
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VERSICODE: TOWARDS VERSION-CONTROLLABLE
CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have made tremendous strides in code generation,
but existing research fails to account for the dynamic nature of software develop-
ment, marked by frequent library updates. This gap significantly limits LLMs’
deployment in realistic settings. In this paper, we propose two novel tasks aimed
at bridging this gap: version-specific code completion (VSCC) and version-aware
code migration (VACM). In conjunction, we introduce VersiCode, a comprehensive
Python dataset specifically designed to evaluate LLMs on these two tasks, together
with a novel evaluation metric, Critical Diff Check (CDC@1), which assesses code
generation against evolving API requirements. We conduct an extensive evaluation
on VersiCode, which reveals that version-controllable code generation is indeed a
significant challenge, even for GPT-4o and other strong frontier models. We believe
the novel tasks, dataset and metric open up a new, important research direction that
will further enhance LLMs’ real-world applicability. The code and resources can
be found at https://anonymous.4open.science/VersiCode-B0F6.

1 INTRODUCTION

Large Language Models (LLMs), including OpenAI’s GPT series (OpenAI, 2023a;b; 2024) and
specialized variants such as CodeLLaMA (Rozière et al., 2023), have demonstrated significant
advancements in code generation tasks. Typically evaluated using benchmarks such as HumanEval
(Chen et al., 2021) and MBPP (Austin et al., 2021), these models are measured on tasks that assume
code generation is a static activity. However, the reality of software development is inherently
dynamic, characterized by frequent updates to software libraries, which necessitate adjustments to
API interfaces. This evolving landscape raises crucial challenges for LLMs, particularly their ability
to generate code that is functional for different, specific library versions. This dynamic nature of
software development leads us to ask the following questions:

• How reliably can LLMs generate code compatible with specific library versions?
• How effectively can LLMs adapt code for API changes across library versions?

Existing benchmarks (Jiang et al., 2024; Sun et al., 2024; Luo et al., 2024b), which are oblivious
to version-specific dynamics, do not address these challenges. They fall short of simulating the
continuous version management activities undertaken by developers who ensure the software remains
functional across updates. The static nature of existing benchmarks represents a significant barrier to
the practical deployment of LLMs in professional environments, where handling version-specific
dependencies is critical (Zhang et al., 2020; 2021; Dilhara et al., 2021; Liu et al., 2021; Wang et al.,
2020; Vadlamani et al., 2021; Haryono et al., 2021).

To bridge this gap, we propose two novel tasks aimed at evaluating LLMs’ version-controllable code
generation capabilities, namely version-specific code completion (VSCC) and version-aware code
migration (VACM). These tasks are crafted to mimic real-world software development scenarios,
motivated in Figure 1, requiring models to generate code that not only is syntactically correct but
also adheres to version-specific API contracts (Zhang et al., 2020; 2021; Dilhara et al., 2021; Liu
et al., 2021; Wang et al., 2020; Vadlamani et al., 2021; Haryono et al., 2021). Moreover, we introduce
VersiCode, the first dataset specifically designed for these two tasks. VersiCode includes data spanning
over 300 Python libraries and more than 2,000 versions across 9 years. It has undergone a careful
curation process to ensure high quality. Thus, VersiCode provides a comprehensive and robust testbed

1

https://anonymous.4open.science/VersiCode-B0F6

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

IDE

Scenario 1: Interacting with
LLM in the browser

Scenario 2: Programming in an integrated
development environment

Function
Docstring

Library Version: pandas==1.4.0

Functionality Description:
"""
The code resamples time series using pandas, fills NaN values backward, and creates
intervals of 30 and 15 minutes.
"""
Code Snippet:

· · ·
s_resampled_15min = s.resample('15min').bfill(limit=2)
· · ·

user

Library Version: pandas==1.3.5
Functionality Description: The code backfills
missing values in a pandas series.

user

Library Version: pandas==1.4.0
Functionality Description: The code backfills
missing values in a pandas series.

import pandas as pd
s = pd.Series([1, None, 3, None, 5])
s_filled = s.backfill() LLM

Correct Answer

Wrong Answer

import pandas as pd
s = pd.Series([1, None, 3, None, 5])
s_filled = s.backfill() LLM

>

>

df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
index=pd.date_range(‘20230101', periods=3, freq='h'))

resampled_30min = df.resample('30min').bfill()
resampled_15min = df.resample('15min').bfill(limit=2)

import pandas as pd
import numpy as np
s = pd.Series([1, 2, 3], index=pd.date_range('20230101', periods=3, freq='h'))
s_resampled_30min = s.resample('30min'). bfill()

block line token

Figure 1: Two motivating scenarios for version-controllable code generation: (left) Interacting with LLMs in a
browser, where slight query changes lead to incorrect answers, and (right) Programming in an IDE, explicitly
specifying the version of dependency libraries.

for assessing LLMs under realistic conditions. Furthermore, we propose a new evaluation metric,
CDC (Critical Diff Check), which enhances traditional code similarity metrics by incorporating
considerations for API usage, parameter handling, and deprecated features management. This metric
offers a more granular assessment of a model’s ability to navigate the complexities of evolving
software libraries.

Our extensive testing of strong frontier models like GPT-4o and LLaMA3 (Meta LlaMa team, 2024)
reveals significant challenges in version-aware code generation tasks. We uncover that (1) LLMs
often retain outdated programming knowledge, particularly concerning version-specific information.
(2) Conventional metrics used for evaluating code generation do not effectively capture the nuances
of version sensitivity. (3) While leveraging context from various library versions can be beneficial, its
utility can be limited. Guided by these insights, we suggest strategies, such as targeted pretraining,
continual learning, and refined evaluation methods, for improving LLMs’ version-controlled code
generation capabilities.

Our contributions are summarized as follows:

• We propose two novel and important yet under-explored tasks in code generation, namely
version-specific code completion and version-aware code migration.

• We introduce VersiCode, a comprehensive, well-documented and versioned dataset, accom-
panied by a subset annotated with executable test cases.

• We introduce Critical Diff Check, a new metric that extends traditional code similarity
metrics by checking syntactic validity, API usage, parameter matching, the use of ‘with’
statements, and correct keyword arguments in the generated code, providing a more detailed
evaluation of version-specific code generation.

• Our thorough experiments provide valuable insights and directions for future research in
this critical area of software development.

2 VERSION-CONTROLLABLE CODE GENERATION

VersiCode is a large-scale code generation benchmark dataset focusing on evolving library dependen-
cies. We curated our dataset by initially selecting popular Python repositories from GitHub, confirmed
by their star ratings, and ensured they were permissively licensed. For each library, we compiled data
from three main sources: (1) Library Source Code, extracting all pip-installable versions and official
API usage examples from docstrings; (2) Downstream Application Code, sourcing from top-tier
research papers spanning ten years to capture evolving libraries; (3) Stack Overflow, retrieving FAQs
that mention specific library versions. We present the dataset statistics, construction process and
examples in detail in Appendix 2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Output of Migration

def bar():
 cb = createResolutionCallbackFromFrame(1)
 print(cb("foo"))

Input

Library Version: torch==1.3.1

Code Snippet:
def bar():
 cb = createResolutionCallback(1)
 print(cb("foo"))

Output of Completion

createResolutionCallbackToken-Level:
cb = createResolutionCallback (1)Line-Level:

def bar():
 cb = createResolutionCallback(1)
 print(cb("foo"))

Block-Level:

Code Completion

Input

Library Version: torch==1.3.1

Token-Level:
def bar():
 cb = <token_mask>(1)
 print(cb("foo"))

Line-Level:
def bar():
 <line_mask>
 print(cb("foo"))

Block-Level:
<block_mask>

New Library Version: torch==1.4.0

Code Migration

Inference

Functionality Description:
This code prints the callback result for "foo"
with a parameter of 1.

Functionality Description:
This code prints the callback result for "foo" with a parameter of 1.

Inference

Metadata

Library Version:
torch==1.4.0

Metadata

Code Snippet:
def bar():
 cb = createResolutionCallback(1)
 print(cb("foo"))

Library Version:
torch==1.3.1

Functionality Description:
This code prints the callback result
for "foo" with a parameter of 1.

Figure 2: The post-processing pipeline transforms metadata into specific tasks and the running example per task:
(left) Leveraging pairs of metadata that share the same functionality but different library versions to construct
block-level code migration instances; (right) Utilizing each metadata sample, masking version-sensitive content
to create multi-granularity code completion instances.

As shown in Figure 2, we define a meta-instance as m = [l; v; d; c] ∈ M, where l, v, d, and c represent
the library name, version, functionality description, and code snippet, respectively. Consider an API
a added to library l in version vs and deprecated in version ve, and is active in the intermediate
version vm where s ≤ m ≤ e. We refer to the interval [s, e] as the lifecycle of a. To analyze model
performance in detail, we assess how up-to-date each LLM is concerning newly added or deprecated
APIs per version. We compare the source code between any two consecutive versions of each library
to detect changes in API or method names. Based on the detection results, we label the source code
as follows: “addition” indicates an API newly added in the current version and still applicable in
subsequent versions; “deprecation” indicates the current version is the last usable version for the API;
and “general” indicates the API usage method is inherited from the previous version.

We introduce the two novel version-controllable code generation tasks below.

Version-Specific Code Completion (VSCC): Given a meta-instance mi, the input is x =
[li; vi; di; c

′
i], where c′i is the code snippet ci with selective masking, replacing the library- and

version-sensitive contents with a special token. Depending on the length of the masked contents,
the special token is defined as “[token-mask]”, “[line-mask]”, or “[block-mask]”, reflecting code
completion on different granularity levels. The output y is the masked content, typically containing
function names or variables.

Version-Aware Code Migration (VACM): Given a pair of meta-instances (mi,mj |li = lj , di =
dj , vi ̸= vj), the input x = [li; vi; di; ci; vj], and the output y = cj . Note that version editing may
require refactoring of the code structure, making it difficult to format as detailed as in token-level
or line-level completion. Additionally, depending on the numerical relationship between vi and vj ,
various scenarios arise, such as editing from an old version to a new version, or vice versa. Data
statistics are detailed in Appendix B

3 TOKEN-LEVEL VERSION-SPECIFIC CODE COMPLETION

In code generation that targets a specific version of a third-party library, the version-related changes
usually involve updates to identifiers, such as the addition, removal, or renaming of classes, functions,
and parameters. The token-level code completion task for a specified version, predicting the evolving
identifiers identified in real code, is a fundamental and direct way to evaluate LLMs to generate code
for specific versions. We begin our research by addressing the following three research questions:
(1) How well do LLMs perform on code completion tasks that involve version-specific library
usage compared to other benchmarks like HumanEval and MBPP? (2) How do LLMs handle new,
deprecated, and intermediate versions of libraries in code completion tasks? (3) How does the
performance of LLMs in code completion change over time with different library versions?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: The EM@1 results for token-level code completion from VersiCode: Performance grouped by data
sources, and (b) Performance grouped by API lifecycle.

3.1 EXPERIMENT SETUP

Models: We benchmarked VersiCode against popular open-domain LLMs and dedicated code-
LLMs, including variant families such as GPT (OpenAI, 2023a;b; 2024), LLaMa (Touvron et al.,
2023), Mistral (Jiang et al., 2023), CodeLLaMa (Rozière et al., 2023), CodeQwen (Bai et al.,
2023), CodeGemma (CodeGemma Team et al., 2024), StarCoder (Lozhkov et al., 2024), Deepseek-
Coder (Guo et al., 2024), and WizardCoder (Luo et al., 2024c). For smaller open-source models
(e.g., <20B parameters), we downloaded them from HuggingFace 1 and deployed them locally for
inference. For larger models, such as LLaMa3 70B (Meta LlaMa team, 2024) and GPT-4o (OpenAI,
2024), we used their online APIs 2 3 for inference.

