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Abstract

This paper introduces a causal attribution model to enhance the interpretability of large
language models (LLMs) and improve their causal reasoning abilities via precise fine-tuning,.
Despite LLMs’ proficiency in diverse tasks, their reasoning processes often remain black box
and thus restrict targeted enhancement. We propose a novel causal attribution model that
utilizes "do-operators" for constructing counterfactual scenarios, allowing us to quantify the
contribution of different components in LLMs’s reasoning process systematically. By assessing
the proposed attribution scores through causal discovery tasks across various domains, we
demonstrate that LLMs’ effectiveness in causal reasoning heavily relies on provided context
and domain-specific knowledge but can also utilize numerical data with limited calculations
in correlation, not causation. This motivates the proposed fine-tuned LLM for pairwise causal
discovery, effectively and correctly leveraging both knowledge and numerical information.

1 Introduction

Large language models (LLMs) have been at the forefront of advancing artificial intelligence, marking
significant breakthroughs in diverse fields (Vaswani et al.; 2017; Kenton & Toutanoval [2019} |Lewis et al.; 2019;
Brown et all 2020; Neelakantan et al., [2022; [Stiennon et al.l 2022; |(OpenAlL |2023)). Despite the proficiency of
LLMs in a range of tasks (Floridi, [2019; [Jiang et al.l |2019; |Tambe et al., [2020), their reasoning capabilities,
particularly in causal reasoning (Pearl et al., [2009; [Scholkopt et al.| [2021)), are yet less investigated (see a
recent survey in [Liu et all [2023]). Causal reasoning, central to human cognition, enables understanding
and predicting the consequences of events and actions (Spirtes et al., 2000b; |Glymour & Zhang, 2019).
It is essential in higher-level cognitive tasks such as decision-making, problem-solving, and understanding
complex narratives (Hagmayer & Sloman, 2013} |Griffiths et al. [2019). Equipping LLMs with causal reasoning
abilities thus is a significant leap from mere pattern recognition to a profound understanding of real-world
phenomena (Lake et al., |2017; [Tenenbaum et al., [2019; [Marcus, [2020; |Chen et al.| |2021]). On the other hand,
LLM-based causal reasoning recently has become an attractive and demanding paradigm, by leveraging the
large knowledge base and strong expressive abilities of LLMs for important causal inference in daily analyses,
as supported by fast-growing literature (see e.g., Riedel et al.l [2019; Keith et al. [2020; [Weidinger et al., |2021)).
This raises two critical questions:

Can LLMs really understand causal relationships? If not, how to effectively bridge the gap?

Several recent studies have attempted to explore the first question. [Kiciman et al.|(2023]) considered integrating
the variable names into a text template and tasked LLMs with discerning the cause among the options. |Gao
et al| (2023) extended such an evaluation on the contexts of a board causal knowledge graph and found LLMs
outperformed traditional machine learning methods. Jin et al.| (2023a)) also examined the LLMs’ capacity for
causal discovery via correlation descriptions and tested if LLMs can determine the true causalities. Recently,
Jin et al.| (2023b]) proposed to assess causal reasoning in LLMs and revealed that LLMs struggled with the
complex dataset. |Willig et al.| (2023) further argued that LLMs seem to succeed in causal inference simply by
reciting the knowledge embedded. Despite their insights, all these works mainly focus on context information
without investigation on numerical data known intrinsically reflect causalities (Pearl et al., 2009).
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Figure 1: The first panel shows a causal discovery process in LLMs; the second presents the generation of
counterfactual examples; and the third describes our proposed causal attribution model.

In this paper, to answer the first question, we propose a systematic and general evaluation framework to
disentangle how LLMs understand causal relationships or similar reasoning processes. The main technique
lies in generating counterfactual examples, which allows us to produce all combinations of different input
components to observe changes in model output, and thus quantifies the influence of each individual component
on model causal reasoning performance. In particular, we focus on the causal discovery tasks and are interested
in the roles of the inherent causal knowledge embedded within the variable names, the explicit numerical data
that denote causal links, and the context provided for the causal task. Refer to Figure [I] for an illustration.
The conclusion of our attribution model further locates the directions for LLMs to improve their causal
reasoning and motivates our fine-tuned LLM for causal discovery, which thus solves the second question. The
contributions of our research are threefold.

e We develop a causal attribution model and propose the definitions of marginal and conditional attributions
of knowledge and data, through the notion of "do-operators" (Pearl et al) 2009)). The proposed definitions
differentiate and quantify the effects of different components in LLM’s reasoning processes.

e We design a series of novel experiments to estimate proposed attribution scores through causal discovery
tasks across various domains. Our evaluation reveals that LLMs’ effectiveness in causal reasoning heavily
relies on provided context and domain-specific knowledge but can also utilize numerical data with limited
calculations in correlation, not causation.

e To effectively and correctly leverage both knowledge and numerical information, this work firstly designs a
precision fine-tuning to enhance the causal discovery abilities in LLMs. Our fine-tuned model achieves the
highest accuracy in identifying the true causal relationships without losing generalizability on other tasks.
The Python implementation of our method and synthetic data for fine-tuning is available in supplementary
material.

2 Proposed Framework

2.1 Causal Attribution Model

We formalize the causal attribution model to understand how different components affect the performance of
LLMs. For the i-th sample in our dataset, we decompose the input into several distinct elements. Without
loss of generality, we focus on the causal reasoning task and detail these components as follows: the input
context ¢;, which provides the scenario for the causal reasoning task; the embedded causal knowledge within
variable names k;, which may carry implicit causal cues; and numerical data d;, representing explicit causal
relationships. Any remaining information, including potential unmeasured confounders, is denoted as u;. The
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goal is to compare the causal reasoning made by an LLM, represented as ¥;, against the true causal responses
y;. We first introduce the attribution to knowledge given fixed data to quantify the impact of knowledge.

Definition 2.1. Conditional Attribution of Knowledge (CAK) Given Data:
CAK; =P (yi = yi | do (ki = ki, di = di) , ci,wi) —P(yi = yi | do (ki = 0,d; = d;) , ¢i,u;)

where the do-calculus do(A = a) is a mathematical operator (Pearl et al 2009) to simulate interventions
that hold A constant as a while keeping the rest of the model unchanged.

This equation defines the probability difference of an LLM making a correct causal inference when variable
names containing potential causal knowledge are included versus when they are absent, given the same data.
A CAK; value near zero suggests that embedded knowledge has a negligible effect on the model’s causal
reasoning accuracy. Similarly, we define the attribution to data given the knowledge below.

Definition 2.2. Conditional Attribution of Data (CAD) Given Knowledge:

OADIZP(@\, =Y; | dO(k‘l:k‘“d, :di),ci,ui)—P@} =Y ‘ do(kl :ki,di :(Z)),Ci,ui).

Here, we assess the impact of numerical data on causal inference accuracy by comparing the LLM’s performance
with full numerical data access to its performance with numerical data systematically removed while retaining
the embedded knowledge. The first term in Definitions and represents the original prediction accuracy
with full information. The second term shows the prediction accuracy after omitting knowledge or data. We
further examine the marginal attributions for data.

Definition 2.3. Marginal Attribution of Data (MAD):

MADZ* :P(@\i =Y | do(k‘i:(ZJ,diZdi),ci,ui)—P@\i =Y; | dO(k‘i :@,di :@),Ci,ui).

Here, the marginal attribution of the data measures the impact of data alone without any additional knowledge.
This distinction is crucial to evaluating the independent effectiveness of the data in the inference process. In
a similar logic, we define the marginal attribution of knowledge as follows.

Definition 2.4. Marginal Attribution of Knowledge (MAK):

MAK; =Py = yi | do(ki = ki,di = 0) ,ci,ui) =P (Ui = vi | do (ks = 0,d; = 0), ¢i,u5) .

Conversely, this attribution evaluates the unique influence of knowledge embedded in variable names when
numerical data are deliberately omitted. The second term, the baseline, in Definitions and is identical.
When these components are manipulated independently, we can determine their separate contributions to the
LLM’s causal reasoning. Combining Definitions [2.1] to [2:4] we derive the following relationship:

MAD; — MAK; = CAD; — CAK,.

The equation above establishes the internal consistency between conditional and marginal attributions,
showing that the difference between the marginal attributions of data and knowledge equals the difference
between their respective conditional attributions. This indicates the robustness of our model in attributing
significance to different inputs.

2.2 Causal Discovery Task and Terminology

Without loss of generality (following [Kiciman et al., [2023; |Jin et al.l 2023al), we focus on causal discovery
(Spirtes et al.l [2000b; [Pearl, |2000) as the main causal reasoning task. We first detail necessary terminologies.
Consider a graph G = (X, Dx) with a node set X and an edge set Dx. A node X is said to be a parent of
X if there is a directed edge from X; to X}, i.e., X; is a direct cause of X;. A directed graph G that does
not contain directed cycles is called a directed acyclic graph (DAG). The DAG G can be estimated up to a
Markov equivalence class (MEC) based on observational data (Pearl et al., [2000; Peters & Biihlmann) [2014]),
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Table 1: Description of nine benchmark datasets for causal discovery tasks.

