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ABSTRACT

Large Language Models (LLMs) have made tremendous strides in code generation,
but existing research fails to account for the dynamic nature of software develop-
ment, marked by frequent library updates. This gap significantly limits LLMs’
deployment in realistic settings. In this paper, we propose two novel tasks aimed
at bridging this gap: version-specific code completion (VSCC) and version-aware
code migration (VACM). In conjunction, we introduce VersiCode, a comprehensive
Python dataset specifically designed to evaluate LLMs on these two tasks, together
with a novel evaluation metric, Critical Diff Check (CDC@1), which assesses code
generation against evolving API requirements. We conduct an extensive evaluation
on VersiCode, which reveals that version-controllable code generation is indeed a
significant challenge, even for GPT-4o and other strong frontier models. We believe
the novel tasks, dataset and metric open up a new, important research direction that
will further enhance LLMs’ real-world applicability. The code and resources can
be found at https://anonymous.4open.science/VersiCode-B0F6.

1 INTRODUCTION

Large Language Models (LLMs), including OpenAI’s GPT series (OpenAI, 2023a;b; 2024) and
specialized variants such as CodeLLaMA (Rozière et al., 2023), have demonstrated significant
advancements in code generation tasks. Typically evaluated using benchmarks such as HumanEval
(Chen et al., 2021) and MBPP (Austin et al., 2021), these models are measured on tasks that assume
code generation is a static activity. However, the reality of software development is inherently
dynamic, characterized by frequent updates to software libraries, which necessitate adjustments to
API interfaces. This evolving landscape raises crucial challenges for LLMs, particularly their ability
to generate code that is functional for different, specific library versions. This dynamic nature of
software development leads us to ask the following questions:

• How reliably can LLMs generate code compatible with specific library versions?
• How effectively can LLMs adapt code for API changes across library versions?

Existing benchmarks (Jiang et al., 2024; Sun et al., 2024; Luo et al., 2024b), which are oblivious
to version-specific dynamics, do not address these challenges. They fall short of simulating the
continuous version management activities undertaken by developers who ensure the software remains
functional across updates. The static nature of existing benchmarks represents a significant barrier to
the practical deployment of LLMs in professional environments, where handling version-specific
dependencies is critical (Zhang et al., 2020; 2021; Dilhara et al., 2021; Liu et al., 2021; Wang et al.,
2020; Vadlamani et al., 2021; Haryono et al., 2021).

To bridge this gap, we propose two novel tasks aimed at evaluating LLMs’ version-controllable code
generation capabilities, namely version-specific code completion (VSCC) and version-aware code
migration (VACM). These tasks are crafted to mimic real-world software development scenarios,
motivated in Figure 1, requiring models to generate code that not only is syntactically correct but
also adheres to version-specific API contracts (Zhang et al., 2020; 2021; Dilhara et al., 2021; Liu
et al., 2021; Wang et al., 2020; Vadlamani et al., 2021; Haryono et al., 2021). Moreover, we introduce
VersiCode, the first dataset specifically designed for these two tasks. VersiCode includes data spanning
over 300 Python libraries and more than 2,000 versions across 9 years. It has undergone a careful
curation process to ensure high quality. Thus, VersiCode provides a comprehensive and robust testbed
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IDE

Scenario 1: Interacting with
LLM in the browser

Scenario 2: Programming in an integrated
development environment

Function 
Docstring

Library Version: pandas==1.4.0

# Functionality Description:
"""
The code resamples time series using pandas, fills NaN values backward, and creates 
intervals of 30 and 15 minutes.
"""
# Code Snippet:

· · ·
s_resampled_15min = s.resample('15min').bfill(limit=2)
· · ·

user

Library Version: pandas==1.3.5
Functionality Description: The code backfills
missing values in a pandas series.

user

Library Version: pandas==1.4.0
Functionality Description: The code backfills
missing values in a pandas series.

import pandas as pd
s = pd.Series([1, None, 3, None, 5])
s_filled = s.backfill() LLM

Correct Answer

Wrong Answer

import pandas as pd
s = pd.Series([1, None, 3, None, 5])
s_filled = s.backfill() LLM

>

>

df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
index=pd.date_range(‘20230101', periods=3, freq='h'))

resampled_30min = df.resample('30min').bfill()
resampled_15min = df.resample('15min').bfill(limit=2)

import pandas as pd
import numpy as np
s = pd.Series([1, 2, 3], index=pd.date_range('20230101', periods=3, freq='h'))
s_resampled_30min = s.resample('30min'). bfill()

block line token

Figure 1: Two motivating scenarios for version-controllable code generation: (left) Interacting with LLMs in a
browser, where slight query changes lead to incorrect answers, and (right) Programming in an IDE, explicitly
specifying the version of dependency libraries.

for assessing LLMs under realistic conditions. Furthermore, we propose a new evaluation metric,
CDC (Critical Diff Check), which enhances traditional code similarity metrics by incorporating
considerations for API usage, parameter handling, and deprecated features management. This metric
offers a more granular assessment of a model’s ability to navigate the complexities of evolving
software libraries.

Our extensive testing of strong frontier models like GPT-4o and LLaMA3 (Meta LlaMa team, 2024)
reveals significant challenges in version-aware code generation tasks. We uncover that (1) LLMs
often retain outdated programming knowledge, particularly concerning version-specific information.
(2) Conventional metrics used for evaluating code generation do not effectively capture the nuances
of version sensitivity. (3) While leveraging context from various library versions can be beneficial, its
utility can be limited. Guided by these insights, we suggest strategies, such as targeted pretraining,
continual learning, and refined evaluation methods, for improving LLMs’ version-controlled code
generation capabilities.

Our contributions are summarized as follows:

• We propose two novel and important yet under-explored tasks in code generation, namely
version-specific code completion and version-aware code migration.

• We introduce VersiCode, a comprehensive, well-documented and versioned dataset, accom-
panied by a subset annotated with executable test cases.

• We introduce Critical Diff Check, a new metric that extends traditional code similarity
metrics by checking syntactic validity, API usage, parameter matching, the use of ‘with’
statements, and correct keyword arguments in the generated code, providing a more detailed
evaluation of version-specific code generation.

• Our thorough experiments provide valuable insights and directions for future research in
this critical area of software development.

2 VERSION-CONTROLLABLE CODE GENERATION

VersiCode is a large-scale code generation benchmark dataset focusing on evolving library dependen-
cies. We curated our dataset by initially selecting popular Python repositories from GitHub, confirmed
by their star ratings, and ensured they were permissively licensed. For each library, we compiled data
from three main sources: (1) Library Source Code, extracting all pip-installable versions and official
API usage examples from docstrings; (2) Downstream Application Code, sourcing from top-tier
research papers spanning ten years to capture evolving libraries; (3) Stack Overflow, retrieving FAQs
that mention specific library versions. We present the dataset statistics, construction process and
examples in detail in Appendix 2.

2
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Output of Migration

def bar():
    cb = createResolutionCallbackFromFrame(1)
    print(cb("foo"))

Input

Library Version: torch==1.3.1

Code Snippet:
def bar():
    cb = createResolutionCallback(1)
    print(cb("foo"))

Output of Completion

createResolutionCallbackToken-Level: 
cb = createResolutionCallback (1)Line-Level:

def bar():
    cb = createResolutionCallback(1)
    print(cb("foo"))

Block-Level:

Code Completion

Input

Library Version: torch==1.3.1

Token-Level:
def bar():
    cb = <token_mask>(1)
    print(cb("foo"))

Line-Level:
def bar():
    <line_mask>
   print(cb("foo"))

Block-Level:
<block_mask>

New Library Version: torch==1.4.0

Code Migration

Inference

Functionality Description:
This code prints the callback result for "foo" 
with a parameter of 1.

Functionality Description:
This code prints the callback result for "foo" with a parameter of 1.

Inference

Metadata

Library Version:
torch==1.4.0

Metadata

Code Snippet:
def bar():
    cb = createResolutionCallback(1)
    print(cb("foo"))

Library Version:
torch==1.3.1

Functionality Description:
This code prints the callback result 
for "foo" with a parameter of 1.

Figure 2: The post-processing pipeline transforms metadata into specific tasks and the running example per task:
(left) Leveraging pairs of metadata that share the same functionality but different library versions to construct
block-level code migration instances; (right) Utilizing each metadata sample, masking version-sensitive content
to create multi-granularity code completion instances.

As shown in Figure 2, we define a meta-instance as m = [l; v; d; c] ∈ M, where l, v, d, and c represent
the library name, version, functionality description, and code snippet, respectively. Consider an API
a added to library l in version vs and deprecated in version ve, and is active in the intermediate
version vm where s ≤ m ≤ e. We refer to the interval [s, e] as the lifecycle of a. To analyze model
performance in detail, we assess how up-to-date each LLM is concerning newly added or deprecated
APIs per version. We compare the source code between any two consecutive versions of each library
to detect changes in API or method names. Based on the detection results, we label the source code
as follows: “addition” indicates an API newly added in the current version and still applicable in
subsequent versions; “deprecation” indicates the current version is the last usable version for the API;
and “general” indicates the API usage method is inherited from the previous version.

We introduce the two novel version-controllable code generation tasks below.

Version-Specific Code Completion (VSCC): Given a meta-instance mi, the input is x =
[li; vi; di; c

′
i], where c′i is the code snippet ci with selective masking, replacing the library- and

version-sensitive contents with a special token. Depending on the length of the masked contents,
the special token is defined as “[token-mask]”, “[line-mask]”, or “[block-mask]”, reflecting code
completion on different granularity levels. The output y is the masked content, typically containing
function names or variables.

