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ABSTRACT

Modern graph neural networks (GNNs) use a message passing scheme and have
achieved great success in many fields. However, this recursive design inherently
leads to excessive computation and memory requirements, making it not applica-
ble to massive real-world graphs. In this work, we propose the Neighbor2Seq to
transform the hierarchical neighborhood of each node into a sequence. This novel
transformation enables the subsequent use of general deep learning operations,
such as convolution and attention, that are designed for grid-like data. Therefore,
our Neighbor2Seq naturally endows GNNs with the efficiency and advantages
of deep learning operations on grid-like data by precomputing the Neighbor2Seq
transformations. In addition, our Neighbor2Seq can alleviate the over-squashing
issue suffered by GNNs based on message passing. We evaluate our method on a
massive graph, with more than 111 million nodes and 1.6 billion edges, as well as
several medium-scale graphs. Results show that our proposed method is scalable
to massive graphs and achieves superior performance across massive and medium-
scale graphs.

1 INTRODUCTION

Graph neural networks (GNNs) have shown effectiveness in many fields with rich relational struc-
tures, such as citation networks (Kipf & Welling, 2016; Veličković et al., 2018), social net-
works (Hamilton et al., 2017), drug discovery (Gilmer et al., 2017; Stokes et al., 2020), physical
systems (Battaglia et al., 2016), and point clouds (Wang et al., 2019). Most current GNNs follow
a message passing scheme (Gilmer et al., 2017; Battaglia et al., 2018), in which the representation
of each node is recursively updated by aggregating the representations of its neighbors. Various
GNNs (Li et al., 2016; Kipf & Welling, 2016; Veličković et al., 2018; Xu et al., 2019) mainly differ
in the forms of aggregation functions.

Real-world applications usually generate massive graphs, such as social networks. However, mes-
sage passing methods have difficulties in handling such large graphs as the recursive message pass-
ing mechanism leads to prohibitive computation and memory requirements. To date, sampling meth-
ods (Hamilton et al., 2017; Ying et al., 2018; Chen et al., 2018a;b; Huang et al., 2018; Zou et al.,
2019; Zeng et al., 2020; Gao et al., 2018; Chiang et al., 2019; Zeng et al., 2020) and precomput-
ing methods (Wu et al., 2019; Rossi et al., 2020; Bojchevski et al., 2020) have been proposed to
scale GNNs on large graphs. While the sampling methods can speed up training, they might result
in redundancy, still incur high computational complexity, lead to loss of performance, or introduce
bias (see Section 2.2). Generally, precomputing methods can scale to larger graphs as compared to
sampling methods as recursive message passing is still required in sampling methods.

In this work, we propose the Neighbor2Seq that transforms the hierarchical neighborhood of each
node to a sequence in a precomputing step. After the Neighbor2Seq transformation, each node
and its associated neighborhood tree are converted to an ordered sequence. Therefore, each node
can be viewed as an independent sample and is no longer constrained by the topological structure.
This novel transformation from graphs to grid-like data enables the use of mini-batch training for
subsequent models. As a result, our models can be used on extremely large graphs, as long as the
Neighbor2Seq step can be precomputed.
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As a radical departure from existing precomputing methods, we consider the hierarchical neighbor-
hood of each node as an ordered sequence. The order information corresponds to hops between
nodes. As a result of our Neighbor2Seq transformation, generic deep learning operations for grid-
like data, such as convolution and attention, can be applied in subsequent models. In addition,
our Neighbor2Seq can alleviate the over-squashing issue (Alon & Yahav, 2020) suffered by current
GNNs. Experimental results indicate that our proposed method can be used on a massive graph,
where most current methods cannot be applied. Furthermore, our method achieves superior perfor-
mance as compared with previous sampling and precomputing methods.

2 ANALYSIS OF CURRENT GRAPH NEURAL NETWORK METHODS

We start by defining necessary notations. A graph is formally defined as G = (V,E), where V is
the set of nodes and E ⊆ V × V is the set of edges. We use n = |V | and m = |E| to denote the
numbers of nodes and edges, respectively. The nodes are indexed from 1 to n. We consider a node
feature matrix X ∈ Rn×d, where each row xi ∈ Rd is the d-dimensional feature vector associated
with node i. The topology information of the graph is encoded in the adjacency matrix A ∈ Rn×n,
whereA(i,j) = 1 if an edge exists between node i and node j, andA(i,j) = 0 otherwise.

2.1 GRAPH NEURAL NETWORKS VIA MESSAGE PASSING

There are two primary deep learning methods on graphs (Bronstein et al.); those are, spectral meth-
ods and spatial methods. The spectral method in Bruna et al. (2014) extends convolutional neural
networks (LeCun et al., 1989) to the graph domain based on the spectrum of the graph Laplacian.
The main limitation of spectral methods is the high complexity. ChebNet (Defferrard et al., 2016)
and GCN (Kipf & Welling, 2016) simplify the spectral methods and can be understood from the spa-
tial perspective. In this work, we focus on the analysis of the current mainstream spatial methods.
Generally, most existing spatial methods, such as ChebNet (Defferrard et al., 2016), GCN (Kipf
& Welling, 2016), GG-NN (Li et al., 2016), GAT (Veličković et al., 2018), and GIN (Xu et al.,
2019), can be understood from the message passing perspective (Gilmer et al., 2017; Battaglia et al.,
2018). Specifically, we iteratively update node representations by aggregating representations from
its immediate neighbors. These message passing methods have been shown to be effective in many
fields. However, they have inherent difficulties when applied on large graphs due to their excessive
computation and memory requirements, as described in Section 2.2.

