
Under review as a conference paper at ICLR 2024

OPPONENT MODELING BASED ON SUBGOAL INFER-
ENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

When an agent is in a multi-agent environment, it may face previously unseen op-
ponents, and it is a challenge to cooperate with other agents to accomplish the task
together or to maximize its own rewards. Most opponent modeling methods deal
with the non-stationarity caused by unknown opponent policies via predicting the
opponent’s actions. However, focusing on the opponent’s action is shortsighted,
which also constrains the adaptability to unknown opponents in complex tasks.
In this paper, we propose opponent modeling based on subgoal inference, which
infers the opponent’s subgoals through historical trajectories. As subgoals are
likely to be shared by different opponent policies, predicting subgoals can yield
better generalization to unknown opponents. Additionally, we design two sub-
goal selection modes for cooperative games and general-sum games respectively.
Empirically, we show that our method achieves more effective adaptation than
existing methods in a variety of complex tasks.

1 INTRODUCTION

Figure 1: Infer the goal of others

Reinforcement learning (RL) has achieved remarkable
success in games involving multiple agents, such as Al-
phaGo (Silver et al., 2016), OpenAI Five (OpenAI, 2018),
and AlphaStar (Vinyals et al., 2019). The non-stationarity
of multi-agent environments has brought many difficul-
ties to problem-solving, and this has always been the case.
In cooperative scenarios, many multi-agent reinforcement
learning (MARL) methods (Lowe et al., 2017; Sunehag
et al., 2017; Rashid et al., 2020; Son et al., 2019) aim
to bridge the information gap between agents by training
agents in a centralized manner, called centralized training
with decentralized execution, enabling agents to work to-
gether seamlessly to accomplish cooperative tasks. Alter-
natively, fully decentralized methods (Jiang & Lu, 2022;
Su & Lu, 2022) seek to break free from the constraints of
centralized training, allowing agents to reach collaboration in a simpler and decentralized manner. In
competitive scenarios, NFSP (Heinrich & Silver, 2016), PSRO (Lanctot et al., 2017), and DeepNash
(Perolat et al., 2022) employ self-play to train agents for equilibrium strategies, allowing agents to
adapt and improve their policy. By considering how the agent affects the expected learning progress
of other agents, LOLA (Foerster et al., 2017) and COLA (Willi et al., 2022) apply opponent shaping
to this setting. In these methods, all agents are jointly trained in the same scenario.

Autonomous agents, different from those jointly trained, can act autonomously in complex and dy-
namic environments, sense the influence of the environment and other agents, and accomplish their
own goals or tasks. Such agents can analyze the behavior of opponents1 by building models that
make predictions about some core properties of the agents being modeled, such as their actions,
goals, and beliefs, in a method called opponent modeling (Albrecht & Stone, 2018). By modeling
the intentions and policies of other agents, the training process of the agent might be stabilized (Pa-
poudakis et al., 2019). Many studies rely on predicting the actions (He et al., 2016; Hong et al.,

1We call any agent other than the autonomous agent itself “opponent,” whether it is a teammate or rival.

1

Under review as a conference paper at ICLR 2024

2018; Grover et al., 2018; Papoudakis & Albrecht, 2020), goals (Raileanu et al., 2018), and returns
(Tacchetti et al., 2018) of opponents during training. The autonomous agent adapts to different
or unseen opponents by using the predictions or representations that are produced by the relevant
modules. However, in some scenarios, opponents may continuously learn during interaction. Meta-
MAPG (Kim et al., 2021) combines Meta-PG(Al-Shedivat et al., 2017) and LOLA, and focuses
on the problem of the non-stationary environment caused by the continuous learning of opponents.
MBOM (Yu et al., 2022) simultaneously targets a variety of adversaries, fixed policy, or continuous
learning, by modeling the possible policies that an opponent may form, combined with Bayesian
inference to generate an opponent’s imagined policy. Some methods focus on figuring out the oppo-
nent’s goal, e.g., ToMnet (Rabinowitz et al., 2018) and SOM (Raileanu et al., 2018). SOM infers the
opponent’s goal through its own policy, in other words, ”what would I do if I were the opponent?”
LIAM (Papoudakis et al., 2021; Papoudakis & Albrecht, 2020) builds the opponent’s policy from its
own partial observations and uses it to anticipate the opponent’s actions and make decisions. GSCU
(Fu et al., 2022) chooses online between a real-time greedy strategy and a fixed conservative strategy
through Bayesian belief in competitive environments. The greedy strategy is conditioned RL, while
the conservative strategy is a bandit algorithm.

Although a lot of the existing methods concentrate on modeling the opponent’s actions, such an
approach is short-sighted, pedantical, and highly complex. Generally, modeling an opponent’s ac-
tions is just predicting what it will do at the next step. Intuitively, it is more beneficial for the agent
to make decisions if it knows the situation of the opponent several steps ahead. Predicting the ac-
tions over a few steps is not elegant. For example, to reach the goal point of (2, 2), an opponent
moves from (0, 0) following the action sequence <↑, ↑,→,→> by four steps (Cartesian coordi-
nates). There are also 5 other action sequences, i.e., <↑,→, ↑,→>,<↑,→,→, ↑>,<→, ↑, ↑,→>
,<→, ↑,→, ↑>,<→,→, ↑, ↑>, that can lead to the same goal. Obviously, the complexity of the
action sequence is much higher than the goal itself. Other methods that claim to predict the oppo-
nent’s goal (Rabinowitz et al., 2018; Raileanu et al., 2018), without explicitly making a connection
to the opponent’s goal or just predicting the goal at the next step, are essentially as shortsighted as
modeling actions.

Inspired by the fact that humans can predict the opponent’s goal by observing the opponent’s actions
for several steps as illustrated in Figure 1, in this paper, we propose Opponent Modeling based on
subGoals inference (OMG), which uses variational inference to predict the opponent’s future sub-
goals from historical trajectories. The trajectory of an opponent’s policy consists of a set of subgoals,
and the trajectories of different policies may contain the same subgoal. This combinatorial property
of the subgoals facilitates the generalization of the agent to unseen opponents’ policies. Moreover,
we design two manners for selecting subgoals, which are applied to cooperative games and general
sum games, respectively. Empirically, OMG outperforms existing opponent modeling methods in
a variety of complex multi-agent environments, demonstrating the superiority of inferring subgoals
over predicting actions.

