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Abstract
Considerable effort has been dedicated to de-001
tecting machine-generated texts to prevent a002
situation where the widespread generation of003
text—with minimal cost and effort— reduces004
trust in human interaction and factual informa-005
tion online. Our study takes a more refined006
approach by analysing different Conversational007
AI Agents (CAA). By constructing linguistic008
profiles for each AI agent, the aim is to identify009
the Uniquely Identifiable Linguistic Patterns010
(UILPs) for each model and to demonstrate the011
effectiveness of these UILPs in identifying its012
respective AI agent using authorship attribu-013
tion techniques. Promisingly, we are able to014
classify AI agents based on their original texts015
with a weighted F1-score of 96.94%. Further,016
we can attribute AI agents according to their017
writing style (as specified by prompts), yield-018
ing a weighted F1-score of 95.84%, which sets019
the baseline for this task. By employing princi-020
pal component analysis (PCA) for dimensional-021
ity reduction, we achieve a weighted F1-score022
ranging from 89.25% to 97.83%, and an overall023
weighted F1-score of 96.93%.024

1 Introduction025

Recent advances in deep learning and natural lan-026

guage processing have led to the emergence of027

conversational AI agents (CAA), hereby referred028

to as AI agents, which we define as large language029

models that can generate natural language as a di-030

alogue system. These have been applied in tasks031

such as question answering (Zhao et al., 2023), fake032

news detection and abuse detection (Uchendu et al.,033

2021). The widespread use of AI agents has high-034

lighted the importance of determining the origin035

of a text (Desaire et al., 2023; Fagni et al., 2021;036

Mitrović et al., 2023; Fagni et al., 2021; Mitro-037

vić et al., 2023; Becker et al., 2023; Islam et al.,038

2023; Markowitz et al., 2023) and has led to a039

surge of interest in analysing the linguistic struc-040

tures within them (Desaire et al., 2023). One note-041

worthy linguistic aspect that remains unexplored is042

the determination of whether AI agents possess any 043

uniquely identifiable linguistic patterns (UILPs). 044

Our research draws inspiration from the linguis- 045

tic theories of language identity and linguistic pat- 046

terns within the compositions of individual authors 047

(Nini, 2023; Coulthard, 2004). Specifically, our 048

study undertakes the task of assessing the valid- 049

ity of the aforementioned theories regarding AI 050

agents. As a result, we have meticulously crafted 051

the UILPs for the following five generative large 052

language models: GPT-41, GPT-3.51, Text-Curie- 053

0011, PaLM-22, and LLaMA2-7b3, aiming to as- 054

certain the presence of UILPs. The most effective 055

method to confirm the usefulness of an identified 056

UILP is through validation, a process achievable 057

through the task of authorship attribution. Author- 058

ship attribution for AI agents is the ability to ascer- 059

tain the authorship of texts generated by AI agents 060

(Juola, 2008, 2006; Sari, 2018). By establishing 061

authorship, whether proving or disproving, we can 062

reinforce the theory of distinct linguistic patterns 063

in AI agents. We seek to answer crucial questions 064

about the existence of UILPs in AI agents, the 065

linguistic overlap between various text types gener- 066

ated by these models, and the feasibility of identi- 067

fying AI agents based on their individual UILPs. 068

The ability to prove the existence of UILPs pro- 069

vides many benefits such as preventing the harmful 070

use of AI agents (e.g., detecting fake news, hate 071

speech, plagiarism). Additionally, this enables the 072

reuse of the UILP in classification tasks, potentially 073

enhancing classification accuracy. Moreover, this 074

approach is adaptable to the evolving landscape of 075

AI models. We propose a transparent means for 076

linguistic analysis that is more interpretable across 077

different AI agents and forms the central emphasis 078

of this paper. 079

1Model details and source: OpenAI’s GPT-3.5. (2021).
https://www.openai.com/

2Model details and source: Bard: The Language Model for
Writing Assistance. (2022). https://www.bardmodel.com/