Version-Aware Code Migration (VACM): Given a pair of meta-instances (mi,mj |li = lj , di =
dj , vi ̸= vj), the input x = [li; vi; di; ci; vj ], and the output y = cj . Note that version editing may
require refactoring of the code structure, making it difficult to format as detailed as in token-level
or line-level completion. Additionally, depending on the numerical relationship between vi and vj ,
various scenarios arise, such as editing from an old version to a new version, or vice versa. Data
statistics are detailed in Appendix B

3 TOKEN-LEVEL VERSION-SPECIFIC CODE COMPLETION

In code generation that targets a specific version of a third-party library, the version-related changes
usually involve updates to identifiers, such as the addition, removal, or renaming of classes, functions,
and parameters. The token-level code completion task for a specified version, predicting the evolving
identifiers identified in real code, is a fundamental and direct way to evaluate LLMs to generate code
for specific versions. We begin our research by addressing the following three research questions:
(1) How well do LLMs perform on code completion tasks that involve version-specific library
usage compared to other benchmarks like HumanEval and MBPP? (2) How do LLMs handle new,
deprecated, and intermediate versions of libraries in code completion tasks? (3) How does the
performance of LLMs in code completion change over time with different library versions?

3
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Figure 3: The EM@1 results for token-level code completion from VersiCode: Performance grouped by data
sources, and (b) Performance grouped by API lifecycle.

3.1 EXPERIMENT SETUP

Models: We benchmarked VersiCode against popular open-domain LLMs and dedicated code-
LLMs, including variant families such as GPT (OpenAI, 2023a;b; 2024), LLaMa (Touvron et al.,
2023), Mistral (Jiang et al., 2023), CodeLLaMa (Rozière et al., 2023), CodeQwen (Bai et al.,
2023), CodeGemma (CodeGemma Team et al., 2024), StarCoder (Lozhkov et al., 2024), Deepseek-
Coder (Guo et al., 2024), and WizardCoder (Luo et al., 2024c). For smaller open-source models
(e.g., <20B parameters), we downloaded them from HuggingFace 1 and deployed them locally for
inference. For larger models, such as LLaMa3 70B (Meta LlaMa team, 2024) and GPT-4o (OpenAI,
2024), we used their online APIs 2 3 for inference.

Data Preparation: Each instance in VersiCode is tagged with its data source (library source code,
downstream applications, or Stack Overflow), feature type (addition, deprecation, or general), and
release time, allowing for more detailed performance analysis. We randomly selected 2,000 instances
for token-level code completion. (see Appendix A.3).

Baseline Dataset: To assess the difficulty of VersiCode, we compared it with two well-known code
generation datasets, HumanEval (Liu et al., 2023) and MBPP (Jiang et al., 2024), and observed
the overall performance of models. HumanEval (Liu et al., 2023) measures functional correctness
in synthesizing programs from docstrings with 164 original problems, resembling simple software
interview questions. MBPP (Austin et al., 2021), with about 1,000 crowd-sourced Python problems
for entry-level programmers, covers programming fundamentals and standard library functionality,
including task descriptions, code solutions, and three automated test cases for each problem. We
also collected the evaluation results for their upgraded versions HumanEval+ (Liu et al., 2023) and
MBPP+ (Liu et al., 2023). Please refer to Appendix D.1 for details.

Evaluation Metrics: We use EM@k for token-level generation: For this metric, we generate n ≥ k
samples per instance (with n = 100 and k ∈ {1, 3, 10} for our experiments). We count the number
of correct samples c ≤ n judged by exact matching. @k is defined as the average performance over

the task, calculated as E
[
1− (n−c

k )
(nk)

]
, which is the same with Pass@k (Chen et al., 2021).

3.2 RESULTS AND ANALYSIS

However, a substantial performance gap of at least 15 points remains when compared to HumanEval
and MBPP (detailed in Appendix D.1). This indicates that state-of-the-art LLMs still struggle to
deliver satisfactory results, even for the simplest token-level completion tasks.

1https://huggingface.co/models
2https://together.ai
3https://openai.com/
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Figure 4: The EM@1 performance for token-level code completion, grouped by year (2015-2023), with a
histogram of data distribution for each year.

Differences in LLM performance across different data sources. Figure 3-a presents the EM@1
results for token-level code completion on VersiCode, categorized by data sources. Among the three
data sources, most models perform significantly better on Stack Overflow, especially compared to
handling source code from downstream applications. This discrepancy may be attributed to the greater
diversity found in downstream applications, which demands a more robust capability to address varied
challenges. This may also indicate that Stack Overflow is heavily represented in the pre-training data
of LLMs, increasing the likelihood of data leakage. GPT-4o (M13) and LLaMA3-70B (M12) stand
out as outliers, increasing the likelihood of models memorizing specific content, which may excel in
handling downstream applications. Full numeric results are provided in Appendix D.1.

Challenges in casual intermediate library versions. We present the token-level EM@1 results for
the token-level code completion task, categorized by lifespan features: addition (in blue), deprecation
(in orange), and general (referring to intermediate versions; in green), as shown in Figure 3-b. Most
models perform well in cases of addition and deprecation, likely because newly added or deprecated
APIs are often emphasized in documentation and by the community. However, most models struggle
with reasoning and adapting to intermediate versions. As shown in Figure 3-a, models like LLaMA3-
70B excel in downstream applications and handle intermediate versions more effectively, likely due
to the diversity of use cases they encounter.

The programming knowledge of LLMs, particularly regarding version-specific information, is
surprisingly outdated. Figure 4 presents the EM@1 performance for token-level code completion,
grouped by year from 2015 to 2023, along with a histogram showing the data distribution for each
year. To ensure precise timestamps and minimize noise, we only used instances collected from
library source code. As shown in Figure 4-a, there is a clear trend: model performance declines as
the release time becomes more recent. This is counter-intuitive compared to temporal knowledge
question answering (Zhao et al., 2024), where performance initially increases before declining. We
further filtered for “deprecation” (Figure 4-b) and “addition” (Figure 4-c) to identify version-sensitive
cases. Although data sparsity reduces confidence in the results, both cases show a clear downward
trend over time This suggests that LLMs have outdated programming knowledge, highlighting the
need for rapid adaptation to newer libraries and APIs.

4 FROM TOKEN-LEVEL TO LINE- AND BLOCK-LEVEL COMPLETION

When utilizing third-party code library APIs, LLMs should handle not only API name generation
but also parameter preparation and contextual code integration. In this section, we extend the task
to line-level (completing a single line) and block-level (completing multiple lines) code generation.
This expanded scope presents new challenges for both the model’s capabilities and the evaluation
methodologies. (1) How does increasing complexity in line- or block-level code completion affect the
LLMs to handle API usage and parameters? (2) How does having more context (like import statements
and specified library version) improve the accuracy of line- and block-level code generation? (3)
Which evaluation metrics best capture the accuracy of line- and block-level code generation, and
which is most reliable?
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Task Function

import pandas as pd
def task_function(data):

"""
Description: ...  Args: ...  Returns: ...
"""
s = pd.Series(data)
s_filled = s.backfill()
return s_filled

Library Version: pandas==1.3.5

Code Snippet

import pandas as pd
s = pd.Series([1, None, 3])
s_filled = s.backfill()

Library Version: pandas==1.3.5

GPT-4 Refactoring

Test Case Generation

class TestTaskFunction():
def test_return_type(): ...
def test_normal_input(): ...
def test_boundary_values(): ...
def test_functionality_1(): ...
…

Write test cases for the task 
function using GPT-4:

Manual Vertification

If successful, confirm completion 
after further review;
If failed, correct with multiple GPT-4 
interactions.

Experts validate tests in 
specified environments and 
correct with GPT-4:

Data Refactoring LLM & Human Curation

Figure 5: The process of executable code assessment, which includes data refactoring, test case generation, and
validation. Starting from code snippets collected from real code involving specific API calls for a given library
version, GPT-4 is employed to refactor the code into a task function. The large language model is then prompted
to generate test cases from various perspectives (See Appendix F for a running example of instances and test
cases.) Each generated test case is verified by experts, and the correctness is ensured by running the code in a
specified environment. If issues arise, they are corrected through multiple iterations with GPT-4.

4.1 EXPERIMENT SETUP

Models: We selected GPT-4o, GPT-3.5, and LLaMA3 70B, the three models that perform best on
token-level code completion, to conduct experiments on line-level or block-level code completion.

Data Preparation: We sample a subset from VersiCode for dynamic code analysis with executable
test cases from library source code, focusing on code snippets with complete context (e.g., import
statements). GPT-4 was used to refactor the snippets into task functions, followed by test case
generation and validation in a version-specific environment. All of the test cases have been manually
verified to ensure their correctness. The code completion tasks are categorized into token, line, and
block levels. The test cases include return type, normal input, boundary values, and functionality
checks (see Appendix A.3 for details).

Metrics: We use the following evaluation metrics for each task granularity: (1) Pass@k for token-
level generation (Chen et al., 2021): For this metric, we generate n ≥ k samples per instance (with
n = 6 and k = 1 to compare different metrics). We count the number of correct samples c ≤ n
judged by executable testing. (2) Identifier Sequence Match (ISM@k) and Prefix Match (PM@k)
for line-level generation (Agrawal et al., 2023): These metrics measure how closely the generated
sequences match the ground truth. For block-level generation, we adopt the average performance over
lines. Following the setup in Agrawal et al. (Agrawal et al., 2023), we generate n = 6 independent
samples per instance. (3) Exact Match (EM@k): We use regular expression matching to determine
whether the specified API is used in the code generated by the model and the formula for calculating
the EM@k score is the same as the formula for calculating the Pass@k score (n = 6 and k = 1). (4)
Critical Diff Check (CDC@k): Unlike traditional code similarity calculations, CDC focuses on the
differences between the code generated by the model and the reference answer. CDC extends the EM
metric by adding four additional rules: checking whether the generated code is syntactically valid;
identifying the line in the generated code where the specified API is used and determining if the
number of parameters in the function call is the same; if the answer uses a with statement, checking
whether the generated code also uses a with statement; and if the answer uses keyword arguments,
verifying whether the generated code uses the same keyword arguments. Please refer to Appendix E
for detailed examples, effectiveness analysis, and ablation study, conducted to validate CDC.