2 RELATED WORK

Opponent modeling. Opponent modeling plays a crucial role in enhancing the robustness and sta-
bility of reinforcement learning (Papoudakis et al., 2019). Given the presence of diverse opponent
policies in multi-agent environments, the autonomous agent faces a significant challenge in learning
resilient policies. When an agent perceives an opponent as part of the environment, the resulting en-
vironment becomes inherently unstable and intricate. To address this challenge, one straightforward
method involves equipping the agent with the ability to incorporate information about its opponent,
including aspects like the opponent’s behavior, goals, and beliefs (Albrecht & Stone, 2018), i.e.,
opponent modeling. It gives the agent a deeper insight and prediction ability about the opponent’s
policy. Thus, the autonomous agent views the environment as less unstable and can simply use
single-agent reinforcement learning methods.

A common approach to modeling the policy of an opponent is predicting the opponent’s actions.
DRON (He et al., 2016) and DPIQN (Hong et al., 2018) extend DQN (Mnih et al., 2015) by adding
another network that estimates the opponents’ actions from the observations. The DQN uses the
hidden layer of this network to improve its policy. Variational auto-encoders can also be used to
model the opponent’s policy (Papoudakis & Albrecht, 2020), which results in probabilistic repre-

2

Under review as a conference paper at ICLR 2024

Trajectories

Update phaseInteraction phase

Opponent
Model

𝑠𝑡+2𝑠𝑡+1

RNN FC

ො𝑔𝑡

policy network

𝑄(𝑠𝑡, ො𝑔𝑡)

𝑠0 𝑠𝑡𝑠𝑡−1…… …… 𝑠𝑡+𝐻 ……

𝑎𝑡−1
𝑜 𝑎𝑡−1

ℎ𝑡−1

Conditioned VAE 𝜙

ℎ𝑡

ҧ𝑔𝑡

SubGoal Selector

VAE 𝜓

𝑠𝑔

𝑎𝑡
SubGoal Selector

policy network

…

VAE 𝜓

𝑠𝑡+𝐻

𝑠𝑡

𝑠𝑡+2𝑠𝑡+1

𝑎𝑟𝑔𝑚𝑎𝑥
𝑓𝜓(𝑠)

𝑄(𝑠𝑡, 𝑓𝜓(𝑠𝑡+1)) 𝑄(𝑠𝑡 , 𝑓𝜓(𝑠𝑡+𝐻))

𝑠𝑔

𝑠𝑡+1

(8)

(4)

Causal Relationships

Data Flow

Parameter Update

下 34.2
右 21.9

Figure 2: Diagram of OMG architecture. In the interaction phase, OMG deduces subgoals from
historical trajectories to enhance decision-making. In the update phase, OMG employs the subgoal
selector to choose the state among those within the next few steps as the subgoal.

sentations instead of fixed vectors. PR2 (Wen et al., 2019), MBOM (Yu et al., 2022), and TP-MCTS
(Weil et al., 2023) combine the idea of recursive reasoning, nested form as “the agent believes [that
the opponent believes (that the agent believes ...)]”, based on modeling the action of the opponent.
Some works focus on modeling beliefs. Zintgraf et al. (2021) combined the sequential and hierar-
chical variational auto-encoders to construct a belief inference model using meta-learning, for belief
inference. Zhang et al. (2023) introduced landmarks into the behavior model and improve the model
by the action sequence of the opponents, so as to recognize and compare the opponent’s intention.

Another key aspect of opponent modeling is to infer the opponent’s goal. Baker et al. (2009) formu-
lated the goal recognition as a Markov decision process (MDP) and calculate the posterior probabil-
ity of the goal by Bayes rule based on a prior goal library. ToMnet (Rabinowitz et al., 2018) aims
to give the agent a human-like Theory of Mind. It uses three networks to infer the agent’s goal and
action from previous and present information. SOM (Raileanu et al., 2018) implements the Theory
of Mind with a goal library from a different perspective. SOM uses its own policy, the opponent’s
observation, and the opponent’s action to work backward to learn the opponent’s goal distribution
by gradient ascent. These methods either require a prior goal library or infer implicit “goals” that
are not supervised by ground truth goals.

Goal-conditioned RL. Goal-conditioned reinforcement learning is an extension of the single-agent
algorithm. Most works focus on learning a goal-conditioned policy, where the goals are usually
predefined (Plappert et al., 2018; Zhu et al., 2021). Some works consider acquiring subgoals auto-
matically to accelerate learning. Paul et al. (2019) proposed a method that uses expert trajectories to
generate subgoals, while (Chane-Sane et al., 2021) proposed to incorporate imaginary subgoals into
policy learning to facilitate learning complex tasks, where subgoals are measured by value func-
tions. Unlike existing goal-conditioned RL methods, we aim to infer the subgoal of the opponent
and condition the agent policy on the inferred subgoal.

3 METHOD

3.1 PRELIMINARIES

In general, we consider an n-agent stochastic game M = (S,A1, . . . ,An,P,R1, . . . ,Rn, γ),
where S is the state space, Ai is the action space of agent i ∈ [1, . . . , n], A =

∏n
i=1 Ai is the

joint action space of agents, P : S × A × S → [0, 1] is a transition function, Ri : S × A → R is
the reward function of agent i , and γ is the discount factor. The policy of agent i is πi, and the joint
policy of other agents is πo(ao|s) =

∏
j ̸=i π

j(aj |s), where ao is the joint action except agent i. All
agents interact with the environment simultaneously without communication. The historical trajec-
tory is available, i.e., for agent i at timestep t, τt = {s0, ai0, ao0, . . . , st−1, a

i
t−1, a

o
t−1} is observable.