3Model details and source: LLaMA2-7b: A Large Mul-

1

https://www.openai.com/
https://www.bardmodel.com/


Thus far, there has been no investigation on the080

UILP of AI agents, and there has been only lim-081

ited comparison of different AI agents and little082

research indicating if these AI agents can be differ-083

entiated from each other based on their linguistic084

patterns. Moreover, there is a notable absence of085

analysis of AI agents based on stylometry, i.e., the086

statistical analysis of language often used in the087

context of forensic linguistics (Rocha et al., 2016).088

We propose both a feature-based machine learning089

classifier as well as the use of transformer language090

models for AI agent classification. The research091

questions (RQs) we aim to answer in this paper are092

as follows:093

RQ1: To what extent can we perform authorship094

attribution (AA) for AI agents based on their095

original texts, through the recognition of their096

UILPs?097

RQ2: Can we attribute text to AI agents through098

the recognition of UILPs in texts that they gen-099

erated based on different stylistic prompts?100

RQ3: How can we measure the linguistic overlap,101

if any, in outputs from the AI agent when it102

generates distinct texts?103

In addressing the above questions, we have made104

the following contributions:105

• Two new datasets: The first dataset is a collec-106

tion of original texts created by five AI agents,107

while the second dataset is an expanded ver-108

sion of the first whereby each text was para-109

phrased by its respective AI agent according to110

the following five styles: (a) paraphrased with111

no specified style, (b) written as a fictitious112

narrative, (c) written as a tweet, (d) written as113

a social media blog post and (e) written as an114

academic article.115

• An approach to AI agent attribution based on116

a Logistic Regression (LR) model trained on117

linguistic features and a fine-tuned DeBERTa118

model (He et al., 2021).119

• A method for identifying linguistic patterns in120

the texts generated by the different AI agents121

based on principal component analysis (PCA).122

tilingual Language Model for Free-Form Editing. (2023).
https://www.llama7b.ai/

2 Related Work 123

The analysis of authorship attribution encompasses 124

two distinct categories: feature-based and large lan- 125

guage model-based classification. Feature-based 126

approaches involve creating a specific feature set 127

for that task (Sari, 2018; Juola, 2008) such as 128

multivariate linguistic analysis paired with a tra- 129

ditional machine learning classifier (Abbasi and 130

Chen, 2008). Learning involves the use of language 131

models that can learn the data during the training 132

phase. Newer approaches use pre-trained trans- 133

former language models and in some cases, these 134

are combined with linguistic features (Ai et al., 135

2022; Fabien et al., 2020; Sari, 2018). Approaches 136

using pre-trained transformer language modes have 137

demonstrated superior accuracy with few prepro- 138

cessing steps. These models significantly outper- 139

form traditional models in many cases. 140

Posited by Nini (2023), the Principle of Lin- 141

guistic Individuality states that at any given mo- 142

ment it is exceedingly improbable for two indi- 143

viduals to possess identical linguistic grammars. 144

This principle is aligned with authorship attribu- 145

tion (Coulthard et al., 2016) which assumes that 146

writings from one author would exhibit greater lin- 147

guistic similarity than writings from a different au- 148

thor (Burrows, 2002; Anthonissen and Petré, 2019). 149

This theory has not been investigated in the case of 150

AI agents, which is what we sought to achieve in 151

our work. 152

There has been a central focus on GPT mod- 153

els, with an emphasis on distinguishing between 154

text written by humans and those generated by 155

machines using transformer models (Fagni et al., 156

2021; Mitrović et al., 2023; Solaiman et al., 2019; 157

Uchendu et al., 2021; Bakhtin et al., 2019; Ippolito 158

et al., 2020), or surface-level linguistic features (De- 159

saire et al., 2023; Markowitz et al., 2023) which 160

have been regarded as a limited analysis when stud- 161

ied individually (Schuster et al., 2020). Other stud- 162

ies have utilised a primarily linguistic approach, 163

analysing words and sentiment to distinguish hu- 164

man and machine-generated text (Markowitz et al., 165

2023). The limitations of previous approaches, 166

compared to the methodology employed in this pa- 167

per, become evident when considering their empha- 168

sis on distinguishing between human and machine- 169

generated content. 170

These studies lack a comparative analysis of var- 171

ious AI agents and rarely incorporate multivari- 172

ate stylometric analysis in their evaluation, which 173
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would better capture the use of AI agents in gener-174

ating texts in other scenarios. Munir et al. (2021)175

investigated the attribution accuracies of synthetic176

text using transformer models (XLNet) and prior177

attribution approaches. Other work has shown that178

traditional authorship attribution approaches can-179

not fully capture the style of an author when the180

author is a human vs machine text generation. Hu-181

mans have a wide writing style which means their182

features and feature usage can differ depending on183

the text genre (Uchendu et al., 2021).184

3 Methodology185

3.1 Model Selection186

The models used for this project include GPT-3.5,187

GPT-4, Text-Curie-001 (OpenAI, 2023), PaLM-2188

(Anil et al., 2023)1 and, LlaMA2-7b (Touvron et al.,189

2023). All of these models are proficient in the nat-190

ural language generation task with varying levels191

of sophistication. The Open AI GPT (generative192

pre-trained transformer)2 models used in this paper193

were all trained using reinforcement learning from194

human feedback (RLHF) on text data, web pages195

and books, among others. GPT-4 (OpenAI, 2023)196

is currently the most optimised model; GPT-3.5197

has the same capabilities as GPT-4 but operates on198

a smaller scale. The Text-Curie-001 model is an199

older, now deprecated model produced by Open200

AI.201

PaLM-2 (Pathways Language Model)3 devel-202

oped by Anil et al. (2023) was pre-trained on a203

large quantity of parallel multilingual corpora, web204

pages, source code and various other datasets. Pro-205

posed by Touvron et al. (2023), LLaMA2-7b (Lan-206

guage Learning and Meaning Acquisition)4 was207

trained on textual data using a standard optimiser208

and RLHF. We refer the reader to Table 5 in Ap-209

pendix A for details on each model’s size (in terms210

of the number of learned parameters) and the maxi-211

mum number of tokens in their output.212

3.2 Data collection213

Data collection was carried out in two phases. In214

the first phase, a set of 10 prompts was collated,215

with each prompt corresponding to a news category216

1This model was used via Google’s BARD, now known as
Gemini (https://gemini.google.com/app)

2Introducing GPT models: https://platform.openai.
com/docs/guides/gpt

3PaLM-2: https://ai.google/discover/palm2/
4LLaMA: https://ai.meta.com/blog/

large-language-model-llama-meta-ai/

on the BBC website5 to cover various topics. The 217

specific topic for each prompt was derived from the 218

headline that was most popular at that time within 219

a particular category. The rationale for selecting 220

these article topics was to ensure a diversity of texts 221

within the dataset. Also, the provided prompts did 222

not include harmful or sensitive content therefore, 223

we anticipate the outputted text to be devoid of 224

this material. For instance, within the education 225

category, the most prominent headline pertained 226

to the impact of Covid-19 anxieties on academic 227

studies. Table 6 in Appendix B provides a list of 228

these prompts. An example of the outputs for the 229

prompts in the different prompt styles can be seen 230

in Table 7 in Appendix C. These prompts were 231

given as input to all the AI agents. Data collection 232

occurred through two methods: manual input of 233

prompts in the case of PaLM-2 (through BARD), 234

or by utilising APIs in the case of LLaMA2-7b 235

and the GPT models. For each of the 10 prompts, 236

20 texts were generated. Thus, overall, 200 texts 237

were generated per model, except PaLM-2. The 238

data for PaLM-2 corresponds to only nine queries 239

as the model’s responses for one of the 10 queries 240

were inadequate, thus leading to the generation of 241

only 180 texts for this model. This dataset will 242

be referred to as our original data. The data was 243

labelled according to the model used, using labels 244

OG0-OG4 (Original-0 to Original-4). We also used 245

only the GPT-generated data (GPT-3.5, GPT-4 and 246

text-curie-001) from the original data in our analy- 247

sis. This dataset, referred to as the GPT data, was 248

labelled according to the model used using integers 249

from GD0-GD2 (GPT data-0 to GPT data-2)in this 250

dataset. 251

The second phase pertains to the collection of 252

stylistic data for only GPT 3.5, 4 and Text-Curie- 253

001. We employed only these three AI agents be- 254

cause they responded effectively to the prompt, 255

while other AI agents produced nonsensical or re- 256

peated texts. The stylistic data uses the original 257

data to produce paraphrases of this text in different 258

stylistic genres. Firstly, we asked each model to 259

paraphrase the original text in a general manner, 260

i.e., without specifying a specific style. The model 261

was then asked to paraphrase the original text (from 262

the first phase) in four styles: as an academic pa- 263

per, as a social media post, as a fictitious narrative 264

and as a tweet. These texts were labelled accord- 265

ing to the style with labels ranging from S0 to S4 266

5BBC: https://www.bbc.co.uk/
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(Style-0 to Style-4) for each stylistic variation in267