Data Preparation: Each instance in VersiCode is tagged with its data source (library source code,
downstream applications, or Stack Overflow), feature type (addition, deprecation, or general), and
release time, allowing for more detailed performance analysis. We randomly selected 2,000 instances
for token-level code completion. (see Appendix A.3).

Baseline Dataset: To assess the difficulty of VersiCode, we compared it with two well-known code
generation datasets, HumanEval (Liu et al., 2023) and MBPP (Jiang et al., 2024), and observed
the overall performance of models. HumanEval (Liu et al., 2023) measures functional correctness
in synthesizing programs from docstrings with 164 original problems, resembling simple software
interview questions. MBPP (Austin et al., 2021), with about 1,000 crowd-sourced Python problems
for entry-level programmers, covers programming fundamentals and standard library functionality,
including task descriptions, code solutions, and three automated test cases for each problem. We
also collected the evaluation results for their upgraded versions HumanEval+ (Liu et al., 2023) and
MBPP+ (Liu et al., 2023). Please refer to Appendix D.1 for details.

Evaluation Metrics: We use EM@k for token-level generation: For this metric, we generate n ≥ k
samples per instance (with n = 100 and k ∈ {1, 3, 10} for our experiments). We count the number
of correct samples c ≤ n judged by exact matching. @k is defined as the average performance over

the task, calculated as E
[
1− (n−c

k)
(nk)

]
, which is the same with Pass@k (Chen et al., 2021).

3.2 RESULTS AND ANALYSIS

However, a substantial performance gap of at least 15 points remains when compared to HumanEval
and MBPP (detailed in Appendix D.1). This indicates that state-of-the-art LLMs still struggle to
deliver satisfactory results, even for the simplest token-level completion tasks.

1https://huggingface.co/models
2https://together.ai
3https://openai.com/

4

https://huggingface.co/models
https://together.ai
https://openai.com/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0

25

50

75

100

0

250

500

750

1000

Y2
01
5
Y2
01
6
Y2
01
7
Y2
01
8
Y2
01
9
Y2
02
0
Y2
02
1
Y2
02
2
Y2
02
3

EM
@

1

Instance num
.

0

25

50

75

100

0

250

500

750

1000

Y2
01
5
Y2
01
6
Y2
01
7
Y2
01
8
Y2
01
9
Y2
02
0
Y2
02
1
Y2
02
2
Y2
02
3

EM
@

1
Instance num

.

0

25

50

75

100

0

250

500

750

1000

Y2
01
5
Y2
01
6
Y2
01
7
Y2
01
8
Y2
01
9
Y2
02
0
Y2
02
1
Y2
02
2
Y2
02
3

EM
@

1

Instance num
.

(a) Overall (b) Deprecation (c) Addition

0

20

40

60

80

0

250

500

750

1000

Y2015 Y2016 Y2017 Y2018 Y2019 Y2020 Y2021 Y2022 Y2023

Instance Num. DeepSeek-Coder-7B-Instruct-V1.5 CodeLlama-13B-Instruct StarCoder2-15B CodeGemma-7B GPT-3.5-Turbo GPT-4o Llama-3-70B-Chat Average

Figure 4: The EM@1 performance for token-level code completion, grouped by year (2015-2023), with a
histogram of data distribution for each year.

Differences in LLM performance across different data sources. Figure 3-a presents the EM@1
results for token-level code completion on VersiCode, categorized by data sources. Among the three
data sources, most models perform significantly better on Stack Overflow, especially compared to
handling source code from downstream applications. This discrepancy may be attributed to the greater
diversity found in downstream applications, which demands a more robust capability to address varied
challenges. This may also indicate that Stack Overflow is heavily represented in the pre-training data
of LLMs, increasing the likelihood of data leakage. GPT-4o (M13) and LLaMA3-70B (M12) stand
out as outliers, increasing the likelihood of models memorizing specific content, which may excel in
handling downstream applications. Full numeric results are provided in Appendix D.1.

Challenges in casual intermediate library versions. We present the token-level EM@1 results for
the token-level code completion task, categorized by lifespan features: addition (in blue), deprecation
(in orange), and general (referring to intermediate versions; in green), as shown in Figure 3-b. Most
models perform well in cases of addition and deprecation, likely because newly added or deprecated
APIs are often emphasized in documentation and by the community. However, most models struggle
with reasoning and adapting to intermediate versions. As shown in Figure 3-a, models like LLaMA3-
70B excel in downstream applications and handle intermediate versions more effectively, likely due
to the diversity of use cases they encounter.

The programming knowledge of LLMs, particularly regarding version-specific information, is
surprisingly outdated. Figure 4 presents the EM@1 performance for token-level code completion,
grouped by year from 2015 to 2023, along with a histogram showing the data distribution for each
year. To ensure precise timestamps and minimize noise, we only used instances collected from
library source code. As shown in Figure 4-a, there is a clear trend: model performance declines as
the release time becomes more recent. This is counter-intuitive compared to temporal knowledge
question answering (Zhao et al., 2024), where performance initially increases before declining. We
further filtered for “deprecation” (Figure 4-b) and “addition” (Figure 4-c) to identify version-sensitive
cases. Although data sparsity reduces confidence in the results, both cases show a clear downward
trend over time This suggests that LLMs have outdated programming knowledge, highlighting the
need for rapid adaptation to newer libraries and APIs.

4 FROM TOKEN-LEVEL TO LINE- AND BLOCK-LEVEL COMPLETION

When utilizing third-party code library APIs, LLMs should handle not only API name generation
but also parameter preparation and contextual code integration. In this section, we extend the task
to line-level (completing a single line) and block-level (completing multiple lines) code generation.
This expanded scope presents new challenges for both the model’s capabilities and the evaluation
methodologies. (1) How does increasing complexity in line- or block-level code completion affect the
LLMs to handle API usage and parameters? (2) How does having more context (like import statements
and specified library version) improve the accuracy of line- and block-level code generation? (3)
Which evaluation metrics best capture the accuracy of line- and block-level code generation, and
which is most reliable?

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Task Function

import pandas as pd
def task_function(data):

"""
Description: ... Args: ... Returns: ...
"""
s = pd.Series(data)
s_filled = s.backfill()
return s_filled

Library Version: pandas==1.3.5

Code Snippet

import pandas as pd
s = pd.Series([1, None, 3])
s_filled = s.backfill()

Library Version: pandas==1.3.5

GPT-4 Refactoring

Test Case Generation

class TestTaskFunction():
def test_return_type(): ...
def test_normal_input(): ...
def test_boundary_values(): ...
def test_functionality_1(): ...
…

Write test cases for the task
function using GPT-4:

Manual Vertification

If successful, confirm completion
after further review;
If failed, correct with multiple GPT-4
interactions.

Experts validate tests in
specified environments and
correct with GPT-4:

Data Refactoring LLM & Human Curation

Figure 5: The process of executable code assessment, which includes data refactoring, test case generation, and
validation. Starting from code snippets collected from real code involving specific API calls for a given library
version, GPT-4 is employed to refactor the code into a task function. The large language model is then prompted
to generate test cases from various perspectives (See Appendix F for a running example of instances and test
cases.) Each generated test case is verified by experts, and the correctness is ensured by running the code in a
specified environment. If issues arise, they are corrected through multiple iterations with GPT-4.

4.1 EXPERIMENT SETUP

Models: We selected GPT-4o, GPT-3.5, and LLaMA3 70B, the three models that perform best on
token-level code completion, to conduct experiments on line-level or block-level code completion.

Data Preparation: We sample a subset from VersiCode for dynamic code analysis with executable
test cases from library source code, focusing on code snippets with complete context (e.g., import
statements). GPT-4 was used to refactor the snippets into task functions, followed by test case
generation and validation in a version-specific environment. All of the test cases have been manually
verified to ensure their correctness. The code completion tasks are categorized into token, line, and
block levels. The test cases include return type, normal input, boundary values, and functionality
checks (see Appendix A.3 for details).

Metrics: We use the following evaluation metrics for each task granularity: (1) Pass@k for token-
level generation (Chen et al., 2021): For this metric, we generate n ≥ k samples per instance (with
n = 6 and k = 1 to compare different metrics). We count the number of correct samples c ≤ n
judged by executable testing. (2) Identifier Sequence Match (ISM@k) and Prefix Match (PM@k)
for line-level generation (Agrawal et al., 2023): These metrics measure how closely the generated
sequences match the ground truth. For block-level generation, we adopt the average performance over
lines. Following the setup in Agrawal et al. (Agrawal et al., 2023), we generate n = 6 independent
samples per instance. (3) Exact Match (EM@k): We use regular expression matching to determine
whether the specified API is used in the code generated by the model and the formula for calculating
the EM@k score is the same as the formula for calculating the Pass@k score (n = 6 and k = 1). (4)
Critical Diff Check (CDC@k): Unlike traditional code similarity calculations, CDC focuses on the
differences between the code generated by the model and the reference answer. CDC extends the EM
metric by adding four additional rules: checking whether the generated code is syntactically valid;
identifying the line in the generated code where the specified API is used and determining if the
number of parameters in the function call is the same; if the answer uses a with statement, checking
whether the generated code also uses a with statement; and if the answer uses keyword arguments,
verifying whether the generated code uses the same keyword arguments. Please refer to Appendix E
for detailed examples, effectiveness analysis, and ablation study, conducted to validate CDC.

4.2 RESULTS AND ANALYSIS

Less context leads to more errors in code generation. When models have more context, like import
statements, their performance improves significantly. For example, as shown in Table 1, GPT-4o
at the token level achieves a Pass@1 score of 65.97 with imports, but this drops to 44.54 without
imports. This pattern is consistent across all models and granularity levels (i.e., token, line, and
block), as shown in Figure 6. When models lack important context, such as external libraries or other
dependencies, they struggle to generate accurate code, which leads to more errors. So, giving models
more information upfront is crucial for better results.

Models show limited sensitivity to version-specified instructions. As shown in Table 1, at the
token level, models like GPT-4o perform slightly better when provided with version information

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 2 3

图表标题

test_return_type test_normal_input test_boundary_values test_functionality

0
10
20
30
40
50
60
70
80

Token-level Line-level Block-level

P
as
s@

1

GPT-3.5-Turbo

0
10
20
30
40
50
60
70
80

Token-level Line-level Block-level

P
as
s@

1

Llama-3-70B-Chat

0
10
20
30
40
50
60
70
80

Token-level Line-level Block-level

P
as
s@

1

GPT-4o

V6 update skleran-0.22 error

Figure 6: The Pass@1 performance of different models across various granularities and test case types.