3

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.8 0.9 1.0 D1 0.0 0.0 0.0 0.0 0.0

0.0 0.7 0.7 0.8 0.9 1.0 0.0 0.0 0.0 0.0 0.0

0.1 0.6 0.7 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.5 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.5 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S1 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S2

0.3 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 D2 0.0 0.0 0.0 0.0 0.0

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0.4 0.7 0.8 0.9 1.0 D1 0.0 0.0 0.0 0.0 0.0

0.6 0.7 0.7 0.8 0.9 1.0 0.0 0.0 0.0 0.0 0.0

0.5 0.6 0.6 0.7 0.8 0.9 0.0 0.0 0.0 0.0 0.0

0.4 0.5 0.6 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0

0.4 0.4 0.5 0.6 0.6 0.4 0.0 0.0 0.0 0.0 0.0

S1 0.4 0.5 0.5 0.6 0.4 0.0 0.0 0.0 0.0 S2

0.4 0.5 0.5 0.6 0.7 0.2 0.0 0.0 0.0 0.0 0.0

0.5 0.5 0.6 0.7 0.7 0.2 0.0 0.0 0.0 0.0 0.0

0.5 0.6 0.7 0.7 0.8 0.4 0.0 0.0 0.0 0.0 0.0

0.6 0.7 0.7 0.8 0.9 0.9 0.0 0.0 0.0 0.0 0.0

0.6 0.7 0.8 0.9 1.0 D2 0.0 0.0 0.0 0.0 0.0
0.0

0.2

0.4

0.6

0.8

1.0

max
a

Q(s, ao, a) max
a

Q(s, g, a)

(a) training steps = 1e5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0.7 0.7 0.8 0.9 1.0 D1 0.1 0.0 0.0 0.0 0.0

0.6 0.7 0.7 0.8 0.9 1.0 0.0 0.0 0.0 0.0 0.0

0.5 0.6 0.7 0.7 0.8 0.9 0.0 0.0 0.0 0.0 0.0

0.5 0.5 0.6 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0

0.4 0.5 0.5 0.6 0.7 0.7 0.0 0.0 0.0 0.0 0.0

S1 0.4 0.5 0.5 0.6 0.7 0.1 0.0 0.0 0.0 S2

0.4 0.5 0.5 0.6 0.7 0.6 0.0 0.0 0.0 0.0 0.0

0.5 0.5 0.6 0.7 0.7 0.8 0.2 0.0 0.0 0.0 0.0

0.5 0.6 0.7 0.7 0.8 0.9 0.6 0.0 0.0 0.0 0.0

0.6 0.7 0.7 0.8 0.9 1.0 0.9 0.2 0.0 0.0 0.0

0.3 0.7 0.8 0.9 1.0 D2 1.0 0.0 0.0 0.0 0.0

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0.7 0.7 0.8 0.9 1.0 D1 0.4 0.0 0.0 0.0 0.0

0.6 0.7 0.7 0.8 0.9 1.0 0.9 0.2 0.0 0.0 0.0

0.5 0.6 0.7 0.7 0.8 0.9 0.8 0.1 0.0 0.0 0.0

0.5 0.5 0.6 0.7 0.7 0.8 0.7 0.4 0.0 0.0 0.0

0.4 0.5 0.5 0.6 0.7 0.7 0.7 0.5 0.3 0.0 0.0

S1 0.4 0.5 0.5 0.6 0.7 0.6 0.4 0.1 0.0 S2

0.4 0.5 0.5 0.6 0.7 0.7 0.6 0.6 0.3 0.0 0.0

0.5 0.5 0.6 0.7 0.7 0.8 0.7 0.7 0.1 0.0 0.0

0.5 0.6 0.7 0.7 0.8 0.9 0.8 0.2 0.0 0.0 0.0

0.6 0.7 0.7 0.8 0.9 1.0 0.9 0.3 0.0 0.0 0.0

0.7 0.7 0.8 0.9 1.0 D2 0.8 0.0 0.0 0.0 0.0
0.0

0.2

0.4

0.6

0.8

1.0

max
a

Q(s, ao, a) max
a

Q(s, g, a)

(b) training steps = 1e7

Figure 3: Learned Q-values using tabular Q-learning in an 11 × 11 gridworld. The agent and the
opponent start from the S1 and S2, respectively. The two reward points are D1 and D2, and the
reward will only be given to the agent who arrives first. The opponent executes one of policies πo1
and πo2 , which target D1 and D2, respectively.

The goal of the agent i is to maximize its expected cumulative discount rewards:

E
st+1∼P(·|st,ait,a

o
t),

a∼πi(·|st),aot∼π
o(·|st)

[∞∑
t=0

γtRi(st, a
i
t, a

o
t)

]
. (1)

For convenience, the learning agent treats all other agents as a joint opponent with the joint action
ao ∼ πo(·|s) and reward ro. The action and reward of the learning agent are respectively denoted
as a ∼ π(·|s) and r for notation simplicity.

An agent treats other agents as part of the environment and ignores the non-stationarity posed by
the change of other agents’ policies as independent Q-learning (Tampuu et al., 2017; Tan, 1993). Its
policy is updated by:

Q(st, at) = EP(st+1|st,ao,a)[r + γmax
a

Q(st+1, a)], (2)

where Q is Q-network. Opponent modeling typically predicts the actions of other agents to address
the non-stationary problem. The opponent model uses historical trajectory as input to predict ão ∼
π̃(·|τ), where ão is the estimate of ao. Its policy is updated as:

Q(st, ã
o
t , at) = EP(st+1|st,ao,a)[r + γmax

a
Q(st+1, ã

o
t+1, a)]. (3)

Note that we cast our discussion here to Q-learning. All can be similarly applied to other RL meth-
ods, such as PPO (Schulman et al., 2017).

3.2 POLICY UPDATE WITH OPPONENT’S SUBGOALS

The opponent’s subgoal is the representation of the state that the opponent may have in the future
based on the opponent’s policy. Like “All roads lead to Rome”, the opponent may perform different
sequences of actions but eventually reach the same state. Instead of focusing on the details of each
of the opponent’s actions, the agent should focus on the state the opponent wants to reach.