4.2 RESULTS AND ANALYSIS

Less context leads to more errors in code generation. When models have more context, like import
statements, their performance improves significantly. For example, as shown in Table 1, GPT-4o
at the token level achieves a Pass@1 score of 65.97 with imports, but this drops to 44.54 without
imports. This pattern is consistent across all models and granularity levels (i.e., token, line, and
block), as shown in Figure 6. When models lack important context, such as external libraries or other
dependencies, they struggle to generate accurate code, which leads to more errors. So, giving models
more information upfront is crucial for better results.

Models show limited sensitivity to version-specified instructions. As shown in Table 1, at the
token level, models like GPT-4o perform slightly better when provided with version information

6
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Figure 6: The Pass@1 performance of different models across various granularities and test case types.

Token Line Block
Model Pass@1 EM@1 CDC@1 Pass@1 EM@1 ISM@1 PM@1 CDC@1 Pass@1 EM@1 ISM@1 PM@1 CDC@1

w/ import; w/ version

GPT-3.5-Turbo 44.68 49.16 49.16 30.67 59.38 47.44 40.01 27.59 14.85 54.90 78.15 47.04 26.61
Llama-3-70B-Chat 50.28 54.48 54.48 36.27 63.87 49.58 45.50 29.27 15.41 59.10 79.10 48.02 27.73

GPT-4o 71.15 76.33 76.33 51.82 78.99 57.98 59.49 41.04 22.55 59.24 76.68 59.43 31.65

w/o import; w/ version

GPT-3.5-Turbo 22.27 23.95 23.95 17.51 33.61 29.79 25.80 16.11 3.36 25.77 61.57 35.43 10.50
Llama-3-70B-Chat 25.49 27.45 27.45 19.61 38.38 30.73 26.48 15.27 4.62 34.03 68.12 43.91 10.78

GPT-4o 52.80 56.86 56.86 35.71 61.90 46.22 40.28 28.29 7.28 45.52 74.85 51.91 18.07

w/ import; w/o version

GPT-3.5-Turbo 44.54 49.02 49.02 31.79 60.5 48.28 42.27 27.45 15.97 57.14 78.42 48.21 28.71
Llama-3-70B-Chat 49.44 54.06 54.06 35.01 62.89 61.34 62.93 29.13 13.31 59.38 77.96 56.08 26.33

GPT-4o 71.01 77.03 77.03 51.12 77.31 50.05 46.45 40.90 24.79 64.71 79.59 49.38 33.33

w/o import; w/o version

GPT-3.5-Turbo 22.41 24.23 24.43 17.65 36.97 31.93 27.29 17.65 3.92 27.31 62.34 36.62 10.64
Llama-3-70B-Chat 25.77 29.13 29.13 19.47 40.20 36.61 28.95 16.95 4.06 33.47 66.52 42.52 12.61

GPT-4o 49.72 54.90 54.90 35.15 61.76 47.90 42.41 29.27 5.60 46.36 74.95 50.15 17.93

Pearson Correlation Coefficient with Pass@1

PCC - 0.9995 0.9995 - 0.9810 0.8314 0.8196 0.9917 - 0.8974 0.7912 0.6547 0.9626

Table 1: The performance of different models across various granularities (Token, Line, Block). Pass@1 refers
to dynamic analysis metrics, while green-colored metrics (EM, ISM, PM) correspond to static analysis based on
string matching. The blue-colored metric (CDC) represents a newly proposed metric. The configurations labeled
as “w/o version” indicate that the prompt does not specify the version of the third-party code libraries, while

“w/o import” refers to prompts where the provided code context lacks import statements, meaning the model must
generate code based entirely on user intent. The Pearson correlation coefficient is computed for each metric’s
results against Pass@1 within each granularity.

(52.80 with version v.s. 49.72 without version). However, this advantage diminishes at the line and
block levels, where the results become inconsistent. This suggests that while version details can be
helpful for short code snippets, they don’t significantly impact the model’s performance for more
extended or complex code. This likely indicates that models are not trained to prioritize or heavily
rely on version-specific instructions.

The CDC@1 metric closely aligns with Pass@1 scores, making it a strong proxy for dynamic
code analysis. As shown in Table 1, at the block level, the Pearson Correlation Coefficient (PCC)
between CDC@1 and Pass@1 is 0.9995, indicating a strong correlation. Even though EM@1 has a
high correlation with Pass@1 at the token level (PCC = 0.9995), EM@1 becomes less aligned at the
block level (PCC = 0.8974). Additionally, the absolute differences between CDC@1 and Pass@1
values are generally smaller compared to other static metrics like EM@1, making CDC a potentially
more reliable alternative for assessing code generation accuracy.

5 FROM CODE COMPLETION TO CODE MIGRATION

In addition to generating code for specific third-party library versions, another common challenge is
maintaining user projects when these libraries are upgraded or rolled back. We address version-aware
code migration by exploring three key questions: (1) How well can LLMs handle migrating code
across different versions, compared to generating code for a specific version? (2) What impact
do major and minor version changes in third-party libraries have on code migration? (3) How do
forward migrations (from older to newer versions) compare to reverse migrations (from newer to
older versions) in terms of trends and challenges?
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Various Version Type Various Releasing Time

Major7→Major Major7→Minor Minor7→Major Minor7→Minor Old 7→ New New 7→ OldModel
CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3 CDC@1 CDC@3

DeepSeek-Coder-7b-instruct-v1.5 4.08 8.00 5.50 11.47 7.00 14.38 8.08 17.23 14.5 28.89 9.16 21.18
CodeLLaMA-13b-Instruct-hf 2.33 5.60 4.08 9.68 7.58 16.58 7.00 15.80 8.14 18.4 9.92 22.82

StarCoder2-15b 2.25 4.60 2.58 6.40 5.00 11.88 4.83 11.75 6.49 14.85 5.22 13.51
CodeGemma-7B 1.00 2.80 0.25 0.75 0.00 0.00 0.50 1.40 0.13 0.38 0.38 1.15
GPT-3.5-turbo 5.00 6.50 9.67 14.90 19.00 25.23 19.42 25.40 22.14 29.73 19.47 32.21

LLaMA-3-70b-chat 12.92 14.20 13.42 16.20 13.08 15.50 16.33 19.82 15.27 19.73 19.97 30.76
GPT-4o 23.67 25.95 35.25 38.40 42.08 47.53 37.83 47.40 43.00 48.02 38.42 47.37

Table 2: The performance of various models in different code migration scenarios. The arrow “7→” indicates
the direction of migration, where “Major” denotes the major release (e.g., Torch v2.0.0 and v2.4.0), and “Minor”
denotes the minor release (e.g., Torch v2.1.3 and v2.3.4). Therefore, the migration could be categorized as
(1)“{x}7→Major”, crossing any major release, like from v2.0.0 to v2.4.0; (2) “{x}7→Minor”, migrating to a
version before the next major release, like from v2.0.0 to v2.0.3. The “Old 7→ New” scenario simulates
upgrading from an old version to a new version, while “New 7→ Old” represents the maintenance of historical
code. The performance of different models in these scenarios is measured using the CDC metrics (CDC@1 and
CDC@3), reflecting their adaptability to various code migration tasks.

5.1 EXPERIMENT SETUP

Models: Based on the token-level code completion experimental results in Section 3, we selected the
most outstanding performers from each model series for the experiments in this section.

Data Preparation: For code migration, we utilize a subset of VersiCode, in which instances are
constructed based on differences between source and target code versions, covering both updates to
newer versions and downgrades. Versions were categorized by patterns (e.g., major vs. minor) to
capture different migration scenarios. (Detailed in Appendix A.3)

Metrics: Code migration is similar to block-level tasks in code completion. We use the same
evaluation metric as for block-level: CDC@k (n = 6, k ∈ {1, 3}).

5.2 RESULTS AND ANALYSIS

Model performance across version migrations. Different models display varying degrees of
adaptability when transitioning between major and minor software versions, with some showing
exceptional robustness in Table 2. The table categorizes version migrations into four types: Major-
to-Major, Major-to-Minor, Minor-to-Major, and Minor-to-Minor. Notably, most models did not
exhibit a significant pattern across different migration scenarios, likely due to their limited awareness
of version-specific API knowledge. Among the scenarios, “Minor7→Minor” intuitively represents
the simplest case (requiring the least code modification). Interestingly, GPT-4o’s performance is
particularly remarkable in the “Minor 7→Major” scenario, where it achieves the highest effectiveness.

Adaptability in code migration based on release timing. Backward and forward compatibility
testing reveals a spectrum of model resilience under different temporal migration scenarios. The
evaluation is split into two releasing time directions: Old-to-New and New-to-Old, shown in Table 2.
Generally, models perform better when adapting to newer versions from older ones, with GPT-
4o standing out for its high scores in both directions. However, the drop in performance when
handling older versions after training on newer releases highlights challenges in maintaining backward
compatibility, a critical aspect for long-term usability and integration stability in evolving tech
environments.

