
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEAT: NONLINEAR PARAMETER-EFFICIENT ADAPTA-
TION OF PRE-TRAINED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning pre-trained models is crucial for adapting large models to down-
stream tasks, often delivering state-of-the-art performance. However, fine-tuning
all model parameters is resource-intensive and laborious, leading to the emergence
of parameter-efficient fine-tuning (PEFT) methods. One widely adopted PEFT
technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights
and introduces two low-rank matrices whose ranks are significantly smaller than
the dimensions of the original weight matrices. This enables efficient fine-tuning
by adjusting only a small number of parameters. Despite its efficiency, LoRA ap-
proximates weight updates using low-rank decomposition, which struggles to cap-
ture complex, non-linear components and efficient optimization trajectories. As
a result, LoRA-based methods often exhibit a significant performance gap com-
pared to full fine-tuning. Closing this gap requires higher ranks, which increases
the number of parameters. To address these limitations, we propose a nonlinear
parameter-efficient adaptation method (NEAT). NEAT introduces a lightweight
neural network that takes pre-trained weights as input and learns a nonlinear
transformation to approximate cumulative weight updates. These updates can be
interpreted as functions of the corresponding pre-trained weights. The nonlin-
ear approximation directly models the cumulative updates, effectively capturing
complex and non-linear structures in the weight updates. Our theoretical analysis
demonstrates that NEAT can be more efficient than LoRA while having equal ex-
pressivity. Extensive evaluations across four benchmarks and over twenty datasets
demonstrate that NEAT significantly outperforms baselines in both vision and text
tasks.

1 INTRODUCTION

Pre-trained models, trained on extensive and diverse general-domain corpora, demonstrate excep-
tional generalization capabilities, benefiting a range of fundamental tasks, such as natural lan-
guage understanding (Devlin, 2018; Liu, 2019), natural language generation (Touvron et al., 2023a;
AI@Meta, 2024), and image classification (Dosovitskiy et al., 2020a). In order to adapt pre-trained
models to specific downstream tasks, fine-tuning is typically employed. However, due to the large
number of parameters in pre-trained models, full fine-tuning requires significant computational re-
sources and incurs substantial memory overhead (Qin et al., 2024).

To address this challenge, various parameter-efficient fine-tuning (PEFT) techniques (Ding et al.,
2023; Han et al., 2024) have been developed, enabling pre-trained models to be fine-tuned in
resource-constrained environments (Lin et al., 2024). PEFT methods reduce the memory overhead
of fine-tuning by introducing a small set of learnable parameters, updating only these lightweight
components. These approaches allow pre-trained models to effectively adapt to new tasks while
minimizing resource consumption. Among PEFT techniques, the Low-Rank Adaptation (LoRA)
family (Hu et al., 2021b; Liu et al., 2024; Song et al., 2024; Büyükakyüz, 2024; Zhao et al., 2024) is
widely regarded as one of the most effective and popular approaches due to its minimal architectural
modifications, high efficiency, and strong performance. The core concept of LoRA is to introduce
low-rank matrices for each pre-trained model weight and approximate weight updates through their
product. Since these low-rank matrices are much smaller than the original pre-trained weights, they
significantly reduce the memory overhead during fine-tuning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite its widespread success, LoRA has limitations, particularly in capturing complex relation-
ships in weight updates. By decomposing weight updates into low-rank matrices, LoRA effectively
reduces the fine-tuning parameter space, but this comes at the cost of failing to capture the non-linear
interactions that are critical for many downstream tasks (Pan et al., 2024). This approximation often
struggles to model the intricate optimization trajectories required for high performance, especially
when the rank of the low-rank matrices is small. Consequently, LoRA-based methods often require
higher ranks to close the gap between their performance and that of full fine-tuning, which increases
the number of parameters and undermines the efficiency gains they were designed to achieve.

To overcome these limitations, we propose a novel nonlinear parameter-efficient adaptation method,
NEAT, which incorporates a lightweight neural network into the adaptation process. Unlike LoRA,
which approximates weight updates linearly through low-rank decomposition, NEAT models cumu-
lative weight updates as functions of the pre-trained model’s original weights. This enables NEAT to
capture complex, non-linear patterns in the weight space, improving adaptation performance with-
out increasing the number of parameters. The key innovation in NEAT lies in introducing a neural
network that transforms the pre-trained weights, approximating the updates with minimal additional
computation. This nonlinear transformation enhances the expressiveness of the parameter updates
while maintaining the efficiency. Importantly, this architecture facilitates a more efficient explo-
ration of the optimization landscape, leading to better task adaptation, particularly in cases where
linear methods like LoRA would require much larger ranks to achieve competitive results. We theo-
retically demonstrate that NEAT can achieve the same or greater expressivity than LoRA with fewer
parameters.

The contributions are summarized as follows:

• We propose NEAT, a novel parameter-efficient fine-tuning method that leverages nonlinear trans-
formations, effectively capturing more complex weight updates. To the best of our knowledge,
this is the first work to introduce nonlinear adaptation for LoRA-based PEFT methods.

• The proposed NEAT enhances model performance while maintaining the efficiency. We the-
oretically show that NEAT can achieve a possibly improved parameter efficiency compared to
LoRA.

• We conduct extensive experiments on four benchmarks covering over twenty datasets. The ex-
periments show that the proposed NEAT can outperform baselines on both vision and text tasks.

2 RELATED WORKS

In this section, we provide a concise overview of related work on Parameter-Efficient Fine-Tuning
(PEFT) methods. PEFT methods aim to reduce the memory overhead of fine-tuning pre-trained
models, enabling fine-tuning in resource-constrained environments. According to Han et al. (2024),
PEFT methods can be categorized into: 1) Additive PEFT methods (Chronopoulou et al., 2023;
Edalati et al., 2022; Lester et al., 2021; Wang et al., 2024c; Liu et al., 2022), 2) Selective PEFT
methods (Guo et al., 2020; Das et al., 2023; Sung et al., 2021; Ansell et al., 2021; Zaken et al.,
2021; Vucetic et al., 2022), 3) Reparameterized PEFT methods (Hu et al., 2021a; Valipour et al.,
2022; Zhang et al., 2023; Karimi Mahabadi et al., 2021; Liu et al., 2024; Kopiczko et al., 2023),
and 4) Hybrid PEFT methods (Mao et al., 2021; Chen et al., 2023; He et al., 2021; Zhang et al.,
2022; Zhou et al., 2024). Among these, Low-Rank Adaptation (LoRA)-based methods, which are
representative of reparameterized PEFT approaches, have gained significant attention due to their
minimal architectural changes, no additional inference costs, and high efficiency. LoRA (Hu et al.,
2021a) introduces two trainable low-rank matrices for each pre-trained model weight to approximate
the desired updates of the original model. Extensions of LoRA include DyLoRA (Valipour et al.,
2022), which dynamically adjusts the rank of the low-rank matrices during training to optimize
for specific tasks; AdaLoRA (Zhang et al., 2023), which adaptively allocates the parameter bud-
get among weight matrices based on their importance scores; and DoRA (Liu et al., 2024), which
decomposes the pre-trained weight into magnitude and direction, applying LoRA only for direc-
tion updates. Other variants include VeRA (Kopiczko et al., 2023), which introduces shared frozen
random matrices across layers to improve efficiency further, and RoseLoRA (Wang et al., 2024b),
which employs a row- and column-wise sparse low-rank adaptation mechanism to selectively up-
date the most significant parameters. FourierFT (Gao et al.) replaces the matrix multiplication in
LoRA with a Fourier transform, while PiSSA (Meng et al., 2024) and MiLoRA (Wang et al., 2024a)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