2.2 GRAPH NEURAL NETWORKS ON LARGE GRAPHS

The above message passing methods are often trained in full batch. This requires the whole graph,
i.e., all the node representations and edge connections, to be in memory to allow recursive message
passing on the whole graph. Usually, the number of neighbors grows very rapidly with the increase
of receptive field. Hence, these methods cannot be applied directly on large-scale graphs due to the
prohibitive requirements on computation and memory. To enable deep learning on large graphs, two
families of methods have been proposed; those are methods based on sampling and precomputing.

To circumvent the recursive expansion of neighbors across layers, sampling methods apply GNNs
on a sampled subset of nodes with mini-batch training. Sampling methods can be further divided
into three categories. First, node-wise sampling methods perform message passing for each node in
its sampled neighborhood. This strategy is first proposed in GraphSAGE (Hamilton et al., 2017),
where neighbors are randomly sampled. This is extended by PinSAGE (Ying et al., 2018), which
selects neighbors based on random walks. VR-GCN (Chen et al., 2018a) further proposes to use
variance reduction techniques to obtain a convergence guarantee. Although these node-wise sam-
pling methods can reduce computation, the remaining computation is still very expensive and some
redundancy might have been introduced, as described in Huang et al. (2018). Second, layer-wise
sampling methods sample a fixed number of nodes for each layer. In particular, FastGCN (Chen
et al., 2018b) samples a fixed number of nodes for each layer independently based on the degree of
each node. AS-GCN (Huang et al., 2018) and LADIES (Zou et al., 2019) introduce between-layer
dependencies during sampling, thus alleviating the loss of information. Layer-wise sampling meth-
ods can avoid the redundancy introduced by node-wise sampling methods. However, the expensive
sampling algorithms that aim to ensure performance may themselves incur high computational cost,
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as pointed out in Zeng et al. (2020). Third, graph-wise sampling methods build mini-batches on
sampled subgraphs. Specifically, LGCN (Gao et al., 2018) proposes to leverage mini-batch training
on subgraphs selected by Breadth-First-Search algorithms. ClusterGCN (Chiang et al., 2019) con-
ducts mini-batch training on sampled subgraphs that are obtained by a graph clustering algorithm.
GraphSAINT (Zeng et al., 2020) proposes to derive subgraphs by importance-sampling and intro-
duces normalization techniques to eliminate biases. These graph-wise sampling methods usually
have high efficiency. The main limitation is that the nodes in a sampled subgraph are usually clus-
tered together. This implies that two distant nodes in the original graph usually cannot be feeded into
the GNNs in the same mini-batch during training, potentially leading to bias in the trained models.

The second family of methods for enabling GNNs training on large graphs are based on procomput-
ing. Specifically, SGC (Wu et al., 2019) removes the non-linearity between GCN layers, resulting
in a simplification as Y = softmax(ÂLXW ). In this formulation, Â = D̃−

1
2 ÃD̃−

1
2 is the sym-

metrically normalized adjacency matrix, Ã = A + I is the adjacency matrix with self-loops, D̃ is
the corresponding diagonal node degree matrix with D̃(i,i) =

∑
j Ã(i,j), L is the size of receptive

field (i.e., the number of considered neighboring hops), which is the same as a L-layer GCN, Y is
the output of the softmax classifier. Since there is no learnable parameters in ÂLX , this term can
be precomputed as a feature pre-processing step. Similarly, SIGN (Rossi et al., 2020) applies an
inception-like model to the precomputed features Â`X for ` ∈ {1, · · · , L}, where L is the prede-
fined size of receptive field. Instead of precomputing the smoothing features as in SGC and SIGN,
PPRGo (Bojchevski et al., 2020) extends the idea of PPNP (Klicpera et al., 2018) by approximately
precomputing the personalized PageRank (Page et al., 1999) matrix, thereby enabling model training
on large graphs using mini-batches. Generally, the precomputing methods can scale to larger graphs
than sampling methods because the latter still needs to perform the recursive message passing during
training. Differing from these precomputing methods, we consider the hierarchical neighborhood of
each node as an ordered sequence, thus retaining the useful information about hops between nodes
and enabling subsequent powerful and efficient operations.

3 THE PROPOSED NEIGHBOR2SEQ METHOD AND ANALYSIS

In this section, we describe our proposed method, known as Neighbor2Seq, which transforms the
hierarchical neighborhood of each node into an ordered sequence, thus enabling the subsequent use
of general deep learning operations. We analyze the scalability of our method (See Section 3.5) and
describe how our method can alleviate the over-squashing issue suffered by current message passing
methods (See Section 3.6).