Token Line Block
Model Pass@1 EM@1 CDC@1 Pass@1 EM@1 ISM@1 PM@1 CDC@1 Pass@1 EM@1 ISM@1 PM@1 CDC@1

w/ import; w/ version

GPT-3.5-Turbo 44.68 49.16 49.16 30.67 59.38 47.44 40.01 27.59 14.85 54.90 78.15 47.04 26.61
Llama-3-70B-Chat 50.28 54.48 54.48 36.27 63.87 49.58 45.50 29.27 15.41 59.10 79.10 48.02 27.73

GPT-4o 71.15 76.33 76.33 51.82 78.99 57.98 59.49 41.04 22.55 59.24 76.68 59.43 31.65

w/o import; w/ version

GPT-3.5-Turbo 22.27 23.95 23.95 17.51 33.61 29.79 25.80 16.11 3.36 25.77 61.57 35.43 10.50
Llama-3-70B-Chat 25.49 27.45 27.45 19.61 38.38 30.73 26.48 15.27 4.62 34.03 68.12 43.91 10.78

GPT-4o 52.80 56.86 56.86 35.71 61.90 46.22 40.28 28.29 7.28 45.52 74.85 51.91 18.07

w/ import; w/o version

GPT-3.5-Turbo 44.54 49.02 49.02 31.79 60.5 48.28 42.27 27.45 15.97 57.14 78.42 48.21 28.71
Llama-3-70B-Chat 49.44 54.06 54.06 35.01 62.89 61.34 62.93 29.13 13.31 59.38 77.96 56.08 26.33

GPT-4o 71.01 77.03 77.03 51.12 77.31 50.05 46.45 40.90 24.79 64.71 79.59 49.38 33.33

w/o import; w/o version

GPT-3.5-Turbo 22.41 24.23 24.43 17.65 36.97 31.93 27.29 17.65 3.92 27.31 62.34 36.62 10.64
Llama-3-70B-Chat 25.77 29.13 29.13 19.47 40.20 36.61 28.95 16.95 4.06 33.47 66.52 42.52 12.61

GPT-4o 49.72 54.90 54.90 35.15 61.76 47.90 42.41 29.27 5.60 46.36 74.95 50.15 17.93

Pearson Correlation Coefficient with Pass@1

PCC - 0.9995 0.9995 - 0.9810 0.8314 0.8196 0.9917 - 0.8974 0.7912 0.6547 0.9626

Table 1: The performance of different models across various granularities (Token, Line, Block). Pass@1 refers
to dynamic analysis metrics, while green-colored metrics (EM, ISM, PM) correspond to static analysis based on
string matching. The blue-colored metric (CDC) represents a newly proposed metric. The configurations labeled
as “w/o version” indicate that the prompt does not specify the version of the third-party code libraries, while

“w/o import” refers to prompts where the provided code context lacks import statements, meaning the model must
generate code based entirely on user intent. The Pearson correlation coefficient is computed for each metric’s
results against Pass@1 within each granularity.

(52.80 with version v.s. 49.72 without version). However, this advantage diminishes at the line and
block levels, where the results become inconsistent. This suggests that while version details can be
helpful for short code snippets, they don’t significantly impact the model’s performance for more
extended or complex code. This likely indicates that models are not trained to prioritize or heavily
rely on version-specific instructions.

The CDC@1 metric closely aligns with Pass@1 scores, making it a strong proxy for dynamic
code analysis. As shown in Table 1, at the block level, the Pearson Correlation Coefficient (PCC)
between CDC@1 and Pass@1 is 0.9995, indicating a strong correlation. Even though EM@1 has a
high correlation with Pass@1 at the token level (PCC = 0.9995), EM@1 becomes less aligned at the
block level (PCC = 0.8974). Additionally, the absolute differences between CDC@1 and Pass@1
values are generally smaller compared to other static metrics like EM@1, making CDC a potentially
more reliable alternative for assessing code generation accuracy.

5 FROM CODE COMPLETION TO CODE MIGRATION

In addition to generating code for specific third-party library versions, another common challenge is
maintaining user projects when these libraries are upgraded or rolled back. We address version-aware
code migration by exploring three key questions: (1) How well can LLMs handle migrating code
across different versions, compared to generating code for a specific version? (2) What impact
do major and minor version changes in third-party libraries have on code migration? (3) How do
forward migrations (from older to newer versions) compare to reverse migrations (from newer to
older versions) in terms of trends and challenges?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Various Version Type Various Releasing Time

Major7→Major Major7→Minor Minor7→Major Minor7→Minor Old 7→ New New 7→ OldModel
CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3

DeepSeek-Coder-7b-instruct-v1.5 4.08 8.00 5.50 11.47 7.00 14.38 8.08 17.23 14.5 28.89 9.16 21.18
CodeLLaMA-13b-Instruct-hf 2.33 5.60 4.08 9.68 7.58 16.58 7.00 15.80 8.14 18.4 9.92 22.82

StarCoder2-15b 2.25 4.60 2.58 6.40 5.00 11.88 4.83 11.75 6.49 14.85 5.22 13.51
CodeGemma-7B 1.00 2.80 0.25 0.75 0.00 0.00 0.50 1.40 0.13 0.38 0.38 1.15
GPT-3.5-turbo 5.00 6.50 9.67 14.90 19.00 25.23 19.42 25.40 22.14 29.73 19.47 32.21

LLaMA-3-70b-chat 12.92 14.20 13.42 16.20 13.08 15.50 16.33 19.82 15.27 19.73 19.97 30.76
GPT-4o 23.67 25.95 35.25 38.40 42.08 47.53 37.83 47.40 43.00 48.02 38.42 47.37

Table 2: The performance of various models in different code migration scenarios. The arrow “7→” indicates
the direction of migration, where “Major” denotes the major release (e.g., Torch v2.0.0 and v2.4.0), and “Minor”
denotes the minor release (e.g., Torch v2.1.3 and v2.3.4). Therefore, the migration could be categorized as
(1)“{x}7→Major”, crossing any major release, like from v2.0.0 to v2.4.0; (2) “{x}7→Minor”, migrating to a
version before the next major release, like from v2.0.0 to v2.0.3. The “Old 7→ New” scenario simulates
upgrading from an old version to a new version, while “New 7→ Old” represents the maintenance of historical
code. The performance of different models in these scenarios is measured using the CDC metrics (CDC@1 and
CDC@3), reflecting their adaptability to various code migration tasks.

5.1 EXPERIMENT SETUP

Models: Based on the token-level code completion experimental results in Section 3, we selected the
most outstanding performers from each model series for the experiments in this section.

Data Preparation: For code migration, we utilize a subset of VersiCode, in which instances are
constructed based on differences between source and target code versions, covering both updates to
newer versions and downgrades. Versions were categorized by patterns (e.g., major vs. minor) to
capture different migration scenarios. (Detailed in Appendix A.3)

Metrics: Code migration is similar to block-level tasks in code completion. We use the same
evaluation metric as for block-level: CDC@k (n = 6, k ∈ {1, 3}).

5.2 RESULTS AND ANALYSIS

Model performance across version migrations. Different models display varying degrees of
adaptability when transitioning between major and minor software versions, with some showing
exceptional robustness in Table 2. The table categorizes version migrations into four types: Major-
to-Major, Major-to-Minor, Minor-to-Major, and Minor-to-Minor. Notably, most models did not
exhibit a significant pattern across different migration scenarios, likely due to their limited awareness
of version-specific API knowledge. Among the scenarios, “Minor7→Minor” intuitively represents
the simplest case (requiring the least code modification). Interestingly, GPT-4o’s performance is
particularly remarkable in the “Minor 7→Major” scenario, where it achieves the highest effectiveness.

Adaptability in code migration based on release timing. Backward and forward compatibility
testing reveals a spectrum of model resilience under different temporal migration scenarios. The
evaluation is split into two releasing time directions: Old-to-New and New-to-Old, shown in Table 2.
Generally, models perform better when adapting to newer versions from older ones, with GPT-
4o standing out for its high scores in both directions. However, the drop in performance when
handling older versions after training on newer releases highlights challenges in maintaining backward
compatibility, a critical aspect for long-term usability and integration stability in evolving tech
environments.

The context code in another version is still helpful, but its benefits are limited. The comparison
between block-level code completion and block-level code migration is shown in Table 2 and Table 1,
reorganized in Appendix D.3, especially Table 9. There is a significant improvement across most
models, except for LLaMA3-70B and GPT-4o. When provided with code in another version as
context (i.e. in the code migration task), these models can generate correct code with a much higher
success rate. However, a bottleneck is more evident in LLaMA3-70B and GPT-4o, where the code
context hinders their performance than code completion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 DISCUSSION

How can we enhance pre-training for new code-LLMs? Figure 4 demonstrates a notable decline
in the performance of all models over time. This deterioration is likely attributable to two primary
factors: (1) the use of outdated pre-training data, which causes older versions of code to predominate
the training set, and (2) the backward compatibility of APIs, which results in a higher prevalence
of use cases and examples about older versions of these APIs (Lamothe et al., 2022). To mitigate
this issue and improve the models’ capabilities with newer libraries, we suggest increasing the
representation of new-version codebases within the training data. This adjustment aims to enhance
the proficiency in utilizing contemporary libraries effectively (Zhao et al., 2024; Shao et al., 2024).
Besides, based on the results in Section 4.2, current LLMs show limited use of version information in
code generation. To address this, we propose enhancing pre-training by incorporating version-tagged
code samples and metadata to help models better differentiate between API versions.

How can we address the challenge of evolving libraries in LLMs? Generating block-level or
repository-level code (Luo et al., 2024a) requires LLMs to understand user demands and library
dependencies. Addressing this challenge involves continually training the model with new libraries
using continual learning techniques (Jiang et al., 2024). These techniques enable the model to
adapt to changing libraries without forgetting previously learned information. Examples include
memory-based methods and various continual learning strategies (Wu et al., 2024; Yadav et al.,
2023; Wu et al., 2022). Additionally, developing benchmark datasets that are continuously and
automatically curated and maintained is crucial for evaluating the performance of models with new
libraries (Jang et al., 2022). Enriching the taxonomy (Jiao et al., 2023) and maintaining datasets for
evolving libraries (Lamothe et al., 2022) is also vital (Jiao et al., 2023). Multi-agent systems can be
employed for this purpose. Aligning development and evaluation efforts will enhance the ability of
LLMs in code understanding and generation capabilities, to remain effective as libraries evolve.

Can we address version-controllable code generation with retrieval-augmented generation?
Retrieval-augmented generation (RAG) approaches typically involve two crucial components: re-
trieval and in-context generation (Gao et al., 2023). The following challenges need to be addressed
in order for RAG to be effectively applied to this problem. From the retrieval perspective: (1)
It may be difficult to disambiguate version-related queries, as embeddings for version strings like
“torch 2.1.3” and “torch 1.3.2” can be very similar (Singh & Strouse, 2024). This similarity makes
it hard for retrievers to differentiate between specific features and capabilities associated with each
version. (2) Version information of code snippets is rarely explicitly mentioned within the code
itself and may instead appear in separate configuration files like “requirements.txt”. This separation
necessitates a more sophisticated retrieval approach, where the model must integrate information
from multiple sources to accurately understand version dependencies. From the perspective of
in-context generation: Table 9 shows that even non-matching version contexts (i.e., code migration)
can help smaller models generate grammatically correct code. This observation suggests potential for
dedicated RAG approaches (Jiang et al., 2024), though the benefits are limited and retrieval noise
may reduce effectiveness.