∙

𝑨

𝑩

𝑾𝟎

𝑾𝟎 ∆𝑾

𝑾𝟎: pre-trained model weight

𝑩, 𝑨: Introduced low-rank matrices

: Parameters are frozen

: Parameters are trainable

𝑓(𝑾𝟎; 𝜽)

LoRA NEAT

Figure 1: Framework of proposed NEAT.

update the principal and minor singular components of the weight matrix, respectively. However,
existing PEFT methods rely on linear transformations to approximate pre-trained weight updates,
which struggle to capture the complex relationships inherent in weight updates, leading to a signifi-
cant performance gap compared to full fine-tuning. Meanwhile, existing research like (Teney et al.,
2024) also demonstrates that nonlinear activation is an integral part of the neural network driving its
success.

3 PRELIMINARY

In this section, we briefly introduce the preliminary of LoRA. LoRA assumes that the modifications
to model weight matrices during fine-tuning exhibit low-rank properties. For a pre-trained weight
matrix W o ∈ Rd1×d2 , LoRA models the efficient incremental update of pre-trained language mod-
els via the product of two learnable low-rank matrices

W = W 0 +∆W = W 0 +AB, (1)

where A ∈ Rd1×r and B ∈ Rr×d2 with r ≪ min(d1, d2).

During fine-tuning, only introduced two low-rank matrices A and B will be updated and the pre-
trained weight W 0 is frozen, which can be represented as

min
A,B
L(Dtrain;W

o +AB), (2)

where Dtrain is the training set used for fine-tuning and L is the loss function. Because A and B are
two low-rank matrices and much more lightweight than W 0, the LoRA costs much less memory
space compared to the fully fine-tuning.

4 METHODOLOGY

4.1 FRAMEWORK OVERVIEW

As shown in Fig. 1, the proposed NEAT extends the incremental update mechanism of LoRA by
introducing a non-linear weight adaptation approach for more expressive model updates. In LoRA,
weight updates are achieved by decomposing adjustments into low-rank matrices B and A, which
are integrated into the pre-trained model weights W 0. In contrast, NEAT enhances this by replacing
the static low-rank updates with a dynamic method. Specifically, NEAT utilizes a neural network
f(W 0;θ) that takes the pre-trained weights W 0 as input and generates a non-linear update ∆W .
This design allows NEAT to capture more complex interactions and adapt more flexibly to a variety
of tasks while maintaining parameter efficiency.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.2 MOTIVATION

In fully fine-tuning of pre-trained models, the weight update process is typically performed through
iterative gradient descent:

W 0
t = W 0

t−1 − η∇W 0
t−1
L (3)

where W 0
0 = W 0, η is the learning rate, and W 0

t represents the weights after t iterations. The
cumulative change in the weights over time is represented as:

∆W = W 0
t −W 0

0 . (4)

This weight change ∆W can be interpreted as a function of the original pre-trained weights W 0,
capturing the model’s adaptation to the specific task during fine-tuning. Motivated by this obser-
vation, we propose to approximate ∆W using a lightweight neural network that takes pre-trained
model weight W 0 as input and outputs the weight update directly. This approach leverages a non-
linear network to model the weight updating directly, which can capture more complex and richer
transformation of the weights efficiently.

4.3 NONLINEAR PARAMETER-EFFICIENT ADAPTATION

Similar to LoRA (Hu et al., 2021b), the proposed NEAT also provides incremental update of pre-
trained language models. However, NEAT modifies the forward pass of the model by introducing a
dynamic nonlinear weight transformation. Specifically, the model’s forward propagation is formu-
lated as:

y = (W 0 + f(W 0;θ))x, (5)

where x and y are the input and output with respect to the current layer respectively and f(·;θ) :
Rd1×d2 → Rd1×d2 is a nonlinear neural network parameterized by θ. The neural network f(W 0;θ)
generates the weight update as a function of W 0. In this formulation, the neural network f(W 0;θ)
allows for dynamic, non-linear weight updates that can capture more complex interactions than
the static low-rank approximation used in standard LoRA. To ensure the efficiency of the pro-
posed NEAT, the neural network f(W 0;θ) should be lightweight, i.e., the number of parameters
of f(W 0;θ) is much smaller than that of original pre-trained weight W 0. Therefore, we de-
sign the f(W 0;θ) as a neural network with bottleneck layers. For example, a simple case is
f(W 0;θ) = σ(W 0Θ1)Θ2, where θ = (Θ1,Θ2) ∈ Rd2×r × Rr×d2 with r ≪ min(d1, d2),
and σ(·) is the activation function like ReLU (Glorot et al., 2011). We can also increase the layers
or add activation function for the output of f(W 0;θ) to enhance the model expressiveness.

During fine-tuning, the optimization objective is to minimize the task-specific loss function, which
can be represented as

min
θ
L(Dtrain;W

0 + f(W 0;θ)), (6)

where the original pre-trained weight W 0 is frozen, and only the parameters θ of the neural network
f(W 0;θ) are updated.

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the parameter efficiency of NEAT under ReLU
activation. We first show that NEAT can achieve a similar expressivity than LoRA with pos-
sibly fewer parameters under certain conditions. Consider a design of shallow neural network
f(W 0;θ) = σ(W 0Θ1)Θ2 as in Section 4.3. Then, we have the following result about the ex-
pressivity of NEAT, where the expressivity is measured in terms of minimum attainable loss.

Proposition 5.1. Let σ be a ReLU activation function. Let U0 ∈ Rd1×rank(W 0) be the left singular
vectors of W 0. Suppose that the loss function for fine-tuning is invariant under the the projection of
the weight matrix to the left singular space of W 0, i.e., L(Dtrain;W) = L(Dtrain;U

0U0⊤W) for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

any W ∈ Rd1×d2 . Then, for any r ≥ 1,

min
Θ1∈Rd2×2r,

Θ2∈R2r×d2

L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))) ≤ min

A∈Rd1×r,

B∈Rr×d2

L(Dtrain;W
0 +AB)

≤ min
Θ1∈Rd2×r,

Θ2∈Rr×d2

L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))).

Proposition 5.1 demonstrates the (approximate) equivalence of LoRA and NEAT in terms of their
expressivity. Specifically, the minimum attainable loss using rank-r LoRA can be achieved by NEAT
with 2r hidden units, and conversely, the minimum attainable loss using NEAT with r hidden units
can be achieved rank-r LoRA, provided the invariance assumption holds. This equivalence further
implies that the function classes realized by NEAT with O(r) hidden dimensions and rank-r LoRA
are equivalent in expressivity, as the result holds for any loss functions.