3.1 OVERVIEW

As described in Section 2.1, existing message passing methods recursively update each node’s rep-
resentation by aggregating information from its immediate neighbors. Hence, what these methods
aim at capturing for each node is essentially its corresponding hierarchical neighborhood, i.e., the
neighborhood tree rooted at current node, as illustrated in Figure 1 (b). In this work, we attempt
to go beyond the message passing scheme to overcome the limitations mentioned in Section 2. We
propose to capture the information of this hierarchical neighborhood by transforming it into an or-
dered sequence, instead of recursively squashing it into a fixed-length vector. Our proposed method
is composed of three steps. First, we transform a neighborhood to a sequence for each node. Second,
we apply a normalization technique to the derived sequence features. Third, we use general deep
learning operations, i.e., convolution and attention, to learn from these sequence features and then
make predictions for nodes. In the following, we describe these three steps in detail.

3.2 NEIGHBOR2SEQ: TRANSFORMING NEIGHBORHOODS TO SEQUENCES

The basic idea of Neighbor2Seq is to transform the hierarchical neighborhood of each node to an
ordered sequence by integrating the features of nodes in each layer of the neighborhood tree. Fol-
lowing the notations defined in Section 2, we let zi0, z

i
1, · · · , ziL denote the resulting sequence for

node i, where L is the height (i.e., the number of hops we consider) of the neighborhood tree rooted
at node i. zi` ∈ Rd denotes the `-th feature of the sequence. The length of the resulting sequence for
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Figure 1: (a) An illustration of the original graph. The current node is denoted as two concentric
circles. (b) Message passing in the neighborhood tree. (c) Our proposed Neighbor2Seq. (d) Our
proposed models: Neighbor2Seq+Conv and Neighbor2Seq+Attn.

each node is L+ 1. Formally, for each node i, our Neighbor2Seq can be expressed as

zi` =

n∑
j=1

w(i, j, `)xj , ∀` ∈ {0, 1, 2, · · · , L}, (1)

where w(i, j, `) denotes the number of walks with length ` between node i and j. n is the number of
nodes in the graph. We definew(i, j, 0) as 1 for j = i and 0 otherwise. Hence, zi0 is the original node
feature xi. Intuitively, zi` is obtained by computing a weighted sum of features of all nodes with
walks of length ` to i, and the numbers of qualified walks are used as the corresponding weights.
Our Neighbor2Seq is illustrated in Figure 1 (c). Note that the derived sequence has meaningful
order information, indicating the hops between nodes. After we obtain ordered sequences from the
original hierarchical neighborhoods, we can use generic deep learning operations to learn from these
sequences, as detailed below.

3.3 NORMALIZATION

Since the number of nodes in the hierarchical neighborhood grows exponentially as the hop number
increases, different layers in the neighborhood tree have drastically different numbers of nodes.
Hence, feature vectors of a sequence computed by Equation (1) have very different scales. In order
to make the subsequent learning easier, we propose a layer to normalize the sequence features. We
use a normalization technique similar to layer normalization (Ba et al., 2016). In particular, each
feature of a sequence is normalized based on the mean and the standard deviation of its own feature
values. Formally, our normalization process for each node i can be written as

yi
` =W`z

i
`, oi` =

yi
` − µi

`

σi
`

� γ` + β`, ∀` ∈ {0, 1, 2, · · · , L}

µi
` =

1

d′

d′∑
c=1

yi
`[c], σi

` =

√√√√ 1

d′

d′∑
c=1

(yi
`[c]− µi

`)
2.

(2)

We first apply a linear transformation W` ∈ Rd′×d to produce a low-dimensional representation
yi
` ∈ Rd′

for the `-th feature of the sequence, since the original feature dimension d is usually
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large. µi
` ∈ R and σi

` ∈ R are the mean and standard deviation of the corresponding representation
yi
`. γ` ∈ Rd′

and β` ∈ Rd′
denote the learnable affine transformation parameters. � denotes the

element-wise multiplication. Note that the learnable parameters in this normalization layer is asso-
ciated with `, implying that each feature of the sequence is normalized separately. Using this nor-
malization layer, we obtain the normalized feature vector oi` ∈ Rd′

for every ` ∈ {0, 1, 2, · · · , L}.

3.4 NEIGHBOR2SEQ+CONV AND NEIGHBOR2SEQ+ATTN

After obtaining an ordered sequence for each node, we can view each node in the graph as a sequence
of feature vectors. We can use general deep learning techniques to learn from these sequences. In
this work, we propose two models, namely Neighbor2Seq+Conv and Neighbor2Seq+Attn, in which
convolution and attention are applied on the sequences of each node.