this dataset. For each paraphrasing prompt, 200268

texts were generated (corresponding to the origi-269

nal 200 texts generated as part of the first phase).270

In total, there are 1200 texts for each model: the271

original 200, a version of those 200 that are general272

paraphrases and 200 for each of the four above-273

mentioned styles. This set of data will be referred274

to as stylistic data. All datasets were split into train-275

ing and testing sets following a 80:20 partition. No276

cleaning or preprocessing steps were applied to the277

data.6278

The process of dataset creation posed a chal-279

lenge, with certain models generating incoherent280

texts which were variations of the input text, or281

texts that were too short or too long. This was282

due to the absence of predefined constraints dur-283

ing the text generation process. The cohesiveness284

or semantic soundness of texts is not a primary285

issue in this work as we aim to focus on context-286

independent linguistic features. Model hallucina-287

tion was not a significant concern for us, as our288

work primarily concentrated on extracting linguis-289

tic features; hence, the content held minimal im-290

portance. However, steps to ensure that generated291

text was reasonable and free of grammatical errors292

were taken. As previously mentioned, data collec-293

tion involved either manually inputting prompts or294

utilising an API. When employing APIs, texts were295

generated in small batches of 20-50 rows of text296

data to guarantee that the model produced coherent297

text data rather than generating random iterations298

of a single phrase. Lastly, the final datasets were299

manually assessed to ensure their suitability for300

the attribution task. This was assessed by ensur-301

ing each row contained enough text (more than 10302

tokens), a set number of texts per author (depen-303

dent on the dataset), avoided repetitive material and304

created topic-diverse texts. Diverse prompts were305

employed to ensure this.306

3.3 Writeprints as Feature Representation307

Abbasi and Chen (2008) proposed the Writeprint308

feature set: a set of linguistic features for repre-309

senting the distinctive writing style of each author310

of interest in an authorship attribution task. The311

said feature set is largely composed of dynamic312

features, which are context-dependent, an example313

of which is the presence of certain word unigrams314

6Our code and datasets will be made publicly available
upon paper acceptance.

or bigrams. For example, the presence of the word 315

bigram “yours sincerely” could be indicative of a 316

particular author when writing emails. However, 317

the same author is unlikely to use the same bigram 318

in a different context, e.g., when writing an aca- 319

demic article. Thus, to represent an author’s writ- 320

ing style regardless of context (or textual genre), we 321

extended the original Writeprint to include static 322

features, which are context-independent and are 323

present in a large percentage of texts irrespective 324

of the genre. The extended feature set differs from 325

the original Writeprints in that the former encom- 326

passes previously unexplored aspects of a text, such 327

as phonology, morphological irregularities, ellip- 328

sis, and omission. Our Extended Writeprint (EWP) 329

is provided in full in Appendix D. These features 330

were extracted from the texts generated by each 331

of the AI agents of interest with the aid of exist- 332

ing Python packages, e.g., spaCy (Honnibal et al., 333

2020) and NLTK (Bird, 2006). This results in a 334

unique linguistic profile for each model, which is 335

used in two ways: to determine the most informa- 336

tive features representing the UILP of each of our 337

AI agents of interest (Section 3.4) and to train tradi- 338

tional machine learning-based classification mod- 339

els to attribute a text to its AI agent (Section 3.5). 340

3.4 Analysing the UILP of AI agents 341

We employed principal component analysis (PCA) 342

to assess the top 100 most informative linguistic 343

features that represent each model (based on its 344

generated texts), as well as the collective top 100 345

most informative linguistic features. PCA was per- 346

formed on the standardised feature counts. Subse- 347

quently, we quantified the degree of overlap among 348

these top 100 features across the various models. 349

Instead of necessitating the training or retraining of 350

pre-existing language models for attributing texts 351

generated by AI agents. We advocate for a feature- 352

based approach coupled with a machine-learning 353

classifier. The advantage of employing a feature- 354

based approach lies in its efficiency, requiring less 355

time and computational resources. By employing 356

a feature-based approach, we can ensure consis- 357

tent attribution accuracies regardless of when or by 358

whom the text was generated. This is achieved by 359

the ability to identify distinctive linguistic patterns 360

unique to each AI agent. 361

We identified unique features for each model 362

based on the most informative features identified 363

by PCA. These unique features were then extracted 364
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from the writeprint of the texts. Authorship attri-365

bution was then performed using these uniquely366

occurring features.367

3.5 Classification Models368

We cast authorship attribution as a multi-class clas-369

sification problem, whereby a model takes a given370

text as input and outputs a label that corresponds371

to any one of the five AI agents.372

A variety of traditional machine learning-based373

models were trained as classifiers. These include374

Support Vector Machine (SVM), Random Forest375

(RF) and Logistic Regression (LR) models. Each376

of these models was trained on the EWP features377

described in Section 3.3, using optimised parame-378

ter values which were defined through the use of379

grid search. This allowed us to set a baseline and380

quantify the extent of any performance improve-381

ments. We computed the standard deviation (SD)382

over five runs. Our results show that the SD in383

all experiments is low, indicating that the perfor-384

mance scores tend to cluster around the mean. This385

consistency highlights the stability of our results.386

Additionally, we sought to compare the attri-387

bution performance with a transformer-based lan-388

guage model (Vaswani et al., 2023) given that trans-389

former models have shown superior performance390

in classification tasks (Fabien et al., 2020). In this391

case, we selected the Decoding-enhanced BERT392

with Disentangled Attention (DeBERTa) model as393

it has been demonstrated to outperform other trans-394

former models in a variety of tasks (He et al., 2021).395

Details of the hyperparameters used in training the396

machine learning and transformer-based language397

models can be found in Appendix E and F. All398

experiments were run on Google Colab using the399

A100 GPU accelerator. Due to the high computa-400

tional power required to run the DeBERTa model,401

the results presented are based on a single run.402

Prior approaches tend to overlook the identifi-403

cation of distinctive patterns, opting instead for a404

multivariate dynamic feature extraction technique.405

Such techniques are text, author and content spe-406

cific due to dynamic feature selection (Ai et al.,407

2022; Sari, 2018). The emphasis here lies in dis-408

cerning unique patterns that can be utilised to iden-409

tify the AI agents of interest, regardless of the text410

they produce, with consistent results.411

Model Original GPT Stylistic
SVM 93.88 94.17 95.56
RF 96.54 96.67 95.25
LR 96.94 97.50 95.84