The context code in another version is still helpful, but its benefits are limited. The comparison
between block-level code completion and block-level code migration is shown in Table 2 and Table 1,
reorganized in Appendix D.3, especially Table 9. There is a significant improvement across most
models, except for LLaMA3-70B and GPT-4o. When provided with code in another version as
context (i.e. in the code migration task), these models can generate correct code with a much higher
success rate. However, a bottleneck is more evident in LLaMA3-70B and GPT-4o, where the code
context hinders their performance than code completion.
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6 DISCUSSION

How can we enhance pre-training for new code-LLMs? Figure 4 demonstrates a notable decline
in the performance of all models over time. This deterioration is likely attributable to two primary
factors: (1) the use of outdated pre-training data, which causes older versions of code to predominate
the training set, and (2) the backward compatibility of APIs, which results in a higher prevalence
of use cases and examples about older versions of these APIs (Lamothe et al., 2022). To mitigate
this issue and improve the models’ capabilities with newer libraries, we suggest increasing the
representation of new-version codebases within the training data. This adjustment aims to enhance
the proficiency in utilizing contemporary libraries effectively (Zhao et al., 2024; Shao et al., 2024).
Besides, based on the results in Section 4.2, current LLMs show limited use of version information in
code generation. To address this, we propose enhancing pre-training by incorporating version-tagged
code samples and metadata to help models better differentiate between API versions.

How can we address the challenge of evolving libraries in LLMs? Generating block-level or
repository-level code (Luo et al., 2024a) requires LLMs to understand user demands and library
dependencies. Addressing this challenge involves continually training the model with new libraries
using continual learning techniques (Jiang et al., 2024). These techniques enable the model to
adapt to changing libraries without forgetting previously learned information. Examples include
memory-based methods and various continual learning strategies (Wu et al., 2024; Yadav et al.,
2023; Wu et al., 2022). Additionally, developing benchmark datasets that are continuously and
automatically curated and maintained is crucial for evaluating the performance of models with new
libraries (Jang et al., 2022). Enriching the taxonomy (Jiao et al., 2023) and maintaining datasets for
evolving libraries (Lamothe et al., 2022) is also vital (Jiao et al., 2023). Multi-agent systems can be
employed for this purpose. Aligning development and evaluation efforts will enhance the ability of
LLMs in code understanding and generation capabilities, to remain effective as libraries evolve.

Can we address version-controllable code generation with retrieval-augmented generation?
Retrieval-augmented generation (RAG) approaches typically involve two crucial components: re-
trieval and in-context generation (Gao et al., 2023). The following challenges need to be addressed
in order for RAG to be effectively applied to this problem. From the retrieval perspective: (1)
It may be difficult to disambiguate version-related queries, as embeddings for version strings like
“torch 2.1.3” and “torch 1.3.2” can be very similar (Singh & Strouse, 2024). This similarity makes
it hard for retrievers to differentiate between specific features and capabilities associated with each
version. ( 2) Version information of code snippets is rarely explicitly mentioned within the code
itself and may instead appear in separate configuration files like “requirements.txt”. This separation
necessitates a more sophisticated retrieval approach, where the model must integrate information
from multiple sources to accurately understand version dependencies. From the perspective of
in-context generation: Table 9 shows that even non-matching version contexts (i.e., code migration)
can help smaller models generate grammatically correct code. This observation suggests potential for
dedicated RAG approaches (Jiang et al., 2024), though the benefits are limited and retrieval noise
may reduce effectiveness.

What are the effective methods for evaluating the capabilities of LLMs in generating version-
controllable code? Both static analysis (Agrawal et al., 2023), which reviews code without executing
it, and dynamic analysis (Zhuo et al., 2024), which tests the code by running it, are vital for software
development. However, evaluating LLMs for version-controllable code generation presents unique
challenges. (1) Dynamic analysis is complicated by API calls that rely on specific code contexts,
making it difficult and costly to create standalone tests (Zhuo et al., 2024). Additionally, using
LLM-generated code as test cases introduces further complexity in managing test quality. Especially,
VersiCode, which includes 300 packages and over 2,000 versions in the raw dataset, requires detailed
setups for each testing environment and managing various dependencies, complicating the practical
deployment of solutions. (2) Meanwhile, static analysis uses metrics like ISM (Agrawal et al., 2023)
and PM (Agrawal et al., 2023) for broad coverage but may miss critical details such as indentation
and parameter positioning in API-related code, refer to Table 1 and Appendix E. These omissions
suggest that traditional static metrics are not entirely suitable for assessing version-controllable code
generation. Evaluating the effectiveness of these metrics is crucial. Our study initiates the exploration
of more reliable methods; however, extensive research, including approaches like code slicing (Du
et al., 2024), is essential to advance our evaluation techniques.
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7 RELATED WORK

Code Generation Models: Recent advancements in code language models (Guo et al., 2024;
CodeGemma Team et al., 2024; Bai et al., 2023; Rozière et al., 2023; Sun et al., 2024), driven by
sophisticated NLP techniques (Jiang et al., 2024) and extensive code repositories (Hu et al., 2023),
have resulted in substantial breakthroughs. Transformer-based large language models (Luo et al.,
2024c; Rozière et al., 2023; Guo et al., 2024; Lozhkov et al., 2024; Bai et al., 2023; Gunasekar et al.,
2023; Li et al., 2023) have demonstrated exceptional capabilities in generating syntactically correct
and semantically meaningful code from natural language descriptions. Additionally, research efforts
that integrate multi-modal data (OpenAI, 2023b; 2024; Meta LlaMa team, 2024), including both code
and accompanying documentation (Hu et al., 2023), have significantly improved model accuracy.
While in real-world software engineering,

Code Generation Datasets: The code generation (Jiang et al., 2024; Sun et al., 2024; Luo et al.,
2024b) includes tasks for both code completion and code editing, ensuring comprehensive coverage
of programming scenarios. Code completion (Yao et al., 2018; Yin et al., 2018; Feng et al., 2020;
Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021; Lu et al., 2021; Li et al., 2022; Fried
et al., 2023; Liu et al., 2023; Lai et al., 2023; Yu et al., 2024; Fu et al., 2023; Zheng et al., 2023) is the
task of predicting subsequent code tokens based on the given context, benefits from datasets, which
provide extensive code repositories from various programming languages. These datasets enable
models to learn syntactic and semantic patterns (Jiao et al., 2023). Code editing (Just et al., 2014; Lin
et al., 2017; Zhu et al., 2022b;a; Hu et al., 2023; Yan et al., 2023; Ahmad et al., 2023; Jiao et al., 2023;
Zhang et al., 2023; Tian et al., 2024) involves automatically generating changes to existing code, such
as bug fixes or refactoring. Datasets like EvalGPTFix (Zhang et al., 2023) and DebugBench (Tian
et al., 2024), which focus on bug fixing and code refinement tasks, are instrumental in this area. To
our knowledge, given the necessity and challenges in library evolution (Jiang et al., 2024), refer to the
detailed comparison in Table 6 and Appendix C, the proposed dataset VersiCode is the first large-scale
code generation dataset, covering both code completion and code editing. Refer to Appendix C for a
comprehensive comparison among datasets.

Third-party Library Evolution: Third-party library code is continually updated due to bug fixes,
code refactoring, and the addition of new features, making it a significant research topic in software
engineering (Zhang et al., 2020; 2021; Dilhara et al., 2021; Liu et al., 2021; Wang et al., 2020;
Vadlamani et al., 2021; Haryono et al., 2021). Studies by Zhang et al. (2020) show that Python APIs
often evolve by adding, deleting, or modifying parameters. Further research by Zhang et al. (2021)
notes frequent API changes, including parameter updates. Dilhara et al. (2021) reveal that developers
adjust their use of machine learning libraries in response to updates, while Liu et al. (2021) and Dig
& Johnson (2006) find that undocumented changes in Android and Java can cause errors. Research
on API deprecation highlights issues with documentation and the quality of suggested alternatives
(Wang et al., 2020; Vadlamani et al., 2021; Haryono et al., 2021; Brito et al., 2018), showing that
improvement in library evolution does not necessarily translate to better suggestions for deprecated
APIs. VersiCode, unlike traditional software engineering research, studies API version evolution
from an LLM perspective, exploring its impact on model training, code generation, and evaluation.

8 CONCLUSION

In conclusion, our research underscores the need for updated benchmarks that capture the dynamic
nature of software development, better assessing the capabilities of LLMs in code generation. By
introducing the VersiCode dataset, we provide a realistic testing ground that reveals significant
limitations in current models, like GPT-4o and LLaMA3, when handling version-specific code. Our
findings advocate for continuous model improvements and the adoption of our new metric, i.e.,
critical diff check, which more accurately evaluates model performance against real-world challenges.
This work not only introduces valuable tools but also sets a direction for future enhancements in
AI-driven code generation, ensuring LLMs remain effective and relevant in professional settings. For
future research, we will investigate a solution for version-controllable code generation based on the
insights from this paper, including approaches like continual learning, memory-enhanced methods, or
retrieval-based methods. Additionally, we plan to develop a live version of VersiCode, which will
continuously incorporate new libraries and downstream use cases.
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Procedure Rules

Ranked Libraries 7→ StackOverflow Q&A Filter out answers that involve the use of libraries from the ranked libraries,
and ensure these answers include content in the library version format (e.g., pandas==1.3.5) as well as code snippets.

Ranked Libraries 7→ Library Source Code Based on the ranked libraries, parse the source code of these libraries to find functions related to version changes.

Ranked Libraries 7→ Downstream Application

(1)Exclude files that do not utilize libraries and version information explicitly listed in requirements.txt.
(2)Exclude files with an average line length exceeding 100 characters.
(3)Exclude files with a maximum line length exceeding 1000 characters.
(4)Exclude files with less than 25% of alphabetic characters.
(5)Exclude files with syntax errors.

Annotation 7→ Metadata

StackOverflow: Filter out data that has been annotated by experts with correct library version and code snippet,
and utilize GPT to generate functionality descriptions for the code snippets.