Dataset Galton Sachs Alcohol EcoSystem MPG DWD Cement Stock  Arrhythmia
Number of nodes 4 12 [§ 4 5 6 9 5 4
Number of causal relations 3 20 5 3 6 6 8 3 3
Number of samples 898 7466 345 721 392 349 1030 1331 450
Domain Biology Biology Biology Physics Engineering  Geography Engineering Finance Biology

with a number of causal discovery methods developed recently (see e.g., Spirtes et al.,|2000a; |Shimizu et al.,
2006b; [Biithlmann et all 2014} Ramsey et al., |2017; [Zheng et al.| [2018; |Yu et al., [2019; [Zhu & Chen, |2019).
Throughout this paper, we task LLM with causal discovery to identify the graph G based on the provided
information. The advantages of using LLMs are obvious as witnessed by the much higher accuracy of LLMs

in Tables [3] and than classical causal discovery methods in Table

3 Experiment Design and Estimation

We detail the experimental design tailored to estimate the proposed attribution scores. We first introduce
the dataset for the causal discovery task in Section [3.1] More preliminaries and related works are provided
in Appendix [A] We detail the system prompt in Section [3.2] Subsequent experiments are then designed to
measure LLMs’ performance in the absence of knowledge (see Section 7 data (see Section , or both
(see Section . We start to examine LLMSs’s abilities in a pairwise causal discovery task in Section
Beyond the literature, we further design a reverse causal discovery task in Section that inverts the causal
directions by switching the numerical data.

3.1 Data Construction for Causal Discovery

Our experimental design utilizes nine distinct datasets (Mooij et al.| 2015; |Zheng et al.,|2023)), each containing
verified causal relationships established through expert knowledge and empirical analysis. These datasets
benchmark the LLMs’ performance in causal discovery tasks and span various domains—biology, physics,
geography, atmospheric science, finance, and engineering—ensuring diverse reasoning scenarios. Table
provides a detailed description of the datasets, including the number of nodes, causal relations, samples, and
their respective domains. Additional details are in Appendix [B] Each dataset includes variable names with
causal meanings and numerical data supporting intrinsic causal relationships. We aim to evaluate the LLMs’
causal discovery results against the ground truth of these causal pairs.

3.2 System Prompt Generation

The initial phase of our experimental design employs zero-shot prompting strategies to engage LLMs in
causal discovery tasks (Kojima et all 2022)). Our goal is to generate the best prompt to enhance the
accuracy of LLMs’ causal discovery, establishing the baseline accuracy component, i.e., the first term
(P(y; = yi | do (ki = ki, d; = d;) , ¢i,u;)) in Definitions and Preliminary trials reveal that prompts
containing directives like "provide" often elicit non-committal responses from LLMs. This indicates a reluctance
or inability to generate causal analyses without additional context. To address this, we modify our prompts to
use more suggestive language, such as "suggest', guiding LLMs to produce more analytically useful responses.
Figure [2] illustrates the attribution ability of ChatGPT in answering causal questions with optimized prompts.
We observed that LLMs might infer causal relationships based on the sequence of data columns, likely due to
biases from the pre-training phase. Specifically, LLMs often assume the first variable causes the second, and
the second causes the third. To counter this bias, we recommend randomizing column order in each dataset
for every experiment and tracking accuracy across multiple replications.

3.3 Ability Attribution: Omit Knowledge

To examine the internal knowledge of LLMs, referred to P (g; = y; | do (k; = 0,d; = d;) , ¢;, u;) in Definition
we conduct experiments to assess LLM performance when explicit knowledge is systematically restricted.
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Figure 2: Experiment design for LLMs’ answering causal questions with encouraging prompts.

Recognizing that LLMs possess vast stores of implicit knowledge, akin to expansive knowledge graphs (Pan
et al., [2020), we aim to understand the influence of this internal knowledge on causal discovery. To isolate
the effect of knowledge from other variables, we retain the numerical data but obscure the variable names by
substituting them with arbitrary terms like "bryoto", "nienet", and "feouni" (see Figure . These placeholders
are chosen deliberately to avoid sequences that LLMs might interpret as inherently ordered or connected, such
as alphabetical sequences or familiar names. This strategy prevents the models from leveraging pre-existing

associative patterns.

3.4 Ability Attribution: Omit Data

We develop a subsequent experiment to measure LLM performance in the absence of data, i.e.,
P(y; = y; | do(k; = ki, d; = 0), ¢;, u;) in Definition To this end, we exclude data values from the prompt
and present only the column names in random order, intentionally omitting numerical data, as shown in Figure
This method allows us to assess the LLMs’ capacity for reasoning with structural but non-quantitative
information, contrasting their operation with full data availability. This technique has been previously
implemented to some extent (e.g., [Kiciman et al., |2023), where LLMs were tasked with causal discovery
using limited variable sets, each containing 3-4 variables. These studies demonstrated LLMs’ responses when
prompted with only variable names and metadata. Our experiment builds on this foundation by scaling up
to seven datasets with varied complexity, including the biologically rich Sachs dataset, which encompasses
numerous variables and interactions (Sachs et al., 2005)).

3.5 Ability Attribution: Random Guess

To set the baseline for LLMs’ performance without input data and knowledge, we design an ex-
periment of random guess to omit both data and knowledge inputs. This approach estimates
P(y; =i | do(k; = 0,d; = 0),¢;,u;) in Definitions where LLMs must operate without informative
cues, relying on random guesses to generate causal pairs. The rationale is twofold: first, to quantify the
lowest bound of LLLM accuracy in causal discovery by omitting meaningful input, and second, to assess the
models’ default response patterns in the absence of guiding information.

3.6 Pairwise Causal Discovery Task

We detail the pairwise causal discovery task (Hoyer et al.| [2008), where the causal relationships can be
uniquely identified based on observational data with non-Gaussian noises (Geiger et all 1990). Causal
discovery beyond two variables follows the same logic. We design the experiments by the theorem below.

Theorem 3.1 ( Shimizu et al.| (2006a))). In the linear non-Gaussian noise setting, if the true structural
causal model is Y := ng) +U, X LU, then there does not exist a structural causal model in the reverse
direction X := g(Y)+ U, Y LU that can generate data consistent with P(x,y).
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Using the Galton Family dataset as an example, we simulate Father’s Height data by Father’s Height :=
f(Child’s Height) 4+ U, where f is a linear function and U is non-Gaussian noise, such as chi-squared noise.
The evaluation is conducted under three scenarios: (1) employing LinGAM directly on simulated data as a
baseline, where LinGAM estimates causal ordering and connection strengths based on non-Gaussianity; (2)
formulating the prompt using data with variable names for LLMs; and (3) constructing the prompt with data
and variable names, complemented by simplified instructions to execute LinGAM for LLMs. The detailed
procedure is shown in Figure

3.7 Reverse Causal Discovery

The reverse causal discovery task is critical for evaluating the LLMs’ dependence on numerical data when
inferring causality (see the detailed workflow in Figure [3). We achieve this by manipulating the structure of
the datasets while keeping their data content intact. Specifically, we first establish the topological ordering of
the variables within the original DAGs (Pearl, |2000) representing the causal structures of the datasets. We
then systematically reverse this order, creating a new set of inverted relationships for the LLMs to analyze.
Despite preserving the data values, this rearrangement challenges the models by disrupting the directionality
they have learned from previous exposures. As illustrated in Figure[3] the original causal links (e.g., Gene
leading to Height and Gender, with Gender influencing Height) are reversed, presenting the LLMs with the
premise that Height influences Gender and Gene. If there is minimal impact of changing causal topologies on
LLMs’ discovery outcomes, this suggests that LLMs primarily depend on their inherent knowledge to deduce
causal relationships among variables.

3.8 Estimations of Attribution Scores

We estimate the attribution scores via the designed experiments and the true discovery rate (TDR):

# Correctly Predicted Causal Pairs

TDR =
# True Causal Pairs

We consider calculating TDR in the following scenarios to construct our estimations: (1). Raw Data (using
the whole original data as in Section [3.2)); (2). Omit Knowledge (as in Section [3.3); (3). Omit Data (as in
Section [3.4); (4). Random Guess (as in Section [3.5)); (5). Reverse (evaluating with the reversed causal graph
after causal order reversal, as in Section ; and (6). Reverse-Raw (evaluate the original causal graph after
causal graph reversal, as in Section [3.7]). By Definitions to we have

CAK = TDR (raw data) — TDR (no knowledge), CAD = TDR (raw data) — TDR (no numerical data),
MAK = TDR (no numerical data) — TDR (guess), MAD = TDR (no knowledge) — TDR (guess).

These metrics enable us to quantify the LLMs’ causal discovery accuracy. Structural Hamming Distance (SHD)
is also calculated to compare the difference between the predicted graph and the true graph. We also use the
false discovery rate (FDR) as FDR = (# Incorrectly Predicted Causal Pairs)/(# Predicted Causal Pairs),
and F1 score as additional accuracy metrics.
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Table 2: Attribution scores of LLMs for different datasets.