The opponent’s subgoal distribution probability is based on the opponent’s action sequence, that is,
the opponent’s policy, but its sample space is still the representation of the state. Here we decouple
the subgoal from the opponent’s policy and just consider decision-making problems conditioned
on the opponent’s subgoal. Formally, we transform the original stochastic game M into a state-
augmented MDP, defined by MG = (S,G,Ai,P,Ri, γ), where G is the subgoal space. Since G is
a representation of future states the opponent may go, |G| is finite and less than or equal to |S|.
The state-augmented MDP’s state space S extends to the MDP with state-subgoal pairs < S,G >.
Therefore, the policy based on the opponent’s subgoal is updated as:

Q(st, gt, at) = EP(st+1|st,ao,a)[r + γmax
a

Q(st+1, gt, a)]. (4)

Here st+1, gt is used instead of st+1, gt+1, because of we assume that the next state of st, gt follows
the same goal. In the framework of OMG, gt and gt+1 will reach the same at the end of the episode.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Opponent Modeling based on Subgoals Inference

1: Preparation:
2: Interact with ν opponents to collect s and train the prior model fψ
3: Initialize subgoal inference model parameters ϕ and θ
4: Initialize Q-network Q and the replay buffer D
5: repeat
6: Interaction phase
7: Observe state s and last opponent’s action ao
8: Infer the subgoal ĝ by subgoal inference model qϕ(g|τ)
9: Choose action a by maxaQ(s, ĝ, a) with ϵ-greedy

10: Store trajectory experience (s, a, ao, r) in replay buffer D
11: Update phase
12: if It’s update time. then
13: Calculate prior subgoal ḡ by (6) or (7)
14: Calculate subgoal g by (8)
15: Update Q-network by (4)
16: Update subgoal inference model qϕ and pθ by (5)
17: end if
18: until convergence

To demonstrate the difference between learning Q-values using the opponent’s action Equation (3)
and using the opponent’s subgoal Equation (4), we carry out an experiment in an 11× 11 gridworld
with two agents, as detailed in Figure 3. The Q-value using the opponent’s action learns slower
than the Q-value with the opponent’s subgoal in Figure 3(a), resulting from the tuple (s, ao, a) is
more numerous than (s, g, a) in the Q-table. After convergence, the Q-value increases as it gets
closer to the reward point, indicating a meaningful Q-value with the opponent’s subgoal, as shown
in Figure 3(b).

When there are fewer (s, g, a) than (s, ao, a), the method using (s, g, a) naturally holds the advan-
tage of faster learning than the method of (s, ao, a). The quantity of (s, g, a) is contingent upon the
goal selection, and we present an analysis of the quantitative relationship between pair (s, g) and
(s, ao), see Appendix A.1. In short, the number of (s, g) is significantly smaller than that of (s, ao)
in our method.

3.3 OPPONENT MODELING BASED ON SUBGOAL INFERENCE

In this part, we elaborate on the opponent modeling module, which is divided into two components:
the subgoal inference model and the subgoal selector. The subgoal inference model utilizes the
historical trajectory to predict opponent’s subgoal, which act as the policy’s input to make decisions
during interaction phase. Meanwhile, the subgoal selector is responsible for scrutinizing the en-
tire historical trajectory and choosing the suitable subgoal for training the subgoal inference model
during the update phase.

Subgoal inference model. The subgoal g is a representation of future states. Specifically, for
a trajectory {s0, a0, ao0, . . . , st, at, aot , . . . , sT }. The state corresponding to subgoal gt is one of
future states Nt = {st+1, st+2, . . . , sT }, denoted as sgt . We denote the mapping between states and
subgoals by fψ , where ψ is the parameters and ḡt = fψ(s

g
t).

The objective of the subgoal inference model is to infer sgt from the historical trajectory τt =
{s0, a0, ao0, . . . , st−1, at−1, a

o
t−1} at timestep t, even though sgt may be a state at timestep t + 1

or further. This is in accordance with the intuitive hypothesis, implying that the opponent’s intention
is often inferred after just a few initial actions.

Here, we introduce variational inference and use a conditional variational auto-encoder (CVAE) as
the subgoal inference model. In this model, we represent the posterior probability as qϕ(ĝ|τ) and the
likelihood estimate as pθ(τ |g) with θ, ϕ denoting network parameters. Additionally, the condition
vector of the model is encoded using an RNN. The subgoal’s prior model, denoted as pψ(ḡ|sg),
is constructed using a pre-trained variational autoencoder (VAE), with the prior subgoal state sg
being derived from the subgoal selector as its input. The distribution of subgoal prior pψ , subgoal

5

Under review as a conference paper at ICLR 2024

posterior probability qϕ and subgoal’s prior pψ(ḡ|sg) are used normal distribution. The mapping
fψ represents sampling subgoal ḡ from pψ using reparameterization trick. The detailed network
architecture is presented in Figure 2. The optimization objective of the subgoal inference model is:

< θ̂, ϕ̂ >= argmax
θ,ϕ

Eg∼qϕ(ĝt|τt,st)
[
log pθ(st|ĝt, τt)

]
−KL

(
qϕ(ĝt|τt, st)||pψ(ḡt|sg)

)
. (5)

Subgoal selector. The objective of the subgoal selector is to choose the appropriate future state
from Nt as prior model’s input. The selection of subgoal states plays a pivotal role in shaping
the behavior of an agent, as it significantly impacts the pattern of the agent’s policy, either lean-
ing towards optimism or conservatism. This critical decision-making process becomes especially
pertinent when dealing with cooperative games and general-sum games, where the dynamics of in-
teraction are complex and multifaceted. In these contexts, we provide two distinct manners to guide
the agent’s decision-making:

ḡt = argmax
g∈fψ(NH

t)

V (st, g) (6)

ḡt = argmin
g∈fψ(NH

t)

V (st, g) (7)

where V (s, g) = EaQ(s, g, a), NH
t is the set of future states {st+1, · · · , st+H}. We use states

within the next H timesteps instead of all future steps because the subgoals of different trajectory
fragments may have combinatorial properties. It gives the agent better generalization ability when
facing different policy opponents. However, if we adopt the full horizon, the agent may prefer the
goals near the terminal state, which is not conducive to the exploration of goal space.