Library Source Code: Utilize GPT to extract examples from version change function docstrings,
filter out successfully extracted data, and employ GPT to generate functionality descriptions for the examples.

Downstream Application: Utilize GPT to generate functionality descriptions for code snippets.

Table 3: Detailed explanation of annotation stages and the corresponding filtering rules.

A DATASET CONSTRUCTION

VersiCode is a large-scale code generation benchmark dataset focusing on evolving library dependen-
cies. We propose two tasks to simulate real-world applications: version-specific code completion and
version-aware code migration, incorporating version information into code generation constraints.
First, we discuss data curation, and preprocessing of noisy code snippets and FAQs into organized
metadata. Based on the metadata, we describe the task design and quality control process. We then
address tagging API lifespan features per library version. Finally, we provide data statistics for
VersiCode and discuss future dataset extensions.

A.1 DATASET CURATION AND COLLECTION

As shown in Figure 7, we first collected permissively licensed Python repositories from GitHub that
serve as the source code for Python libraries. These repositories are ranked by their popularity (as
indicated by their collected stars). Using the list of popular libraries, we gathered data from three
sources for each library: (1) Library Source Code: We collected all available versions of the library
source code from GitHub, verifying with PyPI to ensure that the collected versions are formally
released and can be installed via pip. From the library source code, we extracted official usage
examples for each API from the docstrings. (2) Downstream Application Code: Given Python’s
popularity in scientific programming, we collected the source code from top-tier research papers over
10 years as downstream applications. These applications are valuable due to being lightweight yet
self-consistent, diverse in their topics, and tagged release timelines associated with publishing venues.
Given the time span, this data source implicitly includes evolving libraries. (3) Stack Overflow: Using
the library names as queries, we collected FAQ data from Stack Overflow, which provides real user
queries and diverse user answers. We filtered the data to include only those queries that explicitly
mention the versions of the libraries used, using heuristic rules, as shown in Table 3. Additionally,
we have made our best efforts to filter all of the source code based on the open-source licenses of the
repositories to ensure there is no infringement.

Given the high diversity and varied quality of the collected raw data, we adopted a hybrid annotation
approach involving both human experts and LLMs, such as ChatGPT. (1) Library Source Code: The
library version is concrete and explicitly available, but example usage varies across libraries and
versions. We used an LLM with in-context learning to help extract example code from docstrings,
preparing the library version and code snippets. (2) Downstream Applications: The version can
easily be extracted from configuration files, typically named “requirements.txt”. We carefully filtered
out Python files that are too long, do not mention the library version, or fail to compile. (3) Stack
Overflow: Given the diversity of the questions, we designed strict heuristic rules to preliminarily
annotate the library name, version, and corresponding Python code snippets mentioned in answers. We
then distributed the pre-annotated data to six qualified human experts for verification and correction,
ensuring the library version and code snippets are ready as well. With all pairs of library versions
and code snippets, we employed ChatGPT with in-context learning to generate descriptions of the
functionality for each code snippet. Each pair is wrapped in well-organized metadata.
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Expert Annotation GPT AnnotationData Filter

Library Source CodeDownstream Application

StackOverflow Q&A

Question

Answer

Ranked Libraries

From 2015 to 2023

Library Version:

Library: ... , Version: ...

Functionality Description:

The code defines …

Code Snippet:

def func(): …

MetadataExpert Annotation

Annotate Library Version 
and Code Snippet

GPT Annotation

Generate Description

Extract Examples

Figure 7: The preprocessing pipeline to obtain metadata, structured as n-gram tuple of ⟨library name, version,
functionality description, code snippet⟩.

A.2 LIFECYCLE TAGGING OF APIS

Consider an API a added to the library L in version Vs and deprecated in version Ve, and is active in
the intermediate version Vm where s ≤ m ≤ e. We refer to the interval [s, e) as the lifespan of a. To
analyze model performance in detail, we assessed how up-to-date each LLM was concerning newly
added or deprecated APIs per version. We compared the source code between any two consecutive
versions of each library to detect changes in API or method names. Based on the detection results,
we labeled the datasets obtained from the library source code as follows: “addition” indicates an
API newly added in the current version and still applicable in subsequent versions; “deprecation”
indicates the current version is the last usable version for the API; and “general” indicates the API
usage method is inherited from the previous version.

A.3 DATA PREPARATION FOR EVALUATION

Data Preparation for Token-level Code Completion. As introduced in Section 2, we designed
two types of version-controllable code generation tasks: version-specific code completion and
version-aware code migration. The task granularities are categorized into token-level, line-level, and
block-level to control difficulty and simulate different application scenarios. To better understand
model performance, each instance in VersiCode is also tagged with the following: (1) Data source,
which includes library source code, downstream applications, and Stack Overflow; (2) Feature type,
including addition, deprecation, and general; (3) Release time, i.e. the timestamp from GitHub and
Stack Overflow); These tags allow us to filter the evaluation dataset and gain sharper insights into
model performance.

Data Preparation for Execution-based Multi-granularity Code Completion. As shown in Figure 5,
we have constructed a subset for dynamic code analysis that includes executable test cases. From
the data originating from library source code in VersiCode, we filter for data that includes complete
context (e.g., import statements) code snippets. Experts interact with the web version of GPT-4 to
refactor the code snippets into task functions. After a manual check of the task functions, experts
interact with GPT-4 to write test cases for them. During the interaction, experts provide appropriate
feedback to GPT-4. The test cases are run in a testing environment containing specific library versions
(e.g., pandas==1.3.5); if successful, the annotation is completed after further manual verification,
and if failed, more detailed feedback is provided to GPT-4 to assist with corrections. The annotated
task function is processed into code completion forms with three levels of ⟨mask⟩ granularity: token,
line, and block. The executable test cases include four types: (1) Test return type: tests whether the
return type is correct. (2) Test normal input: tests whether the expected output is produced with
normal inputs. (3) Test boundary values: tests whether special values (such as null values, incorrect
types, etc.) are handled properly. (4) Test functionality: tests whether the function fulfills its primary
functionality. The first three types of test cases have one instance per task function, while the fourth
type has 1-3 instances.

Data Preparation for Code Migration. As shown in Figure 2, considering code migration instances
constructed from pairs of metadata, the differences between source and target code versions result in
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Figure 8: A proportional chart based on the classification system of targeted audience and topics in third-party
Python libraries on PyPI.

various situations, such as updates from an older version to a newer version or vice versa. Additionally,
we categorized versions according to version patterns, for example, treating torch v1.0.0 as a major
version and torch v1.3.1 as a minor version, to identify combinations of major and minor version
migration cases.

B DATA STATISTICS AND SCOPE

Dataset Statistics: We present the statistics of VersiCode in Table 4, using the StarCoder2’s (Lozhkov
et al., 2024) tokenizer to compute the number of tokens. We also outline the complete version of
VersiCode in the table, which furnishes human-labeled data for three additional languages: C#, Java,
and JavaScript. Our executable data, applied in Section 4, is a high-quality human-annotated subset
from VersiCode, covering 12 libraries, 40 versions, and 119 functionality descriptions. For each
functionality description, we matched 4 to 5 test cases.

# Language Python Java C# JavaScript
# Data Source StackOverflow; Library Source Code; Downstream Application StackOverflow StackOverflow StackOverflow

# Num. of Libraries 300 19 16 33

# Num. of Versions 2,207 25 16 60

# Size of Meta Data 11,268 29 16 62

# Task Type Completion Editing (old to new) Editing (new to old) Completion Completion Completion

# Granularity Token Line Block Block Block Block Block Block

# Avg. Input Token 2,087 2,075 55 191 195 57 63 67

# Avg. Output Token 2 16 128 131 128 349 255 167

# Num. of Instances 13,488 13,490 1,617 38,037 38,037 32 21 82

Table 4: Data statistics of VersiCode, including multiple languages.

Scope: VersiCode supports version-specific code completion at the token, line, and block levels,
enabling developers to navigate through version variations effortlessly. It also facilitates block-level
version-aware code editing, empowering users to make precise modifications tailored to requirements
of each version. The collected metadata also serves as a valuable resource for potential customized
task modifications, supported domains are illustrated in Figure 8, aiding in fine-tuning workflows and
enhancing model training for optimal performance.

C RELATED DATASET

Code Completion Datasets. As shown in Table 5, we compare the VersiCode-completion dataset
with existing benchmarks. VersiCode stands out in annotated data size, marking it as the inaugural
dataset tailored for version-specific generation.