DeBERTa 99.11 99.11 88.00

Table 1: Performance Metrics for original, GPT and,
Stylistic data: Weighted F1-scores (W-F1) for optimised
SVM, LR, RF classifiers (after 5 runs) for all AI agents
and a singular run for DeBERTa model

4 Evaluation Results and Discussion 412

In this section, we present the results of our ex- 413

periments; for detailed results, including accuracy 414

scores, standard deviation (SD) and weighted F1- 415

scores, see Appendix G. 416

4.1 Attribution of Original Texts 417

Table 1 presents the results for authorship attribu- 418

tion based on the original data. The EWP features 419

were extracted from all the texts and the methodol- 420

ogy was applied, as described in Section 3.3. From 421

the results, we can see that the optimised DeBERTa 422

model obtained the highest weighted F1-score at 423

99.11%. However, it is worth noting that the dis- 424

crepancy in F1-scores across all models is at most 425

merely 5.23% demonstrating competitive perfor- 426

mance. When the extended feature set is combined 427

with an optimised ML classifier, the weighted F1- 428

score ranges from 93.88% to 96.94%. This demon- 429

strates that each AI agent does have a UILP as we 430

can attribute each model to the correct AI agent 431

with a weighted F1-score of at least 93.88%. 432

From the results in Table 1, we can see that 433

DeBERTa has the highest weighted F1-score at 434

99.11%. In this experiment, the discrepancy in 435

F1-scores across all models is 4.94%. Since all 436

the compared models are OpenAI-engineered, it 437

is reasonable to anticipate that they exhibit similar 438

linguistic patterns in their generated texts hence the 439

lower F1-scores across all experiments. This model 440

displays an impressively competitive performance, 441

with the optimised LR model having a weighted 442

F1-score of 97.50%, which is only a 1.61% drop 443

when compared to a fine-tuned DeBERTa model. 444

4.2 Attribution of Stylistic Texts 445

Apart from the attribution of the original data, we 446

also investigated the attribution of stylistic text; 447

this can be considered as cross-genre attribution as 448

we examine the attribution performance for all AI 449
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agents on different stylistic data.450

The results of attribution basaed on the stylistic451

dataset for GPT models are presented in Table 1.452

As aforementioned, since all models are OpenAI-453

engineered we expect some linguistic commonali-454

ties across different genres of text. Here we attempt455

to attribute all texts (original, paraphrase, social me-456

dia posts, tweets, academic articles and fictitious457

narratives) to their respective AI agent. The re-458

sults support the notion of models demonstrating459

a UILP in their generated stylistic texts as well as460

the notions posited by Juola (2008); Sari (2018);461

Coulthard (2004) who suggested that these UILPs462

can be identified across different textual genres,463

but lower results can be expected when perform-464

ing cross-genre attribution. This accounts for the465

11.11% reduction in the weighted F1-score when466

comparing the original data to the stylistic data us-467

ing optimised DeBERTa models. One can observe468

a 1.1% weighted F1-score drop when using an op-469

timised LR model and a 19.62% drop when com-470

paring the performance of the default LR model471

on the original data with the stylistic one. These472

results indicate that each AI agent has a distinct473

UILP for the stylistic texts, further affirming the474

idea that performance decreases across genres due475

to varying linguistic patterns (Stamatatos, 2016).476

To conclude, we can recognise each AI agent,477

regardless of the text’s style, with the highest478

weighted F1-score achieved at 95.84%.479

4.3 Attribution based on PCA of features480

In this section, we identify the top 100 most infor-481

mative linguistic features across all AI agents and482

the top 100 most informative linguistic features for483

each AI agent. We then assess the extent to which484

attribution can be performed based on these fea-485

tures, for both original and stylistic data; the full486

results can be seen in Appendix G in Tables 16 and487

17.488

For all the original data, we extracted our Ex-489

tended Writeprint features. Subsequently, we con-490

ducted PCA to identify the top 100 most infor-491

mative linguistic features across the entire dataset.492

Attribution was carried out using these selected top493

100 features; the accuracy of each model was then494

computed. When performing attribution using only495

the top 100 most informative linguistic features, we496

found that Text-Curie-001 has the highest weighted497

F1-score for any model and has a self-identifying498

weighted F1-score of 98.77%. LLaMA2-7b ob-499

Weighted F1-Score
AI Agent GPT-3.5 GPT-4 LLaMA2-7b PaLM-2 Text-curie001
GPT-3.5 80.49 82.5 78.05 88.89 90.84
GPT-4 78.16 87.5 72.94 83.54 90.91

LLaMa2-7b 65.63 77.16 66.67 75 94.74
PaLM-2 82.05 84.62 86.43 79.49 97.3

Text-Curie-001 98.77 95.24 98.77 97.56 98.77
Overall 81 85.42 80.45 85.36 94.38

Table 2: Weighted F1-scores for models based on their
top 100 most informative linguistic features extracted
from the EWP using PCA analysis. Attribution was
performed for each model and then for the entire original
dataset using an optimised Logistic Regression model

Unique Features PCA100
AI Agent W-F1 W-F1
GPT-3.5 89.25 86.17
GPT-4 95.50 87.18

LLaMa2-7b 97.83 100
PaLM-2 93.17 90.00

Text-Curie-001 96.97 97.56
Average 96.93 91.81

Table 3: Weighted F1-score for each AI agent using an
optimised LR model. LR was performed on the top 100
linguistic features outputted from the PCA (PCA100)
and on each model’s unique features

tained the lowest performance, with a weighted 500

F1-score of 66.67% when identified using its indi- 501

vidual top 100 feature set. 502

These results support the theory of linguistic in- 503

dividuality (Nini, 2023) as the AI agents do not 504

have identical grammars even though the training 505

material, methods, the developers are the same or 506

similar. This can be seen explicitly in the analysis 507

of the Open AI GPT models, whereby the F1-score 508

varies from 96.93% to 88.25%, showing a slight 509

discrepancy of 8.68%. Each AI agent struggles 510

to distinguish itself when using its own top 100 511

most informative features. However, this is due to 512

the substantial overlap in these features, as demon- 513

strated in Appendix H. On average, they share more 514

than 50% of their top 100 features with another AI 515

agent. This clarifies why, in Table 2, we observe an 516

absence of a distinct pattern in AI agents’ ability to 517

identify themselves through their top 100 features. 518

There are noticeable instances of misclassifica- 519

tion concerning GPT-3.5 and GPT-4. The relatively 520

poorer attribution of GPT-3.5 and GPT-4 can be 521

explained by the fact that both models are OpenAI- 522

engineered, have similar training processes and 523

serve the same purpose. GPT-4 is an improvement 524

that builds upon the existing capabilities of GPT- 525

3.5 (OpenAI, 2023). 526
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Further investigation was performed to deter-527