What are the effective methods for evaluating the capabilities of LLMs in generating version-
controllable code? Both static analysis (Agrawal et al., 2023), which reviews code without executing
it, and dynamic analysis (Zhuo et al., 2024), which tests the code by running it, are vital for software
development. However, evaluating LLMs for version-controllable code generation presents unique
challenges. (1) Dynamic analysis is complicated by API calls that rely on specific code contexts,
making it difficult and costly to create standalone tests (Zhuo et al., 2024). Additionally, using
LLM-generated code as test cases introduces further complexity in managing test quality. Especially,
VersiCode, which includes 300 packages and over 2,000 versions in the raw dataset, requires detailed
setups for each testing environment and managing various dependencies, complicating the practical
deployment of solutions. (2) Meanwhile, static analysis uses metrics like ISM (Agrawal et al., 2023)
and PM (Agrawal et al., 2023) for broad coverage but may miss critical details such as indentation
and parameter positioning in API-related code, refer to Table 1 and Appendix E. These omissions
suggest that traditional static metrics are not entirely suitable for assessing version-controllable code
generation. Evaluating the effectiveness of these metrics is crucial. Our study initiates the exploration
of more reliable methods; however, extensive research, including approaches like code slicing (Du
et al., 2024), is essential to advance our evaluation techniques.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RELATED WORK

Code Generation Models: Recent advancements in code language models (Guo et al., 2024;
CodeGemma Team et al., 2024; Bai et al., 2023; Rozière et al., 2023; Sun et al., 2024), driven by
sophisticated NLP techniques (Jiang et al., 2024) and extensive code repositories (Hu et al., 2023),
have resulted in substantial breakthroughs. Transformer-based large language models (Luo et al.,
2024c; Rozière et al., 2023; Guo et al., 2024; Lozhkov et al., 2024; Bai et al., 2023; Gunasekar et al.,
2023; Li et al., 2023) have demonstrated exceptional capabilities in generating syntactically correct
and semantically meaningful code from natural language descriptions. Additionally, research efforts
that integrate multi-modal data (OpenAI, 2023b; 2024; Meta LlaMa team, 2024), including both code
and accompanying documentation (Hu et al., 2023), have significantly improved model accuracy.
While in real-world software engineering,

Code Generation Datasets: The code generation (Jiang et al., 2024; Sun et al., 2024; Luo et al.,
2024b) includes tasks for both code completion and code editing, ensuring comprehensive coverage
of programming scenarios. Code completion (Yao et al., 2018; Yin et al., 2018; Feng et al., 2020;
Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021; Lu et al., 2021; Li et al., 2022; Fried
et al., 2023; Liu et al., 2023; Lai et al., 2023; Yu et al., 2024; Fu et al., 2023; Zheng et al., 2023) is the
task of predicting subsequent code tokens based on the given context, benefits from datasets, which
provide extensive code repositories from various programming languages. These datasets enable
models to learn syntactic and semantic patterns (Jiao et al., 2023). Code editing (Just et al., 2014; Lin
et al., 2017; Zhu et al., 2022b;a; Hu et al., 2023; Yan et al., 2023; Ahmad et al., 2023; Jiao et al., 2023;
Zhang et al., 2023; Tian et al., 2024) involves automatically generating changes to existing code, such
as bug fixes or refactoring. Datasets like EvalGPTFix (Zhang et al., 2023) and DebugBench (Tian
et al., 2024), which focus on bug fixing and code refinement tasks, are instrumental in this area. To
our knowledge, given the necessity and challenges in library evolution (Jiang et al., 2024), refer to the
detailed comparison in Table 6 and Appendix C, the proposed dataset VersiCode is the first large-scale
code generation dataset, covering both code completion and code editing. Refer to Appendix C for a
comprehensive comparison among datasets.

Third-party Library Evolution: Third-party library code is continually updated due to bug fixes,
code refactoring, and the addition of new features, making it a significant research topic in software
engineering (Zhang et al., 2020; 2021; Dilhara et al., 2021; Liu et al., 2021; Wang et al., 2020;
Vadlamani et al., 2021; Haryono et al., 2021). Studies by Zhang et al. (2020) show that Python APIs
often evolve by adding, deleting, or modifying parameters. Further research by Zhang et al. (2021)
notes frequent API changes, including parameter updates. Dilhara et al. (2021) reveal that developers
adjust their use of machine learning libraries in response to updates, while Liu et al. (2021) and Dig
& Johnson (2006) find that undocumented changes in Android and Java can cause errors. Research
on API deprecation highlights issues with documentation and the quality of suggested alternatives
(Wang et al., 2020; Vadlamani et al., 2021; Haryono et al., 2021; Brito et al., 2018), showing that
improvement in library evolution does not necessarily translate to better suggestions for deprecated
APIs. VersiCode, unlike traditional software engineering research, studies API version evolution
from an LLM perspective, exploring its impact on model training, code generation, and evaluation.

8 CONCLUSION

In conclusion, our research underscores the need for updated benchmarks that capture the dynamic
nature of software development, better assessing the capabilities of LLMs in code generation. By
introducing the VersiCode dataset, we provide a realistic testing ground that reveals significant
limitations in current models, like GPT-4o and LLaMA3, when handling version-specific code. Our
findings advocate for continuous model improvements and the adoption of our new metric, i.e.,
critical diff check, which more accurately evaluates model performance against real-world challenges.
This work not only introduces valuable tools but also sets a direction for future enhancements in
AI-driven code generation, ensuring LLMs remain effective and relevant in professional settings. For
future research, we will investigate a solution for version-controllable code generation based on the
insights from this paper, including approaches like continual learning, memory-enhanced methods, or
retrieval-based methods. Additionally, we plan to develop a live version of VersiCode, which will
continuously incorporate new libraries and downstream use cases.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K. Lahiri, and Sriram K. Rajamani.
Guiding language models of code with global context using monitors. CoRR, abs/2306.10763,
2023. URL https://doi.org/10.48550/arXiv.2306.10763.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. AVATAR:
A parallel corpus for java-python program translation. In Findings of ACL, pp. 2268–2281, 2023.
URL https://doi.org/10.18653/v1/2023.findings-acl.143.

aiXcoder team. aixcoder-7b code large language model. https://github.com/
aixcoder-plugin/aiXcoder-7B, 2024. Accessed: June 7, 2024.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. CoRR, abs/2309.16609, 2023. URL https:
//doi.org/10.48550/arXiv.2309.16609.

Gleison Brito, André C. Hora, Marco Túlio Valente, and Romain Robbes. On the use of replacement
messages in API deprecation: An empirical study. J. Syst. Softw., 137:306–321, 2018. URL
https://doi.org/10.1016/j.jss.2017.12.007.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.org/
abs/2107.03374.

CodeGemma Team, Ale Jakse Hartman, Andrea Hu, Christopher A. Choquette-Choo, Heri Zhao,
Jane Fine, Jeffrey Hui, et al. Codegemma: Open code models based on gemma. Google, 2024.
URL https://goo.gle/codegemma.

Danny Dig and Ralph E. Johnson. How do apis evolve? A story of refactoring. J. Softw. Maintenance
Res. Pract., 18(2):83–107, 2006. URL https://doi.org/10.1002/smr.328.

Malinda Dilhara, Ameya Ketkar, and Danny Dig. Understanding software-2.0: A study of machine
learning library usage and evolution. ACM Trans. Softw. Eng. Methodol., 30(4):55:1–55:42, 2021.
URL https://doi.org/10.1145/3453478.

Kounianhua Du, Renting Rui, Huacan Chai, Lingyue Fu, Wei Xia, Yasheng Wang, Ruiming
Tang, Yong Yu, and Weinan Zhang. Codegrag: Extracting composed syntax graphs for re-
trieval augmented cross-lingual code generation. CoRR, abs/2405.02355, 2024. URL https:
//doi.org/10.48550/arXiv.2405.02355.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. In Findings of EMNLP, pp. 1536–1547, 2020. URL https://doi.org/
10.18653/v1/2020.findings-emnlp.139.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In ICLR, 2023. URL https://openreview.net/pdf?id=hQwb-lbM6EL.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua Du, Weiming Zhang, Longteng Fan, Jiayi
Lei, Renting Rui, Jianghao Lin, Yuchen Fang, et al. Codeapex: A bilingual programming
evaluation benchmark for large language models. CoRR, abs/2309.01940, 2023. URL https:
//doi.org/10.48550/arXiv.2309.01940.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
Qianyu Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language
models: A survey. CoRR, abs/2312.10997, 2023. URL https://doi.org/10.48550/
arXiv.2312.10997.

11

https://doi.org/10.48550/arXiv.2306.10763
https://doi.org/10.18653/v1/2023.findings-acl.143
https://github.com/aixcoder-plugin/aiXcoder-7B
https://github.com/aixcoder-plugin/aiXcoder-7B
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2309.16609
https://doi.org/10.48550/arXiv.2309.16609
https://doi.org/10.1016/j.jss.2017.12.007
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://goo.gle/codegemma
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/3453478
https://doi.org/10.48550/arXiv.2405.02355
https://doi.org/10.48550/arXiv.2405.02355
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.48550/arXiv.2309.01940
https://doi.org/10.48550/arXiv.2309.01940
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.2312.10997

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. CoRR, abs/2306.11644, 2023. URL https://doi.org/10.48550/arXiv.
2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, et al. Deepseek-coder: When the large language model meets programming
- the rise of code intelligence. CoRR, abs/2401.14196, 2024. URL https://doi.org/10.
48550/arXiv.2401.14196.

Stefanus A. Haryono, Ferdian Thung, David Lo, Julia Lawall, and Lingxiao Jiang. Characterization
and automatic updates of deprecated machine-learning API usages. In Proceedings of ICSME, pp.
137–147. IEEE, 2021. URL https://doi.org/10.1109/ICSME52107.2021.00019.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measur-
ing coding challenge competence with APPS. In Proceedings of NeurIPS, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.

Qisheng Hu, Kaixin Li, Xu Zhao, Yuxi Xie, Tiedong Liu, Hui Chen, Qizhe Xie, and Junxian He.
Instructcoder: Empowering language models for code editing. CoRR, abs/2310.20329, 2023. URL
https://doi.org/10.48550/arXiv.2310.20329.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun
Kim, and Minjoon Seo. Temporalwiki: A lifelong benchmark for training and evaluating ever-
evolving language models. In Proceedings of EMNLP, pp. 6237–6250, 2022. URL https:
//doi.org/10.18653/v1/2022.emnlp-main.418.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. CoRR, abs/2310.06825, 2023. URL https://doi.org/10.48550/arXiv.
2310.06825.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. CoRR, abs/2406.00515, 2024. URL https://doi.org/10.
48550/arXiv.2406.00515.

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and Beijun Shen. On the evaluation
of neural code translation: Taxonomy and benchmark. In Proceedings of ASE, pp. 1529–1541,
2023. URL https://doi.org/10.1109/ASE56229.2023.00114.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In International Symposium on Software Testing and
Analysis, pp. 437–440, 2014. URL https://doi.org/10.1145/2610384.2628055.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau
Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for data
science code generation. In Proceedings of ICML, volume 202, pp. 18319–18345, 2023. URL
https://proceedings.mlr.press/v202/lai23b.html.

Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. A systematic review of API evolution
literature. ACM Comput. Surv., 54(8):171:1–171:36, 2022. URL https://doi.org/10.
1145/3470133.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need II: phi-1.5 technical report. CoRR, abs/2309.05463, 2023. URL
https://doi.org/10.48550/arXiv.2309.05463.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. CoRR, abs/2203.07814, 2022. URL https://doi.org/10.48550/arXiv.
2203.07814.

12

https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1109/ICSME52107.2021.00019
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/arXiv.2310.20329
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1145/2610384.2628055
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1145/3470133
https://doi.org/10.1145/3470133
https://doi.org/10.48550/arXiv.2309.05463
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.48550/arXiv.2203.07814

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey challenge. In Proceedings of SIGPLAN, pp.
55–56, 2017. URL https://doi.org/10.1145/3135932.3135941.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. In Proceed-
ings of NeurIPS, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html.

Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John C. Grundy. Identifying and characterizing
silently-evolved methods in the android API. In Proceedings of ICSE, pp. 308–317. IEEE, 2021.
URL https://doi.org/10.1109/ICSE-SEIP52600.2021.00040.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, et al. Starcoder
2 and the stack v2: The next generation. CoRR, abs/2402.19173, 2024. URL https://doi.
org/10.48550/arXiv.2402.19173.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Proceedings of NeurIPS, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong, Yankai
Lin, Yingli Zhang, et al. Repoagent: An llm-powered open-source framework for repository-level
code documentation generation. CoRR, abs/2402.16667, 2024a. URL https://doi.org/10.
48550/arXiv.2402.16667.

Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Xu Wang, Qing Yang, Dongliang Xu, and Wanxiang Che.
Semi-instruct: Bridging natural-instruct and self-instruct for code large language models. CoRR,
abs/2403.00338, 2024b. URL https://doi.org/10.48550/arXiv.2403.00338.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In Proceedings of ICLR, 2024c. URL https://openreview.net/forum?
id=UnUwSIgK5W.