When utilizing the subgoal g as indicated in Equation (6), we pinpoint the state within a H-horizon
that maximizes the V-value. The agent incorporates this as the subgoal to optimize the Q-function,
thus adopting an optimistic strategy akin to the maximax strategy(Ben-Haim, 2006), which applies to
cooperative games. Conversely, if we choose the subgoal as presented in Equation (7), it corresponds
to the state yielding the lowest value. The agent then employs this as the subgoal for Q-function
optimization, leading to a conservative strategy similar to the minimax strategy, which is usually
used in general-sum games.

In conclusion, the subgoal selector and the subgoal inference model as a whole constitute the op-
ponent modeling module. During the interaction phase, the subgoal inference model is used to get
the inferred subgoal ĝ, which is combined with the state as the input to the Q-network. During the
update phase, the prior subgoal ḡ generated by the subgoal selector provides the inference model
for training. When policy updating, the subgoal inference model is unstable at the beginning, which
disturbs the updating of the Q-network. Therefore, we use the following combination of the prior
subgoal ḡ and the inferred subgoal ĝ,

gt = ĝtI(η > ϵ) + ḡtI(η ≤ ϵ), η ∼ U [0, 1], (8)

where ϵ is a hyperparameter that decreases to zero over training.

For completeness, the full procedure of OMG is given in Algorithm 1.

4 EXPERIMENTS

First, we evaluate OMG’s training performance in two environments (discrete and continuous state
spaces) and then test its generalization against opponents with various policies in a complex envi-
ronment. In all the experiments, the baselines have the same neural network architectures as OMG.
All the methods are trained for five runs with different random seeds, and results are presented using
mean and standard deviation. More details about experimental settings and hyperparameters are
available in Appendix A.2.

4.1 MULTI-AGENT ENVIRONMENTS

Foraging environment (Albrecht & Ramamoorthy, 2015; Albrecht & Stone, 2019) is an 8× 8 grid-
world containing two players: the agent and the opponent. At the beginning of each round, the

6

Under review as a conference paper at ICLR 2024

0 10000 20000 30000 40000 50000
episodes

1

2

3

4

5

6

7

sc
or

e

Naive OM
LIAM
D3QN
OMG-conservative
OMG-optimistic

(a) Score in Foraging

0 10000 20000 30000 40000 50000
episodes

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

ep
iso

de
_s

te
p

Naive OM
LIAM
D3QN
OMG-conservative
OMG-optimistic

(b) Episode length in Foraging

0 20000 40000 60000 80000 100000
episodes

7

8

9

10

11

12

sc
or

e

Naive OM
LIAM
PPO
OMG-conservative
OMG-optimistic

(c) Score in Predator-Prey

Figure 4: Training performance in Foraging and Predator-Prey. (a) shows the total score obtained by
the agent. (b) illustrates the number of steps at the end of each episode. The results show that OMG
can converge to the same score as baselines but end the episode in fewer steps because it predicts the
opponent’s goal. (c) shows the score obtained by the agent as a predator with two other uncontrolled
predators in Predator-Prey, and OMG outperforms the baselines.

7 non-homologue 6 homologue 7 homologue50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

wi
n

ra
te

(a) 8m

2 non-homologue 2 homologue0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

wi
n

ra
te

IQL
LIAM
Naive OM
OMG-conservative
OMG-optimistic

(b) 3s vs 5z

Figure 5: Test performance of cooperation with different opponents in 8m and 3s vs 5z maps of
SMAC. The results show that OMG-optimistic outperforms all baselines. The results are averaged
over collaborating with 30 opponents of different policies, with 95% confidence intervals.

players and three foods are randomly generated in the environment. The goal of the agent is to
collect all foods as quickly as possible. The agent can move in four directions or pick up the food.
The agent must judge the opponent’s target food as soon as possible to avoid futile actions for the
same food.

Predator-Prey (Lowe et al., 2017) is a three-against-one multi-agent environment with a continuous
space. Three predators coordinate to touch the prey. The agent acts as one of the predators, and the
opponents are the other two predators and the prey, which leads to the non-stationarity of the envi-
ronment from the agent’s view despite not belonging to one camp. The agent aims to maximize its
reward and therefore needs to collaborate with the other two predators to complete the encirclement
and cut the prey’s escape route.

SMAC (Samvelyan et al., 2019) is a high-dimensional complex environment for research in the field
of collaborative MARL based on StarCraft II. The agent joins a set of agents with unknown policies
to accomplish the task. The only way to accomplish the task is to collaborate with the other agents.
The agent’s goal is to complete the task with a group of opponents controlled by unknown policies.

4.2 BASELINES

In the experiments, we implement two variants of OMG, OMG-optimistic and OMG-conservative,
based on the subgoal selection patterns in Equation (6) and Equation (7), respectively. OMG com-
pared with the following methods:

• Naı̈ve OM (He et al., 2016) uses observation to directly model the opponent’s policy, which
assists the agent in decision-making by predicting the opponent’s actions.

7

Under review as a conference paper at ICLR 2024

• LIAM (Papoudakis et al., 2021) uses the observations and actions of the modeling agent with
an encoder-decoder architecture, and the model learns to extract representations about the mod-
eling agent, conditioned only on the local observations of the controlled agent.

• D3QN & PPO & IQL (Wang et al., 2016; Schulman et al., 2017; Tampuu et al., 2017) are
classical RL algorithms without opponent modeling.

We use D3QN, PPO, and IQL as the backbone algorithms in Foraging, Predator-prey, and SMAC,
respectively, to reproduce the performance of baselines. The versions of OMG that are based on
D3QN and IQL incorporate “dueling” and “double” tricks over Algorithm 1. For OMG based on
PPO, please refer to Appendix A.3 for details.

