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ABSTRACT

Generative pre-trained models have attained extraordinary success in natural lan-
guage processing and computer vision. Meanwhile, spatial single-cell transcrip-
tomics has become a potent tool for exploring disease mechanisms. Current meth-
ods largely disregard the influence of RNA spatial arrangement on cellular identity
and disease progression. This can result in the loss of RNA co-localization infor-
mation, incomplete spatial transcriptome analysis, and inadequate exploration of
disease mechanisms, thus failing to identify crucial approaches for clinical diag-
nosis. To tackle these problems, we put forward STBPE (Spatial Transcriptomics
Byte Pair Encoding), a pre-training framework concentrating on subcellular res-
olution. This framework innovatively incorporates “spatially aware byte pair en-
coding strategies”. It converts the subcellular localization information of RNA
within a single cell into serialized token units, realizing accurate digital depiction
of RNA spatial distribution patterns. Specifically, it first employs a spatial omics
data-driven word segmentation algorithm to encode the spatial coordinates and
transcript features of RNA into a unified byte pair sequence. Then, it utilizes the
BERT-style masked self-supervised learning paradigm to randomly mask partial
spatially aware labels and reconstruct the original sequence, compelling the model
to learn deep embedding representations that contain spatial position information.
This design allows STBPE to seize the potential correlation between RNA spatial
distribution and gene expression, notably enhance cell type annotation, discover
co-localized RNAs related to cellular identity from a novel viewpoint, and lay the
groundwork for constructing multimodal foundation models that integrate spatial
transcriptomics with natural language.

1 INTRODUCTION

Spatially resolved single-cell transcriptomics has emerged as a cutting-edge technology in the life
sciences, gradually demonstrating its tremendous potential for elucidating disease mechanisms Chen
et al. (2020), Ståhl et al. (2016). This technique not only enables the simultaneous acquisition of
gene expression profiles at single-cell resolution but also preserves the precise spatial localization of
transcripts within the tissue microenvironment. As a result, it provides an unprecedented perspective
for understanding cellular identity, interactions, and their dynamic changes during disease onset and
progression Baccin et al. (2020).

Nevertheless, existing analytical approaches remain limited. Conventional methods are largely con-
fined to gene expression matrices and fail to effectively incorporate spatial information Wolf et al.
(2018). Although a number of algorithms have recently been developed to integrate spatial con-
text —for example, graph neural network–based spatial modeling methods Hu et al. (2021), Xu
et al. (2022), Long et al. (2023), Pham et al. (2023)-which show promising potential in the analysis
of cell-level spatial transcriptomics data, they still fall short of addressing the analytical demands
posed by the new generation of subcellular-resolution technologies, such as 10x Xenium Janesick
et al. (2023), NanoString CosMx He et al. (2022), and Vizgen MERSCOPE Chen et al. (2015).

Meanwhile, generative pre-trained models have achieved revolutionary success in natural language
processing and computer vision Wang et al. (2023). Their core strength lies in leveraging large-
scale self-supervised learning to capture complex patterns and contextual dependencies, thereby
attaining strong generalization performance across downstream tasks Du et al. (2023). More impor-
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Figure 1: Overflow of STBPE

tantly, the tokenization strategies underpinning these models—such as Byte-Pair Encoding (BPE)
Sennrich et al. (2015)—enable the effective transformation of high-dimensional and complex data
into discrete token representations, providing a unified semantic space for model understanding and
reconstruction.

In the field of single-cell research, several recent efforts have explored the integration of pre-trained
models with single-cell data, demonstrating the potential for cross-modal and cross-scale model-
ingWang et al. (2025). For instance, scGPT-spatial extends a single-cell foundation model to spatial
transcriptomics data through continual pre-training, validating the applicability of the pre-training
paradigm at the spatial scale Wang et al. (2025). scBERT adopts a BERT-style pre-training frame-
work to model single-cell transcriptomes, thereby improving the accuracy of cell type annotation
Yang et al. (2022). scGPT, inspired by generative large models, exhibits strong transfer learning and
generalization capabilities across diverse single-cell omics tasks Cui et al. (2024). Moreover, Chen
and Zhou explores the direct use of ChatGPT’s embedding capabilities for modeling single-cell data,
further underscoring the potential of natural language pre-training paradigms in single-cell biology
Chen and Zou (2025). Collectively, these studies provide important insights into bridging spatial
single-cell transcriptomics with generative pre-trained models.