Importantly, this highlights a potential improvement in parameter efficiency by NEAT. Namely,
NEAT with O(rd2) parameters maintains the expressivity of LoRA with r(d1 + d2) parameters.
When d2 ≪ d1, NEAT offers a significant improvement in parameter efficiency. In practice, d2 ≪
d1 commonly appears in the first matrix of feed-forward layers of transformers (Vaswani, 2017;
Dosovitskiy et al., 2021). In such cases, our theory suggests the improvement of NEAT over LoRA
in parameter efficiency. The added parameter efficiency can also improve sample efficiency by
allowing the model to learn representations with the same or fewer data points.

The invariance assumption in Proposition 5.1 pertains to the pre-trained model, and asserts that the
later layers of the model depends solely on the task-relevant feature space. Given that we fine-tune a
pre-trained model, the later layers are expected to capture this task-relevant feature space, which is
described by the left singular space of W 0. In practice, since the later layers primarily rely on this
pre-trained feature space, the principal directions of the pre-trained weight matrix, represented by
its singular vectors, encode most of the useful features for downstream tasks. This makes the loss
largely invariant to changes outside this subspace. The proof is available in Section A.1.

If we consider a sinusoid activation function σp(x) = sin(2πx), we can show a stronger result
without the invariance assumption that NEAT has expressivity (almost) greater than or equal to a
LoRA with possibly more parameters. We defer the result to the Appendix A.2.

6 EXPERIMENT

In the experiments, we evaluate the proposed NEAT and answer the following questions:

RQ1 How does NEAT compare to state-of-the-art PEFT methods on NLP tasks?

RQ2 How does NEAT compare to state-of-the-art PEFT methods on vision tasks?

RQ3 How does the performance of NEAT vary with different fine-tuned modules, depths of the
lightweight neural network, or non-linear activation functions?

6.1 DATASETS AND EXPERIMENT SETTINGS

6.1.1 DATASETS

We conduct experiments on four different benchmarks:

• Commonsense Reasoning, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), So-
cialIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2019), ARC-e, ARC-c (Clark et al., 2018) and OpenBookQA (Mihaylov et al., 2018) datasets, is
formulated as multiple-choice problems. Following Wang et al. (2024a), we finetune LLaMA2-
7B (Touvron et al., 2023a) and LLaMA3-8B (AI@Meta, 2024) on Commonsense170K (Hu
et al., 2023) dataset which is a combined training dataset of these tasks, and evaluate the Accu-
racy on each test set.

• Arithmetic Understanding consists of two math reasoning datasets: GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). We finetune LLaMA2-7B (Touvron et al., 2023a)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

on MetaMath (Yu et al., 2023) dataset following Wang et al. (2024a). Models need to generate
correct answers, and accuracy is used as the evaluation metric.

• Natural Language Understanding consists of eight datasets from the GLUE benchmark (Wang
et al., 2018). We follow the evaluation metrics and setups from Gao et al. (2024); Wu et al.
(2024b).

• Image Classification consists of eight datasets: OxfordPets (Parkhi et al., 2012), CI-
FAR10 (Krizhevsky, 2009), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), RE-
SISC45 (Cheng et al., 2017), StanfordCars (Krause et al., 2013), FGVC (Maji et al., 2013) and
CIFAR100 (Krizhevsky, 2009) following Gao et al. (2024). The first five datasets have small
label spaces, while the last three have large label spaces.

Further details on the datasets and hyper-parameters are provided in Appendix D and Appendix C
respectively.

6.1.2 BASELINES

Our baselines are constructed on a task basis. Specifically, for each task, the proposed NEAT is
compared with representative baselines from the corresponding domain, as listed below.

• For both Commonsense Reasoning and Arithmetic Understanding, following Wang et al.
(2024a), LoRA (Hu et al., 2021b), PiSSA (Meng et al., 2024) and MiLoRA (Wang et al., 2024a)
are employed as baselines. NEAT is applied to query, key, value, MLP up and MLP down layers.

• For Natural Language Understanding, we follow the setup from prior works (Gao et al., 2024;
Wu et al., 2024b) that evaluate various representative PEFT methods, including LoRA (Hu et al.,
2021b), Adapter Houlsby et al. (2019), BitFit (Zaken et al., 2021), RED (Wu et al., 2024a),
DoRA (Liu et al., 2024), ReFT Wu et al. (2024b), and FourierFT (Gao et al., 2024).

• For Image Classification, we follow the setting of Gao et al. (2024) and take linear probing (LP),
LoRA (Hu et al., 2021b) and FourierFT (Gao et al., 2024) as baselines. NEAT is applied to the
query and value layers.

6.2 PERFORMANCE COMPARISON

6.2.1 COMMONSENSE REASONING

In this section, we present experiments on eight commonsense reasoning datasets to address RQ1,
shown in Table 1. We compare the performance of three state-of-the-art baselines with the proposed
NEAT across eight different datasets. NEAT consistently outperforms all baselines, achieving the
highest accuracy on all tasks. Specifically, NEAT surpasses LoRA, PiSSA, and MiLoRA in terms
of average accuracy by 4.6%, 10%, and 2.5%, respectively, using LLaMA2-7B as the backbone.
Furthermore, when using LLaMA3-8B as the backbone, NEAT demonstrates average improvements
of 4.9%, 11.8%, and 2.9% over LoRA, PiSSA, and MiLoRA, respectively. These results highlight
the effectiveness and superiority of NEAT as a PEFT method.

6.2.2 ARITHMETIC REASONING

In this section, we present experiments on two arithmetic reasoning tasks, as shown in Table 2, to
address RQ1. According to the table, full fine-tuning (FFT) achieves highest accuracy across the
two datasets. However, the performance gap between the proposed NEAT and FFT is quite small,
despite NEAT using significantly fewer trainable parameters. Moreover, compared to state-of-the-art
PEFT baselines, the proposed NEAT achieves substantial performance improvements. In terms of
average accuracy, NEAT demonstrates improvements of 7.5%, 12.4%, and 2.4% over LoRA, PiSSA,
and MiLoRA, respectively. These results on arithmetic reasoning tasks suggest that NEAT is a highly
effective and efficient fine-tuning method for complex reasoning tasks.

6.2.3 NATURAL LANGUAGE UNDERSTANDING

We conduct experiments on the GLUE to answer RQ1. The model performance is shown in Table 3.
According to Table 3, the proposed NEAT significantly outperforms state-of-the-art PEFT methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison of LLaMA 2-7B (Touvron et al., 2023b) and LLaMA 3-8B (Dubey
et al., 2024) against PEFT baselines on eight commonsense reasoning datasets. Results marked with
“+” are taken from (Liu et al., 2024). Results marked with “*” are taken from (Wang et al., 2024a).
The highest accuracy of methods per category are in bold. “AVG” means the average accuracy of
all datasets.

Model PEFT Accuracy (↑)
BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

LLaMA2-7B

LoRA+ 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
PiSSA* 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8

MiLoRA* 67.6 83.8 80.1 88.2 82.0 82.8 68.8 80.6 79.2

NEAT 71.7 83.9 80.2 88.9 84.3 86.3 71.4 83.0 81.2

LLaMA3-8B

LoRA+ 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA* 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4

MiLoRA* 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9

NEAT 71.9 86.7 80.9 94.1 86.7 90.9 78.7 84.4 84.3

Table 2: Accuracy comparison of LLaMA 2-7B against PEFT baselines on two arithmetic reasoning
datasets. Results marked with “+” are taken from (Yu et al., 2023). Results marked with “*” are taken
from (Wang et al., 2024a). The highest accuracy of methods per category are in bold. “AVG” means
the average accuracy of all datasets.

