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Abstract
Deep neural networks’ performance is enhanced by ensemble methods, averaging the output of
several models at an increased inference cost. Weight averaging methods aim at avoiding this issue
by merging the models, but naive averaging results in poor performance for models in different
loss basins. Distributed training methods like DART and PAPA have been proposed to train
several models in parallel in the same basin but at the cost of ensembling accuracy and significant
communication costs between models. We introduce WASH, a novel distributed method that
outperforms previous approaches by randomly shuffling a small percentage of model weights during
training, for a much lower communication cost.

1. Introduction

In order to enhance the accuracy of a given class of models, the answers of multiple instances trained
in parallel can be aggregated via model ensembling. This can lead to significant improvements in
modern deep learning models [8], at the cost of evaluating multiple instances of a given model during
inference, increasing memory and computational requirements, resources that can be critical for
on-device inference [27]. To reduce the inference cost back to a single model, the population of
models can be fused by averaging their weights [45].

However, there are limits to this method. For models that are too dissimilar, the performance
of the averaged model may be no better than chance [14]. This can be mitigated [10, 29] but
at the expanse of the ensemble diversity, revealing a trade-off. Inspired by distributed training,
techniques such as DART [15] and PAPA [16] propose to train a population of models in parallel on
heterogeneous data while communicating to balance this trade-off. DART, similarly to LocalSGD
[38], periodically averages all models to avoid model divergence. PAPA controls the diversity of
the models more finely by pushing them toward the averaged parameters using an Exponential
Moving Average (EMA) like EASGD [48], achieving better performance. In particular, they show
that training a population in this way results in better models than using the same compute to train a
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1. Train separately 2. WASH! 3. Average the weights

Repeat..

Figure 1: Representation of training with WASH. A population of models is being trained
separately. (1) After each training step, (2) a small percentage of the parameters are permuted
between models. (3) At the end of the training, the model weights are averaged, resulting in a high
performance model.

single model, showing the potential of these approaches. However, they generally require a regular
computation of the average model using an all-reduce operation, either for the periodic averaging
of DART or the EMA used in PAPA. This results in a high communication cost during the parallel
training of the model population [31], which hampers the scalability of these approaches as the
population size increases [30].

In this work, we propose a novel method to train a population of models in parallel while keeping
their weights within the same basin. It requires a fraction of the communication cost of PAPA
but exhibits greater model diversity during training, increasing the final averaging accuracy. Our
main idea is to randomly shuffle some parameters between models during training, forcing them to
learn using the others’ parameters. We refer to this idea as "parameter shuffling", distinct from the
intra-model weight permutations of [1]. We denote our method, which achieves Weight Averaging
using parameter SHuffling, as WASH, and represent it schematically in Fig. 1.

Contributions. Our contributions are as follows: (1) We propose a novel method to train a
population of models that can be weight-averaged. (2) We find that it outperforms other methods,
at a fraction of their required communication volume. (3) We provide experiments and ablations
of WASH, notably related to the distance between models and their diversity. (4) At the time of
publication, we will release an open implementation of WASH.

2. Related work

Ensemble and weight averaging. Ensemble methods significantly improve the ability of a pre-
dictive system to make accurate generalizations [6, 21], especially when models exhibit diversity
[8, 12]. Model merging by averaging was first explored before deep learning [3, 22, 33]. Then,
[14] established that weight averaging is a first-order approximation of the ensemble when models
are close in weight space (e.g., with the same pre-trained initialization [29]). Following mode
connectivity [10, 11] and the observation that many optima of independent models are connectable,
[2, 44] proposed learning simplexes in the parameter space and [34, 46] to train simultaneously
several model branches with different last-layer initialization. For models not amenable to weight
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averaging, neuron alignment techniques [1, 13, 32, 36] try to match the units of the models, but
rarely work in practical scenarios [17]. DART [15] and Branch-Train-Merge (BTM) [23] propose
a three-phase training pipeline, with an initial shared training phase followed by parallel training
of the models diversified by their data before merging. Iterative refinement of the last 2 stages
improves generalization. To enhance the diversity among the models, PAPA [16] gradually adjusts
the model weights towards the population average throughout the training process, starting from
random initialization. However, these approaches can result in significant communication costs
during training, which we address with WASH by only permuting a small fraction of the parameters.