Method / Dataset Sachs Galton Alcohol  EcoSystem MPG DWD Cement Stock Arrhythmia
GPT-4 turbo CAK 0.49+0.21  0.58+£0.36  0.7540.26 0.33£0.35 0.51+0.22  0.17+0.14  0.87£0.16  0.07£0.30 0.0940.26
CAD 0.01+0.38 0+0.07 0.01+0.10 0.20+0.23  -0.05+0.18 -0.0140.19 0+0.04 -0.12+0.41 -0.13+0.39
MAD 0.04+0.14  0.02+0.40  -0.03+£0.60  0.03+0.46 0.16£0.19  0.29+0.09 -0.62+0.38  0.05%0.39 0.39+0.23
MAK 0.52+0.29  0.60+0.49  0.70+0.44 0.16+0.49 0.72+0.13  0.48+0.20  0.26+£0.48  0.24+0.46 0.62+0.24
GPT-4 CAK 0.01£0.30  0.67+0.28 0.58 £0.28  0.41+0.36 0.28+0.21  0.07+£0.20  0.794+0.09  0.12+0.09 0.15+0.27
CAD -0.17+0.28 0+0.05 0.08+0.13 0.02+0.27 -0.14+0.18  -0.10£0.20  0.02+0.26  -0.12+0.22 -0.10+0.19
MAD 0.26+0.17  0.184+0.46  0.29+0.40 0.29£0.30 0.32+0.40  0.33+£0.31  0.01+£0.48  0.04£0.39 0.4440.28
MAK 0.45+0.23  0.85+0.36  0.79+0.36 0.67£0.38 0.74+0.34  0.51+0.28  0.78+0.53  0.28+0.43 0.70+0.27
GPT-3.5 CAK 0.20£0.30  0.42+0.32  0.13 £0.40  0.24+0.35 0.19+£0.24  0.09+0.24  0.884+0.19  0.08+0.12 0.18+0.37
CAD 0.04+0.37  0.01+0.23  -0.14%0.39 0.12+0.20 -0.09£0.34 -0.15+0.24 0+£0.23 -0.03+0.28 0.14+0.13
MAD 0.05+0.36  0.17+0.45  0.33%+0.34 0.01£0.37 0.02+0.21  0.06+0.26  0.02£0.08  0.06+0.18 0.01+0.29
MAK 0.20+£0.24  0.58+£0.29  0.6040.41 0.134+0.37 0.30+0.28  0.30+0.25  0.91£0.08  0.17£0.30 0.0540.36
LLaMa2-13B CAK 0.084+0.27  0.0940.26  0.05%0.23 0.14£0.35 0.32+0.34  0.23+0.22  0.51£0.24  0.09£0.32 0.114+0.22
CAD -0.04£0.26 -0.48+£0.18 -0.11+0.26  -0.07+0.36  -0.04£0.38  0.1840.21 -0.15£0.34  0.12+0.24 0.08+0.21
MAD 0.01+£0.25  0.24£0.25  0.0140.12 0.10£0.26 0.05+0.13  0.12+0.09  -0.024+0.12  0.13£0.22 0.06+0.34
MAK 0.13+0.27  0.82+0.18  0.1740.22 0.31+0.37 0.41£0.32  0.174£0.17  0.644+0.20  0.10+0.34 0.09+0.27
Claude 2 CAK 0.32+0.18  0.56+0.23  0.52+0.22 0.44+0.27 0.37+0.25  0.44+0.23  0.85+0.22  0.20£0.34 0.26+0.24
CAD -0.16£0.27  -0.07£0.15 -0.04%0.14 0.22+0.18 0.16+0.17  0.11+0.19  -0.06+0.17  0.14£0.49 -0.01£0.26
MAD 0.08+0.16  0.124+0.14  0.034+0.20 0.0240.45 0.16+0.35 -0.12+0.22 -0.09+0.33 -0.0440.23 0.08+0.47
MAK 0.57+0.24  0.74+0.20  0.59+0.16 0.2440.28 0.37+0.41  0.21+0.32  0.824+0.33  0.02+0.35 0.35+0.43
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Figure 4: The differences between attribution scores (MAK-MAD) among LLMs to demonstrate a hierarchy
in their knowledge depth.

4 Analyses of Causal Attribution Model

Implementation and evaluation metrics. To ensure a comprehensive evaluation, we employ a suite of
general-purpose autoregressive LLMs based on GPT (Radford et al., 2019)): GPT-3.5 (ChatGPT), GPT-4,
and GPT-4 Turbo (OpenAl, 2023), accessed via the OpenAI API with a zero temperature for consistency.
Additionally, we include Claude 2 and LLaMa2-13B (Touvron et al.,[2023) to cover a broad spectrum
of model architectures and training backgrounds. Implementation details are provided in Section [3] with
specific examples illustrated in Appendix [C] The mean and standard deviation of metrics estimated based
on Section [3.8] under different LLMs across various datasets are summarized in Table [2] for the proposed
attribution scores and Table [3| for the F1 score over 15 replications. Results for TDR, FDR, and SHD are
presented in Tables and respectively, in Appendix [E] with pairwise causal discovery detailed in
Appendix

Results of causal attribution model on LLMs’ capabilities in causal discovery. Firstly, the high
MAK scores in Table [2] highlight the crucial role of knowledge alone in enabling LLMs to derive causal
relationships across various datasets and models. Furthermore, the high CAK scores in Table [2 reveal that
even with numerical data, variable names significantly enhance LLMs’ causal discovery accuracy by leveraging
their internal knowledge. This suggests that an LLM’s performance in complex causal analysis heavily depends
on the extent and sophistication of its pre-existing knowledge base. Comparative analysis of attribution scores
among different LLMs demonstrates a hierarchy in knowledge depth, with GPT-4 Turbo leading, as shown in
Figure [d] Conversely, the relatively low MAD and CAD scores indicate that LLMs still display limited but
existent causal discovery abilities based on numerical data. These findings are consistent with Tables
and [E-3]in Appendix.
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Table 3: The results of F1 scores of LLMs for different datasets.

Method /Dataset Sachs Galton Alcohol EcoSystem MPG DWD Cement Stock Arrhythmia

GPT-4 turbo Raw Data 0.53+0.20 1+0 1+0 0.74£0.23 0.62+0.14  0.504+0.15 0.99£0.04 0.30+0.33 0.51+0.16
Omit Data 0.47+0.20 1+0 0.99+0.05 0.55+0.23 0.72+£0.09  0.524+0.18 0.97£0.08 0.42+0.46 0.65+0.13
Omit Knowledge 0.09+0.07 0.254+0.24  0.2240.15 0.33+0.28 0.16+0.16  0.354+0.20 0.12+0.15 0.17+0.18 0.45+0.28
Reverse 0.2840.14  0.13+0.16  0.2340.16 0.16+0.24 0.06+£0.10  0.2540.20 0.64+0.19  0.24+0.17 0.09+0.26
Reverse-Raw 0.48+0.29 140 0.93+0.13 0.83+0.19 0.53+0.13  0.494+0.20 0.974£0.12 0.25+0.16 0.54+0.20
Random Guess 0.05+£0.19  0.404+0.49 0.28+0.41 0.40+0.49 0+0 0.06+£0.12  0.73+0.44  0.204+0.40 0.13+0.34
GPT-4 Raw Data 0.34+0.24 140 0.70£0.25 0.70£0.14 0.57+0.13  0.3640.09 1+0 0.30+£0 0.54+0.11
Omit Data 0.53+0.17 1+0 0.69+0.20 0.66+0.11 0.73+0.08  0.4940.12 1+0 0.40+0.23 0.660.08
Omit Knowledge 0.33+0.20 0.29£0.21 0.31+0.11 0.43+0.16 0.324+0.15 0.33£0.10 0.21+0.25 0.17+0.09 0.44+0.13
Reverse 0.26+£0.15 0.13+0.21  0.3240.09 0.16+0.16 0.304+0.13  0.26+0.12 0.72+0.41  0.2940.03 0.3440.11
Reverse-Raw 0.25+0.13 1+0 0.53+0.14 0.67£0.16 0.50+0.15  0.2940.09 0.95+0.19  0.30+0.01 0.52+0.15
Random Guess 0.07+£0.25 0.15+0.36  0.1340.34 0.2140.41 040 0+0 0.19+0.39  0.1440.35 040
GPT-3.5 Raw Data 0.15+£0.10  0.9440.15 0.6440.37 0.68+0.31 0.39+0.19  0.2940.21  0.99+0.04 0.41+0.26 0.28+0.25
Omit Data 0.2240.17  0.964+0.10  0.7740.34 0.55+0.23 0.41+0.20 0.464+0.13  0.99+0.03  0.42+0.29 0.28+0.13
Omit Knowledge 0.114+0.10  0.384+0.14 0.2840.15 0.36+0.35 0.1940.14  0.204+0.13  0.0940.06  0.34+0.28 0.26+0.22
Reverse 0.124£0.09  0.15+0.16  0.2640.13 0.11+0.27 0.18+0.17 0.114+0.13  0.14£0.24 0.24+0.12 0.25+0.19
Reverse-Raw 0.224+0.13  0.91£0.16  0.60+0.38 0.93+0.19 0.39+0.23  0.314+0.22 0.94£0.17 0.35+0.20 0.35%0.20
Random Guess 0.09+0.09 0.324+0.36  0.17+0.10 0.42+0.48 0.184+0.17  0.16+0.25 0.08+0.07 0.25%0.23 0.314+0.27
LLaMa2-13B Raw Data 0.29+0.23  0.49£0.33  0.21+0.12 0.42+0.24 0.60+0.26  0.45+0.26  0.64+0.36  0.35+0.18 0.39+0.14
Omit Data 0.33+0.17 1+0 0.33+0.19 0.50+0.40 0.644+0.22 0.2840.30 0.77+0.26  0.26%0.25 0.334+0.22
Omit Knowledge 0.20+£0.11  0.424+0.14  0.1540.10 0.29£0.12 0.26+0.15 0.1940.16  0.12£0.10  0.29+0.18 0.29+0.12
Reverse 0.22+0.17  0.1840.20 0.25+0.11 0.32+0.08 0.25+0.25 0.4240.17 0.21£0.22 0.23+0.18 0.26+0.14
Reverse-Raw 0.27+0.15 0.614+0.33  0.2040.10 0.47+0.13 0.4740.25 0.4440.20 0.69+0.38  0.29+0.15 0.39+0.16
Random Guess 0.20+£0.11  0.184+0.22  0.1540.12 0.19+0.18 0.23+0.15 0.114+0.11  0.1440.06 0.16+0.16 0.23+0.20
Claude 2 Raw Data 0.50+0.16  0.934+0.13  0.7840.25 0.72+0.24 0.64+0.21 0.574+0.16 0.91+0.13  0.41+0.18 0.62+0.15
Omit Data 0.67+0.21 140 0.82+0.18 0.52+0.19 0.50+0.24  0.4940.12 1+0 0.29+0.38 0.66+0.23
Omit Knowledge 0.19+0.11  0.35+0.22  0.2740.16 0.35+0.22 0.28+0.15 0.154+0.12  0.09£0.14  0.22+0.18 0.36+0.21
Reverse 0.38+0.08  0.02+0.08 0.19+0.12 0.24+0.30 0.16+0.14  0.294+0.19 0.50£0.34  0.26+0.16 0.24+0.15
Reverse-Raw 0.55+0.10  0.88+0.17 0.83+0.18 0.81+0.20 0.63+0.25 0.52£0.12  0.93+0.12 0.45+0.24 0.61+0.15
Random Guess 0.10+£0.12  0.2240.22  0.2540.08 0.13£0.19 0.12+0.17  0.274+0.22 0.18%0.33  0.27+0.30 0.32+0.33
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Figure 5: Performance of GPT-4 turbo under Raw Data versus Reverse-Raw.