As illustrated in Figure 1 (d), Neighbor2Seq+Conv applies a 1-D convolutional neural network to
the sequence features and then use an average pooling to yield a representation for the sequence.
Formally, for each node i,

(
ôi0, ô

i
1, · · · , ôiL

)
= CNN

(
oi0,o

i
1, · · · ,oiL

)
, ri =

1

L+ 1

L∑
`=0

ôi`, (3)

where CNN(·) denotes a 1-D convolutional neural network. ri denotes the obtained representation
of node i that is used as the input to a linear classifier to make predictions for this node. Specifically,
we implement CNN(·) as a 2-layer convolutional neural network composed of two 1-D convolutions.
The kernel size is set according to the length of input sequence. The activation function between
layers is ReLU (Krizhevsky et al., 2012).

Incorporating attention is another natural idea to learn from sequences. As shown in Figure 1 (d),
Neighbor2Seq+Attn uses an attention mechanism (Bahdanau et al., 2015) to integrate sequential
feature vectors in order to derive a representation. Unlike convolutional neural networks, the vanilla
attention mechanism cannot make use of the order of the sequence. Hence, we add positional en-
codings (Vaswani et al., 2017) to the features such that the position information of different features
in the sequence can be incorporated. Formally, for each node i, we add positional encoding for each
feature in the sequence as

ki` = o
i
` + p

i
`, pi`[m] =


sin

(
`

10000
2n
d′

)
m = 2n

cos

(
`

10000
2n
d′

)
m = 2n+ 1

. (4)

The positional encoding for `-th feature of node i is denoted as pi` ∈ Rd′
. m ∈ {1, 2, · · · , d′} is

the dimensional index. Intuitively, a position-dependent vector is added to each feature such that the
order information can be captured. Then we use the attention mechanism with learnable query (Yang
et al., 2016) to combine these sequential feature vectors to obtain the final representations ri for each
node i. Formally,

ri =

L∑
`=0

αi
`k

i
`, αi

` =
exp(ki`

T
q)∑L

`=0 exp(k
i
`
T
q)
. (5)

q ∈ Rd′
is the learnable query vector that is trained along with other model parameters. The derived

representation ri will be taken as the input to a linear classifier to make prediction for node i.

3.5 ANALYSIS OF SCALABILITY

Precomputing Neighbor2Seq. A well-known fact is that the value of w(i, j, `) in Equation (1)
can be obtained by computing the power of the original adjacency matrix A. Following GCN,
we add self-loops to make each node connected to itself. Concretely, w(i, j, `) = Ã`

(i,j). Hence,

the Neighbor2Seq can be implemented by computing the matrix multiplications Ã`X for ∀` ∈
{0, 1, 2, · · · , L}. Since there is no learnable parameters in the Neighbor2Seq step, these matrix mul-
tiplications can be precomputed sequentially for large graphs on CPU platforms with large memory.
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This can be easily precomputed because the matrix Ã is usually sparse. For extremely large graphs,
this precomputation can even be performed on distributed systems.

Enabling mini-batch training. After we obtain the precomputed sequence features, each node in
the graph corresponds to a sequence of feature vectors. Therefore, each node can be viewed as an
independent sample. That is, we are no longer restricted by the original graph connectivity anymore.
Then, we can randomly sample from all the training nodes to conduct mini-batch training. This is
more flexible and unbiased than sampling methods as reviewed in Section 2.2. Our mini-batches can
be randomly extracted over all nodes, opening the possibility that any pair of nodes can be sampled
in the same mini-batch. In contrast, mini-batches in sampling methods are usually restricted by the
fixed sampling strategies. This advantage opens the door for subsequent model training on extremely
large graphs, as long as the corresponding Neighbor2Seq step can be precomputed.

Table 1: Comparison of computational com-
plexity for precomputing and forward pass
corresponding to an entire epoch.

Method Precomputing Forward Pass

GCN - O(Ldm+ Ld2n)
GraphSAGE O(sLn) O(sLd2n)
ClusterGCN O(m) O(Ldm+ Ld2n)
GraphSAINT O(sn) O(Ldm+ Ld2n)
SGC O(Ldm) O(d2n)
SIGN O(Ldm) O(Ld2n)
Neighbor2Seq+Conv O(Ldm) O((Ld2 + Lkd2)n)
Neighbor2Seq+Attn O(Ldm) O((Ld2 + Ld)n)

Computational complexity comparison. We com-
pare our methods with several existing sampling and
precomputing methods in terms of computational
complexity. We let L denote the number of hops
we consider. For simplicity, we assume the fea-
ture dimension d is fixed for all layers. For sam-
pling methods, s is the number of sampled neigh-
bors for each node. The computation of Neigh-
bor2Seq+Conv mainly lies in the linear transfor-
mation (i.e., O(Ld2n)) in the normalization step
and the 1-D convolutional neural networks (i.e.,
O(Lkd2n), where k is the kernel size). Hence, the computational complexity for the forward pass of
Neighbor2Seq+Conv is O((Ld2 + Lkd2)n). Neighbor2Seq+Attn has a computational complexity
ofO((Ld2+Ld)n) because the attention mechanism is more efficient than 1-D convolutional neural
networks. As shown in Table 1, the forward pass complexities of precomputing methods, including
our Neighbor2Seq+Conv and Neighbor2Seq+Attn, are all linear with respect to the number of nodes
n and do not depend on the number of edges m. Hence, the training processes of our models are
computationally efficient.