mine if AI agents can be identified based on their528

unique feature sets. We conducted a comparison of529

the top 100 features across all AI agents and identi-530

fied features unique to each model. After obtaining531

the set of distinctive features for each model, we532

moved on to the original dataset containing approx-533

imately 300 features. For each model, we exclu-534

sively extracted the features that were unique to535

that model. For example, during the attribution536

for GPT-4, we isolated features that were uniquely537

associated with GPT-4 in its top 100 most informa-538

tive features. GPT models exhibited greater mor-539

phological diversity among these unique features540

compared to LLaMa7-2b and PaLM-2. In contrast,541

the unique feature sets of LLaMa7-2b and PaLM-2542

predominantly included function words. These spe-543

cific features were then extracted for every model544

from the comprehensive set of 300 features. Subse-545

quently, we performed attribution analyses for each546

model based on this refined set of features. For547

example, we identified and extracted all features548

that were uniquely identified in the top 100 features.549

We then extracted GPT-4’s unique features for all550

other AI agents and attempted attribution using this551

unique feature set. The differences in results were552

significant: the weighted F1-scores ranged from553

86.17% to 100% when using optimised hyperpa-554

rameters. The results support the theory that when555

investigating an AI agent’s inherently unique fea-556

tures, one can attribute each AI agent with greater557

success. Further results on the attribution success558

for each model can be seen in Table 17 in Appendix559

G.560

The subsequent phase involved conducting PCA561

for each model and extracting the most informa-562

tive top 100 features. Following this, we attempted563

the attribution for all models using these top 100564

features, and the outcomes are presented in Ta-565

ble 2 (full results are in Appendix G in Table 18).566

The results indicate that only LLaMA2-7b could567

successfully self-identify as the most similar AI568

agent based on these features. A more in-depth569

linguistic examination of these features revealed570

that PCA features are predominantly comprised571

of static features, defined as context-independent572

and frequently occurring attributes. Furthermore,573

the diagrams in Figure ?? in Appendix H illustrate574

substantial feature overlap among different mod-575

els when analysing 300 features. However, as the576

features are reduced to find the most unique ones,577

there is a noticeable drop in overlap; see Figure 578

?? and Figure ?? in Appendix H. This supports 579

the theory of Linguistic Uniqueness (Nini, 2023) 580

and the existence of a UILP as it is evident that 581

each model has a set of features that it does not 582

share with the others. These results pertain solely 583

to the original data, with accuracies and weighted 584

F1-scores obtained using the LR algorithm. 585

4.4 Linguistic Analysis 586

For each model, rather than extracting all features 587

specified in the EWP, we reduced the feature set 588

to include only linguistic features associated with 589

each specific linguistic category (details of the fea- 590

tures and their categories are provided in Table 591

8 in Appendix D). Attribution was subsequently 592

conducted for the original data using these refined 593

feature sets. The results of this classification are 594

presented in Table 4. 595

Individual accuracy scores for each linguistic 596

category and the overall dataset were computed. 597

Tagging and n-gram categories achieved the high- 598

est weighted F1-score among all ML classifiers. 599

This can be attributed to several factors. Firstly, the 600

presence of over 100 different part-of-speech and 601

dependency tags as well as n-grams adds a signifi- 602

cant level of linguistic diversity to the dataset. This 603

category also encompassed the labels for different 604

sentence types e.g. the count of passive sentence 605

constructions. Furthermore, research has estab- 606

lished that AI agents employ repetitive sentence 607

structures to maintain cohesiveness, and this makes 608

tags a particularly identifiable linguistic structure 609

(Mitrović et al., 2023; Markowitz et al., 2023). 610

Forensic research has also continually highlighted 611

n-grams as an extremely identifiable linguistic fea- 612

ture in authorship attribution (Sari, 2018). 613

It is still important to note that there is greater 614

variability in the weighted F1-scores with the high- 615

est F1-score for any classifier being 91.79% (for 616

RF) and the lowest at 73.30% (for LR) creating a 617

difference of 18.54% between classifiers. For all 618

result details see Table 19 in Appendix G. 619

In comparing the linguistic features of two texts 620

from two AI agents in a qualitative assessment, dis- 621

tinctive patterns emerge, suggesting potential varia- 622

tions in author style and expression. Text T1 refers 623

to the text outputted by PaLM-2 and Text T2 is the 624

one from GPT-3.5 as seen in Table 20 in Appendix 625

I. Both texts share some features, indicating com- 626

monalities in sentence structures and grammatical 627

7



Weighted F1-Score
SVM RF LR

Word Lists 89.73 88.30 84.31
Symbols 83.70 91.26 78.34

Tags 87.66 91.34 89.77
Syntax 76.21 77.37 73.30

Semantics 79.06 84.76 79.38
Lexical 90.33 91.33 89.86
n-grams 91.79 90.31 90.18

Table 4: Accuracy and Weighted F1-scores for Individ-
ual Linguistic Categories in Attribution on the Original
Data