The results from the reverse causal discovery experiment reveal that altering the causal topological
orders of variables does not significantly impact LLMs’ causal discovery outcomes, as shown in Figure [5]
This finding further supports the priority of the knowledge component in guiding LLMs’ causal discovery
processes even if the results are contradictory to the truth. More analyses of causal discovery accuracy under
different LLMs can be found in Appendix [E]

5 Precise Fine-tune for Causal Discovery

To further understand how LLMs infer causal relationships, we expand our prompting repertoire to include
advanced techniques such as Chain of Thought (CoT) prompting in a zero-shot format, to
encourage LLMs "think step by step" and provide a sequential and transparent reasoning path. A notable
observation is the misuse of numerical data by many LLMs. For example, when knowledge is omitted and
CoT is used, the LLM conducts a correlation analysis first and then outputs the causal relation purely based
on the correlation without performing a conditional independence test (see Figure and more details
for the CoT of LLMs in causal discovery in Appendix [F]). However, correlation is often not causation
(Pearll [2000} [Pearl et al.l |2009), motivating fine-tuning LLMs to correctly utilize numerical information in
causal contexts. We detail the precision fine-tuning procedure with a focus on pairwise causal discovery as an
illustration.
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1. Undefined, let LLM use own

You are an Al assistant to discern the causal :
knowlege to derive

relationship between Lack of Vitamin C and Scurvy:
Definition of Lack of Vitamin C and Scurvy

2. No Causal Relation

Four possible numerical results of running LinGAM
and how to leverage these results to derive the

causal pair 3. Lack of Vitamin C causes Scurvy
Type of numerical result is provided and instruct
LLMs to derive the causal pair

4. Scurvy causes Lack of Vitamin C

Figure 6: Illustration of the instruction of the generated dataset for fine-tuning LLMs.

Table 4: Accuracy of LLMs for different datasets in the pairwise causal discovery analyses.

Model Accuracy Scenario 1 Scenario 2 Scenario 3 Scenario 4
GPT-4 turbo 0.82 0.66 0.98 0.87 0.75
GPT-4 0.76 0.60 1 0.98 0.44
GPT- 3.5 0.58 0.03 1 0.96 0.33
LLaMa2-13B 0.74 0.08 1 1 0.86
Claude 2 0.74 0.36 0.99 0.84 0.78
Mistral-7B 0.75 0.38 0.94 0.92 0.77
Finetuned 0.90 0.58 1 1 1

Task formulation. Our dataset, denoted as D := {(g;,a;)}Y,, consists of N triplets. Each triplet comprises
¢i, an instruction containing two variables of interest with their definitions and the numerical results from
causal discovery algorithms (e.g., |Shimizu et al., 2006b)), and a;, the correct directed causal pair. Our
primary objective is to assess the accuracy of causal discovery by fine-tuning LLMs to incorporate numerical
reasoning capabilities.

Design principles. To generate a fine-tuning dataset, we consider all possible outcomes by executing
LinGAM (Shimizu et al |2006b)). Specifically, in the context of two variables (X and Y'), within the linear
non-Gaussian noise setting, LinGAM initially regresses X against Y, followed by regressing Y against X and
checking if the residual is correlated with the covariates in these two cases. This results in four scenarios (see
Figure @: (1) If the residual is correlated with the covariate in both cases, the causal direction between X
and Y is undefined; (2) If the residual is not correlated with the covariate in both cases, then X and Y do
not have a causal relation; (3) If regressing Y on X and the residual is uncorrelated with X but the reverse
does not hold, then X causes Y; (4) If regressing Y on X and the residual is correlated with X but the
reverse does not hold, then Y causes X.

Data generation pipeline. We generate four sets of data for each causal pair, corresponding to the outlined
four scenarios. These sets share certain instruction components, such as variable names, definitions, and
scenario descriptions. Additionally, for scenario (1), we instruct the LLM that if the causal relationship
is undefined, it should utilize its knowledge to infer the causal pairs. This highlights the higher priority
of numerical data in our proposed fine-tuned model. Each dataset contains unique numerical outcomes
from LinGAM analyses, matching the described scenarios (see Figure @ The identified ground-truth pairs
align with LinGAM results. During fine-tuning, we randomize variable order when introducing names and
definitions to prevent LLM overfitting and promote broader information consideration. We compile 300 causal
pairs, generating 1200 training samples and an additional 106 pairs producing 424 testing samples. The test
samples contain more challenging pairs extracted from Sachs data.

Selected LLM for fine-tuning. Adopting Mistral-7B-v0.2 |Jiang et al. (2023)) as the LLM backbone, we run
instruction fine-tuning with LoRA |Hu et al|(2021) with rank 8 and alpha 32 to perform parameter-efficient
tuning and store adapter weights. We use Adam W as the optimizer. We conduct 1 epoch of fine-tuning using
one ml.p3dn.24zlarge instance from SageMaker, taking 33 minutes.
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| Knowledge-based Pairwise Causal Discovery (PCD) |

First data format (One Hypo) | |Second data format (Two Hypo) |
Premise: The woman folerated her Premise: Tom slways vas youns few
friend's difficult behavior i} o T
i Causal Relation ? Which hypo is the cause?
- o or
_— T Which hypo is the effect?
Hypothesis: The woman knew her friend

was going through a hard time. S — — _— —
—_— _ / Hypothesis 1: His heat loss ™ Hypothesis 2: He has a
_ from the skin decreased. _/\_ varicocele.

Figure 7: Illustration of knowledge-based pairwise causal discovery (PCD) tasks with one hypothesis and two
hypotheses.

|Evenf Causality Identification (ECI) |

Premise: The earnings growth also was fueled by the company 's ability to_cut
net financing spending by half to around 15 million guilders

Growth and Cut under the premise have a causal relationship ?

Figure 8: Tllustration of causality event identification (CEI) task.

Table 5: Accuracy of the finetuned Mixtral v0.2 and the original Mixtral v0.2 on three causal-related tasks,
including knowledge-based pairwise causal discovery (PCD) with one hypothesis and two hypotheses, and
causality event identification (CEI).

Datasets PCD (One Hypo) PCD (Two Hypo) ECI
Finetuned Model 0.68 0.76 0.62
Original Model 0.68 0.76 0.62

Main evaluation on the fine-tuned model. We consider baselines using closed-source LLMs such as
GPT-4 turbo, GPT-4, GPT-3.5, and Claude 2, as well as open-source LLMs such as LLaMa2-13B and
Mistral-7B-v0.2 in a zero-shot manner with the provided instructions in the generated data. We evaluate our
model not only in overall accuracy but also in the accuracy of the four scenarios we construct in Section [5]
The results are summarized in Table @] There are four key points. First, our fine-tuned model achieves the
best overall accuracy. Notably, it performs well in scenarios 2 to 4, adhering strictly to numerical reasoning
results even when encountering counter-intuitive hypotheses. Second, in scenario 1, Mistral-7B-v0.2 shows
slightly lower performance compared to GPT-4 and GPT-4 turbo. This is expected as scenario 1 requires
language models to utilize their own knowledge for causal discovery, and GPT-4 (turbo) excels in this aspect
due to its superior performance on common knowledge benchmarks. Surprisingly, our findings reveal that
after fine-tuning, Mistral-7B-v0.2 outperforms the zero-shot approach, primarily due to training on the
output format. Third, LLaMa2-13B and GPT-3.5 struggle with scenario 1. They find it hard to grasp the
instructions for both scenarios 1 and 2, often responding with No Causal Relation for scenario 1 without
leveraging their own knowledge. Another interesting key finding is that GPT-3.5 and GPT-4 struggle with
scenario 4, as they recognize the counter-intuitive causal relationship and prefer their own knowledge over
numerical reasoning.

Performance in other tasks and generalizability. We conduct additional experiments regarding the
generalizability of our finetuned model in other causal tasks and show its robustness to catastrophic forgetting.
To be specific, we consider evaluating the performance of the finetuned model in knowledge-based pairwise
causal discovery and causality event identification tasks studied by |Chen et al. (2024)). The detailed data
structure is provided in Appendix [G] with flowcharts of tasks in Figure [7] for PCD and Figure [§] for ECI,
respectively. By applying the proposed finetuned model to these additional tasks, as shown in Table [5] we
can conclude that the finetuned model does not lose generalization for contextual causal-related tasks and
there is no catastrophic forgetting.
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6 Related Works, Limitations, and Conclusion

Causal reasoning in large language models is an emerging area focused on understanding cause-effect
relationships within text. While LLMs like OpenAl’'s GPT series excel in generating coherent and contextually
relevant text, their ability to parse and apply causal reasoning has been less explored (Weidinger et al.)
2021). Recent studies (Keith et al., 2020; [Riedel et al., [2019) have started addressing this by integrating
causal inference mechanisms into the models’ architecture, such as enhancing text generation with causal
structure and incorporating latent causal variables during pre-training. In this work, we focus on disentangling
the causal reasoning abilities of advanced LLMs, which has garnered considerable interest due to recent
breakthroughs (e.g., Vaswani et al., |2017; |Kenton & Toutanova) 2019; Lewis et al., 2019; |[Brown et al., |2020;
Neelakantan et al.l |2022; |Stiennon et al.| |2022; |(OpenAl, |2023). Instead of pre-training LLMs with more
causal-related texts, we propose a novel attribution approach to enhance the understanding of how LLMs use
their knowledge and data for causal reasoning, offering a more effective fine-tuning method.