Method GSM8K MATH AVG

FFT + 66.50 19.80 43.20

LoRA* 60.58 16.88 38.73
PiSSA* 58.23 15.84 37.04
MiLoRA* 63.53 17.76 40.65

NEAT 65.05 18.22 41.64

Specifically, NEAT-S, which uses a similar number of trainable parameters as FourierFT (Gao et al.,
2024), DiReFT (Wu et al., 2024b), and LoReFT (Wu et al., 2024b), surpasses all PEFT baselines and
experiences only a small performance drop (0.2%) compared to FFT. Additionally, NEAT-L exceeds
the performance of all baselines, including FFT, with the same number of trainable parameters as
LoRA. These results demonstrate that the proposed NEAT exhibits excellent generalization ability
while maintaining high efficiency.

6.2.4 IMAGE CLASSIFICATION

In this section, we present the experiments on image classification datasets to address RQ2, shown
in Table 4. From the table, NEAT significantly outperforms LoRA and FourierFT using the same
number of trainable parameters. Specifically, NEAT achieves performance improvements of 11.05%,
7.30%, and 26.02% compared to LoRA, FourierFT, and LP, respectively. Furthermore, compared to
FFT (86.49%), the proposed NEAT (86.15%) shows almost no performance drop while using only
0.3% of the trainable parameters required by FFT. This demonstrates that NEAT exhibits exceptional
adaptation capability not only on NLP tasks but also on vision tasks. Additionally, it verifies the
effectiveness of the nonlinear adaptation used in NEAT.

6.3 SENSITIVITY W.R.T. FINE-TUNED MODULE

In this section, we present the results of applying NEAT to various modules of ViT for image clas-
sification, addressing RQ3. The experimental results are shown in Fig. 3. We adjust the hidden
layer dimension r to maintain the same number of trainable parameters, ensuring a fair comparison.
According to the figure, applying NEAT to the QV layers yields results similar to applying NEAT to
both the QV and MLP layers. This indicates that NEAT is robust across different fine-tuning module
selections, potentially reducing the need for extensive hyper-parameter tuning when applying NEAT
to specific tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Accuracy comparison of RoBERTa-base against PEFT baselines on the GLUE benchmark.
Baseline results with “*” are taken from Wu et al. (2024a). The highest accuracy of methods per
category are in bold. “AVG” means the average accuracy of all datasets. NEAT-S refers to applying
NEAT only to the layers starting from the 4th layer, with the hidden layer dimension of the neural
network set to 1. This configuration matches the parameter count of FourierFT. In contrast, NEAT-L
applies NEAT to all layers, with the hidden layer dimension set to 8, aligning the parameter budget
with LoRA.

PEFT Params (%) Accuracy (↑)
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG

FFT 100% 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6

Adapter∗ 0.318% 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0
LoRA∗ 0.239% 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
AdapterFNN∗ 0.239% 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
BitFit∗ 0.080% 84.7 94.0 88.0 54.0 91.0 87.3 69.8 89.5 82.3
RED∗ 0.016% 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
FourierFT 0.019% 84.7 94.2 90.0 63.8 92.2 88.0 79.1 90.8 85.3
DiReFT∗ 0.015% 82.5 92.6 88.3 58.6 91.3 86.4 76.4 89.3 83.2
LoReFT∗ 0.015% 83.1 93.4 89.2 60.4 91.2 87.4 79.0 90.0 84.2

NEAT-S 0.019% 84.9 94.3 90.2 64.6 92.0 88.3 78.3 90.5 85.4
NEAT-L 0.239% 86.6 94.6 90.0 64.4 92.7 89.7 78.7 90.9 86.0

Table 4: Accuracy comparison of ViT-base (Dosovitskiy et al., 2020b) against PEFT baselines on
the image classification benchmark. The reported accuracy (%) is obtained after 10 epochs. The
highest accuracy of methods per category are in bold. “AVG” means the average accuracy of all
datasets. Results marked with “∗” are taken from Gao et al. (2024).

Method Params (M) OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

FFT∗ 85.8M 93.14 79.78 98.92 77.68 99.05 54.84 96.13 92.38 86.49

LP∗ - 90.28 25.76 96.41 69.77 88.72 17.44 74.22 84.28 68.36
LoRA∗ 581K 93.19 45.38 98.78 74.95 98.44 25.16 92.70 92.02 77.58
FourierFT∗ 239K 93.05 56.36 98.69 77.30 98.78 32.44 94.26 91.45 80.29

NEAT 258K 93.77 80.03 98.70 77.57 98.79 53.60 94.27 92.47 86.15

6.4 SENSITIVITY W.R.T. DEPTH

As the depth of a neural network increases, the model gains more nonlinearity, potentially making
NEAT more effective at capturing complex, non-linear patterns for weight updates. In this section,
we present experiments with varying neural network depths in NEAT on the StanfordCars dataset to
address RQ3, as shown in Fig. 2. The architecture of the stacked layers used in NEAT is shown in
Fig. 5, with a detailed description provided in Appendix E. To ensure a fair comparison, we maintain
consistent hyper-parameters across all configurations.

According to Fig. 2, increasing the network depth leads to better performance. Specifically, at a
depth of 6 layers, the classification accuracy reaches 81.04%, marking a 1.7% improvement com-
pared to using only 2 layers. When the depth is increased to 8 and 10 layers, the accuracy slightly
decreases compared to the 6-layer model but remains higher than that of the 2-layer configuration.
A possible explanation is that as depth increases—particularly at 10 layers—the training process
becomes more challenging, possibly requiring more careful hyper-parameter tuning. It is also worth
noting that, since the intermediate layers have much smaller dimensions (Rr×r where r is the hidden
layer dimension) compared to the pre-trained model’s weight dimensions, the additional parameter
overhead of stacking more hidden layers is negligible and does not affect the parameter efficiency
of NEAT. These results further demonstrate the effectiveness of introducing non-linear adaptation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 4 6 8 10
Depth

0.5300

0.5325

0.5350

0.5375

0.5400

0.5425

0.5450

0.5475

0.5500

Ac
cu

ra
cy

 (%
)

FGVC

2 4 6 8 10
Depth

0.930

0.932

0.934

0.936

0.938

0.940 Oxford-Pets

2 4 6 8 10
Depth

0.800

0.801

0.802

0.803

0.804

0.805

0.806

0.807 StanfordCars

Figure 2: Accuracy on the StanfordCars, FGVC and Oxford-Pets dataset with varying depths of the
neural network used in NEAT. The depth here represents the total number of layers in the neural
network. We choose depth equals to 2, 4, 6, 8, and 10 layers in the figure.

Pets Cars Cifar10 Dtd Eurosat Fgvc Resisc45 Cifar100 Average0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

94.03

79.53

98.82

78.99

98.98

51.88

94.06 92.09
86.05

93.87

79.67

98.62

77.22

98.70

52.81

94.43 91.93
85.90

QV-MLP
QV

Figure 3: Accuracy of NEAT with different targeted fine-tuning modules, including just QV layers
and a combination of QV and MLP layers, on image classification datasets.