Meta LlaMa team. Llama 3 model card. https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md, 2024. Accessed: June 7, 2024.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023a. URL https://doi.org/10.
48550/arXiv.2303.08774.

OpenAI. Gpt-3.5 turbo fine-tuning and api updates. https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/, 2023b. Accessed: June 7, 2024.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
June 7, 2024.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, et al. Code llama: Open
foundation models for code. CoRR, abs/2308.12950, 2023. URL https://doi.org/10.
48550/arXiv.2308.12950.

Yunfan Shao, Linyang Li, Zhaoye Fei, Hang Yan, Dahua Lin, and Xipeng Qiu. Balanced data
sampling for language model training with clustering. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of ACL, pp. 14012–14023, 2024. URL https://doi.org/10.
18653/v1/2024.findings-acl.833.

Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of tokenization on arithmetic in
frontier llms. CoRR, abs/2402.14903, 2024. URL https://doi.org/10.48550/arXiv.
2402.14903.

13

https://doi.org/10.1145/3135932.3135941
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.1109/ICSE-SEIP52600.2021.00040
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.48550/arXiv.2402.16667
https://doi.org/10.48550/arXiv.2402.16667
https://doi.org/10.48550/arXiv.2403.00338
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.18653/v1/2024.findings-acl.833
https://doi.org/10.18653/v1/2024.findings-acl.833
https://doi.org/10.48550/arXiv.2402.14903
https://doi.org/10.48550/arXiv.2402.14903

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. CoRR, abs/2403.14734, 2024. URL https://doi.org/10.48550/
arXiv.2403.14734.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Haotian Hui,
Weichuan Liu, Zhiyuan Liu, and Maosong Sun. Debugbench: Evaluating debugging capability of
large language models. In Findings of ACL, pp. 4173–4198, 2024. URL https://doi.org/
10.18653/v1/2024.findings-acl.247.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288, 2023. URL https://doi.org/10.48550/
arXiv.2307.09288.

Aparna Vadlamani, Rishitha Kalicheti, and Sridhar Chimalakonda. Apiscanner - towards automated
detection of deprecated apis in python libraries. In Proceedings of ICSE, pp. 5–8, 2021. URL
https://doi.org/10.1109/ICSE-Companion52605.2021.00022.

Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. Exploring how deprecated python library apis
are (not) handled. In Proceedings of ESEC/FSE, pp. 233–244. ACM, 2020. URL https:
//doi.org/10.1145/3368089.3409735.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari.
Pretrained language model in continual learning: A comparative study. In ICLR. OpenReview.net,
2022. URL https://openreview.net/forum?id=figzpGMrdD.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey. CoRR, abs/2402.01364, 2024. URL
https://doi.org/10.48550/arXiv.2402.01364.

Prateek Yadav, Qing Sun, Hantian Ding, Xiaopeng Li, Dejiao Zhang, Ming Tan, Parminder Bhatia,
Xiaofei Ma, Ramesh Nallapati, Murali Krishna Ramanathan, et al. Exploring continual learning
for code generation models. In Proceedings of ACL, pp. 782–792, 2023. URL https://
aclanthology.org/2023.acl-short.68.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. Codetransocean: A comprehen-
sive multilingual benchmark for code translation. In Findings of EMNLP, pp. 5067–5089, 2023.
URL https://doi.org/10.18653/v1/2023.findings-emnlp.337.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of WebConf, pp. 1693–1703, 2018. URL
https://doi.org/10.1145/3178876.3186081.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In Proceedings of ICMSR, pp.
476–486, 2018. URL https://doi.org/10.1145/3196398.3196408.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In Proceedings of ICSE, pp. 37:1–37:12, 2024. URL https://doi.org/10.
1145/3597503.3623316.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong Sun, and Zhenyu
Chen. A critical review of large language model on software engineering: An example from
chatgpt and automated program repair. CoRR, abs/2310.08879, 2023. URL https://doi.
org/10.48550/arXiv.2310.08879.

Zejun Zhang, Yanming Yang, Xin Xia, David Lo, Xiaoxue Ren, and John C. Grundy. Unveiling the
mystery of API evolution in deep learning frameworks: A case study of tensorflow 2. In Proceed-
ings of ICSE, pp. 238–247, 2021. URL https://doi.org/10.1109/ICSE-SEIP52600.
2021.00033.

14

https://doi.org/10.48550/arXiv.2403.14734
https://doi.org/10.48550/arXiv.2403.14734
https://doi.org/10.18653/v1/2024.findings-acl.247
https://doi.org/10.18653/v1/2024.findings-acl.247
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1109/ICSE-Companion52605.2021.00022
https://doi.org/10.1145/3368089.3409735
https://doi.org/10.1145/3368089.3409735
https://openreview.net/forum?id=figzpGMrdD
https://doi.org/10.48550/arXiv.2402.01364
https://aclanthology.org/2023.acl-short.68
https://aclanthology.org/2023.acl-short.68
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.48550/arXiv.2310.08879
https://doi.org/10.48550/arXiv.2310.08879
https://doi.org/10.1109/ICSE-SEIP52600.2021.00033
https://doi.org/10.1109/ICSE-SEIP52600.2021.00033

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei Xiong. How do
python framework apis evolve? an exploratory study. In Proceedings of SANER, pp. 81–92, 2020.
URL https://doi.org/10.1109/SANER48275.2020.9054800.

Bowen Zhao, Zander Brumbaugh, Yizhong Wang, Hannaneh Hajishirzi, and Noah A. Smith. Set the
clock: Temporal alignment of pretrained language models. In Findings of ACL, pp. 15015–15040,
2024. URL https://doi.org/10.18653/v1/2024.findings-acl.892.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. CoRR, abs/2303.17568, 2023. URL https://doi.org/10.
48550/arXiv.2303.17568.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K.
Reddy. Xlcost: A benchmark dataset for cross-lingual code intelligence. CoRR, abs/2206.08474,
2022a. doi: 10.48550/ARXIV.2206.08474. URL https://doi.org/10.48550/arXiv.
2206.08474.

Ming Zhu, Karthik Suresh, and Chandan K. Reddy. Multilingual code snippets training for program
translation. In Proceedings of AAAI, pp. 11783–11790, 2022b. URL https://doi.org/10.
1609/aaai.v36i10.21434.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, et al. Bigcodebench: Benchmarking code generation with diverse
function calls and complex instructions. CoRR, abs/2406.15877, 2024. URL https://doi.
org/10.48550/arXiv.2406.15877.

15

https://doi.org/10.1109/SANER48275.2020.9054800
https://doi.org/10.18653/v1/2024.findings-acl.892
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2206.08474
https://doi.org/10.48550/arXiv.2206.08474
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.48550/arXiv.2406.15877
https://doi.org/10.48550/arXiv.2406.15877

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Procedure Rules

Ranked Libraries 7→ StackOverflow Q&A Filter out answers that involve the use of libraries from the ranked libraries,
and ensure these answers include content in the library version format (e.g., pandas==1.3.5) as well as code snippets.

Ranked Libraries 7→ Library Source Code Based on the ranked libraries, parse the source code of these libraries to find functions related to version changes.

Ranked Libraries 7→ Downstream Application

(1)Exclude files that do not utilize libraries and version information explicitly listed in requirements.txt.
(2)Exclude files with an average line length exceeding 100 characters.
(3)Exclude files with a maximum line length exceeding 1000 characters.
(4)Exclude files with less than 25% of alphabetic characters.
(5)Exclude files with syntax errors.

Annotation 7→ Metadata

StackOverflow: Filter out data that has been annotated by experts with correct library version and code snippet,
and utilize GPT to generate functionality descriptions for the code snippets.

Library Source Code: Utilize GPT to extract examples from version change function docstrings,
filter out successfully extracted data, and employ GPT to generate functionality descriptions for the examples.

Downstream Application: Utilize GPT to generate functionality descriptions for code snippets.

Table 3: Detailed explanation of annotation stages and the corresponding filtering rules.

A DATASET CONSTRUCTION

VersiCode is a large-scale code generation benchmark dataset focusing on evolving library dependen-
cies. We propose two tasks to simulate real-world applications: version-specific code completion and
version-aware code migration, incorporating version information into code generation constraints.
First, we discuss data curation, and preprocessing of noisy code snippets and FAQs into organized
metadata. Based on the metadata, we describe the task design and quality control process. We then
address tagging API lifespan features per library version. Finally, we provide data statistics for
VersiCode and discuss future dataset extensions.

A.1 DATASET CURATION AND COLLECTION

As shown in Figure 7, we first collected permissively licensed Python repositories from GitHub that
serve as the source code for Python libraries. These repositories are ranked by their popularity (as
indicated by their collected stars). Using the list of popular libraries, we gathered data from three
sources for each library: (1) Library Source Code: We collected all available versions of the library
source code from GitHub, verifying with PyPI to ensure that the collected versions are formally
released and can be installed via pip. From the library source code, we extracted official usage
examples for each API from the docstrings. (2) Downstream Application Code: Given Python’s
popularity in scientific programming, we collected the source code from top-tier research papers over
10 years as downstream applications. These applications are valuable due to being lightweight yet
self-consistent, diverse in their topics, and tagged release timelines associated with publishing venues.
Given the time span, this data source implicitly includes evolving libraries. (3) Stack Overflow: Using
the library names as queries, we collected FAQ data from Stack Overflow, which provides real user
queries and diverse user answers. We filtered the data to include only those queries that explicitly
mention the versions of the libraries used, using heuristic rules, as shown in Table 3. Additionally,
we have made our best efforts to filter all of the source code based on the open-source licenses of the
repositories to ensure there is no infringement.

Given the high diversity and varied quality of the collected raw data, we adopted a hybrid annotation
approach involving both human experts and LLMs, such as ChatGPT. (1) Library Source Code: The
library version is concrete and explicitly available, but example usage varies across libraries and
versions. We used an LLM with in-context learning to help extract example code from docstrings,
preparing the library version and code snippets. (2) Downstream Applications: The version can
easily be extracted from configuration files, typically named “requirements.txt”. We carefully filtered
out Python files that are too long, do not mention the library version, or fail to compile. (3) Stack
Overflow: Given the diversity of the questions, we designed strict heuristic rules to preliminarily
annotate the library name, version, and corresponding Python code snippets mentioned in answers. We
then distributed the pre-annotated data to six qualified human experts for verification and correction,
ensuring the library version and code snippets are ready as well. With all pairs of library versions
and code snippets, we employed ChatGPT with in-context learning to generate descriptions of the
functionality for each code snippet. Each pair is wrapped in well-organized metadata.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Expert Annotation GPT AnnotationData Filter

Library Source CodeDownstream Application

StackOverflow Q&A

Question

Answer

Ranked Libraries

From 2015 to 2023

Library Version:

Library: ... , Version: ...

Functionality Description:

The code defines …

Code Snippet:

def func(): …

MetadataExpert Annotation

Annotate Library Version
and Code Snippet

GPT Annotation

Generate Description

Extract Examples

Figure 7: The preprocessing pipeline to obtain metadata, structured as n-gram tuple of ⟨library name, version,
functionality description, code snippet⟩.

A.2 LIFECYCLE TAGGING OF APIS

Consider an API a added to the library L in version Vs and deprecated in version Ve, and is active in
the intermediate version Vm where s ≤ m ≤ e. We refer to the interval [s, e) as the lifespan of a. To
analyze model performance in detail, we assessed how up-to-date each LLM was concerning newly
added or deprecated APIs per version. We compared the source code between any two consecutive
versions of each library to detect changes in API or method names. Based on the detection results,
we labeled the datasets obtained from the library source code as follows: “addition” indicates an
API newly added in the current version and still applicable in subsequent versions; “deprecation”
indicates the current version is the last usable version for the API; and “general” indicates the API
usage method is inherited from the previous version.