The need for causal attribution—to identify and quantify the influence of input factors on out-
puts—becomes more critical, as the complexity of LLMs increases. This process illuminates the model’s
decision-making and enhances the transparency and justifiability of its predictions (Chattopadhyay et al.l
2019; [Molnar}, [2020)). Techniques like saliency mapping and influence functions highlight relevant data and
trace predictions back to training instances, revealing how LLMs handle complex inputs to produce coherent
outputs (Simonyan et al.| |2013; Koh & Liang), 2017)). Causality-centric frameworks within LLMs are crucial
for ensuring model fidelity in practical scenarios by understanding the 'why’ behind outputs, making them
reliable and actionable (Goyal et all [2019a; |Wachter et al.l 2017} Pearl, 2009). Methods such as counterfactual
explanations and structural causal models are key in unraveling the interplay between input features and
model predictions, vital for diagnosing failures and strengthening model robustness (Goyal et al., |2019b;
Ribeiro et al., 2016). Yet, the attribution model for LLMs in causal inference tasks is still less studied
challenging due to their non-linear, high-dimensional, and opaque nature (Moraffah et al. 2020; Kim et al.,
2017). Our research contributes to this field by proposing a novel causal attribution model that aligns with
the experimental design, aiming to bridge gaps in current methodologies and create interpretable and ethical
LLMs.

Our proposed causal attribution model can be easily extended to handle various attribution tasks to disentangle
the black box and provide explainability for model performance. Our evaluation reveals that not only that
knowledge is current LLMs mainly used for causal reasoning, but also, in the absence of such knowledge,
LLMs can still maintain a degree of causal discovery using the available numerical data, albeit with limited
calculations in correlation instead of causation. These observations, to the best of our knowledge, have not
been studied and verified systematically yet. By utilizing these new insights, our precisely fine-tuned model
achieves the highest accuracy in identifying the true causal relationship by mastering both inherent knowledge
and instructed logic of using numerical data, thus filling the gap effectively.

We acknowledge several limitations and consider the following future works. First, our approach relies on
current causal discovery benchmarks, potentially limiting the generalizability of our findings, and thus more
extensive and diverse benchmarks are needed. Although our fine-tuned model effectively uses both numerical
data and embedded knowledge for causal discovery, the integration process prioritizes numerical data. In
practical applications, data may come with noise where internal knowledge would be more reliable. The
proposed fine-tuning process can be extended to knowledge-enhanced causal discovery. Specifically, to better
balance these two inputs, one promising method involves utilizing uncertainty scores as a mechanism to
dynamically adjust the influence of numerical data versus internal knowledge. Specifically, these scores can
be derived from the model’s predictions, reflecting the confidence level in each input type. By applying a
weighted scheme based on these scores, we can fine-tune the model in a way that optimally leverages both
sources of information, potentially leading to more accurate and robust causal inferences. Further research
could explore various weighting algorithms to refine this approach, ensuring that the model can adaptively
adjust its reliance on numerical data or internal knowledge based on the task complexity and the available
data quality.
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A More Related Works

Causal reasoning in large language models is an emerging area of study that seeks to endow these
models with the ability to understand cause-effect relationships within text. While large language models like
OpenAl’s GPT series have shown remarkable performance in generating coherent and contextually relevant
text, their ability to parse and apply causal reasoning has been less explored (Weidinger et al., 2021). Recent
studies, however, have begun to address this by integrating causal inference mechanisms into the models’
architecture. For instance, [Keith et al.| (2020) proposed a method for enhancing text generation with causal
structure, showing that it can improve a model’s reasoning capabilities. Riedel et al| (2019) introduced
latent causal variables into the training of language models, which helps in disentangling the underlying
causal factors from observed data. Such enhancements are believed to make language models not only
better at language understanding and generation but also at more sophisticated tasks like summarization,
question answering, and decision-making that require causal reasoning (Pearl & Mackenzie| 2019)). Hence,
understanding the ability of causal reasoning in large language models is extremely important. In this work,
we focus on disentangling the causal inference abilities of advanced LLMs, which has piqued considerable
interest in light of recent breakthroughs (e.g., Vaswani et al., 2017; [Kenton & Toutanoval, [2019; [Lewis et al.)
[2019; Brown et al., 2020; Neelakantan et al.| |2022; |Stiennon et al., |2022; |OpenAl [2023)).

Attribution models have gained prominence for their role in fairly allocating contributions across features
in predictive modeling. The Shapley value 7 emerging from cooperative game theory, offers a
principled method to apportion payoffs by considering the marginal contribution of each feature within all
possible combinations of feature subsets. Adapted to machine learning, this approach aids in gauging feature
importance in complex models, including LLMs (Lundberg & Lee, 2017). However, the inherent computational
demand still requires the use of approximation techniques for LLMs with numerous features (Strumbelj
[& Kononenkol, [2010; Datta et al.| [2016; Kumar et al. 2020). Furthermore, visual interpretation methods
like Layer-wise Relevance Propagation (LRP) and Integrated Gradients have been crucial for evaluating
individual input contributions to outputs, thereby enhancing the transparency and trustworthiness of LLMs
(Bach et al., 2015} |[Sundararajan et al.| 2017). Nevertheless, the intricacies of LLMs’ internal representations,
which are often intricate and intertwined, present substantial challenges in clear attribution. Studies indicate
that attention mechanisms, although commonly employed for interpretability, may not reliably indicate the
reasoning behind a model’s decisions (Doshi-Velez & Kiml 2017 [Jain & Wallace| [2019)), highlighting the
need for more sophisticated attribution methods that can capture the nuances of large-scale neural network
decisions.

Causal inference in LLMs. As the complexity of LLMs increases, the critical need for causal attribution—to
identify and quantify the influence of input factors on outputs—becomes more pronounced. This process not
only sheds light on the model’s decision-making but also bolsters transparency and justifiability of model
predictions (Chattopadhyay et al. 2019; Molnar} 2020). Techniques like saliency mapping and influence
functions are instrumental in highlighting relevant data and tracing predictions back to training instances,
thereby revealing how LLMs handle complex inputs to produce coherent outputs (Simonyan et al.| {2013} Koh &]
. The advent of causality-centric frameworks within LLMs is crucial for assuring model fidelity in
practical scenarios by understanding the ‘why’ behind outputs, making outputs reliable and actionable
let all |2019a} [Wachter et al.| [2017; [Pearl, 2009). Furthermore, methods such as counterfactual explanations
and structural causal models have been key in unraveling the interplay between input features and model
predictions, which is vital for diagnosing failures and fortifying model robustness (Goyal et al.l 2019b} Ribeiro|
. However, integrating causal reasoning with LLMs is still an evolving and challenging field due
to the models’ non-linear, high-dimensional, and opaque nature (Moraffah et al., 2020; Kim et al.l 2017). Our
research contributes to this field by proposing a novel causal attribution model that aligns with experimental
design, aiming to bridge the gap in current methodologies and facilitate the creation of interpretable and
ethical LLMs.

The literature on causal discovery can be broadly categorized into three classes. The first class of methods
focuses on using local conditional independence tests to identify the causal skeleton and determine the
direction of edges, such as the PC algorithm (Spirtes et al.l |2000a; [Kalisch & Bithlmannl [2007). The second
class of methods uses functional causal models with additional assumptions about the data distribution,
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Table B.1: Comparison studies among different causal discovery methods (PC, FCI, and DirectLinGAM)
under nine benchmark datasets. Methods are evaluated by FDR, TDR, SHD, and F1 ( - means model
suggests there are no causal links among variables).

Method Dataset Sachs Galton Alcohol EcoSystem MPG DWD Cement Stock Arrhythmia
PC TDR 0.28 1 0.20 0 0 0.17 0.25 0 0
FDR 0.55 0 0.83 - 1 0.80 0.88 - -
SHD 31 0 7 3 8 7 19 3 3
F1 0.35 1 0.18 - 0 0.18 0.16 - -
FCI TDR 0.22 0 0.20 0 0.33 0.50 0.25 0 0
FDR 0.67 - 0.75 - 0.71 0.57 0.92 - -
SHD 31 3 7 3 8 6 20 3 3
F1 0.26 - 0.22 - 0.31 0.46 0.12 - -
DirectLinGAM TDR 0.50 1 0.20 0.33 0.33 0.33 0 0.33 0
FDR 0.41 0 0.80 0.75 0.75 0.80 1 0.89 1
SHD 17 0 7 5 7 8 35 8 4
F1 0.54 1 0.2 0.28 0.28 0.25 0 0.16 0

including the ICA-LINGAM (Shimizu et al., [2006b)) and the causal additive model (Bithlmann et al.l |2014).
The third class, score-based methods, includes the greedy equivalence search (Chickering) 2002; |Ramsey
et al., [2017) and optimization methods with acyclicity (Zheng et al., |2018]). Refer to (Yu et al., 2019} |Zhu &
Chen, [2019; Lachapelle et al.| [2019; |Cai et al., |2020; |Zheng et al.l 2020; [Vowels et al., |2021)) for additional
cutting-edge causal structural learning methods. In this work, in contrast, we utilize the LLMs directly
to solve the causal discovery problem, and compare its performance with classical algorithms relying on
numerical data only, as detailed in our pairwise causal discovery task.