constructions. Despite sharing five common POS628

and dependency tags, both texts display between 8629

to 21 unique dependency and POS tags, signifying630

a common syntactic foundation with specific lin-631

guistic constructions that differentiate their styles.632

Notably, T1 employs comparative adjectives, while633

T2 includes modal verbs, showcasing distinctive634

choices that may reflect variations in tone or style.635

In the realm of authorship attribution, these linguis-636

tic differences underscore the potential for the texts637

to be perceived as the work of different authors, as638

individual writing habits and preferences become639

apparent through their unique linguistic patterns.640

See Tables 21 and 22 in Appendix I for further641

details on the feature counts and for the subset of642

features extracted for this assessment.643

4.5 Error Analysis644

We conducted an error analysis of exclusively the645

original dataset due to its inclusion of all AI agents,646

its utilisation of the entire EWP. Also, its attribution647

involved the application of both an ML model (in648

this case Logistic Regression) and DeBERTa (He649

et al., 2021).650

In Appendix J we see the classification outputs651

from LR and DeBERTa. The DeBERTa model ex-652

hibited a total of three misclassifications. All three653

instances involved GPT-4 data being incorrectly la-654

belled as GPT-3.5. The explanation for this lies in655

the fact that both models undergo the same training656

process, both are OpenAI authored and addition-657

ally, GPT-3.5 is the predecessor of GPT-4. The658

LR model displayed a total of 9 misclassifications.659

There is one instance of GPT-4 misclassification660

as GPT-3.5, a mistake made by DeBERTa. All661

other misclassifications were of LLaMa2-7b; this662

AI agent was incorrectly classified as Text-Curie-663

001, GPT-3.5 and PaLM-2. Based on a linguistic664

assessment of the misclassified data, we see that 665

the instances of misclassified LLaMA2-7b data ex- 666

hibited stylistic variations. These texts tended to 667

be longer on average and had more morphological 668

variation which explains the misclassifications as 669

Text-Curie-001 and GPT-3.5. Nevertheless, both 670

models exhibited a minimum number of errors, 671

leading us to consider them insignificant. Further 672

fine-tuning and conducting additional linguistic 673

analysis could help mitigate these misclassifica- 674

tions. 675

5 Conclusion and future work 676

In our study, we have addressed three key research 677

questions. Firstly, we have confirmed the pres- 678

ence of Uniquely Identifiable Linguistic Patterns 679

(UILPs) in conversational AI agents. This is sup- 680

ported by high accuracy in attribution for both orig- 681

inal and stylistic data, with weighted F1-scores 682

ranging from 93.88% to 96.96% when utilising 683

the Extended Writeprint (EWP) and traditional ma- 684

chine learning-based classifiers. We also demon- 685

strate similar performance when using a fine-tuned 686

DeBERTa model, achieving a 99.11% weighted 687

F1-score. Our results demonstrate that traditional 688

machine learning-based models can obtain compet- 689

itive attribution performance compared to a fine- 690

tuned DeBERTa model when utilising the EWP for 691

classification. Through PCA analysis, we explored 692

the attribution of AI agents based on their UILPs. 693

Our results show that the combination of our EWP 694

and RF classification effectively supports cross- 695

genre attribution, with weighted F1-scores ranging 696

from 94.17% to 97.50% for the stylistic data. This 697

affirms the principle of linguistic individuality in 698

AI agents, showcasing their UILPs. These findings 699

validate the existence of UILPs in AI agents and 700

offer valuable insights into their distinctive linguis- 701

tic patterns, with potential applications in digital 702

forensics, detecting fake news and plagiarism. Fu- 703

ture work will look to improve both the datasets 704

introduced in this paper by expanding the size and 705

scope of the stylistic prompts. We seek to perform 706

a fine-grained linguistic analysis of a larger set of 707

AI agents cross-lingually. 708

Limitations 709

In our study, text generation using various APIs that 710

make our AI agents of interest accessible proved 711

to be a time-intensive process, limiting the volume 712

of prompts that could be supplied and thus the text 713
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that can be generated. Additionally, certain models714

imposed output constraints. For instance, in the715

case of PaLM-2, we resorted to manually inputting716

prompts into BARD due to the unavailability of717

the API, which was a time-consuming endeavour.718

Furthermore, some AI agent outputs did not pro-719

duce cohesive texts (in the case of LLaMA2-7b), or720

produced very short texts (in the case of Text-Curie-721

001). Further, only a set of three text genres were722

investigated: academic articles, fictitious narratives,723

and tweets and social media posts (the latter two724

falling under the same genre). To perform cross-725

genre authorship attribution we must expand this726

scope to cover a wider array of genres as well as727

investigate at different levels of formality. Further-728

more, a study into misclassified instances must be729

conducted to identify patterns or determine if there730

is a specific type of error being made by the model.731

Ethics Statement732

For this study, the data was sourced from various AI733

agents, and human involvement was not required.734

The dataset does not contain any harmful or sensi-735

tive content. As there was no human participation736

and no collection of personal data, ethics review737

was not necessary.738
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Appendix A Conversational AI Agents Model breakdown 879

Model Creator Size # Tokens
GPT-4 OpenAI 1.7T 8192

GPT-3.5 OpenAI 175B 4097
Text-Curie-001 OpenAI 6.7B 2049

PaLM-2 Google — 8192
LLaMA2-7b Meta 7B 2048

Table 5: Comparison of AI agents based on their size in terms of the number of parameters (unknown for PaLM-2)
and the maximum number of tokens in their output (# Tokens)

Appendix B Prompts for AI agents 880

News category Prompt
1 Cost of living Write me an essay on rising house prices in 2023
2 Climate Write me an essay on what the UK can do to reduce carbon emissions
3 Tech Write me an essay on Facebook’s transfer of European data to US servers
4 Politics Write me an essay on the UKs ministerial code
5 Culture Write me an essay on the Glastonbury festival in the UK
6 Science Write me an essay on the womb condition adenomyosis
7 Family and Education Write me an essay on how Covid anxiety is affecting students and exams
8 War in Ukraine Write me an essay on Zelensky’s contribution in the war in Ukraine
9 UK Write me an essay on the Madeleine McCann police search in Portugal

10 World Write me an essay on the Star Wars original studios

Table 6: The prompts used to collect AI agent-generated texts. All original texts were produced all by AI agents:
GPT-3.5, GPT-4, Text-Curie-001, PaLM-2 and LLaMA2-7b. In contrast, only GPT-3.5, GPT-4 and Text-Curie-001
were used in generating texts according to stylistic variations (paraphrase, as a social media post, as a tweet, as an
academic article and as a fictitious narrative
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Appendix C Data Examples881

Style Text

Original

In 2023, a pervasive and pressing issue has gripped households across the globe —
the cost of living crisis. As economic landscapes evolve and global conditions shift,
individuals and families find themselves grappling with the ever-increasing burden of
expenses.

Paraphrase

In 2023, households worldwide are confronted with a widespread and urgent problem
— the crisis of rising living costs. As economic environments undergo changes and
global circumstances shift, individuals and families are contending with a growing
weight of expenditures.

