indicating that the multiple rebuilt 594

texts are better than one. Experiments show that 595

these proposed components can work coordinately 596

to achieve strong defense performances. We are 597

hoping such a defense process can provide hints 598

for future works on adversarial defenses. 599
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