A.3 DATA PREPARATION FOR EVALUATION

Data Preparation for Token-level Code Completion. As introduced in Section 2, we designed
two types of version-controllable code generation tasks: version-specific code completion and
version-aware code migration. The task granularities are categorized into token-level, line-level, and
block-level to control difficulty and simulate different application scenarios. To better understand
model performance, each instance in VersiCode is also tagged with the following: (1) Data source,
which includes library source code, downstream applications, and Stack Overflow; (2) Feature type,
including addition, deprecation, and general; (3) Release time, i.e. the timestamp from GitHub and
Stack Overflow); These tags allow us to filter the evaluation dataset and gain sharper insights into
model performance.

Data Preparation for Execution-based Multi-granularity Code Completion. As shown in Figure 5,
we have constructed a subset for dynamic code analysis that includes executable test cases. From
the data originating from library source code in VersiCode, we filter for data that includes complete
context (e.g., import statements) code snippets. Experts interact with the web version of GPT-4 to
refactor the code snippets into task functions. After a manual check of the task functions, experts
interact with GPT-4 to write test cases for them. During the interaction, experts provide appropriate
feedback to GPT-4. The test cases are run in a testing environment containing specific library versions
(e.g., pandas==1.3.5); if successful, the annotation is completed after further manual verification,
and if failed, more detailed feedback is provided to GPT-4 to assist with corrections. The annotated
task function is processed into code completion forms with three levels of ⟨mask⟩ granularity: token,
line, and block. The executable test cases include four types: (1) Test return type: tests whether the
return type is correct. (2) Test normal input: tests whether the expected output is produced with
normal inputs. (3) Test boundary values: tests whether special values (such as null values, incorrect
types, etc.) are handled properly. (4) Test functionality: tests whether the function fulfills its primary
functionality. The first three types of test cases have one instance per task function, while the fourth
type has 1-3 instances.

Data Preparation for Code Migration. As shown in Figure 2, considering code migration instances
constructed from pairs of metadata, the differences between source and target code versions result in

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: A proportional chart based on the classification system of targeted audience and topics in third-party
Python libraries on PyPI.

various situations, such as updates from an older version to a newer version or vice versa. Additionally,
we categorized versions according to version patterns, for example, treating torch v1.0.0 as a major
version and torch v1.3.1 as a minor version, to identify combinations of major and minor version
migration cases.

B DATA STATISTICS AND SCOPE

Dataset Statistics: We present the statistics of VersiCode in Table 4, using the StarCoder2’s (Lozhkov
et al., 2024) tokenizer to compute the number of tokens. We also outline the complete version of
VersiCode in the table, which furnishes human-labeled data for three additional languages: C#, Java,
and JavaScript. Our executable data, applied in Section 4, is a high-quality human-annotated subset
from VersiCode, covering 12 libraries, 40 versions, and 119 functionality descriptions. For each
functionality description, we matched 4 to 5 test cases.

Language Python Java C# JavaScript
Data Source StackOverflow; Library Source Code; Downstream Application StackOverflow StackOverflow StackOverflow

Num. of Libraries 300 19 16 33

Num. of Versions 2,207 25 16 60

Size of Meta Data 11,268 29 16 62

Task Type Completion Editing (old to new) Editing (new to old) Completion Completion Completion

Granularity Token Line Block Block Block Block Block Block

Avg. Input Token 2,087 2,075 55 191 195 57 63 67

Avg. Output Token 2 16 128 131 128 349 255 167

Num. of Instances 13,488 13,490 1,617 38,037 38,037 32 21 82

Table 4: Data statistics of VersiCode, including multiple languages.

Scope: VersiCode supports version-specific code completion at the token, line, and block levels,
enabling developers to navigate through version variations effortlessly. It also facilitates block-level
version-aware code editing, empowering users to make precise modifications tailored to requirements
of each version. The collected metadata also serves as a valuable resource for potential customized
task modifications, supported domains are illustrated in Figure 8, aiding in fine-tuning workflows and
enhancing model training for optimal performance.

C RELATED DATASET

Code Completion Datasets. As shown in Table 5, we compare the VersiCode-completion dataset
with existing benchmarks. VersiCode stands out in annotated data size, marking it as the inaugural
dataset tailored for version-specific generation.

Code Migration Datasets. As shown in Table 6, we compare the VersiCode-migration dataset with
existing benchmarks. VersiCode stands out in annotated data size, marking it the inaugural dataset
tailored for version-specific migration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Benchmark Source Language Samples Completion Task Granularity Collection Time Annotation
StaQC (Yao et al., 2018) StackOverflow Python, SQL 267,056 Function Programming Line-Level, Block-Level 2018 None

CoNaLa (Yin et al., 2018) StackOverflow Python, Java 2,879 Function Programming Line-Level, Block-Level 2018 Human

CT-maxmin (Feng et al., 2020) Existing Benchmark Multi(=6) 2,615 Cloze Test Token-Level 2020 None

HumanEval (Chen et al., 2021) Hand-Written Python 164 Function Programming Line-Level, Block-Level 2021 Human

MBPP (Austin et al., 2021) Hand-Written Python 974 Function Programming Block-Level 2021 Human

APPS (Hendrycks et al., 2021) Programming Sites Python 10,000 Function Programming Line-Level, Block-Level 2021 None

CT-all (Lu et al., 2021) Existing Benchmark Multi(=6) 176,115 Cloze Test Token-Level 2021 None

CodeContests (Li et al., 2022) Existing Benchmark, Codeforces Multi(=3) 13,610 Function Programming Block-Level 2022 None

HumanEval-FIM (Fried et al., 2023) Existing Benchmark Python 164 Function Programming Line-Level, Block-Level 2022 None

HumanEval+ (Liu et al., 2023) Existing Benchmark Python 164 Function Programming Line-Level, Block-Level 2023 LLM

MBPP+ (Liu et al., 2023) Existing Benchmark Python 378 Function Programming Block-Level 2023 LLM

DS-1000 (Lai et al., 2023) StackOverflow Python 1,000 Function Programming Line-Level, Block-Level 2023 Human

CoderEval (Yu et al., 2024) Github Python, Java 460 Function Programming Block-Level 2023 Human

CodeApex (Fu et al., 2023) Programming Sites C++ 476 Function Programming Block-Level 2023 None

HumanEval-X (Zheng et al., 2023) Existing Benchmark Multi(=5) 820 Function Programming Line-Level, Block-Level 2023 Human

BigCodeBench (Zhuo et al., 2024) Existing Benchmark Python 1,140 Function Programming Block-Level 2024 Human, LLM

VersiCode StackOverflow, Github Python, Java, C#, JavaScript 28,595 Cloze Test, Function Programming Token-Level, Line-Level, Block-Level 2024 Human, LLM

Table 5: Comparison of VersiCode and other code completion datasets. VersiCode is the largest annotated
dataset, covering multiple languages and granularities, and involving both human and LLM joint annotations.

Benchmark Source Language Samples Editing Task Granularity Collection Time Annotation
Defects4J (Just et al., 2014) Open Source Programs Java 357 Debug Block-Level 2014 None

QuixBugs (Lin et al., 2017) Quixey Challenges Python, Java 40 Debug Line-Level 2017 Human

CoST (Zhu et al., 2022b) GeeksForGeeks Multi(=7) 132,046 Code Translation Line-Level, Block-Level 2022 None

XLCoST (Zhu et al., 2022a) GeeksForGeeks Multi(=8) 1,083,000 Code Translation Line-Level, Block-Level 2022 None

InstructCoder (Hu et al., 2023) Github Python 114,000 Code Refinement Block-Level 2023 LLM

MultilingualTrans (Yan et al., 2023) Programming Sites Multi(=8) 30,419 Code Translation Block-Level 2023 None

NicheTrans (Yan et al., 2023) Programming Sites Multi(>8) 236,468 Code Translation Block-Level 2023 None

LLMTrans (Yan et al., 2023) Hand-Written Multi(=8) 350 Code Translation Block-Level 2023 Human

Avatar (Ahmad et al., 2023) Programming Sites Python, Java 62,520 Code Translation Block-Level 2023 None

G-TransEval (Jiao et al., 2023) Existing benchmark, GeeksForGeeks Multi(=5) 400 Code Translation Token-Level, Block-Level 2023 Human

EvalGPTFix (Zhang et al., 2023) AtCoder Java 151 Debug Block-Level 2023 Human

DebugBench (Tian et al., 2024) LeetCode Multi(=3) 4,253 Debug Block-Level 2024 LLM

VersiCode Github Python 76,074 Version Adaptation Block-Level 2024 LLM

Table 6: Comparison between VersiCode and other code editing datasets, with VersiCode standing out as the
largest annotated dataset specifically tailored for version adaptation.

D ADDITIONAL EXPERIMENTS AND DETAILS

D.1 EXTENSIVE COMPARATIVE STUDY ON LARGE LANGUAGE MODELS

In addition to the model depicted in Figure 3, comprehensive and detailed evaluation results are
presented in Table 7, encompassing 23 models and sorted by the release time of each model.

In addition to the model depicted in Figure 9, comprehensive and detailed evaluation results are
presented in Table 7, encompassing 23 models and sorted by the release time of each model.

Even token-level code completion is challenging. We present the EM@1 results for token-level code
completion on VersiCode, sorted by release time (highlighted in green, see Figure 3-a1). Compared
to the Pass@1 results on HumanEval (blue) and MBPP (orange), all models perform significantly
worse on VersiCode (green). This result indicates the difficulty in disambiguating and recalling
version-specific library usage. It is important to note that larger and more recent models, such as
GPT-4o (M13) and LLaMA3-70B (M12), demonstrate significantly superior performance compared
to other models. (See Appendix H for the error analysis of GPT-4o.)

D.2 MULTI-LANGUAGE ANALYSIS

As depicted in Table 8, we perform the primary multi-language experiments. Counter-intuitively, the
performance of LLMs in Java, JavaScript, and C# surpasses that in Python. This anomaly might be
attributed to potential data leakage from the Stack Overflow dataset.