4.3 PERFORMANCE OF TRAINING

We evaluate the performance of OMG on foraging and predator-prey, and the results are shown
in Figure 4. In the foraging environment, our method attains comparable scores to the baseline
methods, and both the agent and the opponent achieve similar scores. OMG has a shorter episode
length compared to other methods as demonstrated in Figure 4(b), because OMG can predict the
subgoal that the opponent is heading to and thus avoid wasting steps in the same direction. In
addition, the results show that OMG-conservative is more suitable than OMG-optimistic in this
scenario since this is a general-sum game. The action modeling-based methods, LIAM and Naı̈ve
OM, demonstrate comparable performance, whereas D3QN without opponent modeling, exhibits
subpar results. In the predator-prey environment, the agent acts as the predator and collaborates
with the other two uncontrolled predators to catch the prey. The results in Figure 4(c) show that
OMG obviously learns faster than action modeling methods, which demonstrates that OMG can
also work efficiently in continuous state space. PPO without opponent modeling can hardly improve
performance in training due to the non-stationarity caused by opponents. OMG-optimistic performs
better than OMG-conservative because OMG-optimistic is suitable for the cooperative game.

4.4 GENERALIZATION TO UNKNOWN OPPONENTS

We evaluate the generalization of OMG in a complex multi-agent environment, SMAC, which en-
ables the opponent to exhibit more diverse policies. The experimental results of 8m and 3s vs 5z
are shown in Figure 5. The test set consists of 30 opponents with different policies, trained by the
IQL, VDN(Sunehag et al., 2017), and QMIX(Rashid et al., 2020). In 8m, the opponents are reor-
ganized into three groups: 7 homologues, 6 homologues, and 7 non-homologues. In 3s vs 5z, the
opponents falls into two groups: 2 homologues and 2 non-homologues. Here, homologue refers to
the policy from the same algorithm with the same parameters, and non-homologue represents the
policy from two different algorithms. The remained agents are controlled by OMG or baseline algo-
rithms. Without opponent modeling, IQL struggles to adapt to various opponents, resulting in poor
performance, especially when the opponent is non-homologue. This underscores the effectiveness
of opponent modeling in autonomous agent tasks. LIAM and Naı̈ve OM are the opponent’s action
modeling methods that contributed to the team’s improved win rate to some extent. The mediocre
performance of OMG-conservative is attributed to its overly cautious subgoal selection, but there
is no significant performance drop compared to IQL, which is consistent with the “conservative”.
OMG-optimistic surpasses the baseline methods in cooperative tasks. OMG-optimistic cooperates
with unknown opponents through positive subgoal selection, which is easier to win in hard scenarios.
For opponents and training details, please refer to Appendix A.2.

4.5 ABLATION STUDY

The results of the ablation study in Foraging are presented in Figure 6. Specifically, Figure 6(a)
and Figure 6(b) correspond to experiments related to subgoal selection. During the policy update,
Equation (8) (i.e., g) is utilized. As fψ is pre-trained and fixed during the update phase, ḡ remains
stable. On the other hand, ĝ, which represents the inferred subgoal when executing the policy, also
stabilizes as the training steps increase. The transition of g from ḡ to ĝ is a gradual process, which
helps avoid instability during the training of the subgoal inference model.

The parameter H denotes the horizon of the subgoal selector. The ablation experiment results are
shown in Figure 6(c) and Figure 6(d). It is observed that an appropriate horizon value is neither

8

Under review as a conference paper at ICLR 2024

0 10000 20000 30000 40000 50000
episodes

1

2

3

4

5

6

7

sc
or

e

gt

gt

gt

(a) Score

0 10000 20000 30000 40000 50000
episodes

11.0

11.5

12.0

12.5

13.0

13.5

14.0

ep
iso

de
_s

te
p

gt

gt

gt

(b) Episode length

0 10000 20000 30000 40000 50000
episodes

1

2

3

4

5

6

7

sc
or

e

H = 1
H = 3
H = 5
H = 10

(c) Score

0 10000 20000 30000 40000 50000
episodes

11.0

11.5

12.0

12.5

13.0

13.5

14.0

ep
iso

de
_s

te
p

H = 1
H = 3
H = 5
H = 10

(d) Episode length

Figure 6: Ablation study of OMG in Foraging. (a) and (b) compares OMGs with different subgoal
learning policy. (c) and (d) show ablation study for the hyperparameter horizon H .

0 10000 20000 30000 40000 50000
episodes

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

hi
t r

at
io

OMG-conservative
OMG-optimistic

(a) Hit ratio of subgoal state

step=1 step=5 step=6 step=8
OMG-conservative

step=1 step=5 step=8 step=10
OMG-optimistic

(b) Illustration of inferred subgoal state

Figure 7: Subgoal analysis of OMG in Foraging. The subgoal hit rates for OMG-conservative and
OMG-optimistic are shown in Figure 7(a). In Figure 7(b), a blue circle represents the state obtained
through the reconstruction of the subgoal inferred by the agent. The figure illustrates the difference
between OMG-conservative and OMG-optimistic under the same initial state and opponent policy.

excessively high nor excessively low. When H = 1, it is essentially equivalent to combining with
QSS (Edwards et al., 2020) and opponent modeling. However, if H is set too high, such as H =
10, the agent may skip important states in the trajectory, leading to a degradation in performance.
Therefore, selecting an appropriate value for H is crucial in achieving satisfactory results.

4.6 INFERRED SUBGOAL ANALYSIS

In Figure 7(a), we plot the ratio of that an opponent’s future trajectory passes through the opponent’s
subgoal inferred by the agent, termed subgoal hit ratio. The subgoal hit ratio is calculated by recon-
structing the subgoal state f−1

ψ (ĝ). The subgoal hit rate gradually improves during training, which
indicates that the subgoal-based opponent modeling is able to predict the future state of the oppo-
nent. OMG tends to predict goals multiple steps ahead, making it difficult for opponents to reach
immediately, resulting in a modest value that hit ratio convergence. There is a small gap between the
subgoal hit rates of OMG-conservative and OMG-optimistic, which leads to longer episode length
for OMG-optimistic than OMG-conservative, as illustrated in Figure 7(b). The root cause lies in the
differences in subgoal selection between OMG-conservative and OMG-optimistic.