3.6 ALLEVIATING THE OVER-SQUASHING ISSUE

An inherent problem in message passing methods is known as the over-squashing (Alon & Yahav,
2020). In particular, recursively propagating information between neighbors creates a bottleneck
because the number of nodes in the receptive field grows exponentially with the number of layers.
This bottleneck causes the over-squashing issue; that is, information from the exponentially-growing
receptive field is compressed into fixed-length vectors. Consequently, message passing methods fail
to capture the message flowing from distant nodes and performs poorly when long-range information
is essential for the prediction tasks. Note that the over-squashing issue is not identical to the over-
smoothing issue. Over-smoothing is related to the phenomenon that node representations converge
to indistinguishable limits when the number of layers increases (Li et al., 2018; Wu et al., 2019; NT
& Maehara, 2019; Liu et al., 2020a; Oono & Suzuki, 2020; Cai & Wang, 2020; Chen et al., 2020).
The virtual edges added in Gilmer et al. (2017) and recent non-local aggregations (Pei et al., 2020;
Liu et al., 2020b) can be viewed as attempts to alleviate the over-squashing issue by incorporating
distant nodes. Another study (Ma et al., 2019) considers message passing along all possible paths
between two nodes, instead of propagating information between neighbors.

Our Neighbor2Seq can alleviate the over-squashing issue because we transform the exponentially-
growing nodes in hierarchical neighborhoods into an ordered sequence, instead of recursively
squashing them into a fixed-size vector. With our Neighbor2Seq, capturing long-range informa-
tion on graphs becomes similar to achieving this on sequence data, such as texts.

4 DISCUSSIONS

4.1 INFORMATION LOSS IN NEIGHBOR2SEQ

As shown in Figure 1 (c), Neighbor2Seq obtains the sequence by integrating features of nodes
in each layer of the neighborhood tree. This transformation may lose the cross-layer dependency
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information in the tree. Specifically, the Neighbor2Seq ignores the identities of nodes that each
walk passes through and only considers what are the nodes in each layer of the neighborhood tree.
Nevertheless, this information can neither be captured by message passing methods because the
aggregation is usually permutation-invariant. This implies that messages from different neighbors
cannot be distinguished, as pointed in Pei et al. (2020). According to our experimental results in
Table 5, our models without this information can outperform message passing methods, such as
GCN. It is intriguing to have an in-depth exploration of whether such information is useful and how
it can be captured.

4.2 RELATIONS WITH THE WEISFEILER-LEHMAN HIERARCHY

As shown in Xu et al. (2019), most of current GNNs are at most as powerful as the Weisfeiler-
Lehman (WL) graph isomorphism test (Weisfeiler & Lehman, 1968) in distinguishing graph struc-
tures. Our Neighbor2Seq is still under the WL hierarchy because the neighborhood tree used to
obtain the sequence is indeed the one that the WL test uses to distinguish different graphs. We
would be interested in exploring how Neighbor2Seq can be extended to go beyond the WL hierar-
chy as a future direction.

4.3 BRIDGING THE GAP BETWEEN GRAPH AND GRID-LIKE DATA

The main difference between graph and grid-like data lies in the notion and properties of locality.
Specifically, the numbers of neighbors differ for different nodes, and there is no order information
among the neighbors of a node in graphs. These are the main obstacles preventing the use of generic
deep learning operations on graphs. Our Neighbor2Seq is an attempt to bridge the gap between
graph and grid-like data. Base on our Neighbor2Seq, many effective strategies for grid-like data can
be naturally transferred to graph data. These include self-supervised learning and pre-training on
graphs (Hu et al., 2019; Velickovic et al., 2019; Sun et al., 2019; Hassani & Khasahmadi, 2020; You
et al., 2020; Hu et al., 2020b; Qiu et al., 2020; Jin et al., 2020).

We notice an existing work AWE Ivanov & Burnaev (2018) which also embed the information in
graph as a sequence. In order to avoid confusion, we make a clarification about the fundamental
and significant differences between AWE and our Neighbor2Seq. First, AWE produces a sequence
embedding for the entire graph, while our Neighbor2Seq yields a sequence embedding for each
node in the graph. Second, each element in the obtained sequence in AWE is the probability of an
anonymous walk embedding. In our Neighbor2Seq, each feature vector in the obtained sequence
for one node is computed by summing up the features of all nodes in the corresponding layer of the
neighborhood tree. This point distinguishes these two methods fundamentally.

5 EXPERIMENTAL STUDIES

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our proposed models on 1 massive-scale graph and 4 medium-scale graphs
using node classification tasks. The massive-scale graph ogbn-papers100M provided by the Open
Graph Benchmark (OGB) (Hu et al., 2020a) is the existing largest benchmark dataset for node
classification. Medium-scale graphs include ogbn-products (Hu et al., 2020a), Reddit (Hamilton
et al., 2017), Yelp Zeng et al. (2020), and Flickr Zeng et al. (2020). These tasks cover inductive
and transductive settings. The statistics of these datasets are summarized in Table 2. The detailed
description of these datasets are provided in Appendix A.1.