Table 5: Accuracy of NEAT with different nonlinear activation functions, i.e. ReLU and sinusoid
functions, on image classification datasets. The highest accuracy of methods per category are in
bold. “AVG” means the average accuracy of all datasets.

Method OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

ReLU 93.87 79.67 98.62 77.22 98.70 52.81 94.43 91.93 85.90
Sinusoid 93.51 79.95 98.88 79.08 98.74 53.47 93.62 92.25 86.19

6.5 SENSITIVITY W.R.T. DIFFERENT NON-LINEAR ACTIVATIONS

A key innovation of NEAT compared to LoRA and other PEFT methods, which rely solely on linear
transformations for modeling weight updates, is the introduction of non-linear activations within the
adaptation neural network. Since the choice of non-linear activations directly influences the learning
process and the dynamics of weight updates, we investigate the impact of different non-linear acti-
vations on overall adaptation performance to address RQ3. Specifically, we compare NEAT using
σp(x) = sin(2πx) as the non-linear activation function with NEAT using ReLU, σp(x) = max(0, x).
The results are presented in Table 5. To ensure a fair comparison, the number of trainable parame-
ters remains the same, and hyperparameters such as learning rate are optimized to maximize perfor-
mance. The specific hyper-parameters for the sinusoidal non-linear activation setting are provided
in Appendix C.1.

According to the table, using a sinusoidal non-linear activation provides slightly better vision adap-
tation compared to ReLU. However, the performance gap is minimal, indicating that the choice of
activation function does not significantly affect adaptation outcomes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

108531
Learning Rate (×10 3)

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Ac
cu

ra
cy

GELU

108531
Learning Rate (×10 3)

Tanh

108531
Learning Rate (×10 3)

Leaky ReLU

108531
Learning Rate (×10 3)

ReLU

Figure 4: The performance of different nonlinear activations used in NEAT on the hyperparameter
tuning. It can be observed that the pattern is mostly the same among all the nonlinear activations.

Table 6: Ablation results after running image classification datasets. The parameters count is the
same and “AVG” means the average accuracy of all datasets.

Method OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

Nonlinear LoRA 94.11 72.84 98.68 79.16 98.61 39.33 93.79 92.38 83.31
Multiplicative LoRA 93.57 77.32 98.68 77.57 98.81 46.79 94.34 91.86 84.81
NEAT 93.77 80.03 98.70 77.57 98.79 53.60 94.27 92.47 86.15

To further validate this observation and conduct a more detailed analysis of the influence of non-
linear activations on hyperparameter tuning, we performed experiments on the StanfordCars dataset
using various non-linear activation functions, including ReLU, Leaky ReLU, GELU, Tanh, and
sinusoidal activation. These experiments involved varying learning rates for the adapters to analyze
patterns in hyperparameter tuning across different activations. The results are illustrated in Fig. 4.

The findings reveal that, in general, the choice of activation functions does not necessitate specific
hyperparameter tuning (e.g., learning rate). For instance, performance consistently improves with
increasing learning rates, and the results for different activations remain comparable. This reinforces
the conclusion that the choice of non-linear activations has a limited impact on overall adaptation
performance. Consequently, ReLU can be a practical choice for achieving good adaptation results,
particularly given its simplicity bias in neural networks, as highlighted in (Teney et al., 2024)

6.6 ABLATION STUDY

In this section, we present an ablation study with two variants of LoRA to demonstrate the effective-
ness of our proposed framework: 1) nonlinear LoRA y = (W0 +σ(A)B)x, and 2) multiplicative
LoRA y = (W0 + W0AB)x. The experiments were conducted on image classification datasets,
and the results are provided in Table 6. From the results, we observe that both nonlinear LoRA and
multiplicative LoRA perform worse than NEAT. This highlights the effectiveness of incorporating
nonlinear approximations and explicitly using model weights as input to the nonlinear function in
our framework.

7 CONCLUSION

In this work, we propose NEAT, a novel parameter-efficient fine-tuning (PEFT) method that intro-
duces nonlinear transformations to enhance model adaptation while maintaining efficiency. By in-
corporating a lightweight neural network that models cumulative weight updates as functions of the
pre-trained weights, NEAT effectively captures complex, nonlinear structures in the weight space,
allowing for more expressive and accurate adaptation to downstream tasks. Our theoretical analysis
supports the efficacy of NEAT, demonstrating that it can achieve greater or equivalent expressive-
ness compared to existing LoRA, a popular and state-of-the-art PEFT method, with fewer num-
ber of parameters. Through extensive experiments on four benchmarks encompassing over twenty
datasets with various pre-trained backbones, NEAT demonstrated superior performance on both NLP
and vision tasks compared to existing state-of-the-art methods. NEAT thus stands out as an effec-
tive solution for fine-tuning pre-trained models more adaptively and efficiently, which is crucial for
resource-constrained environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning
for cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021.

Tom M Apostol. Modular functions and dirichlet series in number theory. 1990.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. arXiv preprint arXiv:1911.11641, 2020.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient
fine-tuning design spaces. arXiv preprint arXiv:2301.01821, 2023.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. arXiv preprint
arXiv:2302.07027, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. Uni-
fied low-resource sequence labeling by sample-aware dynamic sparse finetuning. arXiv preprint
arXiv:2311.03748, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020b.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. In Forty-first International Con-
ference on Machine Learning.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

Michael S Gashler and Stephen C Ashmore. Training deep fourier neural networks to fit time-series
data. In Intelligent Computing in Bioinformatics: 10th International Conference, ICIC 2014,
Taiyuan, China, August 3-6, 2014. Proceedings 10, pp. 48–55. Springer, 2014.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021a.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021b.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. arXiv preprint arXiv:2304.01933, 2023.

12

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–
1035, 2021.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation.
arXiv:2402.09353, 2024. URL https://arxiv.org/abs/2402.09353.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layer-
wise importance sampling for memory-efficient large language model fine-tuning. arXiv preprint
arXiv:2403.17919, 2024.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Ruiyang Qin, Dancheng Liu, Zheyu Yan, Zhaoxuan Tan, Zixuan Pan, Zhenge Jia, Meng Jiang,
Ahmed Abbasi, Jinjun Xiong, and Yiyu Shi. Empirical guidelines for deploying llms onto
resource-constrained edge devices. arXiv preprint arXiv:2406.03777, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

13

https://arxiv.org/abs/2402.09353

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Lin Song, Yukang Chen, Shuai Yang, Xiaohan Ding, Yixiao Ge, Ying-Cong Chen, and Ying
Shan. Low-rank approximation for sparse attention in multi-modal llms. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13763–13773, 2024.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural red-
shift: Random networks are not random functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4786–4796, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, and et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H Meyer, and
Warren J Gross. Efficient fine-tuning of bert models on the edge. In 2022 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1838–1842, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024a.

Haoyu Wang, Tianci Liu, Tuo Zhao, and Jing Gao. Roselora: Row and column-wise sparse low-rank
adaptation of pre-trained language model for knowledge editing and fine-tuning. arXiv preprint
arXiv:2406.10777, 2024b.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36, 2024c.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu,
Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Advancing parameter efficiency in fine-
tuning via representation editing. arXiv:2402.15179, 2024a. URL https://arxiv.org/
abs/2402.15179.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Man-
ning, and Christopher Potts. ReFT: Representation finetuning for language models. 2024b. URL
arxiv.org/abs/2404.03592.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

14

https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
arxiv.org/abs/2404.03592

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint
arXiv:2206.04673, 2022.