Distributed and federated learning. In the distributed training of deep learning models, the
tradeoff between communication and model performance is a core concern [9, 18, 30, 40]. With a
limited communication budget, the average distance to consensus is a key metric in decentralized
optimization [19, 28, 35, 39, 43]. The techniques discussed earlier for training a population of models
for weight averaging are similar to methods in the LocalSGD [25, 37, 38, 42, 48] and Federated
Learning [4, 18, 24, 26, 41, 47] literature. Finally, cross-gradient aggregation [7] can be seen as a
way of locally shuffling gradients for distributed learning.

3. Parameter shuffling in an ensemble for weight averaging

Motivation of our training procedure. We aim to balance the benefits of model ensembling with
the computational efficiency of using a single model for inference via weight averaging. A set of
N model parameters {θn}n≤N ⊂ Rd are trained in parallel on the same dataset, with different data
ordering and possibly different data augmentations and regularizations. To avoid divergence between
the models, PAPA [16] applies an EMA every T training steps and produces the following update

θ̃n ← αθn + (1− α)θ̄ , (1)

where θ̄ ≜ 1
N

∑N
n=1 θn represents the average of the model weights (the consensus), and

α ∈ [0, 1] is weighted according to the learning rate. Despite its advantages, this method has
drawbacks, including the need for synchronized global communication across all models and the
potential reduction in model diversity due to the EMA. Note that after each EMA step∑

n

∥θ̃n − θ̄∥2 = α2
∑
n

∥θn − θ̄∥2 <
∑
n

∥θn − θ̄∥2 , (2)

showing that the models’ distance from the consensus is reduced, hindering their diversity.

Proposed method: WASH. To address these challenges, we propose the following stochastic
parameter shuffling step instead of the EMA, defined for each individual parameter θjn ∈ R of a
model θn = [θjn]dj=1 by

θ̂in ←

{
θiπi(n)

with probability p,

θin otherwise,
(3)

where πi denotes a random permutation of the indices {1, ..., N}, chosen uniformly at each iteration
for each parameter index i ∈ {1, ..., d}, and independently from the Bernoulli variable of Eq. (3).
Notably, this parameter shuffling reduces in expectation to

E[θ̂n] = (1− p)θn + pθ̄ . (4)
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Thus, WASH aligns, in expectation, with the EMA of Eq. (1) for p = (1 − α). The expected
number of parameters communicated by each model at each step is thus p× d while for PAPA, each
model communicating all of its parameters every T steps, this amounts to d

T . Thus, if p≪ 1
T , the

communication overhead is significantly reduced. However, the model diversity is higher as WASH
preserves the consensus distance, as shown by∑

n

∥θ̂n − θ̄∥2 =
∑
n

∑
i

(θ̂in − θ̄i)2 =
∑
i

∑
n

(θin − θ̄i)2 =
∑
n

∥θn − θ̄∥2 . (5)

Still, the following optimization step will affect the consensus distance, as we will see later.

Layer-wise adaptation via WASH. We also introduce a specific and linearly decreasing layer
probability. Assuming L layers in the network, for each layer l ∈ [0, L− 1] we set

pl = p

(
1− l

L− 1

)
, (6)

where p is a base probability. Thus, the faster-to-train early layers will be shuffled more often than
the final ones, which also halves the communication volume. Other adaptations are studied in the
Appendix.

Full procedure. Alg. 1 in the Appendix presents the training of a population of N models using
WASH. Starting from the same initialization, our training procedure alternates between local gradient
computation and shuffling communication. At inference, we average the weights of the models to
obtain a single model with parameters θ̄. We found techniques such as REPAIR [17] or activation
alignment [1] to be unnecessary to achieve high accuracy.