Code Migration Datasets. As shown in Table 6, we compare the VersiCode-migration dataset with
existing benchmarks. VersiCode stands out in annotated data size, marking it the inaugural dataset
tailored for version-specific migration.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Benchmark Source Language Samples Completion Task Granularity Collection Time Annotation
StaQC (Yao et al., 2018) StackOverflow Python, SQL 267,056 Function Programming Line-Level, Block-Level 2018 None

CoNaLa (Yin et al., 2018) StackOverflow Python, Java 2,879 Function Programming Line-Level, Block-Level 2018 Human

CT-maxmin (Feng et al., 2020) Existing Benchmark Multi(=6) 2,615 Cloze Test Token-Level 2020 None

HumanEval (Chen et al., 2021) Hand-Written Python 164 Function Programming Line-Level, Block-Level 2021 Human

MBPP (Austin et al., 2021) Hand-Written Python 974 Function Programming Block-Level 2021 Human

APPS (Hendrycks et al., 2021) Programming Sites Python 10,000 Function Programming Line-Level, Block-Level 2021 None

CT-all (Lu et al., 2021) Existing Benchmark Multi(=6) 176,115 Cloze Test Token-Level 2021 None

CodeContests (Li et al., 2022) Existing Benchmark, Codeforces Multi(=3) 13,610 Function Programming Block-Level 2022 None

HumanEval-FIM (Fried et al., 2023) Existing Benchmark Python 164 Function Programming Line-Level, Block-Level 2022 None

HumanEval+ (Liu et al., 2023) Existing Benchmark Python 164 Function Programming Line-Level, Block-Level 2023 LLM

MBPP+ (Liu et al., 2023) Existing Benchmark Python 378 Function Programming Block-Level 2023 LLM

DS-1000 (Lai et al., 2023) StackOverflow Python 1,000 Function Programming Line-Level, Block-Level 2023 Human

CoderEval (Yu et al., 2024) Github Python, Java 460 Function Programming Block-Level 2023 Human

CodeApex (Fu et al., 2023) Programming Sites C++ 476 Function Programming Block-Level 2023 None

HumanEval-X (Zheng et al., 2023) Existing Benchmark Multi(=5) 820 Function Programming Line-Level, Block-Level 2023 Human

BigCodeBench (Zhuo et al., 2024) Existing Benchmark Python 1,140 Function Programming Block-Level 2024 Human, LLM

VersiCode StackOverflow, Github Python, Java, C#, JavaScript 28,595 Cloze Test, Function Programming Token-Level, Line-Level, Block-Level 2024 Human, LLM

Table 5: Comparison of VersiCode and other code completion datasets. VersiCode is the largest annotated
dataset, covering multiple languages and granularities, and involving both human and LLM joint annotations.

Benchmark Source Language Samples Editing Task Granularity Collection Time Annotation
Defects4J (Just et al., 2014) Open Source Programs Java 357 Debug Block-Level 2014 None

QuixBugs (Lin et al., 2017) Quixey Challenges Python, Java 40 Debug Line-Level 2017 Human

CoST (Zhu et al., 2022b) GeeksForGeeks Multi(=7) 132,046 Code Translation Line-Level, Block-Level 2022 None

XLCoST (Zhu et al., 2022a) GeeksForGeeks Multi(=8) 1,083,000 Code Translation Line-Level, Block-Level 2022 None

InstructCoder (Hu et al., 2023) Github Python 114,000 Code Refinement Block-Level 2023 LLM

MultilingualTrans (Yan et al., 2023) Programming Sites Multi(=8) 30,419 Code Translation Block-Level 2023 None

NicheTrans (Yan et al., 2023) Programming Sites Multi(>8) 236,468 Code Translation Block-Level 2023 None

LLMTrans (Yan et al., 2023) Hand-Written Multi(=8) 350 Code Translation Block-Level 2023 Human

Avatar (Ahmad et al., 2023) Programming Sites Python, Java 62,520 Code Translation Block-Level 2023 None

G-TransEval (Jiao et al., 2023) Existing benchmark, GeeksForGeeks Multi(=5) 400 Code Translation Token-Level, Block-Level 2023 Human

EvalGPTFix (Zhang et al., 2023) AtCoder Java 151 Debug Block-Level 2023 Human

DebugBench (Tian et al., 2024) LeetCode Multi(=3) 4,253 Debug Block-Level 2024 LLM

VersiCode Github Python 76,074 Version Adaptation Block-Level 2024 LLM

Table 6: Comparison between VersiCode and other code editing datasets, with VersiCode standing out as the
largest annotated dataset specifically tailored for version adaptation.

D ADDITIONAL EXPERIMENTS AND DETAILS

D.1 EXTENSIVE COMPARATIVE STUDY ON LARGE LANGUAGE MODELS

In addition to the model depicted in Figure 3, comprehensive and detailed evaluation results are
presented in Table 7, encompassing 23 models and sorted by the release time of each model.

In addition to the model depicted in Figure 9, comprehensive and detailed evaluation results are
presented in Table 7, encompassing 23 models and sorted by the release time of each model.

Even token-level code completion is challenging. We present the EM@1 results for token-level code
completion on VersiCode, sorted by release time (highlighted in green, see Figure 3-a1). Compared
to the Pass@1 results on HumanEval (blue) and MBPP (orange), all models perform significantly
worse on VersiCode (green). This result indicates the difficulty in disambiguating and recalling
version-specific library usage. It is important to note that larger and more recent models, such as
GPT-4o (M13) and LLaMA3-70B (M12), demonstrate significantly superior performance compared
to other models. (See Appendix H for the error analysis of GPT-4o.)

D.2 MULTI-LANGUAGE ANALYSIS

As depicted in Table 8, we perform the primary multi-language experiments. Counter-intuitively, the
performance of LLMs in Java, JavaScript, and C# surpasses that in Python. This anomaly might be
attributed to potential data leakage from the Stack Overflow dataset.

D.3 BLOCK-LEVEL CODE COMPLETION V.S. CODE MIGRATION

We use Python’s built-in function “compile()” to compile the generated code snippets to check
whether they are syntactically correct. Upon comparing “w/o grammar verification” and “w grammar
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Release Time Model HumanEval HumanEval+ MBPP MBPP+ VersiCode
EM@1 EM@1 EM@1 EM@1 Library Source Code Downstream Application StackOverflow Total

2023.06.14 WizardCoder-15B-V1.0 (Luo et al., 2024c) 56.7 50.6 64.3 54.2 0.17 0 0.1 0.06

2023.06.14 WizardCoder-Python-7B-V1.0 (Luo et al., 2024c) 50.6 45.1 58.5 49.5 6.62 0.17 5.45 2.66

2023.07.18 Llama-2-7B (Touvron et al., 2023) 12.8 - 20.8 - 6.57 0.46 4.76 2.74

2023.07.18 Llama-2-13B-Chat (Touvron et al., 2023) 18.3 - 30.6 - 3.71 0.06 3.41 1.51

2023.08.25 CodeLlama-7B-Instruct (Rozière et al., 2023) 34.8 - 44.4 - 17.77 0.62 17.8 7.62

2023.08.25 CodeLlama-13B-Instruct (Rozière et al., 2023) 42.7 - 49.4 - 28.45 2.47 32.05 13.5

2023.08.28 CodeLlama-7B-Python (Rozière et al., 2023) 38.4 - 47.6 - 3.4 0.03 2.35 1.28

2023.10.29 DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024) 74.4 71.3 74.9 65.6 3.83 0.15 4.34 1.71

2023.11.11 Mistral-7B-Instruct-V0.2 (Jiang et al., 2023) 42.1 36 44.7 37 13.96 1.85 20.33 7.54

2024.01.25 DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 75.6 71.3 75.2 62.2 26.7 4.51 44.77 15.71

2024.01.25 GPT-3.5-Turbo (OpenAI, 2023b) 76.8 70.7 82.5 69.7 40.55 30.48 65.95 37.59

2024.02.27 StarCoder2-7B (Lozhkov et al., 2024) 35.4 29.9 55.4 45.6 12.21 0.32 13.02 5.27

2024.02.27 StarCoder2-15B (Lozhkov et al., 2024) 46.3 37.8 66.2 53.1 29.7 2.9 35.79 14.55

2024.04.09 CodeGemma-7B-Instruct (CodeGemma Team et al., 2024) 60.4 51.8 70.4 56.9 31.8 0.76 31.29 13.36

2024.04.09 CodeGemma-7B (CodeGemma Team et al., 2024) 44.5 41.5 65.1 52.4 29.61 1.12 34.01 13.28

2024.04.10 aiXCoder-7B (aiXcoder team, 2024) 54.9 - 66 - 17.51 1.09 26.3 8.83

2024.04.15 aiXCoder-7B-Base (aiXcoder team, 2024) 43.2 - 62.2 - 20.41 0.94 26.37 9.59

2024.04.15 CodeQwen1.5-7B (Bai et al., 2023) 51.8 45.7 73.5 60.8 11.61 0.12 7.58 4.33

2024.04.15 CodeQwen1.5-7B-Chat (Bai et al., 2023) 83.5 78.7 79.4 69 12.16 0.33 9.2 4.81

2024.04.18 Llama-3-8B (Meta LlaMa team, 2024) 35.5 29.3 61.4 51.6 17.18 0.24 20.69 7.57

2024.04.18 Llama-3-8B-Instruct (Meta LlaMa team, 2024) 61.6 56.7 70.1 59.3 20.79 3.67 34.08 12.23

2024.04.18 Llama-3-70B-Chat (Meta LlaMa team, 2024) 77.4 72 82.3 69 33.76 50.93 64.35 47.55

2024.05.13 GPT-4o (OpenAI, 2024) 85.4 81.7 85.7 73.3 58.37 72.98 87.21 70.44

Table 7: Full evaluation results of EM@1 on token-level code completion compared to related datasets and
different data sources. The results for related datasets are collected from the online leaderboard of Evalplus (Liu
et al., 2023).

(a1) (a2) (b)

Figure 9: The EM@1 results for token-level code completion from VersiCode: (a1) Comparison with existing
benchmark datasets, (a) Performance grouped by data sources, and (b) Performance grouped by API lifecycle.

verification” in Table 9, it becomes evident that the model tasked with editing, alongside reference
code snippets from other versions, finds it easier to produce grammar-verified code.

E METRIC DESIGN OF CRITICAL DIFF CHECK

E.1 INTRODUCTION OF CRITICAL DIFF CHECK

Critical Diff Check (CDC) focuses on the changes in the code rather than the overall similarity of the
entire code segment. CDC has five rules as follows:

• Rule 1: Check whether the generated code contains the core token.

• Rule 2: Check whether the generated code is valid.

• Rule 3: Check if the number of arguments in the function using the core token is consistent.

• Rule 4: If the reference code uses a with statement, checks whether the generated code also
uses a with statement.

• Rule 5: If the reference code uses keyword argument assignment, checks whether the
generated code uses the same keyword argument assignment.