5 CONCLUSION

In this work, we introduce OMG, a novel method for opponent modeling based on subgoal inference.
OMG is a simple and efficient opponent modeling method and can be combined with different
RL algorithms. Unlike most opponent modeling methods, which primarily focus on predicting the
opponent’s actions, OMG focuses on modeling the opponent’s subgoals. Specifically, it leverages
the value function of the policy to guide the selection of subgoals, which yields two variants of OMG
for cooperative and general-sum games, respectively. Empirical results demonstrate the remarkable
performance achieved by OMG, as compared to baselines which are based on action modeling, and

9

Under review as a conference paper at ICLR 2024

that OMG exhibits better generalization when cooperating with opponents with unknown policies.
We analyze the subgoals obtained by the inference model, and the results show that they closely
correlate with the opponent’s trajectory. The limitation of OMG is it cannot handle open multi-
agent systems where agents may enter and leave the system during the interaction. This is left for
our future work.

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Stefano V Albrecht and Subramanian Ramamoorthy. A game-theoretic model and best-response
learning method for ad hoc coordination in multiagent systems. arXiv preprint arXiv:1506.01170,
2015.

Stefano V Albrecht and Peter Stone. Autonomous Agents Modelling Other Agents: A Comprehen-
sive Survey and Open Problems. Artificial Intelligence, 258:66–95, 2018.

Stefano V Albrecht and Peter Stone. Reasoning about hypothetical agent behaviours and their pa-
rameters. arXiv preprint arXiv:1906.11064, 2019.

Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning.
Cognition, 113(3):329–349, 2009.

Yakov Ben-Haim. Info-gap decision theory: decisions under severe uncertainty. Elsevier, 2006.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440.
PMLR, 2021.

Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet,
Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep deterministic
dynamics gradients. In International Conference on Machine Learning, pp. 2825–2835. PMLR,
2020.

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326, 2017.

Haobo Fu, Ye Tian, Hongxiang Yu, Weiming Liu, Shuang Wu, Jiechao Xiong, Ying Wen, Kai Li,
Junliang Xing, Qiang Fu, et al. Greedy when sure and conservative when uncertain about the
opponents. In International Conference on Machine Learning, pp. 6829–6848. PMLR, 2022.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International conference on machine learning,
pp. 1802–1811. PMLR, 2018.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International conference on machine learning, pp. 1804–1813. PMLR,
2016.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A Deep Pol-
icy Inference Q-Network for Multi-Agent Systems. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 2018.

Jiechuan Jiang and Zongqing Lu. I2q: A fully decentralized q-learning algorithm. Advances in
Neural Information Processing Systems, 35:20469–20481, 2022.

10

Under review as a conference paper at ICLR 2024

Dong-Ki Kim, Miao Liu, Matthew Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi,
Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan P. How. A Policy Gradient Algorithm for
Learning To Learn in Multiagent Reinforcement Learning. In International Conference on Ma-
chine learning proceedings (ICML), 2021.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent rein-
forcement learning. Advances in neural information processing systems, 30, 2017.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-Level
Control Through Deep Reinforcement Learning. Nature, 518(7540):529–533, 2015.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Georgios Papoudakis and Stefano V Albrecht. Variational Autoencoders for Opponent Modeling in
Multi-Agent Systems. arXiv preprint arXiv:2001.10829, 2020.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Albrecht. Dealing with
non-stationarity in multi-agent deep reinforcement learning. arXiv preprint arXiv:1906.04737,
2019.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial ob-
servability for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:19210–19222, 2021.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via subgoal
discovery. Advances in Neural Information Processing Systems, 32, 2019.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine Theory of Mind. In International Conference on Machine Learning (ICML),
2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. In International conference on machine learning, pp. 4257–
4266. PMLR, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. CoRR, abs/1902.04043, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
The Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587):484–489,
2016.

11

https://blog.openai.com/openai-five/

Under review as a conference paper at ICLR 2024

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 5887–5896. PMLR, 2019.

Kefan Su and Zongqing Lu. Decentralized policy optimization. arXiv preprint arXiv:2211.03032,
2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Andrea Tacchetti, H Francis Song, Pedro AM Mediano, Vinicius Zambaldi, Neil C Rabinowitz,
Thore Graepel, Matthew Botvinick, and Peter W Battaglia. Relational forward models for multi-
agent learning. arXiv preprint arXiv:1809.11044, 2018.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PloS one, 12(4):e0172395, 2017.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International
conference on machine learning. PMLR, 1993.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature, 575(7782):350–354,
2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Jannis Weil, Johannes Czech, Tobias Meuser, and Kristian Kersting. Know your enemy: In-
vestigating monte-carlo tree search with opponent models in pommerman. arXiv preprint
arXiv:2305.13206, 2023.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic Recursive Reasoning for
Multi-Agent Reinforcement Learning. In International Conference on Learning Representations
(ICLR), 2019.

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent learning
with opponent-learning awareness. In International Conference on Machine Learning, pp. 23804–
23831. PMLR, 2022.

Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based op-
ponent modeling. Advances in Neural Information Processing Systems, 35:28208–28221, 2022.

Zhang Zhang, Yifeng Zeng, Wenhui Jiang, Yinghui Pan, and Jing Tang. Intention recognition for
multiple agents. Information Sciences, 628:360–376, 2023.

Menghui Zhu, Minghuan Liu, Jian Shen, Zhicheng Zhang, Sheng Chen, Weinan Zhang, Deheng Ye,
Yong Yu, Qiang Fu, and Wei Yang. Mapgo: Model-assisted policy optimization for goal-oriented
tasks. arXiv preprint arXiv:2105.06350, 2021.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
bayesian reinforcement learning via meta-learning. arXiv preprint arXiv:2101.03864, 2021.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ANALYSIS OF (s, g)

In opponent modeling, we usually build (s, g) and (s, ao) by observing the opponent’s action trajec-
tories. We construct a tree to describe the trajectories of the opponent’s action sequences, as Figure 8.
The non-leaf nodes and edges represent the state and opponent’s action respectively. Without loss of
generality, we simplify the problem by using a complete tree with the leaf node as goal. The length
of the action sequences is k and the opponent action space is denoted as A. We compare the number
of (s, a) and (s, g) that can be observed via trajectories, and their sets are denoted as Sa and Sg
respectively. The sizes of Sa and Sg as:

card(Sa) =
k−1∑
l=0

∑
s∈S(l)

nA =
nkA − 1

nA − 1
nA

card(Sg) =
k−1∑
l=0

∑
s∈S(l)