4. Experiments

Training methods. We present the capabilities of WASH for training a population of models
on standard image classification tasks. We compare to a Baseline where the population is trained
separately, as in [16]. We also compare WASH to PAPA [16] on the same tasks, to show our
improvement despite the lower communication volume. We do not provide comparisons with DART
[15] or the variants of PAPA (like PAPA-all, equivalent to DART) as their performances are generally
inferior [16]. We also propose a variant of WASH called WASH+Opt, which also permutes the
optimizer state associated with the shuffled parameter (here, SGD’s momentum), doubling the
communication volume.

Communication cost. While PAPA requires an all-reduce operation every T = 10 training steps,
WASH only requires, in expectation, a shuffling of p/2 of the parameters. In practice, in our
experiments, p is equal to 0.001 or 0.05, ensuring a reduction in communication volume of 200 or 4.
We summarize in Tab. 1 the communication volume and inference costs required for the 4 methods.

Evaluation strategy. We evaluate in three ways the resulting population of models trained. By
averaging the predictions, we evaluate the Ensemble as a baseline. By averaging the weights, we
refer to the merged model as Averaged (i.e. UniformSoup [45] or AvgSoup [16]). Finally, a more
elaborate averaging scheme, GreedySoup [45], averages models to greedily increase the validation
accuracy. As reported in [16], this corresponds in practice to only the accuracy of the best model,
and thus only report it for the Baseline.
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Table 1: Communication volume and inference costs of the 4 methods. The Baseline Ensemble
requires a linearly increasing inference cost but no communication. WASH and WASH+Opt require
much less communication than PAPA for training.

Communication volume
Technique CIFAR-10/100 ImageNet Inference cost

Ensemble 0 0 N
PAPA 1 1 1
WASH 1/200 1/4 1
WASH+Opt 1/100 1/2 1

Table 2: Ensemble and Averaged Model accuracy for a heterogeneous population of models. We
compare models trained separately (Baseline), with PAPA, and our methods WASH and WASH+Opt.
The best Ensemble (black) and Averaged (blue) accuracy are reported in bold. Except on CIFAR-10,
WASH and WASH+Opt outperform PAPA and provide performances comparable to the Ensembles.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10

VGG-16 3 95.98±.42 10.00±.00 95.26±.05 96.12±.34 96.13±.24 95.89±.23 95.97±.24 95.91±.36 95.85±.27
5 96.28±.40 10.00±.00 95.42±.10 96.24±.17 96.21±.13 96.15±.10 96.20±.10 96.00±.21 96.04±.14
10 96.47±.07 10.00±.00 95.39±.24 96.32±.13 96.31±.13 96.27±.10 96.18±.13 96.14±.08 96.20±.05

ResNet18 3 97.15±.28 10.17±.29 96.62±.38 97.33±.05 97.24±.05 97.21±.19 97.19±.17 97.22±.07 97.25±.14
5 97.33±.08 10.09±.16 96.61±.03 97.35±.12 97.31±.06 97.21±.10 97.25±.12 97.18±.09 97.16±.07
10 97.59±.01 9.26±1.28 96.79±.14 97.39±.13 97.34±.06 97.30±.10 97.28±.04 97.20±.13 97.16±.13

CIFAR-100

VGG-16 3 80.36±.15 1.00±.00 77.92±.22 78.89±.10 78.77±.16 79.10±.88 79.05±.68 79.15±.61 79.15±.41
5 81.32±.56 1.00±.00 77.81±.25 79.51±.38 79.24±.43 79.65±.27 79.39±.21 79.75±.21 79.71±.20
10 82.24±.15 1.00±.00 77.83±.65 79.95±.11 79.64±.13 80.05±.18 79.70±.25 80.03±.11 79.76±.13

ResNet18 3 82.84±.48 1.00±.01 80.06±1.5 81.58±.12 81.53±.13 81.91±.34 81.90±.36 81.99±.06 82.08±.09
5 83.72±.49 1.00±.00 80.72±.52 82.09±.30 82.01±.34 82.16±.42 81.97±.28 82.35±.17 82.17±.15
10 84.18±.20 1.00±.00 80.61±.43 82.32±.09 82.15±.14 82.43±.32 82.31±.38 82.42±.31 82.18±.22