Table 2: Statistics of datasets. “m” denotes multi-label classification.
Dataset Scale #Nodes #Edges Avg. Deg. #Features #Classes Train/Val/Test
ogbn-papers100M Massive 111, 059, 956 1, 615, 685, 872 29 128 172 0.78/0.08/0.14
ogbn-products Medium 2, 449, 029 61, 859, 140 51 100 47 0.08/0.02/0.90
Reddit Medium 232, 965 11, 606, 919 50 602 41 0.66/0.10/0.24
Yelp Medium 716, 857 6, 997, 410 10 300 100(m) 0.75/0.10/0.15
Flickr Medium 89, 250 899, 756 10 500 7 0.50/0.25/0.25

Implementation. We implemented our methods using Pytorch (Paszke et al., 2017) and Pytorch
Geometric (Fey & Lenssen, 2019). For our proposed methods, we conduct the precomputation on
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the CPU, after which we train our models on a GeForce RTX 2080 Ti GPU. We perform a grid search
for the following hyperparameters: number of hops L, batch size, learning rate, hidden dimension
d′, dropout rate, weight decay, and convolutional kernel size k. The chosen hyperparameters for our
Neighbor2Seq+Conv and Neighbor2Seq+Attn are summarized in Appendix A.2 for reproducibility.

5.2 RESULTS ON MASSIVE-SCALE GRAPHS

Table 3: Results on ogbn-papers100M in terms of classi-
fication accuracy (in percent). The reported accuracy is
averaged over 10 random runs. Note that existing sam-
pling methods cannot scale to this massive graph. Dur-
ing precomputation, both SGC and our models have to ran-
domly remove 40% edges to avoid a memory overflow on
CPU. This implies that the performance could be further
improved if more advanced precomuting platform is used.

Method Training Validation Test

MLP 54.84±0.43 49.60±0.29 47.24±0.31
Node2vec - 58.07±0.28 55.60±0.23
SGC 67.54±0.43 66.48±0.20 63.29±0.19

Neighbor2Seq+Conv 69.87±0.81 67.46±0.16 64.04±0.22
Neighbor2Seq+Attn 68.83±0.30 66.90±0.10 63.59±0.17

Since ogbn-papers100M is a mas-
sive graph with more than 111 mil-
lion nodes and 1.6 billion edges, most
existing methods have difficulty han-
dling such a graph. We consider three
baselines that have available results
evaluated by OGB: Multilayer Per-
ceptron (MLP), Node2Vec (Grover &
Leskovec, 2016), and SGC (Wu et al.,
2019). The results under transductive
setting is reported in Table 3. Fol-
lowing OGB, we report accuracies for
all models on training, validation, and
test sets. The previous state-of-the-
art result on ogbn-papers100M is ob-
tained by the precomputing method SGC. Our models outperform the baselines consistently in terms
of training, validation, and test, which demonstrates the expressive power and the generalization
ability of our method on massive graphs.

5.3 RESULTS ON MEDIUM-SCALE GRAPHS

We also evaluate our models on medium-scale graphs, thus enabling comparison with more existing
works. We conduct transductive learning on ogbn-products, a medium-scale graph from OGB. We
also conduct inductive learning on Reddit, Yelp, and Flickr, which are frequently used for inductive
learning by the community. The following baselines are considered: MLP, Node2Vec (Grover &
Leskovec, 2016), GCN (Kipf & Welling, 2016), SGC Wu et al. (2019), GraphSAGE (Hamilton
et al., 2017), FastGCN (Chen et al., 2018b), VR-GCN (Chen et al., 2018a), AS-GCN (Huang et al.,
2018), ClusterGCN (Chiang et al., 2019), GraphSAINT (Zeng et al., 2020), and SIGN (Rossi et al.,
2020).

Table 4: Results on ogbn-products in terms of
classification accuracy (in percent). The re-
ported accuracy is averaged over 10 random
runs. Obtaining the results of GCN requires a
GPU with 33GB of memory.

Method Training Validation Test

MLP 84.03±0.93 75.54±0.14 61.06±0.08
Node2vec 93.39±0.10 90.32±0.06 72.49±0.10
GCN 93.56±0.09 92.00±0.03 75.64±0.21
GraphSAGE 92.96±0.07 91.70±0.09 78.70±0.36
ClusterGCN 93.75±0.13 92.12±0.09 78.97±0.33
GraphSAINT 92.71±0.14 91.62±0.08 79.08±0.24
SGC 92.60±0.10 91.19±0.06 72.46±0.27
SIGN 96.92±0.46 93.10±0.08 77.60±0.13

Neighbor2Seq+Conv 95.32±0.10 92.92±0.05 79.67±0.16
Neighbor2Seq+Attn 92.82±0.14 92.20±0.02 79.35±0.17

Table 5: Results for inductive learning on three
datasets in terms of F1-micro score. The re-
ported score is averaged over 10 random runs.
The results of baselines are partially obtained
from Zeng et al. (2020); Rossi et al. (2020).