∑
g∈G

I(s→ g)

≤ |G|+ nA · |G|
nA

+ · · ·+ nk−1
A · |G|

nk−1
A

= k|G|

where S(l) represents the set of all states of depth l in the tree. s → g means g is reachable from
s. nA is the size of A. Let card(Sg) ≤ card(Sa), we get a bound over |G|, as (9). When the
goal number of our method is within the bound, the number of expanded states can be significantly
reduced, which means the RL algorithm learns faster than those methods based on action modeling.

card(Sg) ≤ card(Sa) ⇒ |G| ≤ nA
k

nkA − 1

(nA − 1)
=
nA
k

|S| (9)

When |G| is below nA/k times the number of observed states, the goal-based opponent modeling
method proves more advantageous compared to the methods based on action modeling. Conse-
quently, this criterion can be met by maintaining a relatively modest value for k. Due to our method
favoring the adoption of extreme values as goal states, a limited quantity of such states exist. So, it
is loosely bound of |G| for OMG.

…… …… …… ……

…… ……

𝑠

𝑔(1) 𝑔(|𝐺|)

0

1

k-1

…
…

𝐺

……

𝑎(1) 𝑎(𝑛𝐴)

下 26.1
右 8.6

……

Figure 8: Illustration of opponent’s decision tree. Circles, edges, and squares represent state nodes,
action, and goal nodes respectively.

13

Under review as a conference paper at ICLR 2024

A.2 EXPERIMENTS SETTINGS

Opponent. The autonomous agent is trained in a multi-agent environment, where it interacts with
the opponents controlled by a set of pre-trained policies. At the onset of each episode, the opponent’s
policy is selected randomly from the set. In the case of SMAC, the autonomous agent’s index is also
randomly determined. For Foraging, Predator-Prey, and SMAC environments, D3QN, PPO, and
QMIX are used to train the opponents, respectively. All the opponents in the training set comprise
10 distinct policies.

When assessing the performance of the autonomous agent in the SMAC with a test set, these op-
ponents in the set are trained separately using IQL, VDN, and QMIX, with 10 instances for each
training method. To illustrate the dissimilarity of the test opponent’s policies, we utilize a set of
identical states to acquire the action vectors of the policy in the test set. We visualize the action
vectors, as demonstrated in Figure 9. The figure shows the diversity of test set policies employed
by the test opponents. The test results are averaged over 100 episodes of fine-tuning, with 5 random
seeds.

40 20 0 20 40 60

60

40

20

0

20

40

60 iql
qmix
vdn

(a) 8m

60 40 20 0 20 40 60 80

50

25

0

25

50

75

100 iql
qmix
vdn

(b) 3s vs 5z

Figure 9: The distribution of the opponent’s policy for the test of generalization.

Pre-train the subgoal’s prior model. The subgoal’s prior model pψ(ḡ|sg) is a VAE that learns
from a set of states that are collected while training opponents. The optimization objective of VAE
is :

< ω̂, ψ̂ >= argmax
ω,ψ

Eg∼qψ(g|s)
[
log pω(s|g)

]
−KL

(
qψ(g|s)||N (0, 1)

)
. (10)

where ψ and ω are parameters of the encoder and the decoder, respectively. The decoder pω(s|g),
also denoted by f−1

ψ , is also used to reconstruct the subgoal state, as shown in Section 4.6.

Hyperparameters. All hyperparameters are listed in the table below:

14

Under review as a conference paper at ICLR 2024

Table 1: Hyperparameters

RL Algorithm

Q-based RL Foraging(D3QN) SMAC(IQL) Policy-based RL Predator-prey(PPO)

hidden units MLP[64, 32] RNN[64, 64] hidden units MLP[64, 32]
activation function ReLU ReLU activation function ReLU
optimizer Adam RMSProp optimizer Adam
learning rate 0.005 0.0005 learning rate 0.0005
target update interval 100 200 num. of updates 10
epsilon start 0.5 0 value discount factor 0.99
epsilon end 0.95 0.95 GAE parameter 0.99
epsilon anneal time 4500 50000 clip parameter 0.115
batch size 32 32 max grad norm 0.5
buffer size 5000 5000

Opponent model

hidden units MLP[64, 32] MLP[64, 32] MLP[64, 32]
learning rate 0.001 0.001 0.001
subgoal horizon 5 10 5
KL weight 0.001 0.001 0.001
∆η 0.001 0.001 0.001
ϵ start 0.5 0.5 0.5
ϵ anneal time 50000 50000 50000

A.3 OMG BASED ON PPO

Algorithm 2 OMG based on PPO

1: Preparation:
2: Interact with ν opponents to collect s and train the prior model fψ
3: Initialize subgoal inference model parameters τ and θ
4: Initialize policy parameters δ and value function parameters φ
5: for k=0,1,2,... do
6: Interaction phase
7: Observe state s and last opponent’s action ao
8: Infer the subgoal ĝ by subgoal inference model qϕ(g|τ)
9: Choose action a by πδk(·|s, ĝ)

10: Store experience (s, a, ao, r) in buffer Dk
11: Update phase
12: Calculate prior subgoal ḡ by Equation (6) or Equation (7)
13: Calculate subgoal g by Equation (8)
14: Update policy parameters by

δk+1 = argmax
δ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min
(πδ(at|st)
πδk(at|st)

Aπδk (st, at), g(ϵ, A
πδk (st, at))

)
(11)

15: Update value parameters by

φk+1 = argmin
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vφ(st)− R̂t)
2 (12)

16: Update inference model qϕ and pθ by Equation (5)
17: end for

15

	Introduction
	Related Work
	Method
	Preliminaries
	Policy Update with Opponent's Subgoals
	Opponent Modeling based on Subgoal Inference

	Experiments
	Multi-Agent Environments
	Baselines
	Performance of Training
	Generalization to Unknown Opponents
	Ablation Study
	Inferred Subgoal Analysis

	Conclusion
	Appendix
	Analysis of (s, g)
	Experiments settings
	OMG based on PPO