B More Details of Dataset Construction for Causal Reasoning

Specifically, the Galton dataset provides historical height measurements within families, enabling studies on
hereditary influence. The Sachs dataset includes data on 11 phosphorylated proteins and phospholipids from
individual primary immune system cells, offering insights into cellular behavior under various experimental
conditions. Data on the health impacts of alcohol, drawn from blood tests and consumption patterns, make
up the Alcohol dataset. The Ecosystem dataset comprises carbon flux measurements alongside environmental
light conditions, offering a complex interplay of ecological factors. The MPG dataset reflects automotive
efficiency, correlating car attributes with fuel consumption and performance. The DWD dataset combines
geographical and climatological variables, such as altitude and temperature, to model environmental effects.
The Cement dataset relates material composition to structural strength, furnishing a Concrete example of
causal reasoning in material science. The Stock dataset consists of stock return data for various pairs of
companies, such as Hang Seng Bank, allowing for a comprehensive analysis of inter-company stock performance
correlations. Lastly, the Arrhythmia dataset comprises variables associated with Cardiac Arrhythmia.

C Implementation Details

We provide the implementation details for probing the causal inference, by using GPT-4 on the Sachs dataset
as an example. The following steps outline the specifics of the procedure:

o Initialization: We initiate GPT-4 with a clear operational mandate by setting up the system with an
unambiguous instruction that defines its role: You are a helpful assistant to suggest potential causal pairs with
direction (A — B means A causes B). This precise configuration is crucial to focus the model’s capabilities
on generating causal relationships with direction from the provided data.

o Prompt Generation: We first randomize the order of the Sachs dataset variables to mitigate any ordering
bias that may influence the LLM’s output. The prompt is then constructed to direct the model’s attention
strictly to the task at hand: Suggest causal pairs with direction among following variables after analyzing
following data: {raw data} MUST Suggest ONLY the causal pairs with direction without saying any other

18



Under review as submission to TMLR

things. For the pairwise causal discovery experiment, we sample the relation from the ground truth relations
and generate the corresponding simulated data to construct the prompt, as illustrated by Figure

e Prompt Tuailoring: In line with the experimental design, we tailor prompts to account for different
perturbations—removing data values, obscuring knowledge with placeholder terms, or conducting reverse
causal discovery and pairwise causal discovery. Each variation is designed to test a specific aspect of the LLM’s
causal reasoning under altered input conditions (Figures and illustrate the prompt adjustments for
each scenario).

e Fuvaluation: We then extract the causal pairs predicted by GPT-4 in response to these prompts and proceed
to the evaluation phase. Here, we compute the evaluation metrics by contrasting the LLM-generated causal
pairs with the established ground truth of the dataset. During reverse causal discovery trials, we analyze two
sets of outcomes: one that aligns with the predictions for the reversed causal sequence and another set that
compares against the original causal graph.

D More Details and Results of Pairwise Causal Discovery Task

The evaluation for pairwise causal discovery considers the following three cases: (1) employing LinGAM
directly on simulated data; (2) formulating the prompt using data accompanied by variable names; (3)
constructing the prompt with data along with variable names, complemented by simplified instructions
outlining the procedure for executing LinGAM. In these three cases, accuracy serves as the performance
metric for evaluation over 20 replications, and the result is summarized in Table [D-1]

The findings derived from the pairwise causal discovery analysis presented in Table[D.I]indicate that within the
context of the perfect causal relation simulation setting, LinGAM consistently achieves accurate predictions
of the relationship, whereas LLMs fall short in comparison to the numerical method, even after incorporating
the simplified instructions from LinGAM.

[Pairwise Causal Discovery ]

/Child's Height \—) LinGAM

Prompt to LLMs: Suggest causal pairs with
direction among following variables after analyzing
following data:

Simulated Data
Must Suggest ONLY the causal pairs with direction
without saying any other things

Y:=f(X) + U
<«— |where fis linear and U is
non-Gaussian Noise

—>

Father's Height Prompt to LLMs: [Instruction]Suggest causal pairs
with direction g#hong following variables after
lyzing following data:

Simulated Data

\ J Must Spggest ONLY the causal pairs with direction
without saying any other things

ﬂ/-iere is how LinGAM works to derive the causal pairs: given the data columns [A, B]: \ri\

1. You first fit the linear regression with column A as the feature and B as the outcome
variable. Collect the fitted residuals and if the residual is correlated with column A, we
mark a YES in this case and a NO if not correlated.

28 You then fit the linear regression with column B as the feature and A as the outcome
variable. Collect the fitted residuals and if the residual is correlated with column B, we
mark a YES in this case and a NO if not correlated.

If the first case is a YES and the second case is a NO, we say that B causes A; if the first case is a
NO and the second case is a YES, we say that A causes B.\n

\\ Following above instruction /

Figure D.1: Tllustration of the experiment design of the pairwise causal discovery task.
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Table D.1: Accuracy of LLMs for different datasets in the pairwise causal discovery analyses.

Method/Dataset Sachs Galton Alcohol EcoSystem MPG DWD Cement Stock Arrhythmia
LinGAM 1 1 1 1 1 1 1 1 1
GPT-4 turbo 0.35 0.20 0 0 0.10 0.05 0 0.50 0.25
GPT-4 turbo (educated)  0.40 0.20 0.10 0.10 0.25 0.30 0.05 0.20 0.25
GPT-4 0.45 0.30 0.55 0.40 0.30 0.60 0.30 0.45 0.25
GPT-4 (educated) 0.60 0.15 0.60 0.25 0.30 0.60 0.15 0.35 0.40
GPT- 3.5 0.40 0.70 0.40 0.45 0.50 0.60 0.40 0.5 0.25
GPT-3.5 (educated) 0.40 0.55 0.05 0.45 0.55 0.45 0.05 0.5 0.45
LLaMa2-13B 0.50 0.15 0.25 0.40 0.45 0.40 0.20 0.75 0
LLaMa2-13B (educated) 0.10 0 0.10 0 0.25 0 0 0.50 0
Claude 2 0.45 0 0 0 0.15 0 0.15 0.30 0.45
Claude 2 (educated) 0.5 0.05 0.20 0.20 0.05 0.30 0.25 0.60 0.45

E Additional Results of Accuracy

For the F1 score in the context of raw data (Figure , GPT-4 Turbo achieves the highest or comparable F1
scores across the nine datasets. Claude 2 performs similarly to GPT-4 and slightly outperforms GPT-3.5. Yet,
LlaMa2-13B exhibits a performance gap compared to GPT-3.5 across most datasets. Despite performance
differences, these models exhibit consistent behavior across datasets: if one model performs poorly on a
dataset, others also tend to perform poorly on the same dataset. For SHD (Figure , GPT-4 Turbo
achieves the lowest or comparable SHD across the datasets. GPT-3.5 performs slightly worse than Claude 2
but is similar to GPT-4 and LlaMa2-13B.

1.0
A A
/:\_ A A \
\ / |\ \ /
08 \ NY [\ \ N
I |\ /1Y |\ \ /
/ N/ \| /| . \ |
20/ \ / | \ /,
8 ’/ L] \ /
@ v V
0.4 |
0.2
GPT-4 turbo +— Claude 2 GPT-4 —— GPT-3.5
0.0H== Claude 2 L GPT-4 | —— GPT-3.5 | —— Llama2-13B
J O 0 & [ @ O L0 & S @ & O 0 & [l 2 L & S @
F O & SSE & FELRY & SSE & FERN & LSS & FER & SEE &
PV O & & PV O T & SV O P ¢ TP T O G &
& & o & & & & &
< ha < v < v < v

Figure E.1: The comparisons of F1 scores among LLMs, including GPT-4 turbo, GPT-4, GPT-3.5, Claude 2,
and LLaMa2-13B.

F Additional Supporting Analyses

We provide more supporting analyses to deep dive into the causal reasoning process of LLMs. First, there is
the impact of variable order observed influencing the causal reasoning in LLMs. Particularly, in the case of
ChatGPT, our experiments reveal that the order in which variables are presented affects the model’s causal
reasoning accuracy. Use the chain of thought (CoT) with the zero-shot prompt for deep-dive. In the case
of omitting knowledge, GPT4/3.5, in most cases, predicts the causal pairs following column orders. For
example, if the column is ordered as bryoto, nienet, feouni, alphan, it outputs the pairs like following bryoto
— nienet, nienet — feouni, feouni — alphan or bryoto — nienet, feouni — alphan. This finding points to an
inherent bias in the model’s processing mechanism, likely stemming from its training phase, and highlights
the importance of considering variable sequencing in the prompt design for causal inference tasks.
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Table E.1: The results of true discovery rates of LLMs for different datasets.