Method Reddit Flickr Yelp

GCN 0.933±0.000 0.492±0.003 0.378±0.001
FastGCN 0.924±0.001 0.504±0.001 0.265±0.053
VR-GCN 0.964±0.001 0.482±0.003 0.640±0.002
AS-GCN 0.958±0.001 0.504±0.002 -
GraphSAGE 0.953±0.001 0.501±0.013 0.634±0.006
ClusterGCN 0.954±0.001 0.481±0.005 0.609±0.005
GraphSAINT 0.966±0.001 0.511±0.001 0.653±0.003
SGC 0.949±0.000 0.502±0.001 0.358±0.006
SIGN 0.968±0.000 0.514±0.001 0.631±0.003

Neighbor2Seq+Conv 0.967±0.000 0.527±0.003 0.647±0.003
Neighbor2Seq+Attn 0.967±0.000 0.523±0.002 0.647±0.001

The ogbn-products dataset is challenging because the splitting is not random. The splitting pro-
cedure is more realistic. The nodes (i.e., products) are sorted according to their sales ranking and
the top 8% nodes are used for training, next 2% for validation, and the rest 90% for testing. This
matches the real-world application where manual labeling is prioritized to important nodes and mod-
els are subsequently used to make prediction on less important nodes. Hence, ogbn-products is an
ideal benchmark dataset to improve out-of-distribution prediction. As shown in Table 4, our Neigh-
bor2Seq+Conv and Neighbor2Seq+Attn outperfom baselines on test set (i.e., 90% nodes), which
further demonstrates the generalization ability of our method.
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The results on inductive tasks are summarized in Table 5. On Reddit, our models perform better
than all sampling methods and achieve the competitive result as SIGN. On Flickr, our models obtain
significantly better results. Specifically, our Neighbor2Seq+Conv outperforms the previous state-of-
the-art models by an obvious margin. Although our models perform not as good as GraphSAINT
on Yelp, we outperform other sampling methods and the precomputing model SIGN consistently on
this dataset.

5.4 COMPARISONS OF COMPUTIONAL EFFICIENCY

Table 6: Computational efficiency in terms of preprocessing, training
(per epoch), and inference times (in seconds) on ogbn-products. The
reported time is averaged over 10 runs.

Method Preprocessing (↓) Training (↓) Inferenece (↓) Test Accuracy (↑)
ClusterGCN 44.15±0.77 11.87±0.84 87.03±0.24 78.97±0.33
GraphSAINT 80.78±3.5 4.29±0.48 107.26±0.94 79.08±0.24
SGC 153.36±3.6 0.15±0.01 1.08±0.01 72.46±0.27
SIGN 151.47±3.5 1.22±0.02 2.93±0.06 77.60±0.13

Neighbor2Seq+Conv 153.42±3.2 4.09±0.12 31.52±1.44 79.67±0.16
Neighbor2Seq+Attn 153.42±3.2 2.67±0.08 31.24±0.61 79.35±0.17

In order to show the com-
putational efficiency, we
conduct an empirical com-
parison with existing meth-
ods in terms of time com-
suming during preprocess-
ing, training, and infer-
ence. We consider the fol-
lowing representative sam-
pling methods and precom-
puting methods: ClusterGCN Chiang et al. (2019), GraphSAINT Zeng et al. (2020), SGC Wu et al.
(2019), and SIGN Rossi et al. (2020). The comparison is performed on ogbn-products and the
similar trend can be observed on other datasets. As demonstrated in Table 6, our approaches, like
existing precomputing methods, are more computationally efficient than sampling methods in terms
of training and inference. Compared with existing precomputing methods, our methods achieve a
better balance between performance and efficiency.

5.5 ABLATION STUDY ON ORDER INFORMATION

Table 7: Comparison of models with and without capturing order information. Neighbor2Seq+Attn
w/o PE denotes the Neighbor2Seq+Attn without adding positional encoding.

Model Order ogbn-papers100M ogbn-products Reddit Flickr Yelp

Neighbor2Seq+Conv 3 64.04±0.22 79.67±0.16 0.967±0.000 0.527±0.003 0.647±0.003
Neighbor2Seq+Attn 3 63.59±0.17 79.35±0.17 0.967±0.000 0.523±0.002 0.647±0.001
Neighbor2Seq+Attn w/o PE 7 63.61±0.09 78.54±0.25 0.965±0.000 0.521±0.003 0.646±0.001

Intuitively, the order information in the sequence obtained by Neighbor2Seq indicates the hops
between nodes. Hence, we conduct an ablation study to verify the significance of this order in-
formation. We remove the positional encoding in Neighbor2Seq+Attn, leading to a model without
the ability to capture the order information. The comparison is demonstrated in Table 7. Note
that Neighbor2Seq+Attn and Neighbor2Seq+Attn w/o PE have the same number of parameters.
Hence, Comparing the results of these two models, we can conclude that the order information is
usually necessary. Neighbor2Seq+Conv and Neighbor2Seq+Attn both can capture the order infor-
mation. There are two possible reasons why Neighbor2Seq+Conv performs better. First, Neigh-
bor2Seq+Conv has more learnable parameters than Neighbor2Se+Attn, which only has a learnable
query. Second, the convolutional neural network in Neighbor2Seq+Conv can additionally investi-
gate the dependencies between feature dimensions because each feature dimension of the output
depends on every feature dimension of the input.