ImageNet

ResNet50 3 76.16±.28 0.10±.00 74.15±.11 75.62±.15 10.32±2.4 74.39±.14 74.34±.18 74.30±.22 74.18±.26
5 76.68±.06 0.10±.00 74.47±.06 75.80±.21 0.13±0.04 74.63±.11 74.59±.07 74.44±.21 74.39±.21

4.1. Main experiments

Experimental setup. We showcase the performance of WASH on image classification tasks on
the same framework as [16] for a fair comparison, either on heterogeneous or homogeneous dataset
environments. The training details are in the Appendix.

Main results. We report in Tab. 2 the average test accuracies of 3 runs for the Ensemble, the
Averaged model, and the GreedySoup for the Baseline in heterogeneous settings. The homogeneous
results are in the Appendix. As in [16], the Baseline models have a high Ensemble accuracy but
perform as random when Averaged. PAPA and WASH result in lower Ensemble accuracy, but almost
no difference with the Averaged accuracy. In general, WASH and WASH+Opt outperform PAPA, for
less communication. On ImageNet, we were not able to reproduce PAPA’s baseline, possibly due to
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Figure 2: Average distance to the consensus during training. Starting at 0 distance, models initially
diverge before converging back, mainly due to weight decay. WASH incurs a smaller distance
than the Baseline, putting the models in the same basin. Training with PAPA-all (i.e., periodically
averaging the models) forbids the population from reaching high diversity. The EMA of PAPA shows
a similar strong pulling effect towards consensus.

a mistake in their reported hyperparameters (See Appendix E.3). Both of our methods reduce the
accuracy gap with the Baseline Ensemble, indicating that WASH hinders less the models’ diversity
while maintaining averagability. The remaining gap may be inherent to having the models in the
same basin. WASH and WASH+Opt have very similar results, with the simpler WASH being better
in the homogeneous case and WASH+Opt in the heterogeneous one.

4.2. Why do shuffling parameters help?

We propose now to explain why our parameter shuffling approach improves other previous mecha-
nisms, by showing that WASH reduces the distance to consensus enough for weight averagability,
while also inducing diversity in the models.

Reduced distance to consensus. To better analyze the WASH models’ diversity, we report in Fig.
2 the distance of the models to the consensus during training as a proxy for the diversity metric (see
Appendix D), as [14, 46] showed it is correlated to the performance gap between the Ensemble and
Averaged model. WASH results in a consistently lower distance to consensus than the Baseline,
despite the non-compressive shuffling. In comparison, PAPA and PAPA-all (i.e. DART) pull the
models toward the consensus too strongly.

Encouraging diversity. The weight shuffling is a weak perturbation of the models, as only a few
parameters are affected, and the consensus distance is unchanged. We illustrate in Appendix E.2 how
the shuffling increases the diversity of the models’ optimization trajectories on a 2D optimization
example. We find that while PAPA may allow points to reach consensus, they can get stuck on local
minima. In contrast, WASH allows them to reach the global minimum due to a greater path diversity.

Conclusion

We proposed a novel distributed training method, WASH, training a population of models that can be
averaged into a high-performance model. Our new parameter shuffling approach does not explicitly
reduce the distance between models and increase their diversity, for a fraction of the cost of traditional
approaches.
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Appendix A. Algorithm

In Alg. 1, we showcase the distributed training procedure with WASH.

Algorithm 1 Training with WASH

1: Input: Datasets Di, number of models N , initial parameters θ0, training steps T , number of
layers L, base probability p

2: Initialize parameters (θn)n ← θ0 and optimizers OPTi

3: for t = 1 to T do
4: # Training step
5: for n = 1 to N , in parallel do
6: (xn, yn)← Dn # Sample data
7: θn ← OPTn(xn, yn, θn) # Update the model n
8: # Shuffling step
9: for layer l = 0 to L− 1 do

10: for parameter θi in layer l do
11: With probability p(1− l

L−1),
12: πi ← Random permutation
13: (θin)n ← (θiπi(n)