Hongyu Zhao, Hao Tan, and Hongyuan Mei. Tiny-attention adapter: Contexts are more important
than the number of parameters. arXiv preprint arXiv:2211.01979, 2022.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. Transactions of the Association for Computational
Linguistics, 12:525–542, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A DETAILS OF THEORETICAL RESULTS

In this section, we provide the proof of Proposition 5.1 and introduce additional theoretical results
when we assume sinusoid activation.

A.1 PROOF OF PROPOSITION 5.1

The intuition behind the proof is that we can always restore an identity function using two ReLU
activation functions, i.e., x = σ(x)− σ(−x) for any x ∈ R

Proof of Proposition 5.1. We first show that

min
Θ1∈Rd2×2r,Θ2∈R2r×d2

L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))) ≤ min

A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB).

Let (A∗,B∗) = argminA∈Rd1×r,B∈Rr×d2 L(Dtrain;W
0 + AB). Take Θ#

1 :=

[(W 0)†A∗;−(W 0)†A∗] ∈ Rd2×2r and Θ#
2 := [B∗⊤;−B∗⊤]⊤ ∈ R2r×d2 , where

(W 0)† ∈ Rd2×d1 is the Moore-Penrose inverse of W 0. Then, since σ is a ReLU activation
function,

f(W 0; (Θ#
1 ,Θ

#
2)) = σ(W 0Θ#

1)Θ
#
2

= σ(W 0(W 0)†A∗)B∗ − σ(−W 0(W 0)†A∗)B∗

= W 0(W 0)†A∗B∗.

where the last equality follows since x is in the column space of W 0. Note that W 0(W 0)† =
U0U0⊤ is the projection to the left singular space of W 0. Hence

L(Dtrain;W
0 + f(W 0; (Θ#

1 ,Θ
#
2))) = L(Dtrain;U

0U0⊤W 0 +U0U0⊤A∗B∗)

= L(Dtrain;W
0 +A∗B∗),

where the last equality follows from the invariance assumption. This gives the first inequality:

min
Θ1∈Rd2×2r,Θ2∈R2r×d2

L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))) ≤ L(Dtrain;W

0 + f(W 0; (Θ#
1 ,Θ

#
2)))

= L(Dtrain;W
0 +A∗B∗)

= min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB).

We next show the following inequality:

min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB) ≤ min

Θ1∈Rd2×r,Θ2∈Rr×d2

L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))).

Take A# = σ(W 0Θ∗
1) ∈ Rd1×r and B# = Θ∗

2 ∈ Rr×d2 , where (Θ∗
1,Θ

∗
2) =

argminΘ1∈Rd2×r,Θ2∈Rr×d1 L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))). The conclusion follows from

min
A∈Rd1×r,B∈Rr×d2

L(Dtrain;W
0 +AB) ≤ L(Dtrain;W

0 +A#B#)

= L(Dtrain;W
0 + σ(W 0Θ∗

1)Θ
∗
2)

= min
Θ1∈Rd2×r,Θ2∈Rr×d1

L(Dtrain;W
0 + f(W 0; (Θ1,Θ2))).

A.2 THEORETICAL ANALYSIS OF NEAT UNDER SINUSOID ACTIVATION FUNCTION

Here we consider a sinusoid activation function σp(x) = sin(2πx) (Gashler & Ashmore, 2014) and
design f(W 0;θ) = σp(W

0Θ1)Θ2 with θ = (Θ1,Θ2). With this periodic activation function, we
can show a stronger result that NEAT has expressivity (almost) greater than or equal to a LoRA with
more parameters when d1 ≫ d2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proposition A.1 (Expressivity of NEAT with Sine Activation). Suppose that there exists a row of
W 0, whose entries are linearly independent over the rationals. Then, for any r > 0, A ∈ Rd1×r

and B ∈ Rr×d2 , and ϵ > 0, there exists some Θ∗
1 ∈ Rd2×r and Θ∗

2 ∈ Rr×d2 such that

∥AB − σp(W
0Θ∗

1)Θ
∗
2∥F ≤ ϵ.

Proposition A.1 shows that the class of updates ∆W = σp(W
0Θ1)Θ2 by NEAT with 2rd2 param-

eters is dense in the class of updates ∆W = AB by LoRA with r(d1 + d2) parameters. When
d2 ≪ d1, this shows better parameter efficiency of NEAT.

Examining the proof of Proposition A.1, it is straightforward to show that the result holds for any
continuous and periodic activation function whose range contains an open interval centered at 0.

Proof. This proof relies on Kronecker’s theorem (Theorem 7.9 in Apostol (1990)) from number
theory, which shows that for all j ∈ Rq , the fractional parts of (ct1, ct2, . . . , ctq)⊤ is dense in [0, 1]q

over c ∈ R, as long as t1, . . . , tq are linearly independent over the rationals.

Let wj∗ be the j∗-th column of W 0 whose entries are linearly independent over the rationals. Since
AB has a scale ambiguity, we can assume that A is a matrix whose entries are bounded by 1 without
loss of generality. Write A = (a1,a2, . . . ,ar).

Take ϵ′ > 0 whose value will be determined later. From Kronecker’s theorem, for each aj there
exists some cj ∈ R such that ∣∣∣∣{cjwj∗} −

arcsin(aj)

2π

∣∣∣∣ ≤ ϵ′,

where {b} is a vector whose entries are the fractional part of the corresponding entry of b, and arcsin
is applied elementwisely.

Let Θ∗
1 = (c1ej∗ , c2ej∗ , . . . , crej∗), where ej∗ is the j∗-th standard basis vector in Rd2 . Using the

fact that 2π{cjwj∗} = 2πcjwj∗ mod 2π, we have∥∥σp(W
0Θ∗

1)−A
∥∥2

F = ∥σp((c1wj∗ , c2wj∗ , . . . crwj∗))−A∥2F (7)

≤
∑
j

∥sin(2πcjwj∗)− aj∥2 ≤ 4π2rϵ′2, (8)

where the last inequality follows from equation 8 and the fact that sin(x) is Lipschitz continuous
with Lipschitz constant 1. Hence by choosing Θ∗

2 ← B, we have∥∥AB − σp(W
0Θ∗

1)Θ
∗
2

∥∥2
F ≤ ∥B∥

2∥∥σp(W
0Θ∗

1)−A
∥∥2

F ≤ 4π2∥B∥2rϵ′2.

Choose ϵ′ = ϵ/(2π
√
r∥B∥), then the proof is complete.