6 CONCLUSIONS AND OUTLOOK

In this work, we propose Neighbor2Seq, for transforming the heirarchical neighborhoods to ordered
sequences. Neighbor2Seq enables the subsequent use of powerful general deep learning operations,
leading to the proposed Neighbor2Seq+Conv and Neighbor2Seq+Attn. Our models can be deployed
on massive graphs and trained efficiently. The extensive expriments demonstrate the scalability and
the promising performance of our method. As discussed in Section 4, based on our Neighbor2Seq,
several significant directions can be further explored in the future research.
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424, 2018.

10



Under review as a conference paper at ICLR 2021

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, 2020.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020b.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in neural information processing systems, pp. 4558–4567,
2018.

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2191–2200, Stockholmsmässan,
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A APPENDIX

A.1 DATASET DESCRIPTIONS

ogbn-papers100M (Hu et al., 2020a) is the existing largest benckmark dataset for node classifica-
tion. It is a directed citation graph of 111 million papers indexed by Microsoft Academic Graph
(MAG) (Wang et al., 2020). For simplicity, it is converted to an undirected graph in baselines
and our method. Each node is a paper and each directed edge indicates that one paper cites an-
other one. Each node is associated with a 128-dimensional feature vector obtained by averaging
the word2vec (Mikolov et al., 2013) embeddings of words in its title and abstract. Among the node
set, approximately 1.5 millione of them are ARXIV papers, each of which has a label with one of
ARXIV’s subject areas. The rest nodes (i.e., non-ARXIV papers) are not associated with label infor-
mation. The task is to leverage the entire citation graph to infer the labels of the ARXIV papers. The
time-based splitting is used as the splitting strategy. To be more specifical, the training nodes are all
ARXIV papers published until 2017, while the validation nodes are the ARXIV papers published in
2018, and the ARXIV papers published since 2019 are treated as test nodes.

ogbn-products (Hu et al., 2020a) is an undirected Amazon product co-purchasing graph (Bhatia
et al., 2016). Nodes denote products and edges between two nodes indicate that the corresponding
products are purchased together. Node features are derived by extracting bag-of-words representa-
tions from the product descriptions. Further, a Principal Component Analysis is applied to these
features to reduce the dimension to 100. The task is to predict the category of a product. A realistic
splitting scheme is used in this data. Specifically, the products are firstly sorted according to their
sales ranking, and then the top 10% products are used for training, next 2% for validation, and the
rest for testing. This strategy matches the real-world situation where manual labeling is prioritized
to important nodes and models are subsequently deployed to predict the less important ones.

Reddit (Hamilton et al., 2017), Yelp (Zeng et al., 2020), and Flickr (Zeng et al., 2020) are widely
used datasets for inductive learning. During training, only the node features of training nodes and
the edges between training nodes are visible. Reddit is a social netowork extracted from Reddit
forum. Nodes represent posts and edges between two posts indicate the same user comments on both
posts. Node features are fromed by GloVe CommonCrawl word vectors Pennington et al. (2014) of
the posts. The task is to predict which community different posts belong to. The splitting is also
time-based. Yelp is a social netowork constructed from Yelp website. Nodes are users and edges
between two nodes indicate they are friends. Node features of users are obtained by the word2vec
embeddings of their corresponding reviews. The task is to predict the categories of businesses
reviewed by different users, which is multi-label classification task. Flickr is a social network based
on Flickr, a photo sharing website. Nodes represent images and there is an edge between two nodes
if two images share some common properties. The node features are fromed by the bag-of-words
representations of the images. The task is to predict the category each image belongs to.

A.2 HYPERPARAMETER CONFIGURATIONS

We conduct a grid search for hyperparameters. Table 8 summarizes the chosen hyperparameters for
our models.
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Table 8: The chosen hyperparameters for our models on all datasets.

Model Hyperparameter ogbn-papers100M ogbn-products Reddit Flickr Yelp

Neighbor2Seq+Conv

number of hops L 3 7 3 10 2
hidden dimension d′ 512 512 256 256 512
convolutional kernel size k 5 7 5 7 3
learning rate 5e-4 2e-5 8e-5 8e-4 5e-4
batch size 12288 64 32768 24576 8192
weight decay 5e-5 5e-5 0 5e-5 0
dropout rate 0.25 0.5 0.5 0.5 0

Neighbor2Seq+Attn

number of hops L 3 7 3 10 2
hidden dimension d′ 512 512 256 256 512
learning rate 5e-4 1e-3 2e-3 2e-3 5e-4
batch size 12288 3072 32768 256 8192
weight decay 5e-6 5e-5 0 5e-5 0
dropout rate 0.25 0.5 0.5 0.5 0
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