D.3 BLOCK-LEVEL CODE COMPLETION V.S. CODE MIGRATION

We use Python’s built-in function “compile()” to compile the generated code snippets to check
whether they are syntactically correct. Upon comparing “w/o grammar verification” and “w grammar

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Release Time Model HumanEval HumanEval+ MBPP MBPP+ VersiCode
EM@1 EM@1 EM@1 EM@1 Library Source Code Downstream Application StackOverflow Total

2023.06.14 WizardCoder-15B-V1.0 (Luo et al., 2024c) 56.7 50.6 64.3 54.2 0.17 0 0.1 0.06

2023.06.14 WizardCoder-Python-7B-V1.0 (Luo et al., 2024c) 50.6 45.1 58.5 49.5 6.62 0.17 5.45 2.66

2023.07.18 Llama-2-7B (Touvron et al., 2023) 12.8 - 20.8 - 6.57 0.46 4.76 2.74

2023.07.18 Llama-2-13B-Chat (Touvron et al., 2023) 18.3 - 30.6 - 3.71 0.06 3.41 1.51

2023.08.25 CodeLlama-7B-Instruct (Rozière et al., 2023) 34.8 - 44.4 - 17.77 0.62 17.8 7.62

2023.08.25 CodeLlama-13B-Instruct (Rozière et al., 2023) 42.7 - 49.4 - 28.45 2.47 32.05 13.5

2023.08.28 CodeLlama-7B-Python (Rozière et al., 2023) 38.4 - 47.6 - 3.4 0.03 2.35 1.28

2023.10.29 DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024) 74.4 71.3 74.9 65.6 3.83 0.15 4.34 1.71

2023.11.11 Mistral-7B-Instruct-V0.2 (Jiang et al., 2023) 42.1 36 44.7 37 13.96 1.85 20.33 7.54

2024.01.25 DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 75.6 71.3 75.2 62.2 26.7 4.51 44.77 15.71

2024.01.25 GPT-3.5-Turbo (OpenAI, 2023b) 76.8 70.7 82.5 69.7 40.55 30.48 65.95 37.59

2024.02.27 StarCoder2-7B (Lozhkov et al., 2024) 35.4 29.9 55.4 45.6 12.21 0.32 13.02 5.27

2024.02.27 StarCoder2-15B (Lozhkov et al., 2024) 46.3 37.8 66.2 53.1 29.7 2.9 35.79 14.55

2024.04.09 CodeGemma-7B-Instruct (CodeGemma Team et al., 2024) 60.4 51.8 70.4 56.9 31.8 0.76 31.29 13.36

2024.04.09 CodeGemma-7B (CodeGemma Team et al., 2024) 44.5 41.5 65.1 52.4 29.61 1.12 34.01 13.28

2024.04.10 aiXCoder-7B (aiXcoder team, 2024) 54.9 - 66 - 17.51 1.09 26.3 8.83

2024.04.15 aiXCoder-7B-Base (aiXcoder team, 2024) 43.2 - 62.2 - 20.41 0.94 26.37 9.59

2024.04.15 CodeQwen1.5-7B (Bai et al., 2023) 51.8 45.7 73.5 60.8 11.61 0.12 7.58 4.33

2024.04.15 CodeQwen1.5-7B-Chat (Bai et al., 2023) 83.5 78.7 79.4 69 12.16 0.33 9.2 4.81

2024.04.18 Llama-3-8B (Meta LlaMa team, 2024) 35.5 29.3 61.4 51.6 17.18 0.24 20.69 7.57

2024.04.18 Llama-3-8B-Instruct (Meta LlaMa team, 2024) 61.6 56.7 70.1 59.3 20.79 3.67 34.08 12.23

2024.04.18 Llama-3-70B-Chat (Meta LlaMa team, 2024) 77.4 72 82.3 69 33.76 50.93 64.35 47.55

2024.05.13 GPT-4o (OpenAI, 2024) 85.4 81.7 85.7 73.3 58.37 72.98 87.21 70.44

Table 7: Full evaluation results of EM@1 on token-level code completion compared to related datasets and
different data sources. The results for related datasets are collected from the online leaderboard of Evalplus (Liu
et al., 2023).

(a1) (a2) (b)

Figure 9: The EM@1 results for token-level code completion from VersiCode: (a1) Comparison with existing
benchmark datasets, (a) Performance grouped by data sources, and (b) Performance grouped by API lifecycle.

verification” in Table 9, it becomes evident that the model tasked with editing, alongside reference
code snippets from other versions, finds it easier to produce grammar-verified code.

E METRIC DESIGN OF CRITICAL DIFF CHECK

E.1 INTRODUCTION OF CRITICAL DIFF CHECK

Critical Diff Check (CDC) focuses on the changes in the code rather than the overall similarity of the
entire code segment. CDC has five rules as follows:

• Rule 1: Check whether the generated code contains the core token.

• Rule 2: Check whether the generated code is valid.

• Rule 3: Check if the number of arguments in the function using the core token is consistent.

• Rule 4: If the reference code uses a with statement, checks whether the generated code also
uses a with statement.

• Rule 5: If the reference code uses keyword argument assignment, checks whether the
generated code uses the same keyword argument assignment.

The failure frequency and examples for each rule are shown in Table 10.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Model Python Java C# JavaScript
ISM@1 PM@1 ISM@1 PM@1 ISM@1 PM@1 ISM@1 PM@1

DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 40.03 27.35 61.55 46.62 71.43 49.68 75.22 54.24

CodeLlama-13B-Instruct (Rozière et al., 2023) 48.83 34.63 70.92 58.87 47.62 35.54 52.87 34.11

StarCoder2-15B (Lozhkov et al., 2024) 39.71 27.36 38.63 27.43 33.33 28.63 60.67 39.33

CodeGemma-7B (CodeGemma Team et al., 2024) 8.67 5.00 34.38 23.53 0 0 16.82 10.53

GPT-3.5-Turbo (OpenAI, 2023b) 40.77 28.06 50.00 39.34 28.57 26.87 24.39 15.85

GPT-4o (OpenAI, 2024) 64.72 50.48 70.83 64.04 71.43 63.26 77.74 70.24

Llama-3-70B-Chat (Meta LlaMa team, 2024) 57.68 41.47 61.55 58.57 66.67 56.35 75.61 67.61

Table 8: Multi-language performance on VersiCode

Code Completion Code Migration (Old 7→ New) Code Migration (New 7→ Old)

Block-level Block-level Block-levelModel
ISM PM ISM PM ISM PM

w/o grammar verification

DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 40.03 27.35 46.17 37.20 42.94 33.66
CodeLlama-13B-Instruct (Rozière et al., 2023) 48.83 34.63 41.74 32.37 41.41 30.01

StarCoder2-15B (Lozhkov et al., 2024) 39.71 27.36 40.94 30.73 44.46 31.88
CodeGemma-7B (CodeGemma Team et al., 2024) 8.67 5.00 24.54 17.46 22.61 12.08

GPT-3.5-Turbo (OpenAI, 2023b) 40.77 28.06 45.96 36.80 46.96 35.76
Llama-3-70B-Chat (Meta LlaMa team, 2024) 58.08 41.78 33.37 23.51 42.94 29.36

GPT-4o (OpenAI, 2024) 64.72 50.48 55.48 45.80 55.36 52.33

w grammar verification

DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 0.00 0.00 45.41 36.44 40.25 28.89
CodeLlama-13B-Instruct (Rozière et al., 2023) 4.34 3.12 39.17 27.94 39.12 26.17

StarCoder2-15B (Lozhkov et al., 2024) 1.36 0.79 35.59 26.72 41.41 27.64
CodeGemma-7B (CodeGemma Team et al., 2024) 0.37 0.22 9.16 4.12 9.72 5.28

GPT-3.5-Turbo (OpenAI, 2023b) 40.28 27.57 45.96 36.80 46.96 35.06
Llama-3-70B-Chat (Meta LlaMa team, 2024) 64.73 50.48 54.72 45.04 55.36 52.33

GPT-4o (OpenAI, 2024) 57.68 41.47 33.37 23.51 42.94 29.36

Table 9: Results of block-level code completion and migration with or without grammar verification.

E.2 ABLATION STUDY OF CRITICAL DIFF CHECK

We conducted ablation experiments on the five CDC rules and calculated the Pearson correlation
coefficient with the Pass@1 metric for each, to demonstrate the reliability of CDC. The specific
experimental data is shown in Table 11.

F RUNNING EXAMPLE OF EXECUTABLE TEST

As shown in Figure 10, this is an example of a task function used for code generation, where the
task function is processed in various granular forms of code completion. The “core token” is only
provided for visualization, which is unseen for models. “library version” is optional, identified as “w/
or w/o version”, and “import” statements are also optional, identified as “w/ or w/o import” in Table 1.
As shown in Figure 11, these are the test cases for the task function illustrated in Figure 10. The test
cases were developed by experts through interactions with GPT-4 and include four types of tests.

G EVALUATION DETAILS

G.1 HYPER-PARAMETER

As illustrated in Table 12, we have itemized the hyper-parameters pertinent to version-controllable
code generation.

G.2 PROMPT TEMPLATE

We introduce the prompt template for token-level, line-level, and block-level evaluations in Figure 12,
Figure 13, and Figure 14, respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Task Function:

Library Version: accelerate==0.16.0

Core Token: release_memory

import torch

from torch import Tensor

from accelerate.utils import release_memory

def task_function(size: tuple) -> (Tensor, Tensor):

 """

 Creates two tensors filled with ones, processes them using an in-place memory release function,

 and returns them.

 Parameters:

 size (tuple): A tuple specifying the dimensions of the tensors to be created.

 Returns:

 tuple of torch.Tensor: A tuple containing two tensors, both located on the appropriate device

 (GPU if available, otherwise CPU).

 """

 device = 'cuda' if torch.cuda.is_available() else 'cpu'

 a = torch.ones(size, device=device)

 b = torch.ones(size, device=device)

 release_memory(a, b)

 return a, b

Figure 10: The ground truth for block-level code generation, used for Section 4. Note that, “core token” is only
provided for visualization, which is unseen for models. “library version” is optional, identified as “w/ or w/o
version”, and “import” statements are also optional, identified as “w/ or w/o import” in Table 1.

Test Cases:

import unittest

from unittest.mock import patch

class TestTaskFunction(unittest.TestCase):

 def test_return_type(self):

 """Test if the return type of the function is as expected (tuple of Tensors)."""

 result_a, result_b = task_function((1000, 1000))

 self.assertIsInstance(result_a, Tensor)

 self.assertIsInstance(result_b, Tensor)

 def test_normal_input(self):

 """Test the function with normal input and check if the results are as expected."""

 result_a, result_b = task_function((10, 10))

 self.assertEqual(result_a.size(), (10, 10))

 self.assertEqual(result_b.size(), (10, 10))

 def test_boundary_values(self):

 """Test the function with boundary values such as zero dimensions."""

 result_a, result_b = task_function((0, 0))

 self.assertEqual(result_a.numel(), 0)

 self.assertEqual(result_b.numel(), 0)

 @patch('__main__.release_memory')

 def test_functionality_1(self, mock_release_memory):

 """Test to verify if the release_memory function is called within the task_function."""

 task_function((50, 50))

 mock_release_memory.assert_called_once()

if __name__ == '__main__':

 unittest.main()

Figure 11: The test cases associated with generated code for dynamic code analysis, used for Section 4.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Model Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

GPT-3.5-Turbo 363 (50.84%) - - - -
LLaMA-3-70b-chat 325 (45.52%) - - - -Token

GPT-4o 169 (23.67%) - - - -

GPT-3.5-Turbo 290 (40.62%) 199 (27.87%) 386 (54.06%) 36 (5.04%) 468 (65.55%)
LLaMA-3-70b-chat 258 (36.13%) 124 (17.37%) 332 (46.5%) 36 (5.04%) 478 (66.95%)Line

GPT-4o 150 (21.01%) 67 (9.38%) 229 (32.07%) 7 (0.98%) 390 (54.62%)

GPT-3.5-Turbo 320 (44.82%) 3 (0.42%) 443 (60.64%) 31 (4.34%) 489 (68.49%)
LLaMA-3-70b-chat 286 (40.05%) 10 (1.4%) 408 (57.14%) 31 (4.34%) 470 (65.83%)Block

GPT-4o 254 (35.57%) 54 (7.56%) 359 (50.28%) 33 (4.62%) 439 (61.48%)

Matching Rule a ∈ c compile(c) is successful |paramsc′(f)| = |paramsc(f)| startwith(c′, ’with’) = startwith(c, ’with’) ∀p ∈ Kc′(f), p ∈ Kc(f)

Core Token wait for everyone - EvaluationSuite clear environment init on device

Positive Example state.wait for everyone() for i in range(5): print(i) suite = EvaluationSuite.load(”evaluate/evaluation-suite-ci”) with clear environment(): with init on device(device=device):Example

Negative Example state.wait for others() for i in range(5) print(i) suite = EvaluationSuite(”imdb”, ”lvwerra/distilbert-imdb”) clear environment() init on device(layer, device)

Table 10: Each rule of the CDC, along with the frequency, occurrence rate, and examples of mismatches for
each rule. ‘a’ represents the core token, ‘c’ represents the code generated by the model, ‘c′’ represents the
reference code, ‘f’ represents the function of the specified token, and ‘params’ refers to the function’s parameter
list. ‘Kc′(f)’ and ‘Kc(f)’ represent the keyword parameter lists of the reference code and the model-generated
code, respectively, and ‘p’ represents the parameter assigned using keyword arguments. In detail, Rule 1 checks
whether the generated code contains the core token; Rule 2 checks whether the generated code is valid; Rule 3
checks if the number of arguments in the function using the core token is consistent; Rule 4, if the reference code
uses a with statement, checks whether the generated code also uses a with statement; Rule 5, if the reference
code uses keyword argument assignment, checks whether the generated code uses the same keyword argument
assignment.