Method /Dataset Sachs Galton Alcohol EcoSystem MPG DWD Cement Stock Arrhythmia

GPT-4 turbo

Raw Data 0.58+0.26 140 1+0 0.76+0.24  0.68+0.19 0.524+0.16 0.99+0.04 0.324+0.33 0.6240.27
Omit Data 0.574+0.28 140 0.9940.05 0.56+0.24  0.72+0.12 0.53+0.17 0.99+£0.04 0.44+0.46 0.764+0.23
Omit Knowledge 0.094+0.07 0.42+0.44 0.25+0.24 0.43+0.39  0.16+0.16 0.35+0.20 0.12+£0.15 0.25+0.27 0.534+0.35
Reverse 0.22+0.13  0.13£0.16  0.234+0.16 0.20+£0.30  0.06+£0.10 0.244+0.20 0.654+0.20 0.25+0.18 0.09+0.26
Reverse-Raw 0.49+0.28 1+0 0.95+0.09 0.84+0.18  0.58+0.13 0.46+0.12 0.97+0.12 0.19+0.19 0.6240.27
Random Guess 0.05+0.19 0.40£0.49 0.28+0.41 0.40+0.49 040 0.06+0.12  0.73+0.44 0.204+0.40 0.13+0.34
GPT-4

Raw Data 0.34+0.24 1+0 1+0 0.91+£0.17  0.60+£0.14 0.40+0.11 1+0 0.30+0 0.6040.19
Omit Data 0.52+0.17 140 0.92+0.17  0.89+0.22 0.74+0.07  0.5140.12 140 0.424+0.23 0.704+0.13
Omit Knowledge 0.33+0.20 0.33+0.28 0.4240.17 0.50£0.28 0.32+0.15 0.33+0.10 0.214+0.14 0.1840.10 0.44+0.13
Reverse 0.30+0.16 0.13+£0.21  0.32+0.09 0.16+0.16  0.30+0.13  0.26+0.12 0.72+£0.41  0.30+0.03 0.36+0.18
Reverse-Raw 0.254+0.13 1+0 1+0 1+0 0.504+0.15 0.31£0.11 1+0 0.3040.01 0.614+0.24
Random Guess 0.07+£0.25 0.15+0.36 0.134+0.34  0.214+0.41 040 0+0 0.194+0.39  0.1440.35 040
GPT-3.5

Raw Data 0.33+0.38  0.96+0.13 0.64+0.37  0.68+0.31 0.394+0.19 0.30£0.20 0.99+0.04 0.434+0.30 0.4140.40
Omit Data 0.29+0.29 0.96+0.10 0.7840.34  0.56+0.23  0.48+0.29 0.46+0.13 0.99+0.03 0.46+0.32 0.274+0.13
Omit Knowledge 0.13+£0.11  0.55+0.29 0.5140.41 0.43+0.43  0.20+£0.15 0.214+0.15 0.114+0.07 0.36+0.32 0.2240.28
Reverse 0.2440.30 0.15+0.16 0.2640.13 0.134+0.34 0.20+0.19 0.144+0.18 0.144+0.24 0.2540.13 0.264+0.19
Reverse-Raw 0.40+0.35 1+0 0.6540.39 0.93+0.18  0.41+0.25 0.33+0.23 0.95+0.13  0.374+0.21 0.414+0.31
Random Guess 0.094+0.09 0.15+£0.36  0.17+0.10 0.424+0.48  0.18+0.17 0.16+0.25 0.08+£0.07 0.29+0.30 0.214+0.27
LLaMa2-13B

Raw Data 0.294+0.23 0.52+0.33  0.21+0.12 0.43+0.28  0.60+0.26 0.46+0.27 0.63+£0.36 0.38+0.21 0.40+0.16
Omit Data 0.324+0.17 1+0 0.3240.20 0.504+0.40  0.64+0.22 0.2840.30 0.78+0.26 0.26+0.25 0.324+0.22
Omit Knowledge 0.20+0.11  0.424+0.14 0.1540.10 0.29+0.12 0.284£0.16 0.244+0.26 0.124+0.10  0.29+0.19 0.29+0.12
Reverse 0.29+0.13  0.184+0.20 0.2540.11 0.33+£0.10  0.25+£0.25 0.404+0.17 0.224+0.24 0.23+0.19 0.27+0.14
Reverse-Raw 0.27+0.15 0.62+£0.33  0.20+0.10 0.56+0.25 0.484+0.25 0.43+£0.19 0.68+0.39 0.304+0.17 0.394+0.16
Random Guess 0.20+0.11 0.18+0.22 0.15+0.11 0.194+0.18  0.23+0.15 0.114+0.11 0.14£0.06 0.16+0.17 0.234+0.77
Claude 2

Raw Data 0.51+0.17 0.93+£0.13 0.80+0.24  0.78+0.26  0.65+0.20 0.59+0.16 0.94+0.13 0.434+0.20 0.664+0.17
Omit Data 0.671+0.21 1+0 0.84+0.17 0.56+0.23 0.50+0.24  0.484+0.12 140 0.2940.38 0.6740.24
Omit Knowledge 0.194+0.11 0.38+£0.26  0.28+0.18 0.37+0.26  0.284+0.16 0.15+0.12 0.09+0.14 0.23+0.19 0.44+0.29
Reverse 0.38+0.08 0.02+0.08 0.1940.12 0.25+0.34  0.16+£0.14 0.32+0.21 0.504+0.34 0.27+0.18 0.24+0.15
Reverse-Raw 0.57+0.12 0.89+0.16 0.874+0.16 0.894+0.20  0.64+0.26 0.514+0.12 0.95+£0.12 0.37+0.17 0.634+0.17
Random Guess 0.10+0.12  0.26+£0.28 0.25+0.08 0.31+0.27  0.12+0.17 0.27+0.22 0.18+£0.33  0.274+0.30 0.3240.33
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Figure E.2: The comparisons of Structural Hamming Distances among LLMs, including GPT-4 turbo, GPT-4,

GPT-3.5, Claude 2, and LLaMa2-13B.

Table E.2: The results of false discovery rates of LLMs for different datasets.

Method /Dataset Sachs Galton Alcohol EcoSystem MPG DWD Cement Stock Arrhythmia
GPT-4 turbo

Raw Data 0.50+0.19 040 040 0.27£0.23  0.42+0.16 0.51£0.16 0.01£0.04 0.70+0.33 0.5440.15
Omit Data 0.56+0.21 0+0 0.01+£0.05  0.46+0.23  0.294+0.07 0.47+0.18 0.05+0.12 0.5940.46 0.414+0.11
Omit Knowledge 0.91+£0.07 0.80£0.19 0.79+0.13  0.72£0.24  0.84+0.16 0.65+0.20 0.88+0.15 0.84+0.16 0.58+0.26
Reverse 0.50+0.19 0.87+£0.16 0.77+0.16  0.86+0.21 0.944+0.10 0.74+£0.20 0.15+0.19 0.774+0.17 0.914+0.26
Reverse-Raw 0.5240.29 040 0.084+0.16  0.17+£0.19  0.504+0.14 0.51+0.21 0.03+0.12 0.83+0.15 0.4940.20
Random Guess 0.95+0.19 0.60£0.49 0.72+0.41 0.60+0.49 1+0 0.944+0.12 0.27£0.44 0.80+0.40 0.8740.34
GPT-4

Raw Data 0.66+0.24 0+0 0.404+0.33  0.41+0.18  0.46+0.14 0.67+0.09 040 0.70+0 0.484+0.11
Omit Data 0.45+0.18 040 0.414+0.25  0.46+0.07  0.284+0.08 0.52+0.12 040 0.614+0.23 0.374+0.07
Omit Knowledge 0.67£0.20 0.72£0.21 0.72+0.08  0.60£0.12  0.68+0.15 0.67£0.10 0.79+0.14 0.83%+0.09 0.56+0.13
Reverse 0.66+0.24 0.87+£0.21 0.68+0.09  0.84+0.16  0.70+0.13 0.74+0.12 0.28+0.41 0.714+0.03 0.67£0.08
Reverse-Raw 0.75+0.13 0+0 0.624+0.17  0.48+0.22  0.50+0.15 0.72+£0.08 0.06+0.22 0.704+0.01 0.5240.16
Random Guess 0.93+0.25 0.85+0.36 0.87+0.34  0.79+0.41 1+0 1+0 0.814+0.39  0.86+0.35 1+0
GPT-3.5

Raw Data 0.87+0.08 0.07£0.17 0.36+£0.37  0.32£0.31  0.61+0.19 0.72+0.21 0.02+£0.05 0.61+0.24 0.7640.20
Omit Data 0.80+0.14 0.04+£0.10 0.24+0.33  0.46+0.23  0.61+0.20 0.54+0.12 0.01+£0.03 0.60+0.30 0.734+0.13
Omit Knowledge 0.894+0.10 0.67+0.12 0.78+0.10  0.69+0.30  0.81+0.14 0.80+0.13 0.91+£0.06 0.67+0.28 0.6740.20
Reverse 0.87£0.08 0.85+£0.16 0.74+0.13  0.91£0.23  0.83+0.16 0.91£0.11 0.86+0.24 0.77+0.12 0.754+0.19
Reverse-Raw 0.81+0.13 0.11£0.21 0.42+0.38  0.10£0.20  0.62+0.21 0.71£0.22 0.07£0.19 0.67+0.20 0.684+0.15
Random Guess 0.91+0.09 0.70£0.35 0.83+0.10  0.59+0.48  0.82+0.17 0.83+0.26 0.92+0.07 0.774+0.22 0.694+0.27
LLaMa2-13B

Raw Data 0.71£0.23  0.53+£0.32 0.79+0.13  0.59£0.22  0.40+0.26 0.55+0.26 0.34+0.37 0.67+0.18 0.6240.14
Omit Data 0.67+0.17 040 0.66+0.18  0.50+£0.40  0.36+0.22 0.72+£0.30 0.23+0.27 0.744+0.25 0.6440.23
Omit Knowledge 0.80+£0.11  0.58+0.14 0.8540.10 0.714+0.12 0.75£0.15 0.82+0.16 0.884+0.10 0.71+0.18 0.71£0.11
Reverse 0.71£0.23  0.82+0.20 0.75+0.11 0.684£0.07  0.75+0.25 0.53+0.19 0.79+0.23 0.77+0.18 0.7440.13
Reverse-Raw 0.724+0.14 0.40£0.33 0.80+0.10  0.56+0.12  0.53+0.25 0.554+0.22 0.31+£0.38 0.71+0.15 0.614+0.16
Random Guess 0.81+0.11 0.82+£0.22 0.84+0.12  0.81£0.18  0.77+0.15 0.894+0.11 0.86+0.06 0.84+0.16 0.77+0.20
Claude 2