)n # Send and permute the parameter

14: Output: the averaged model 1
N

∑N
n=1 θn

Appendix B. Experimental setup

B.1. Framework details

We showcase the performance of WASH for training neural networks on image classification tasks
on the CIFAR-10, CIFAR-100 [20], and ImageNet [5] datasets. We use the same training framework
as [16] for a fair comparison. We train a population of N models for N ∈ {3, 5, 10}, on the
ResNet-18, 50 and VGG-16 architectures. 2% of the training data is kept as validation for computing
the GreedySoup. As in [16], we consider one framework with heterogeneous models, learning
with different data augmentations and regularizations, and one homogeneous setting with no data
augmentations, where the only difference between the models’ trainings is the dataset shuffling.
Details are presented in the Appendix. The models are trained with SGD with momentum, a weight
decay of 10−4, and a cosine annealing scheduler with initial and minimum learning rates of 0.1
and 10−4. For CIFAR-10/100, we train over 300 epochs with a batch size of 64, and 90 epochs
with a batch size of 256 for ImageNet. For WASH and WASH-Opt we initialize the models with
the same parameters and choose p with cross-validation to be equal to 0.001 when training on
CIFAR-10/100 or 0.05 for ImageNet. We do not require any alignment technique such as REPAIR
[17]. For simplicity, we do not permute or recompute the running statistics of the BatchNorm layers.
The Baseline models start with the same initialization compared to PAPA, but we found this change
to have no major impact. PAPA’s models start on different initialization.

For our experiments, we needed a single A100 GPU for up to 14 hours to train up to a population
of 10 models, and up to 40 hours for a population of 20 models. Similarly, we needed 16 A100 GPUs
to train a population of 5 models on ImageNet in parallel.
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Figure 3: Average distance to the consensus for different layer-wise adaptations of WASH, for
different slices of the model parameters. Keeping the probability constant across layers ensures the
lowest distance to consensus for the first quarters. Surprisingly, in the last quarter of parameters, the
‘decreasing probability’ adaptation, despite starting with a higher distance to consensus, shows a
lower distance to consensus later in training; even though shuffling is less frequent than in the other
schedules. The ‘increasing probability’ adaptation shows how early layers are useful for shuffling.

B.2. Augmentations and regularization used

For a fair comparison, we follow the same data augmentations and regularisations used in [16]. We
use Mixup (random draw from {0, 0.5, 1.0} for CIFAR-10/100 or from {0, 0.2} for ImageNet), Label
Smoothing (random draw from {0, 0.05, 0.1} for CIFAR-10/100 or from {0, 0. 1} for ImageNet),
CutMix (randomly drawn from {0, 0.5, 1.0} for CIFAR-10/100 or from {0, 1.0} for ImageNet), and
Random Erasing (randomly drawn from {0, 0.15, 0.35} for CIFAR-10/100 or from {0, 0.35} for
ImageNet).

Appendix C. Ablations

In this section, we present ablations to better understand the effect of the parameter shuffling, varying
the layer-wise probability adaptation, the base probability value, and the shuffling period. In all cases,
we consider 5 ResNet-18 models trained on CIFAR-100 in a heterogeneous environment.

Layer-wise adaptation variations. For WASH, we found that decreasing probability with depth
gave the best results. We showcase in Tab. 3 the performances for alternatives where the probability
either remains constant or increases with depth. We find lower performances for both alternatives. In
Fig. 3 we show the distances of the models to the consensus for all three schedules. More specifically,
we report the distances for different slices of the models’ parameters, showing the effect of shuffling
as a function of depth. As predicted, shuffling all layers equally results in the lowest distance to
the consensus, except for the last quarter of parameters. Here, surprisingly, our base ‘decreasing’
adaptation shows a lower distance to the consensus despite less frequent shuffling. We also observe a
particularly strong effect of the shuffling for the early layers, as the distance in the first quarter is
more pronounced between the ‘increasing’ curve and the others.