B ADDITIONAL RELATED WORK

B.1 ADDITIVE PEFT METHODS

Additive PEFT methods (Chronopoulou et al., 2023; Edalati et al., 2022; Lester et al., 2021;
Wang et al., 2024c; Liu et al., 2022) introduces a small set of additional trainable parameters
strategically placed within the model. One of the most prominent additive PEFT approaches is
Adapter (Chronopoulou et al., 2023; Edalati et al., 2022; Zhao et al., 2022), which involves insert-
ing small adapter layers between pre-trained weight blocks. Prompt Tuning (Wang et al., 2024c;
Lester et al., 2021; Vu et al., 2021; Li & Liang, 2021) is another technique, where learnable vec-
tors, or ”soft prompts,” are prepended to the input sequence without modifying the model’s weights.
This method is particularly effective for large-scale models and has inspired variants such as Prefix
Tuning (Li & Liang, 2021).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 SELECTIVE PEFT METHODS

Selective PEFT focuses on optimizing the fine-tuning process by selectively adjusting a subset of the
model’s parameters rather than introducing additional ones. For instance, Diff Pruning (Guo et al.,
2020) uses a learnable binary mask to select parameters for fine-tuning. Similarly, FishMask (Sung
et al., 2021) and Fish-Dip (Das et al., 2023) leverage Fisher information to determine parameter
importance and identify the most crucial ones for updates. Additionally, BitFit (Zaken et al., 2021)
fine-tunes only the bias terms in the model, significantly reducing the number of trainable parame-
ters.

B.3 HYBRID PEFT METHOD

Hybrid PEFT methods aim to combine the strengths of various existing PEFT techniques to enhance
model performance across diverse tasks. UniPELT (Mao et al., 2021) integrates LoRA, prefix-
tuning, and adapters within each Transformer block, employing a gating mechanism to determine
which module should be active during fine-tuning. S4 (Chen et al., 2023) further explores the de-
sign space by partitioning layers into groups and assigning different PEFT methods to each group.
Additionally, NOAH (Zhang et al., 2022) and AUTOPEFT (Zhou et al., 2024) leverage neural archi-
tecture search (NAS) to automatically discover optimal combinations of PEFT techniques tailored
to specific tasks.

C HYPERPARAMETERS

We provide the specific hyperparameters used in our experiments to ensure reproducibility. For most
of our experiments, we use the standard implementation of NEAT, which we refer to as vanilla NEAT.
The neural network architecture in vanilla NEAT consists of only two layers: an input layer and an
output layer. We selecte this approach because vanilla NEAT offers the benefits of simplicity in
implementation, a low parameter count, and sufficient adaptation power. Nonetheless, we dedicate
Section 6.4 and Appendix E to exploring more complex adaptation networks and their effect on
performance.

C.1 IMAGE CLASSIFICATION

Hyperparameters for NEAT in image classification are provided in Table 7. We tune the classification
head and the backbone separately and provide detailed settings for each dataset. All weight decay
values are not tuned and follow the settings from Gao et al. (2024). The scaling factor s is set
to 1.0. The hidden layer dimension r for MHSA is set to 7 in the QV-setting, while both hidden
layer dimensions for MHSA and MLP are set to 2 in the QV-MLP-setting described in Section 6.3.
Additionally, specific hyper-parameters for the sinusoidal non-linear activation analysis are provided
in Table 8.

Table 7: Hyperparameter of image classification for NEAT.

Hyperparameter OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
LR Schedule Linear
Weight Decay 8E-4 4E-5 9E-5 7E-5 3E-4 7E-5 3E-4 1E-4

QV

Learning Rate (NEAT) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 5E-3 5E-3
Learning Rate (Head) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 1E-2 5E-3

QV-MLP

Learning Rate (NEAT) 5E-3 5E-3 5E-3 1E-2 5E-3 5E-3 1E-2 5E-3
Learning Rate (Head) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 1E-2 5E-3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters for image classification with NEAT using sinusoidal non-linear activation.
The targeted modules are the same as the QV-setting (i.e., only adapting the query and value layers
with a hidden layer dimension of 7).

Hyperparameter OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
LR Schedule Linear
Weight Decay 8E-4 4E-5 9E-5 7E-5 3E-4 7E-5 3E-4 1E-4

Learning Rate (NEAT) 5E-3 5E-3 1E-3 5E-3 1E-3 5E-3 5E-3 1E-3
Learning Rate (Head) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 1E-2 5E-3

Table 9: Hyperparameter of GLUE benchmark for NEAT-L.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (NEAT) 5E-3 5E-3 5E-3 1E-3 5E-3 1E-3 5E-3 5E-3
Learning Rate (Head) 5E-3 5E-3 5E-3 1E-3 5E-3 1E-3 5E-3 5E-3
Scaling 0.1 0.01 0.01 0.1 0.01 0.01 0.01 0.01
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

C.2 NATURAL LANGUAGE UNDERSTANDING

We provide used hyper-parameters for NEAT in natural language understanding on the GLUE bench-
mark in Table 9 and Table 10. The learning rates for the head and the backbone are tuned separately.
The scaling factor s is searched in {0.01, 0.1, 1.0}. For reproducibility, we fix the seed as 0. The hid-
den layer dimension r is set to 8 in NEAT-L and 1 in NEAT-S. More specifically, we apply NEAT to
all layers in RoBERTa-base for NEAT-L, while only applying NEAT to layers {4, 5, 6, 7, 8, 9, 10, 11}
for NEAT-S to reduce the number of trainable parameters. The seed is fixed for reproducibility.

C.3 COMMONSENSE REASONING

We provide hyperparameters settings of NEAT for commonsense reasoning task in Table 11. We
follow the hyperparameters settings in MiLoRA (Wang et al., 2024a). We limit all samples to a
maximum of 256 tokens. For evaluation, we set a maximum token number of 32.

C.4 ARITHMETIC REASONING

We provide hyperparameters settings of NEAT for arithmetic reasoning task in Table 12. We follow
the hyper-parameters settings in MiLoRA (Wang et al., 2024a). We limit all samples to a maximum
of 2048 tokens. For evaluation, we set a maximum token number of 256 on GSM8K (Cobbe et al.,
2021) dataset. On MATH (Hendrycks et al., 2021), we set the maximum new token to 512.

D DATASETS

In this section, we provide a detailed description of the datasets used in our experiments.

D.1 IMAGE CLASSIFICATION

For image classification, we provide detailed information about the used datasets in Table 13.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameter of GLUE benchmark for NEAT-S.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (NEAT) 5E-3 1E-3 5E-3 5E-3 5E-3 1E-3 5E-3 1E-3
Learning Rate (Head) 1E-3 1E-3 5E-3 1E-3 5E-3 1E-3 5E-3 1E-3
Scaling 0.1 1.0 0.01 0.1 0.01 0.1 0.01 1.0
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

Table 11: Hyperparameter of commonsense reasoning for NEAT.

Hyperparameter Commonsense Reasoning

Hidden Layer Dimension 32
α 32

Dropout 0.05
Optimizer Adam W

Learning Rate 3e-4
Batch Size 16

Warmup Steps 100
Epochs 1

D.2 NATURAL LANGUAGE UNDERSTANDING

The GLUE benchmark comprises 8 NLP datasets: MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE,
and STS-B, covering tasks such as inference, sentiment analysis, paraphrase detection, linguistic
acceptability, question-answering, and textual similarity. We provide detailed information about
them in Table 14.

Input Layer

Output Layer

Intermediate 1

Intermediate 2

Intermediate n

Intermediate n-1

W0

ΔW

W0

NEAT

W

Target Modules

Various Layers

Adaptation Process

Figure 5: Implementation of introducing more depths to NEATt. We insert multiple intermediate
layers into the layers from vanilla NEAT, with non-linear activation in between. The depth is de-
scribed as the number of layers in NEAT, with vanilla NEAT having a depth of 2 (i.e. the input and
output layers).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Hyperparameter of arithmetic reasoning for NEAT.