Ablation Model CDC w/o Rule 1 CDC w/o Rule 2 CDC w/o Rule 3 CDC w/o Rule 4 CDC w/o Rule 5 Pass@1 CDC@1

GPT-3.5-Turbo 49.16 49.16 49.16 49.16 49.16 41.88 49.16
LLaMA-3-70b-chat 54.48 54.48 54.48 54.48 54.48 46.08 54.48Token

GPT-4o 76.33 76.33 76.33 76.33 76.33 65.97 76.33

GPT-3.5-Turbo 72.13 28.85 31.37 27.59 36.69 26.47 27.59
LLaMA-3-70b-chat 82.63 29.27 31.09 29.27 49.3 32.07 29.27Line

GPT-4o 90.62 41.32 44.68 41.04 64.99 46.08 41.04

GPT-3.5-Turbo 99.58 26.75 30.39 26.75 38.37 11.48 26.61
LLaMA-3-70b-chat 98.60 28.15 32.21 28.29 41.46 13.73 27.73Block

GPT-4o 92.44 34.31 34.45 32.07 45.38 19.19 31.65

Pearson Correlation Coefficient with Pass@1

PCC -0.5674 0.9069 0.9081 0.909 0.9029 - 0.9124

Table 11: Ablation study of Critical Diff Check per rule. The configuration labeled as “CDC w/o Rule i”, where
i ∈ {1, 2, 3, 4, 5} means that when calculating the CDC score, Rule i is excluded, and only the other four rules
are considered. The Pearson correlation coefficient calculates the correlation the metric’s results obtained in
each configuration against Pass@1.

G.3 DATA SAMPLING

For token-level completion tasks(Figure 3), we randomly sampled 2,000 instances for evaluation. We
used the entire executable dataset for line- and block-level completion tasks due to its smaller size
(Figure 6, Table 1). In the time trend experiment (Figure 4), we sampled 200 data points per quarter
or used all available data if fewer. And in the code migration task (Table 2), we randomly sampled
2,000 instances for evaluation.

H ERROR ANALYSIS

H.1 ERROR ANALYSIS OF GPT4-O

Despite GPT4-o achieving superior performance in general evaluation, it still encounters errors in
30% of instances. We provide several negative examples in Figure 16, Figure 17, and Figure 18.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

hyper-parameter code completion code migration
token-level line-level block-level block-level

temperature 0.8 0.8 0.8 0.8
top p 0.95 0.95 0.95 0.95

max tokens 64 128 512 512
n 100 6 6 6

Table 12: Hyper-parameters for completion and migration.

prompt = f"""

You are a Python programming expert. Your task is to analyze a code snippet and infer the content masked by <token_mask>. Here

are your instructions:

1. You will receive:

- A Python library name and its version, which is relevant to the content masked by <token_mask>

- A code snippet with one or more <token_mask> markers

2. Each <token_mask> in the snippet represents the same masked content.

3. Based on the provided library and its version, infer the specific token that <token_mask> is hiding.

4. Provide your response as follows:

- Give only ONE answer, regardless of how many <token_mask> appear

- Include ONLY the inferred content

- Wrap your answer with ```python and ``` to denote it as a code block

- Omit any explanations or extra information

The Python library with its version and the code snippet are provided below:

Library and Version:

{dependency_version}

Code Snippet:

{masked_code}

Your response:

"""

Figure 12: Prompt template for token-level version-specific code completion.

prompt = f"""

You are a Python programming expert. Your task is to analyze a code snippet where a certain line is masked by <line_mask> and infer

the content of that line. Here are your instructions:

1. You will receive:

- The name and version of the library relevant to this line of code

- A code snippet with a <line_mask>

2. The <line_mask> represents a single masked line of code.

3. Based on the provided library information, infer what the <line_mask> is hiding.

4. Provide your response as follows:

- Give only the inferred line of code

- Wrap your answer with ```python and ``` to denote it as a code block

- Omit any explanations or extra information

The code snippet and library information are provided below:

Libraries and Version:

{dependency_version}

Code Snippet:

{masked_code}

Your response:

"""

Figure 13: Prompt template for line-level version-specific code completion.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

prompt = f"""

You are a professional Python engineer. Your task is to write Python code that implements a specific function based on the provided

library and version. Here are your instructions:

1. You will receive:

- The name and version of the library relevant to the code

- A code snippet with a <block_mask> where you need to infer the missing code

2. Based on the library information, write the Python code that fills the <block_mask> and implements the feature.

3. Provide your response as follows:

- Return only the code that fills the <block_mask> and implements the function

- Enclose your code with ```python and ``` to denote it as a Python code block

- Omit any explanations or extra information

The library information and partially masked code snippet are provided below:

Library and Version:

{dependency_version}

Code Snippet with <block_mask>:

{masked_code}

Your response:

"""

Figure 14: Prompt template for block-level version-specific code completion.

 prompt = f"""
 You are now a professional Python programming engineer. I will provide you with a code snippet and a description of its functionality,
 including the dependencies and versions used in the code. Then, I will provide the same dependencies but with a specified new version.
 Your task is to refactor the code using the methods provided by the specified new version and return the refactored code. Please note
 that you only need to return the refactored code and enclose it with <start> and <end>:
 ###Functionality description of the code
 {description}
 ###Dependency and old version
 {old_version}
 ###Old version code
 {old_code}
 ###Dependency and new version
 {new_version}
 ###Refactored new code
 """

Figure 15: Prompt template for version-aware code migration.

 "dependency": "paddlepaddle-gpu",
 "version": "==2.0.0",
 "time": "2021-01-21",
 "description": "The code creates a dataset using the PaddlePaddle framework and sets the variables to be used as data and labels for the dataset.",
 "code": "import paddle\ndataset = paddle.distributed.fleet.DatasetBase()\ndataset._set_use_var([data, label])",
 "masked_code": "import paddle\ndataset = paddle.distributed.fleet.DatasetBase()\ndataset.<mask>([data, label])",
 "answer": "_set_use_var",
 "type": "name_change_new",
 "granularity": "token",
 "language": "python",
 "task": "code completion",
 "source": "docstring",
 "model_output_token_clear": "['set_use_var', 'set_filelist', 'set_list', 'set_filelist', 'set_filelist', 'set_data', 'set_filelist', 'set_list', 'set_list', 'set_filelist', 'set_list',

'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_use_var', 'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_list', 'set_vars', 'set_filelist', 'set_list',
'set_use_var', 'set_filelist', 'set_data', 'set_list', 'set_use_var', 'set_filelist', 'set_filelist', 'set_inputs', 'set_inputs', 'set_use_var', 'set_filelist', 'set_filelist', 'set_use_var',
'set_filelist', 'set_data', 'set_list', 'set_filelist', 'set_use_vars', 'set_list', 'set_list', 'set_inputs', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_use_var', 'set_list',
'set_use_var', 'set_filelist', 'set_list', 'set_list', 'set_list', 'set_filelist', 'set_records', 'set_inputs', 'set_use_var', 'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_use_var',
'set_inputs', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_use_var', 'set_list', 'set_filelist', 'set_use_var', 'set_filelist', 'set_filelist', 'set_data',
'set_filelist', 'set_list', 'set_inputs', 'set_list', 'set_filelist', 'set_vars', 'set_use_var', 'set_list', 'set_inputs', 'set_inputs', 'set_inputs', 'set_filelist', 'set_filelist', 'set_list',
'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_data', 'set_use_vars']"

Figure 16: The first negative example of GPT-4o on token-level code completion.

 "dependency": "pandas",
 "version": "==1.1.0",
 "time": "2020-07-28",
 "description": "This code defines multiple aggregation functions with relabeling for the 'a' column, including 'max' and 'min'.",
 "code": "is_multi_agg_with_relabel(a=\"max\")\nis_multi_agg_with_relabel(a_max=(\"a\", \"max\"), a_min=(\"a\", \"min\"))\nis_multi_agg_with_relabel()",
 "masked_code": "<mask>(a=\"max\")\n<mask>(a_max=(\"a\", \"max\"), a_min=(\"a\", \"min\"))\n<mask>()",
 "answer": "is_multi_agg_with_relabel",
 "type": "name_change_new",
 "granularity": "token",
 "language": "python",
 "task": "code completion",
 "source": "docstring",
 "model_output_token_clear": "['agg',

'agg',
'agg',
'agg', 'agg']"

Figure 17: The second negative example of GPT-4o on token-level code completion.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

 "dependency": "wandb",
 "version": "==0.12.12",
 "time": "2022-04-05",
 "description": "The code loads the latest version of a previously logged model with the name \"my-simple-model\" and assigns the model object to the variable \"model\".",
 "code": "# assuming you have previously logged a model with the name \"my-simple-model\"\nsm = use_model(\"my-simple-model:latest\")\nmodel = sm.model_obj()\n",
 "masked_code": "# assuming you have previously logged a model with the name \"my-simple-model\"\nsm = <mask>(\"my-simple-model:latest\")\nmodel = sm.model_obj()\n",
 "answer": "use_model",
 "type": "add",
 "granularity": "token",
 "language": "python",
 "task": "code completion",
 "source": "docstring",
 "model_output_token_clear": "['load_model', 'Artifact.get', 'use_artifact', 'use_artifact', 'load_model', 'Artifact', 'load_model', 'Artifact.get',

'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'use_artifact', 'Artifact', 'Artifact', 'Artifact',
'Artifact.load', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'Artifact.get', 'load_model', 'use_artifact', 'load_model',
'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model',
'load_model', 'Artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model',
'use_artifact', 'use_artifact', 'use_artifact', 'use_artifact', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model',
'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model',
'load_model', 'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model',
'use_artifact', 'Artifact', 'Artifact', 'use_artifact', 'use_artifact', 'load_model', 'Artifact', 'use_artifact', 'Artifact', 'load_model', 'Artifact', 'load_model',
'load_model', 'load_model', 'use_artifact', 'load_model', 'use_artifact', 'use_artifact', 'load_model']"

Figure 18: The third negative example of GPT-4o on token-level code completion.

26

	Introduction
	Version-controllable Code Generation
	Token-level Version-specific Code Completion
	Experiment Setup
	Results and Analysis

	From Token-level to Line- and Block-level Completion
	Experiment Setup
	Results and Analysis

	From Code Completion to Code Migration
	Experiment Setup
	Results and Analysis

	Discussion
	Related Work
	Conclusion
	Dataset Construction
	Dataset Curation and Collection
	Lifecycle Tagging of APIs
	Data Preparation for Evaluation

	Data Statistics and Scope
	Related Dataset
	Additional Experiments and Details
	Extensive Comparative Study on Large Language Models
	Multi-language Analysis
	Block-level Code Completion V.S. Code Migration

	Metric Design of Critical Diff Check
	Introduction of Critical Diff Check
	Ablation Study of Critical Diff Check

	Running Example of Executable Test
	Evaluation Details
	Hyper-parameter
	Prompt Template
	Data Sampling

	Error Analysis
	Error Analysis of GPT4-o