The failure frequency and examples for each rule are shown in Table 10.
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Model Python Java C# JavaScript
ISM@1 PM@1 ISM@1 PM@1 ISM@1 PM@1 ISM@1 PM@1

DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 40.03 27.35 61.55 46.62 71.43 49.68 75.22 54.24

CodeLlama-13B-Instruct (Rozière et al., 2023) 48.83 34.63 70.92 58.87 47.62 35.54 52.87 34.11

StarCoder2-15B (Lozhkov et al., 2024) 39.71 27.36 38.63 27.43 33.33 28.63 60.67 39.33

CodeGemma-7B (CodeGemma Team et al., 2024) 8.67 5.00 34.38 23.53 0 0 16.82 10.53

GPT-3.5-Turbo (OpenAI, 2023b) 40.77 28.06 50.00 39.34 28.57 26.87 24.39 15.85

GPT-4o (OpenAI, 2024) 64.72 50.48 70.83 64.04 71.43 63.26 77.74 70.24

Llama-3-70B-Chat (Meta LlaMa team, 2024) 57.68 41.47 61.55 58.57 66.67 56.35 75.61 67.61

Table 8: Multi-language performance on VersiCode

Code Completion Code Migration (Old 7→ New) Code Migration (New 7→ Old)

Block-level Block-level Block-levelModel
ISM PM ISM PM ISM PM

w/o grammar verification

DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 40.03 27.35 46.17 37.20 42.94 33.66
CodeLlama-13B-Instruct (Rozière et al., 2023) 48.83 34.63 41.74 32.37 41.41 30.01

StarCoder2-15B (Lozhkov et al., 2024) 39.71 27.36 40.94 30.73 44.46 31.88
CodeGemma-7B (CodeGemma Team et al., 2024) 8.67 5.00 24.54 17.46 22.61 12.08

GPT-3.5-Turbo (OpenAI, 2023b) 40.77 28.06 45.96 36.80 46.96 35.76
Llama-3-70B-Chat (Meta LlaMa team, 2024) 58.08 41.78 33.37 23.51 42.94 29.36

GPT-4o (OpenAI, 2024) 64.72 50.48 55.48 45.80 55.36 52.33

w grammar verification

DeepSeek-Coder-7B-Instruct-V1.5 (Guo et al., 2024) 0.00 0.00 45.41 36.44 40.25 28.89
CodeLlama-13B-Instruct (Rozière et al., 2023) 4.34 3.12 39.17 27.94 39.12 26.17

StarCoder2-15B (Lozhkov et al., 2024) 1.36 0.79 35.59 26.72 41.41 27.64
CodeGemma-7B (CodeGemma Team et al., 2024) 0.37 0.22 9.16 4.12 9.72 5.28

GPT-3.5-Turbo (OpenAI, 2023b) 40.28 27.57 45.96 36.80 46.96 35.06
Llama-3-70B-Chat (Meta LlaMa team, 2024) 64.73 50.48 54.72 45.04 55.36 52.33

GPT-4o (OpenAI, 2024) 57.68 41.47 33.37 23.51 42.94 29.36

Table 9: Results of block-level code completion and migration with or without grammar verification.

E.2 ABLATION STUDY OF CRITICAL DIFF CHECK

We conducted ablation experiments on the five CDC rules and calculated the Pearson correlation
coefficient with the Pass@1 metric for each, to demonstrate the reliability of CDC. The specific
experimental data is shown in Table 11.

F RUNNING EXAMPLE OF EXECUTABLE TEST

As shown in Figure 10, this is an example of a task function used for code generation, where the
task function is processed in various granular forms of code completion. The “core token” is only
provided for visualization, which is unseen for models. “library version” is optional, identified as “w/
or w/o version”, and “import” statements are also optional, identified as “w/ or w/o import” in Table 1.
As shown in Figure 11, these are the test cases for the task function illustrated in Figure 10. The test
cases were developed by experts through interactions with GPT-4 and include four types of tests.

G EVALUATION DETAILS

G.1 HYPER-PARAMETER

As illustrated in Table 12, we have itemized the hyper-parameters pertinent to version-controllable
code generation.

G.2 PROMPT TEMPLATE

We introduce the prompt template for token-level, line-level, and block-level evaluations in Figure 12,
Figure 13, and Figure 14, respectively.
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Task Function: 

 

# Library Version: accelerate==0.16.0 

# Core Token: release_memory 

 

 

import torch 

from torch import Tensor 

from accelerate.utils import release_memory 

 

 

def task_function(size: tuple) -> (Tensor, Tensor): 

    """ 

    Creates two tensors filled with ones, processes them using an in-place memory release function, 

    and returns them. 

 

    Parameters: 

    size (tuple): A tuple specifying the dimensions of the tensors to be created. 

 

    Returns: 

    tuple of torch.Tensor: A tuple containing two tensors, both located on the appropriate device 

    (GPU if available, otherwise CPU). 

    """ 

    device = 'cuda' if torch.cuda.is_available() else 'cpu' 

    a = torch.ones(size, device=device) 

    b = torch.ones(size, device=device) 

    release_memory(a, b) 

    return a, b 

  

Figure 10: The ground truth for block-level code generation, used for Section 4. Note that, “core token” is only
provided for visualization, which is unseen for models. “library version” is optional, identified as “w/ or w/o
version”, and “import” statements are also optional, identified as “w/ or w/o import” in Table 1.

Test Cases: 

 

import unittest 

from unittest.mock import patch 

 

 

class TestTaskFunction(unittest.TestCase): 

 

    def test_return_type(self): 

        """Test if the return type of the function is as expected (tuple of Tensors).""" 

        result_a, result_b = task_function((1000, 1000)) 

        self.assertIsInstance(result_a, Tensor) 

        self.assertIsInstance(result_b, Tensor) 

 

    def test_normal_input(self): 

        """Test the function with normal input and check if the results are as expected.""" 

        result_a, result_b = task_function((10, 10)) 

        self.assertEqual(result_a.size(), (10, 10)) 

        self.assertEqual(result_b.size(), (10, 10)) 

 

    def test_boundary_values(self): 

        """Test the function with boundary values such as zero dimensions.""" 

        result_a, result_b = task_function((0, 0)) 

        self.assertEqual(result_a.numel(), 0) 

        self.assertEqual(result_b.numel(), 0) 

 

    @patch('__main__.release_memory') 

    def test_functionality_1(self, mock_release_memory): 

        """Test to verify if the release_memory function is called within the task_function.""" 

        task_function((50, 50)) 

        mock_release_memory.assert_called_once() 

 

 

if __name__ == '__main__': 

    unittest.main() 

 

Figure 11: The test cases associated with generated code for dynamic code analysis, used for Section 4.
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Model Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

GPT-3.5-Turbo 363 (50.84%) - - - -
LLaMA-3-70b-chat 325 (45.52%) - - - -Token

GPT-4o 169 (23.67%) - - - -

GPT-3.5-Turbo 290 (40.62%) 199 (27.87%) 386 (54.06%) 36 (5.04%) 468 (65.55%)
LLaMA-3-70b-chat 258 (36.13%) 124 (17.37%) 332 (46.5%) 36 (5.04%) 478 (66.95%)Line

GPT-4o 150 (21.01%) 67 (9.38%) 229 (32.07%) 7 (0.98%) 390 (54.62%)

GPT-3.5-Turbo 320 (44.82%) 3 (0.42%) 443 (60.64%) 31 (4.34%) 489 (68.49%)
LLaMA-3-70b-chat 286 (40.05%) 10 (1.4%) 408 (57.14%) 31 (4.34%) 470 (65.83%)Block

GPT-4o 254 (35.57%) 54 (7.56%) 359 (50.28%) 33 (4.62%) 439 (61.48%)

Matching Rule a ∈ c compile(c) is successful |paramsc′(f)| = |paramsc(f)| startwith(c′, ’with’) = startwith(c, ’with’) ∀p ∈ Kc′(f), p ∈ Kc(f)

Core Token wait for everyone - EvaluationSuite clear environment init on device

Positive Example state.wait for everyone() for i in range(5): print(i) suite = EvaluationSuite.load(”evaluate/evaluation-suite-ci”) with clear environment(): with init on device(device=device):Example

Negative Example state.wait for others() for i in range(5) print(i) suite = EvaluationSuite(”imdb”, ”lvwerra/distilbert-imdb”) clear environment() init on device(layer, device)

Table 10: Each rule of the CDC, along with the frequency, occurrence rate, and examples of mismatches for
each rule. ‘a’ represents the core token, ‘c’ represents the code generated by the model, ‘c′’ represents the
reference code, ‘f’ represents the function of the specified token, and ‘params’ refers to the function’s parameter
list. ‘Kc′(f)’ and ‘Kc(f)’ represent the keyword parameter lists of the reference code and the model-generated
code, respectively, and ‘p’ represents the parameter assigned using keyword arguments. In detail, Rule 1 checks
whether the generated code contains the core token; Rule 2 checks whether the generated code is valid; Rule 3
checks if the number of arguments in the function using the core token is consistent; Rule 4, if the reference code
uses a with statement, checks whether the generated code also uses a with statement; Rule 5, if the reference
code uses keyword argument assignment, checks whether the generated code uses the same keyword argument
assignment.