Base probability variation. We present in Fig. 4 the Ensemble and Averaged for different values
of p, the base shuffling probability of the first layer. Rather than a smooth increase in the accuracy
of the Averaged model, we observe a phase transition between a phase where the accuracy of the
Averaged model is not improved by the shuffling and a sudden increase in the accuracy where it
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Figure 4: Ensemble and Averaged accuracy for varying base probability values. We observe a
phase transition as the base probability increases between a phase where permuting does not improve
the averaged model accuracy and a phase where the ensemble accuracy is equal to the averaged
model accuracy. Between the phases, the ensemble accuracy decreases.
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Figure 5: Ensemble and Averaged accuracy depending on the starting or ending epoch of the
shuffling. The parameter shuffling is beneficial both at the beginning and at the end of training. Note
that ending early, at epoch 150 out of 300, has less impact on performance than starting permuting at
epoch 150, showing that WASH is more important early in training.

reaches the accuracy of the Ensemble. Just before the transition, the accuracy of the Ensemble
decreases, before increasing again back to its previous performance. The accuracy decreases only
slightly even when the shuffling probability is increased to 1, indicating the resilience of the models
to heavy shuffling.
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Table 3: Test accuracies of WASH with variants of the shuffling probability per depth. Trained
with a population of 5 models on CIFAR-100 using a ResNet-18. The results show that permuting
the first layers is more important than permuting the later layers. However, keeping the probability
constant across layers does not significantly reduce the performance of WASH.

Proba. at layer Technique
0 to L-1 Ensemble Averaged GreedySoup Best model Worst model

10−3 ↘ 0 82.22±.38 82.15±.22 81.94± 0.25 80.89±.03 78.80±.77
10−3 → 10−3 82.04±.19 81.94±.15 81.69±.23 80.60±.16 78.67±.89

0 ↗ 10−3 81.75±.35 81.37±.10 81.14±.20 80.08±.40 78.55±.70

Shuffling is beneficial at every step. Finally, we propose to show the impact of the parameter
shuffling at different steps of the training by varying the epoch at which the shuffling either starts or
stops. In Fig. 5, we show that there is no improvement by having a warmup or slowdown period in
parameter shuffling, indicating that all phases of the training are improved by WASH. Furthermore,
stopping parameter shuffling early results in a much smaller loss of Averaged accuracy compared to
starting shuffling late. In other words, shuffling at the beginning of training before the models start to
converge is more impactful as the models may still reside in different loss basins.

C.1. Interpolation heatmap

Here, we propose to display a heatmap showing the accuracy of more different interpolations
between 5 models trained separately, with WASH, or WASH+Opt. We observe how models trained
with WASH and WASH+Opt converge to the same loss basin, and that a large number of possible
interpolations lead to high accuracy. The heatmaps are presented in Fig. 6. The performance of each
individual model is represented at the five extremities of the heatmaps (see a. notably). Then, each
other performance represented in the heatmap circle is for a model with its parameters interpolated
between the 5 models. The interpolation weights are computed by normalizing the distance (from a
Gaussian kernel) between the point in the circle and the 5 points at the extremities. The center of the
heatmap represents an equally weighted average of the models, as implemented in WASH and the
other methods considered.

Appendix D. Additional metrics

Disagreement in function space. To support our use of the distance to consensus as an accurate
metric of diversity in our paper, we also report a more established metric, the model prediction
disagreement, as proposed by [8]. This value corresponds to the fraction of examples in the validation
set where two models disagree on the prediction. In Fig. 9, we report the disagreement for models
trained on the four methods considered in this work: the Baseline without communication, PAPA,
WASH, and WASH+Opt. We observe the same ranking in the methods as in the distance to consensus:
the Baseline models have the highest disagreement, followed by our methods, and PAPA has the
lowest. This confirms that WASH produces more diverse models than PAPA. Note that the Baseline
has the highest disagreement, but the models cannot be successfully averaged.
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Figure 6: Accuracy heatmap of the Baseline. The interpolated models’ performance is equal to
random ones.
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Figure 7: Accuracy heatmap of WASH. The accuracy is very similar for various interpolations.