Social media
post

Feeling the pinch of the 2023 cost of living crisis! It’s a tough
reality we’re all navigating together. From skyrocketing prices to tightening budgets,
the struggle is real. Let’s open up the conversation and share our tips on stretching
those hard-earned pounds, supporting one another through these challenging times.
#CostOfLivingCrisis #CommunitySupport #BudgetingTips
#TogetherWeCanHandleIt

Tweet

The cost of living is soaring in 2023, and it’s hitting hard! From groceries to
gas, it’s becoming more challenging to make ends meet. Let’s keep
the conversation going on how we can tackle this #CostOfLivingCrisis
together and support those facing financial strain. #Economy2023

Academic
Paper

The year 2023 has witnessed a growing concern worldwide regarding the
cost of living. The term "cost of living" encompasses the expenses individuals
and families incur to maintain a reasonable standard of living, including housing,
food, transportation, healthcare, education, and other essentials. This
essay seeks to provide a comprehensive analysis of the cost of living crisis
in 2023, focusing on its underlying causes, economic implications, and potential
policy measures to mitigate its effects.

Fictitious
narrative

In the year 2023, as the calendar pages turned, people across the nation
found themselves entangled in a relentless and unforgiving cost of living
crisis. The once-stable balance of life, as they knew it, had been upended,
and every aspect of their daily existence was impacted.

Table 7: The GPT-3.5 output for the prompt “Write me a <stylistic_text> on the cost of living crisis in 2023”, where
<stylistic_text> is replaced by one of paraphrase, social media post, tweet, academic article and fictitious narrative
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Appendix D The Extended WritePrint 882

Category Feature Description

Lexical

Token-based
Word length
Sentence length
Average sentence count, Average word count

Character-based
Upper- and lower-case distribution
Digit frequency

Word length distribution One to ten plus letters
Top n-grams Top 50 occurring tri and bi grams
Special characters/punctuation Frequency counts

Vocabulary richness
Type-token ration (TTR)
Text repetitiveness rate (TRR)

Hapax Legomena Frequency counts

Clipping
Process of shortening words at any word boundary:
e.g., “Advertisement” to “Ad”

Syntactic

Tagging
Part-of-Speech (POS) tags
Dependency tags

Term replacement/omission

Ellipsis: e.g. [full sentence] “I like coffee and she likes tea” to
[elliptical sentence] “I like coffee, and she”

Substitutions: e.g. [full sentence] “John went to the store.
John bought back milk” to [substituted sentence] “John went to the store.
He bought back milk”

Morphological Variation

Irregular patterns:
- Present participle form
- Plural forms
- Past tense form
- Past participle form
- Plural form (-ies, -ves, es)
- Possessive form
- Comparative and Superlative form
- Singular form (-y, -o)

Sentence types
Simple, Complex, Compound
Declarative, Interrogative, Exclamatory,
Imperative, Conditional, Comparative, Passive

Semantic
Sentiment scores
Synonym/Homonym counts

Other
Phonetic

Alliteration
Assonance
Consonance

Word lists
Function words
Acronyms/Slang

Table 8: The Extended WritePrint (EWP). This feature set consists of static (context-independent) and dynamic
(context-dependent) features
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Appendix E Hyperparameter settings for the DeBERTa model883

Hyperparameter Amended value
num_train_epochs 6
train_batch_size 16
eval_batch_size 16

gradient_accumulation_steps 4
n_gpu -1

max_seq_length 512
class_weight Custom labels specified

early_stopping_patience 2
early_stopping_delta 0.01

Table 9: The hyperparameters used in training the DeBERTa model (He et al., 2021)

Appendix F Hyperparameter settings for the traditional machine learning-based884

classification models885

Hyperparameter Amended value
max_depth None

min_samples_leaf 1
min_samples_split 5

n_estimators 300
class_weights Balanced

Table 10: The hyperparameters used in training the Random Forest classifier

Hyperparameter Amended value
C 10

penalty l2
solver liblinear

Table 11: The hyperparameters used in training the Logistic Regression classifier

Hyperparameter Amended value
C 0.1

kernel linear

Table 12: The hyperparameters used in training the Support Vector Machine classifier
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Appendix G Complete Results 886

ML Model Accuracy W-F1 SD
SVM 93.87 93.88 0.00
RF 96.54 96.54 0.37
LR 96.94 96.94 0.00

DeBERTa 99.11 99.11 –

Table 13: Performance Metrics for Original Data Attribution: the average Accuracy, Weighted F1-score (W-F1) and
Standard deviation Scores for optimised SVM, LR, RF classifiers (after 5 runs) for all AI agents and a singular run
DeBERTa model

ML Model Accuracy W-F1 SD
SVM 94.11 94.17 0.00
RF 96.67 96.67 0.00
LR 97.50 97.50 0.19

DeBERTa 99.11 99.11 –

Table 14: Performance Metrics for the Attribution of all GPT datasets: the average Accuracy, Weighted F1-score
(W-F1) and Standard deviation Scores for optimised SVM, LR, RF classifiers (after 5 runs) for GPT-4, GPT-3.5 and,
Text-Curie-001 and fine-tuned DeBERTa

ML Model Accuracy Weighted F1 SD
SVM 95.56 95.56 0.00
RF 95.25 95.24 0.25
LR 95.83 95.84 0.00

DeBERTa 88.00 88.00 –

Table 15: Performance Metrics for the Attribution of the Stylistic data: the average Accuracy, Weighted F1-score
(W-F1) and Standard deviation Scores for optimised SVM, LR, RF classifiers (after 5 runs) for GPT-4, GPT-3.5 and,
Text-Curie-001

AI agent Accuracy W-F1 SD
GPT-3.5 91.60 89.25 0.03
GPT-4 97.63 95.50 0.01

LLaMA2-7b 100 97.83 0.00
PaLM-2 95.35 93.17 0.01

Text-Curie-001 100 96.97 0.00
All 96.93 96.93 0.02

Table 16: Results of attribution using an optimised LR model trained on the top 100 most informative linguistic
features extracted using PCA across all datasets
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AI agent Accuracy W-F1 SD
GPT-3.5 86.42 86.17 0.00
GPT-4 86.08 87.18 0.00

LLaMA2-7b 93.34 100 0.02
PaLM-2 94.74 90.00 0.00

Text-Curie-001 98.77 97.56 0.00
All 91.84 91.81 0.00

Table 17: Accuracy and weighted F1-score for each AI agent when performing authorship attribution using only
their unique features

Accuracy and Weighted F1-Score
AI agent GPT-3.5 GPT-4 LLaMA2-7b PaLM-2 Text-Curie-001
GPT-3.5 80.52 80.49 82.50 82.50 78.06 78.05 88.89 88.89 90.85 90.84
GPT-4 78.16 78.16 87.50 87.50 72.95 72.94 83.54 83.54 90.91 90.91