Ablation Model CDC w/o Rule 1 CDC w/o Rule 2 CDC w/o Rule 3 CDC w/o Rule 4 CDC w/o Rule 5 Pass@1 CDC@1

GPT-3.5-Turbo 49.16 49.16 49.16 49.16 49.16 41.88 49.16
LLaMA-3-70b-chat 54.48 54.48 54.48 54.48 54.48 46.08 54.48Token

GPT-4o 76.33 76.33 76.33 76.33 76.33 65.97 76.33

GPT-3.5-Turbo 72.13 28.85 31.37 27.59 36.69 26.47 27.59
LLaMA-3-70b-chat 82.63 29.27 31.09 29.27 49.3 32.07 29.27Line

GPT-4o 90.62 41.32 44.68 41.04 64.99 46.08 41.04

GPT-3.5-Turbo 99.58 26.75 30.39 26.75 38.37 11.48 26.61
LLaMA-3-70b-chat 98.60 28.15 32.21 28.29 41.46 13.73 27.73Block

GPT-4o 92.44 34.31 34.45 32.07 45.38 19.19 31.65

Pearson Correlation Coefficient with Pass@1

PCC -0.5674 0.9069 0.9081 0.909 0.9029 - 0.9124

Table 11: Ablation study of Critical Diff Check per rule. The configuration labeled as “CDC w/o Rule i”, where
i ∈ {1, 2, 3, 4, 5} means that when calculating the CDC score, Rule i is excluded, and only the other four rules
are considered. The Pearson correlation coefficient calculates the correlation the metric’s results obtained in
each configuration against Pass@1.

G.3 DATA SAMPLING

For token-level completion tasks(Figure 3), we randomly sampled 2,000 instances for evaluation. We
used the entire executable dataset for line- and block-level completion tasks due to its smaller size
(Figure 6, Table 1). In the time trend experiment (Figure 4), we sampled 200 data points per quarter
or used all available data if fewer. And in the code migration task (Table 2), we randomly sampled
2,000 instances for evaluation.

H ERROR ANALYSIS

H.1 ERROR ANALYSIS OF GPT4-O

Despite GPT4-o achieving superior performance in general evaluation, it still encounters errors in
30% of instances. We provide several negative examples in Figure 16, Figure 17, and Figure 18.
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hyper-parameter code completion code migration
token-level line-level block-level block-level

temperature 0.8 0.8 0.8 0.8
top p 0.95 0.95 0.95 0.95

max tokens 64 128 512 512
n 100 6 6 6

Table 12: Hyper-parameters for completion and migration.

prompt = f"""

You are a Python programming expert. Your task is to analyze a code snippet and infer the content masked by <token_mask>. Here 

are your instructions:

1. You will receive:

- A Python library name and its version, which is relevant to the content masked by <token_mask>

- A code snippet with one or more <token_mask> markers

2. Each <token_mask> in the snippet represents the same masked content.

3. Based on the provided library and its version, infer the specific token that <token_mask> is hiding.

4. Provide your response as follows:

- Give only ONE answer, regardless of how many <token_mask> appear

- Include ONLY the inferred content

- Wrap your answer with ```python and ``` to denote it as a code block

- Omit any explanations or extra information

The Python library with its version and the code snippet are provided below:

Library and Version:

{dependency_version}

Code Snippet:

{masked_code}

Your response:

"""

Figure 12: Prompt template for token-level version-specific code completion.

prompt = f"""

You are a Python programming expert. Your task is to analyze a code snippet where a certain line is masked by <line_mask> and infer 

the content of that line. Here are your instructions:

1. You will receive:

- The name and version of the library relevant to this line of code

- A code snippet with a <line_mask>

2. The <line_mask> represents a single masked line of code.

3. Based on the provided library information, infer what the <line_mask> is hiding.

4. Provide your response as follows:

- Give only the inferred line of code

- Wrap your answer with ```python and ``` to denote it as a code block

- Omit any explanations or extra information

The code snippet and library information are provided below:

Libraries and Version:

{dependency_version}

Code Snippet:

{masked_code}

Your response:

"""

Figure 13: Prompt template for line-level version-specific code completion.
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prompt = f"""

You are a professional Python engineer. Your task is to write Python code that implements a specific function based on the provided 

library and version. Here are your instructions:

1. You will receive:

- The name and version of the library relevant to the code

- A code snippet with a <block_mask> where you need to infer the missing code

2. Based on the library information, write the Python code that fills the <block_mask> and implements the feature.

3. Provide your response as follows:

- Return only the code that fills the <block_mask> and implements the function

- Enclose your code with ```python and ``` to denote it as a Python code block

- Omit any explanations or extra information

The library information and partially masked code snippet are provided below:

Library and Version:

{dependency_version}

Code Snippet with <block_mask>:

{masked_code}

Your response:

"""

Figure 14: Prompt template for block-level version-specific code completion.

    prompt = f"""
    You are now a professional Python programming engineer. I will provide you with a code snippet and a description of its functionality, 
    including the dependencies and versions used in the code. Then, I will provide the same dependencies but with a specified new version. 
    Your task is to refactor the code using the methods provided by the specified new version and return the refactored code. Please note 
    that you only need to return the refactored code and enclose it with <start> and <end>:
    ###Functionality description of the code
    {description}
    ###Dependency and old version
    {old_version}
    ###Old version code
    {old_code}
    ###Dependency and new version
    {new_version}
    ###Refactored new code
    """

Figure 15: Prompt template for version-aware code migration.

            "dependency": "paddlepaddle-gpu",
            "version": "==2.0.0",
            "time": "2021-01-21",
            "description": "The code creates a dataset using the PaddlePaddle framework and sets the variables to be used as data and labels for the dataset.",
            "code": "import paddle\ndataset = paddle.distributed.fleet.DatasetBase()\ndataset._set_use_var([data, label])",
            "masked_code": "import paddle\ndataset = paddle.distributed.fleet.DatasetBase()\ndataset.<mask>([data, label])",
            "answer": "_set_use_var",
            "type": "name_change_new",
            "granularity": "token",
            "language": "python",
            "task": "code completion",
            "source": "docstring",
            "model_output_token_clear": "['set_use_var', 'set_filelist', 'set_list', 'set_filelist', 'set_filelist', 'set_data', 'set_filelist', 'set_list', 'set_list', 'set_filelist', 'set_list', 

'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_use_var',  'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_list', 'set_vars', 'set_filelist', 'set_list', 
'set_use_var', 'set_filelist', 'set_data', 'set_list', 'set_use_var', 'set_filelist', 'set_filelist', 'set_inputs', 'set_inputs', 'set_use_var', 'set_filelist', 'set_filelist', 'set_use_var',
'set_filelist', 'set_data', 'set_list', 'set_filelist', 'set_use_vars', 'set_list', 'set_list', 'set_inputs', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_use_var', 'set_list',
'set_use_var', 'set_filelist', 'set_list', 'set_list', 'set_list', 'set_filelist', 'set_records', 'set_inputs', 'set_use_var', 'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_use_var', 
'set_inputs', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_use_var', 'set_list', 'set_filelist', 'set_use_var', 'set_filelist', 'set_filelist', 'set_data', 
'set_filelist', 'set_list', 'set_inputs', 'set_list', 'set_filelist', 'set_vars', 'set_use_var', 'set_list', 'set_inputs', 'set_inputs', 'set_inputs', 'set_filelist', 'set_filelist', 'set_list', 
'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_filelist', 'set_list', 'set_data', 'set_use_vars']"

Figure 16: The first negative example of GPT-4o on token-level code completion.

            "dependency": "pandas",
            "version": "==1.1.0",
            "time": "2020-07-28",
            "description": "This code defines multiple aggregation functions with relabeling for the 'a' column, including 'max' and 'min'.",
            "code": "is_multi_agg_with_relabel(a=\"max\")\nis_multi_agg_with_relabel(a_max=(\"a\", \"max\"), a_min=(\"a\", \"min\"))\nis_multi_agg_with_relabel()",
            "masked_code": "<mask>(a=\"max\")\n<mask>(a_max=(\"a\", \"max\"), a_min=(\"a\", \"min\"))\n<mask>()",
            "answer": "is_multi_agg_with_relabel",
            "type": "name_change_new",
            "granularity": "token",
            "language": "python",
            "task": "code completion",
            "source": "docstring",
            "model_output_token_clear": "['agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 

'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 
'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 
'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg', 'agg']"

Figure 17: The second negative example of GPT-4o on token-level code completion.
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            "dependency": "wandb",
            "version": "==0.12.12",
            "time": "2022-04-05",
            "description": "The code loads the latest version of a previously logged model with the name \"my-simple-model\" and assigns the model object to the variable \"model\".",
            "code": "# assuming you have previously logged a model with the name \"my-simple-model\"\nsm = use_model(\"my-simple-model:latest\")\nmodel = sm.model_obj()\n",
            "masked_code": "# assuming you have previously logged a model with the name \"my-simple-model\"\nsm = <mask>(\"my-simple-model:latest\")\nmodel = sm.model_obj()\n",
            "answer": "use_model",
            "type": "add",
            "granularity": "token",
            "language": "python",
            "task": "code completion",
            "source": "docstring",
            "model_output_token_clear": "['load_model', 'Artifact.get', 'use_artifact', 'use_artifact', 'load_model', 'Artifact', 'load_model', 'Artifact.get', 

'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'use_artifact', 'Artifact', 'Artifact', 'Artifact', 
'Artifact.load', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'Artifact.get', 'load_model', 'use_artifact', 'load_model', 
'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 
'load_model', 'Artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 
'use_artifact', 'use_artifact', 'use_artifact', 'use_artifact', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'load_model', 
'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'load_model',
'load_model', 'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model', 'load_model', 'load_model', 'use_artifact', 'load_model',
'use_artifact', 'Artifact', 'Artifact', 'use_artifact', 'use_artifact', 'load_model', 'Artifact', 'use_artifact', 'Artifact', 'load_model', 'Artifact', 'load_model',
'load_model', 'load_model', 'use_artifact', 'load_model', 'use_artifact', 'use_artifact', 'load_model']"

Figure 18: The third negative example of GPT-4o on token-level code completion.
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