Expected Calibration Error. In Tab. 4, we report the ECE for all four methods, showing that
WASH provides better calibrated models than PAPA.

Method Indv. Ens. Avg.

Baseline 0.377 0.368 0.180
WASH 0.374 0.372 0.376
WASH+Opt 0.374 0.373 0.375
PAPA 0.376 0.376 0.378

Table 4: Expected Calibration Error (ECE) for all four methods, for 5 ResNets trained on
CIFAR-100 on heterogeneous data. We report the ECE for the individual models (Indv., averaged
for the 5 models), the Ensemble model (Ens.) and the Averaged (Avg.) one. The ECE is the one
obtained for the optimal temperature. Our method has a lower ECE than WASH in all cases, showing
that it is better calibrated. The very low ECE for the Averaged baseline is due to the fact that the
model is close to random.
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Figure 8: Accuracy heatmap of WASH+Opt. The results are similar to WASH.
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Figure 9: Disagreement in function space, for 5 ResNets trained on CIFAR-100 on heterogeneous
data. The mean disagreement value for models with different indices is reported on top of the
heatmaps. WASH has a higher disagreement between the model predictions (and thus better diversity)
than PAPA.

Appendix E. Additional results

E.1. Homogeneous framework results

The results for an homogeneous framework (where data augmentations are not different between
models) are presented in Tab. 5.

E.2. 2D optimization example

The loss function we consider is a highly simplified version of the Ackley function. With a minimum
in (xm, ym) defined by

g(x, y, xm, ym, λ) = exp (−λ
√
0.5((x− xm)2 + (y − ym)2) , (7)

the function we consider in our example is

f(x, y) = −10g(x, y, 10, 10, 0.1)− 5g(x, y, 8, 3, 0.3)− 5g(x, y, 3, 8, 0.3) . (8)

This function has a 2 local minima at (3, 8) and (8, 3) and a global minimum at (10, 10). In all
three cases, the starting points are (0, 5) and (5, 0). We compute SGD by first computing the exact
gradient of the function and then adding Gaussian noise to the gradient. The learning rate is 0.1 and
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we optimize for 1000 steps. For PAPA, we consider α = 0.99. For WASH, the shuffling probability
is the same for both coordinates and is equal to 0.01.

We represent the trajectories of two points trained with SGD either separately or jointly with
PAPA or WASH, on a loss function with 2 local and 1 global minima, in Fig. 10. Trained separately,
they converge to a separate minimum. With PAPA, they reach a consensus but also reach a local
minimum. In contrast, WASH allows them to reach the global minimum due to the greater diversity
of paths. More details are in the Appendix.
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Figure 10: 2D optimization example. We train 2 points on a function from two starting points. They
converge to local minima separately when trained apart (yellow) or together when trained with PAPA
(blue); while they reach the global minimum with WASH (red) due to the shuffling (orthogonal
lines).

E.3. ImageNet32x32.

In Tab. 6, we report the accuracy for the dataset ImageNet32x32, showing that a lower PAPA EMA
frequency compared to what was reported in their article and code (T = 10), results in a better
Averaged performance, reproducing their results but still resulting in worse results than WASH.
We also find similar results by decreasing the value of the EMA α. This confirms that the low
performance of our replication of PAPA on ImageNet mainly stems from its hyperparameters, and
reinforces our conclusion on the improvements provided by WASH.

E.4. GreedySoup.

In Tab. 7, we report the accuracy of GreedySoup for WASH, WASH+Opt, and PAPA, showing that it
provides worse accuracy than the Averaged model, in accordance with the findings of PAPA.

E.5. REPAIR.