LLaMA2-7b 65.64 65.63 77.16 77.14 66.67 66.67 75.00 75.04 94.75 94.74
PaLM-2 82.05 82.05 84.67 84.62 86.42 86.43 79.49 79.49 97.31 97.30

Text-Curie-001 98.77 98.77 95.24 95.24 98.77 98.77 97.56 97.56 98.79 98.77
Overall 81.63 81.00 85.71 85.42 81.12 80.45 85.01 85.36 94.39 94.38

Table 18: Table displaying accuracy and weighted F1-scores for models based on their top 100 most informative
linguistic features extracted from the EWP using PCA analysis. Attribution was performed for each model and then
for the entire original dataset using an optimised Logistic Regression model
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Accuracy and Weighted F1
SVM RF LR

Word lists 89.80 89.73 88.72 88.30 84.18 84.31
Symbols 84.18 83.70 91.33 91.26 78.57 78.34
Tags 87.76 87.66 91.33 91.34 89.80 89.77
Syntax 75.51 76.21 77.04 77.37 72.96 73.30
Semantic 79.08 79.06 84.69 84.76 79.59 79.38
Lexical 90.51 90.33 91.33 91.33 89.80 89.86
N-gram 91.84 91.79 90.31 90.31 90.31 90.18

Table 19: Accuracy and Weighted F1-scores for Individual Linguistic Categories in Attribution on the Original Data
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Appendix H PCA visualisations887

Figure 1: Overlap for the top 100 most informative linguistic features extracted based on our EWP using PCA for
all AI agents. Classification results are in Table 2
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Appendix I Linguistic analysis 888

Conversational AI Agent Output

PaLM-2

Workers choosing between warmth and a full refrigerator. Dreams put on hold,
replaced by the daily grind of survival. The cost of living crisis is a call to action.
It demands solutions, not platitudes. It requires bold leadership, targeted
support, and a commitment to building a fairer, more resilient society. This isn’t just a
winter chill; it’s a systemic squeeze. And until we collectively address its root causes,
the UK’s future risks being defined not by prosperity, but by the struggle to merely exist.

GPT-3.5

The United Kingdom is currently contending with a profound cost of living crisis,
as citizens grapple with the escalating prices of essential goods and services.
From surging energy costs to rising food and housing expenses, the financial strain on
households has become palpable. This crisis not only impacts individual wallets
but also raises concerns about broader economic inequality. Many individuals and families
are forced to reassess their budgets and make difficult choices to navigate
through these challenging times. As the cost of living continues to rise, policymakers
face the imperative of implementing effective strategies to alleviate the burden on citizens
and foster economic resilience. The cost of living crisis in the UK is a pressing issue that
demands thoughtful and comprehensive solutions to ensure the well-being of the
population.

Table 20: The GPT-3.5 (Text one (T1)) and PaLM-2 (Text two (T2)) output for the prompt “Write me a write a
short paragraph on the cost of living crisis in the UK"
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Linguistic Features Feature
Average word length 5.125 charaters per word
Average sentence length 14.9 words per sentence
Type-token ratio 0.678
Text repetitiveness rate 0.32

Character unigram
’e’ (occurs 98 times), ’t’ (occurs 78 times), ’s’ (occurs 58 times),
’i’ (occurs 54 times), ’n’ (occurs 54 times)

Character bigram
‘th’ (occurs 45 times), ’es’ (occurs 38 times), ’nt’ (occurs 30 times),
’in’ (occurs 28 times), ’er’ (occurs 28 times)

Character trigram
’the’ (occurs 23 times), ’ing’ (occurs 16 times), ’ion’ (occurs 14 times),
’ent’ (occurs 13 times), ’ndi’ (occurs 9 times)

Sentence type
Simple (3), compound (2), complex (2), declarative (6),
passive (1), exclamatory (1)

POS and Dependency tags

Top 5 POS Tags:
NN (Noun, singular or mass), IN (Preposition or subordinating conjunction),
JJ (Adjective), VBZ (Verb, 3rd person singular present), DT (Determiner)

Top 5 Dependency Tags:
nsubj (Nominal subject), ROOT (Root of the clause), prep (Prepositional modifier),
pobj (Object of preposition), det (Determiner)

Number of shared POS tags: 5
Number of shared dependency tags: 5

Number of Unique POS tags: 13
Number of Unique dependency tags: 8

Table 21: Subset of features extracted from the GPT-3.5 prompt (T1) (as specified in Table 20
)

Linguistic Features Feature count
Average word length 5.276 characters per word
Average sentence length 16 words per sentence
Type-token ratio 0.607
Text repetitiveness rate 0.392

Character unigram
’e’ (occurs 50 times), ’t’ (occurs 43 times), ’s’ (occurs 37 times),
’r’ (occurs 30 times), ’i’ (occurs 28 times)

Character bigram
’th’ (occurs 24 times), ’es’ (occurs 23 times), ’ti’ (occurs 21 times),
’in’ (occurs 21 times), ’re’ (occurs 18 times)

Character trigram
’the’ (occurs 14 times), ’ion’ (occurs 13 times), ’ing’ (occurs 12 times)
’ent’ (occurs 10 times), ’tio’ (occurs 9 times)

Sentence type Simple (5), compound (3), complex (4), declarative (12), passive (1)

POS and Dependency tags

Top 5 POS Tags:
NN (Noun, singular or mass), VBZ (Verb, 3rd person singular present),
IN (Preposition or subordinating conjunction), DT (Determiner),
JJ (Adjective)

Top 5 Dependency Tags:
nsubj (Nominal subject), ROOT (Root of the clause),
prep (Prepositional modifier), pobj (Object of preposition),
det (Determiner)

Number of shared POS tags: 5
Number of shared dependency tags: 5

Number of Unique POS tags: 21
Number of Unique dependency tags: 8

Table 22: Subset of features extracted from the PaLM-2 prompt (T2) (as specified in Table 20
)
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Appendix J Error Analysis 889

(a) Confusion matrix for the attribution of the Orig-
inal data using Logistic Regression

(a) Confusion matrix for the attribution of the Orig-
inal data using DeBERTa

Figure 3: [Key:
0: Text-Curie-001; 1: GPT-3.5; 2: GPT-4; 4: LLaMa2-7b: 4: PaLM-2]
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