Raw Data 0.51£0.16 0.07£0.13 0.24+0.26  0.30£0.22  0.37+0.22 0.44+0.17 0.10£0.14 0.61+0.17 0.4240.14
Omit Data 0.33+0.21 0+0 0.19+0.20  0.49+0.22  0.51£0.24 0.49+0.13 040 0.724+0.37 0.3440.22
Omit Knowledge 0.80+0.11 0.66+£0.20 0.73+£0.15  0.66+0.21  0.73+0.15 0.85+0.12 0.91+0.14 0.78+0.17 0.67£0.18
Reverse 0.62+0.08 0.98+£0.08 0.81+0.12  0.77£0.29  0.84+0.14 0.73+0.19 0.50+0.34 0.74+0.15 0.76+0.15
Reverse-Raw 0.45+0.11 0.12£0.18 0.19+0.21 0.244+0.24  0.38+0.24 0.47+0.13 0.08+£0.12 0.61+0.19 0.414+0.15
Random Guess 0.90£0.12 0.79+0.21 0.75+0.08  0.87+£0.19  0.88+0.17 0.73£0.22 0.82+0.33 0.73%+0.30 0.68+0.33

Moreover, the correlation analysis result is often not causation (see Figure for the CoT of LLMs
in causal discovery). Specifically, the correct causal pair is feouni — nienet, with an increase in feouni causing
an increase in nienet. Yet, the LLM, such as GPT-4, incorrectly outputs nienet — feouni due to the order of
nienet preceding feouni.
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Table E.3: The results of Structural Hamming Distance (SHD) of LLMs for different datasets.

Method /Dataset Sachs Galton Alcohol  EcoSystem MPG DWD Cement Stock Arrhythmia
GPT-4 turbo

Raw Data 20.40£8.82  0.14+0.35 240 1.204+1.22  4.47+£1.75  5.40£0.71 2.67£3.53 4.67£1.58 2.64+0.97
Omit Data 17.73+2.52  0.16+£0.35  1.8040.40 241.37 2.80+£1.05  5.3+0.97 0.80£2.99 3.27+1 240.65
Omit Knowledge 22.874+5.12  4.42+0.49  8.93+2.43 4.2740.85  7.47£1.75 8+3.01 16.47+7 7.33£2.18 4+0.76
Reverse 22.53+£1.75 4.86+0.35  7.93£0.25 4.33£0.94  7.93+1.18 8.13+0.81 1243.35 4.73+2.02 4.14£0.35
Reverse-Raw 18.874+2.25 0.07+£0.26  2.07+0.25 1.20+0.98  4.47+1.54 5.73£1.18 3.20£3.47 5+1.75 2.71+0.59
Random Guess 18.87+2.25 3.07+£0.26  5.13+0.50 3+0 5.93+0.25 6+0 8+0 3.07+£0.25 3.1440.52
GPT-4

Raw Data 23.2942.58 0.06+0 6.734+3.23 2.934+0.93 4+1.51 60 8.17+3.69 5.87£0.50 2.93+1
Omit Data 18.86+1.68 040 6.13+£3.95 2.33+0.47 3+1.10 6+0.37 8.5£0.5 4.67£1.19 2.80+0.54
Omit Knowledge 25.43+£2.41 4.60+£1.08 10.27+2.35  4.07£1.12  7.20+2.04 11.60+2.89 21.3+£9.26 7.80+1.42 4.07£0.77
Reverse 25.5746.40 540 13.60+£1.70  0.16+0.16  4.60+1.31 60 12.08+7.20  5.67+1.14 5.20+£0.83
Reverse-Raw 22.93+2.60 040 6.53+£3.40 2.87+£1.45  5.87+2.73 640 8.42+5.09 610 3.60£0.88
Random Guess 2040 3.33£0.47  5.534+0.96 3.27+£0.44  6.13+£1.02  6.20+0.65 9.17£1.67  4.40£1.40 3.53+0.50
GPT-3.5

Raw Data 25.47+£6.23 0.86+£1.19 5.33+£2.12 1.87£1.75  6.33£1.70 7.73£2.74 2.13+£3.54  4.67£1.49 4.40£0.71
Omit Data 20.734+2.29 0.50+0.82  3.67+1.62 1.84+1.77  5.53+1.45 5.274+0.44 2.53+3.44 3.44+1.34 3.4040.61
Omit Knowledge 3148.41 3.79£0.94  8.20+1.80 4.73+1 7.33+£2.12  9.47£2.65 19.20+8.73 6+1.70 4.80£1.11
Reverse 27.20£8.57 4.79+0.67 9.47£2.31 4.13+£0.81  6.20+1.42  9.60+1.62 13.93+2.72  5.11£1.45 4.60£0.88
Reverse-Raw 25.80+8.72 1.36+1.59  5.134+2.39 1.87+£1.75  6.60+£1.70  7.67+2.91 1.60+£3.20  4.78+1.31 4.4040.88
Random Guess 23.67£1.49 3.294+0.45 6.87£0.81 3.60£0.49  6.47+1.15 6.33£1.66 11.73+1.12  5.11£0.99 3.87£0.88
LLaMa2-13B

Raw Data 23.78+£3.39 1.92+1.27  4.67£0.47 3.0+0.89 5.40+1.78  7.80£2.04 6+4.89 5.40+1.02 4.20+0.83
Omit Data 2242.11 140 440.19 2.13+£1.93  5.80+0.54  6.40+0.71 7.40+4.36 3+0 3.734+0.77
Omit Knowledge 23.4442.41 3.38+1.08 7+0 4.2740.44  7.07£1.12  7.67£1.40 10.33+£1.07  4.80+1.47 4.534+0.81
Reverse 24.56+£2.54 4.62+£0.62  7.33+£0.47 3.2740.57 6.53+0.50  8.47+1.86 13.80£2.56  4.20£1.17 4.13+1.15
Reverse-Raw 24.114£2.47 2.23+1.42 5+1.63 340.89 5.33£1.07  8.47£2.06 9.13£5.43 5.20+0.98 4.0740.85
Random Guess 24.4442.22  3.38+0.49  6.67+0.47 3.73+0.77  6.40£1.36  7.60£1.36  0.12.87+£1.20 5.2040.75 3.80+0.75
Claude 2

Raw Data 19.60+1.36  0.93+£0.93  2.204+1.47 240 5.53+1.02 5.27+£1.24 2.40£2.70  4.60+£1.89 2.73+1.12
Omit Data 17.07+£1.81 1.07+£0.57  2.07+1.69 2+0.96 5.274+0.85  4.93+£0.93 3.53+3.42 3.13+0.34 1.73+1
Omit Knowledge 23.60£2.39 4.80+1.72 7.27+£1.44 5.15+£0.77  6.87£1.78 9+1.75 11.67+1.14  5.53+£1.75 3.9340.85
Reverse 22.07+1.06 4.40+0.71  8.1340.96 3.23+0.80  6.20+1.17  6.73+£1.39 13.33+4.66  4.27+1.29 5.13+0.62
Reverse-Raw 19.33+1.45 0.87£1.09  3.53+1.41 240 5.20+£0.91  5.87£0.34 3.53+£2.74  4.53+1.78 3.13+0.62
Random Guess 21.33£1.58 3.80+0.65  6.60£0.80 3.23£0.42  6.73+1.53  7.27+1.88 9.93+£1.34 5+1.15 3.734+0.77

correlation coefficient measures the strength and performed
direction of the linear relationship between two
variables

To suggest causal pairs with direction among the
variables, we can start by calculating the correlation . .
coefficients between each pair of variables. The I:> Only correlation test is

Let's calculate the correlation coefficients:
- Correlation coefficient between "bryoto" and "nienet": -0.036
- Correlation coefficient between "bryoto" and "feouni": 0.014
- Correlation coefficient between "bryoto" and "alphan": 0.014 1. Incorrect computation
- Correlation coefficient between "nienet" and "feouni": -0.036 of correlation coefficient
- Correlation coefficient between "nienet" and "alphan": -0.036 2. Variable order matters
- Correlation coefficient between "feouni" and "alpha": 0.014 (The data column order to|
be tested is bryoto, nienet,
Based on the correlation coefficients, we can see that there is not feouni, and alphan )
strong linear relationship between any pair of variables. The
correlation coefficients are close to zero, indicating a weak or no
linear relationship.

Therefore, based on the given data, we cannot suggest
any causal pairs with direction among the variables.

Figure F.1: Chain of Thought for causal discovery when the knowledge is omitted.

G Details of Other Tasks and Generalizability
For knowledge-based pairwise causal discovery (PCD), there are the following two dataset formats.
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e PCD (One Hypo): The first format is to see if the premise and one hypothesis have a causal relationship or
not. There are 4000 data points in this format. For example:

e "premise": "The woman tolerated her friend’s difficult behavior."

e "hypothesis": "The woman knew her friend was going through a hard time."

e PCD (Two Hypo): The second format is to see if the premise has which cause or effect from two provided
hypotheses. There are 2000 data points in this format. For example:

e "premise": "Tom always wore very few clothes when he was young."

e "agk-for": "effect",

"hypothesisl": "His heat loss from the skin decreased."

e "hypothesis2": "He has a varicocele."

e For causality event identification (CEI), the task is to check if two words have a causal relationship. CEI
has a total of 2596 data points. For example, check if "cut" and "growth" have a causal relationship in the
following text:

e "The earnings growth also was fueled by the company ’s ability to cut net financing spending by half
to around 15 million guilders ."

The detailed data structure and flowchart of tasks are provided in Figure [7] for PCD and Figure [§ for ECI,
respectively.
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