In Tab. 8, we show that the addition of REPAIR further reduces the gap between WASH and the
Baseline ensemble accuracy, demonstrating that further post-training techniques (like self-distillation
or SWA) could further improve our method.
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Table 5: Ensemble and Averaged Model accuracy for a homogeneous population of models.
We compare models trained separately (Baseline), with PAPA, or with our methods WASH and
WASH+Opt. The best Ensemble (black) and Averaged (blue) accuracy are reported in bold. We
observe the same results in this setting, with WASH in particular coming close to the Ensemble
performance.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10

VGG-16 3 94.93±.06 10.00±.00 93.60±.41 94.38±.14 94.34±.18 94.41±.23 94.58±.17 94.45±.05 94.47±.02
5 95.29±.05 10.00±.00 93.82±.30 94.55±.12 94.58±.12 94.72±.08 94.70±.17 94.63±.11 94.68±.14
10 95.23±.06 10.00±.00 93.82±.06 94.79±.18 94.78±.20 94.66±.03 94.54±.07 94.71±.07 94.61±.13

ResNet18 3 96.14±.10 10.00±.00 95.42±.27 95.89±.04 95.89±.06 95.77±.12 95.77±.17 95.85±.04 95.87±.10
5 96.19±.16 10.00±.00 95.31±.09 95.99±.08 95.99±.08 95.96±.08 95.98±.05 95.94±.12 95.98±.12
10 96.34±.02 10.00±.00 95.26±.11 96.10±.25 96.11±.24 96.08±.07 96.12±.09 96.07±.07 96.08±.14

CIFAR-100

VGG-16 3 77.63±.24 1.00±.00 73.76±.35 75.10±.11 75.09±.16 76.30±.37 76.04±.58 76.04±.03 75.96±.18
5 78.52±.10 1.00±.00 73.76±.18 75.56±.16 75.55±.14 76.63±.27 76.48±.23 76.64±.15 76.13±.18
10 79.26±.06 1.00±.00 73.99±.26 76.24±.44 76.26±.43 77.06±.12 76.43±.18 76.72±.15 75.94±.26

ResNet18 3 79.54±.17 1.00±.00 76.84±.54 77.83±.26 77.86±.30 78.90±.17 78.76±.25 78.66±.08 78.56±.21
5 80.11±.23 1.00±.00 76.83±.45 77.94±.16 77.92±.19 79.24±.32 79.09±.43 79.32±.19 79.19±.15
10 80.55±.13 1.00±.00 76.80±.41 78.40±.15 78.44±.22 79.65±.17 79.43±.16 79.34±.34 79.19±.45

Method Baseline WASH WASH+Opt PAPA (T = 10) T = 9 T = 5

Ensemble 74.95±0.95 67.55±0.22 67.95±0.66 61.01±0.31 61.34±0.19 61.52±0.45
Averaged 0.1±0.0 67.80±0.16 68.22±0.71 1.98±1.54 35.43±13.67 61.05±0.32

Table 6: Performance on ImageNet32, for all methods on 3 ResNet-50 trained on heterogeneous
data. p = 0.05 like on ImageNet. We find similar results for PAPA. However, reducing the
EMA frequency T allows for a better Averaged accuracy, while still being heavily under WASH’s
performance.

N Method WASH WASH+Opt PAPA

3 Averaged 81.90±0.19 82.08±0.09 81.53±0.13
GreedySoup 81.73±0.27 81.42±0.55 80.91±0.74

5 Averaged 81.97±0.28 82.17±0.15 82.01±0.34
GreedySoup 81.83±0.26 81.49±0.91 81.67±1.03

10 Averaged 82.31±0.38 82.18±0.22 82.15±0.14
GreedySoup 81.92±0.53 81.99±0.17 81.92±0.22

Table 7: GreedySoup performances for WASH and its variant and PAPA, for Resnets-18 trained on
CIFAR-100 in the heterogeneous case. GreedySoup is the same method as Diwa. In the case here
where averaging all models provides the best results, GreedySoup may only keep a subpar subset of
weights to average (generally only one).
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Method Ens. Avg. +REPAIR

Baseline 83.8 0.01 0.01
WASH 82.7 82.5 82.7
WASH+Opt 82.4 82.5 82.8
PAPA 81.8 81.8 82.3

Table 8: Effect of REPAIR on the four methods, for 5 ResNets trained on CIFAR-100 on heteroge-
neous data. We note that REPAIR has no effect on the Baseline models. Our method’s performance
can be improved even closer to the baseline Ensemble by using post-training methods like REPAIR.
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