Hyperparameter Arithmetic Reasoning

Hidden Layer Dimension 64
α 64

Dropout 0.05
Optimizer Adam W

Learning Rate 3e-4
Batch Size 16

Warmup Steps 100
Epochs 3

Table 13: Detailed information of image classification tasks.

Dataset #Class #Train #Val #Test Rescaled resolution

OxfordPets 37 3,312 368 3,669

224× 224

StandfordCars 196 7,329 815 8,041
CIFAR10 10 45,000 5,000 10,000
DTD 47 4,060 452 1,128
EuroSAT 10 16,200 5,400 5,400
FGVC 100 3,000 334 3,333
RESISC45 45 18,900 6,300 6,300
CIFAR100 100 45,000 5,000 10,000

Table 14: Detailed information of the GLUE benchmark. STS-B is a regression task, while all other
tasks are either single-sentence or sentence-pair classification tasks.

Corpus Task Metrics # Train # Val # Test # Labels

Single-Sentence Tasks

CoLA Acceptability Matthews Corr. 8.55k 1.04k 1.06k 2
SST-2 Sentiment Accuracy 67.3k 872 1.82k 2

Similarity and Paraphrase Tasks

MRPC Paraphrase Accuracy/F1 3.67k 408 1.73k 2
STS-B Sentence similarity Pearson/Spearman Corr. 5.75k 1.5k 1.38k 1
QQP Paraphrase Accuracy/F1 364k 40.4k 391k 2

Inference Tasks

MNLI NLI Accuracy 393k 19.65k 19.65k 3
QNLI QA/NLI Accuracy 105k 5.46k 5.46k 2
RTE NLI Accuracy 2.49k 277 3k 2

D.3 COMMONSENSE REASONING

For commonsense reasoning task, we use 8 datasets, including BoolQ, PIQA, SIQA, HellaSwag,
WinoGrande, ARC-e, ARC-c and OBQA. The detailed information is provided in Table 15.

D.4 ARITHMETIC REASONING

Detailed information for arithmetic reasoning task is provided in Table 16. GSM8K consists of
high quality grade school math problems, typically free-form answers. MATH includes classifi-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 15: Detailed information of commonsense reasoning task.

Dataset #Class #Train #Dev #Test

BoolQ Binary classification 9,427 3,270 3,245
PIQA Binary classification 16,113 1,838 3,000
SIQA Ternary classification 33,410 1,954 2,224
HellaSwag Quaternary classification 39,905 10,042 10,003
WinoGrande Binary classification 40,398 1,267 1,767
ARC-e Quaternary classification 2,251 570 2,376
ARC-c Quaternary classification 1,119 229 1,172
OBQA Quaternary classification 4,957 500 500

PRIME AI paper

1 class neat_depth_four(nn.Module):
2 """
3 Example of 4-layer implementation for Neat with residual.
4 Using ReLU as the default non-linear activation function.
5 args:
6 dim: hidden dimension (a.k.a. rank)
7 out_dim: output dimension
8 """
9 def __init__(self, dim=32, out_dim=768):

10 super().__init__()
11 self.non_linear = nn.ReLU()
12 self.A = nn.Linear(out_dim, dim, bias=False)
13 self.i1 = nn.Linear(dim, dim, bias=False)
14 self.i2 = nn.Linear(dim, dim, bias=False) # two intermediate layers
15 self.B = nn.Linear(dim, out_dim, bias=False)
16 nn.init.zeros_(self.B.weight)
17

18 def forward(self, x, weight):
19 delta_w = self.non_linear(weight @ self.A.weight.t()) # non-linear(W_0 A)
20 residual = delta_w.clone()
21 delta_w = self.non_linear(self.i1_(delta_w))
22 delta_w = self.non_linear(self.i2_(delta_w))
23 delta_w = delta_w + residual
24 delta_w = self.B(delta_w) # obtain the approximated delta W
25 return x @ delta_w

1

Figure 6: An example of the actual implementation applying 4 layers in NEAT (depth = 4) with
Pytorch.

Table 16: Detailed information of arithmetic reasoning task.

Dataset #Train #Dev #Test

GSM8K 7,473 1,319 1,319
MATH 12,500 500 5,000

cations from multiple mathematical domains, such as algebra, counting and probability, geometry,
intermediate algebra, number theory, prealgebra and precalculus.

E IMPLEMENTATION OF INTRODUCING DEPTHS TO NEAT

We provide a comprehensive explanation of our approach to increasing the depth of the adaptation
neural network in NEAT. As depicted in Fig. 5, we introduce multiple deeply stacked intermedi-
ate layers between the layers of the vanilla NEAT. These intermediate layers are essentially small
adapters with a minimal parameter count (Rr×r, where r is the hidden layer dimension), and we
retain non-linear activations between them, as proposed by NEAT. The adaptation process begins by
feeding the weight matrix W 0—the initialized value of the adaptation target W—into NEAT’s input
layer. After undergoing multiple non-linear transformations through the intermediate layers, the fi-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

nal layer projects W 0 back to its original shape, producing the adaptation result ∆W . Throughout
this process, the adaptation target remains fixed, while all the intermediate layers, as well as the
input and output layers in NEAT, are trainable parameters.

Furthermore, an implementation example of NEAT with four layers using the PyTorch library is il-
lustrated in Fig. 6. As previously mentioned, we apply non-linear activations (ReLU in this case) to
model more complex transformations. The intermediate layers have the same shape, Rr×r, which
adds minimal overhead compared to A ∈ Rd2×r and B ∈ Rr×d2—the input and output layers, re-
spectively, which are also present in the vanilla NEAT. Since d2 is typically in the range of hundreds
to thousands, while r is commonly set to 8, 16, or 32, the parameter efficiency of NEAT with deeper
layers remains comparable to that of vanilla NEAT without the intermediate layers. As shown, we
first transform W 0 into the desired adaptation result ∆W and subsequently use ∆W to perform
the actual computation on the input data. The use of residuals is based on empirical observations,
as incorporating residual connections in the adaptation process results in faster convergence, more
stable loss curves, and significantly improved overall performance.

23

	Introduction
	Related Works
	Preliminary
	Methodology
	Framework Overview
	Motivation
	NONLINEAR PARAMETER-EFFICIENT ADAPTATION

	Theoretical Analysis
	Experiment
	Datasets and Experiment Settings
	Datasets
	Baselines

	Performance Comparison
	Commonsense Reasoning
	Arithmetic Reasoning
	Natural Language Understanding
	Image Classification

	Sensitivity w.r.t. Fine-tuned Module
	Sensitivity w.r.t. Depth
	Sensitivity w.r.t. Different non-linear activations
	Ablation Study

	Conclusion
	Details of Theoretical Results
	Proof of Proposition 5.1
	Theoretical Analysis of Neat under sinusoid activation function

	Additional Related Work
	Additive PEFT Methods
	Selective PEFT Methods
	Hybrid PEFT method

	Hyperparameters
	Image Classification
	Natural Language Understanding
	Commonsense Reasoning
	Arithmetic Reasoning

	Datasets
	Image Classification
	Natural Language Understanding
	Commonsense Reasoning
	Arithmetic Reasoning

	Implementation of Introducing Depths to Neat