Inspired by these advances, we introduce the generative pre-training framework into spatial single-
cell transcriptomics, leveraging encoding strategies such as BPE to transform subcellular-resolution
RNA spatial coordinates and expression features into serialized spatial tokens. This approach not
only maximizes the preservation of RNA spatial organization but also opens up the possibility of
constructing self-supervised learning models with spatial understanding capabilities. Such a cross-
disciplinary integration holds the potential to overcome the limitations of existing methods, offering
a novel perspective for uncovering RNA co-localization relationships and their roles in regulating
cellular identity and disease mechanisms.
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We propose a novel pre-training framework—STBPE (Spatial Transcriptomics Byte Pair Encoding).
As illustrated in Figure 1, the core idea of STBPE is to serialize subcellular-resolution RNA spatial
distributions into spatial token units and to learn their deep embedding representations within a
generative pre-training model.

Specifically, STBPE first employs a Spatial BPE algorithm to segment and merge RNA spatial po-
sitions within a single cell, encoding the original point-like transcript distribution into a sparse yet
structured token sequence (Fig. 1A). This process preserves the relative positional relationships
among RNA molecules, such as distances and angles, thereby distinguishing it from graph-based
approaches that rely solely on topology or adjacency. Next, STBPE adopts training paradigms akin
to Word2Vec/CBOW and BERT-style masked learning to learn contextualized representations of
RNA tokens (Fig. 1B), while constructing a unified RNA token vocabulary and embedding space.
Finally, in downstream applications, STBPE incorporates positional encoding and annotation mod-
ules (Fig. 1C) to support cell type annotation, spatial pattern discovery, and the interpretation of
potential biological mechanisms. Our main contributions are as follows:

• A novel spatial BPE algorithm. Inspired by natural language processing and graph-based
BPE, we propose a new spatial BPE method tailored to sparse RNA distributions. Unlike
traditional graph BPE, which only considers node adjacency, STBPE preserves explicit
distances, angles, and relative positional information between RNA molecules during en-
coding, making it more suitable for modeling subcellular-resolution spatial transcriptomics
data.

• The STBPE pre-training model. We construct and train the STBPE model on large-scale
spatial single-cell transcriptomics data (approximately one million cells). Experiments
demonstrate that our model significantly improves the accuracy of cell type annotation
and exhibits superior robustness and generalization in cross-dataset transfer scenarios.

• New biological insights. By analyzing the learned token representations and relationships
from STBPE, we uncover several RNA co-localization patterns and spatial regulatory sig-
nals closely associated with cellular identity. These findings not only provide new evidence
for cell type discrimination but also offer fresh perspectives for investigating disease-related
spatial transcriptomic abnormalities.

2 RELATED WORK

In spatial and single-cell transcriptomics research, cell type annotation has long been a central task.
In recent years, a variety of deep learning and representation learning approaches have emerged, sig-
nificantly advancing both the accuracy and efficiency of annotation. For example, DSCT proposed
a novel deep learning framework that enables rapid and accurate annotation of spatial transcrip-
tomics cell types Xu et al. (2025). scDOT enhances the robustness of single-cell RNA-seq annota-
tion through a multi-reference integration strategy and is capable of discovering potential new cell
populations Xiong and Zhang (2024). At the subcellular scale, TopACT attempts to classify spa-
tial transcriptomics data within cells by leveraging multi-scale topological features Benjamin et al.
(2024). Meanwhile, structured model designs have also demonstrated unique advantages: Tosica
incorporates Transformers to provide an interpretable, all-in-one solution for cell type annotation
Chen et al. (2023), while TripletCell improves clustering and annotation accuracy by optimizing
the embedding space through a triplet metric learning framework Liu et al. (2023). Despite these
advances, when faced with the complexity of RNA spatial distributions at subcellular resolution,
challenges in generalization and fine-grained modeling still remain.

Multimodal pre-trained models have shown remarkable foresight and potential in artificial intel-
ligence, with their core strength lying in unifying representations across different modalities and
capturing latent cross-modal associations through large-scale self-supervised learning. A key pre-
requisite for achieving joint modeling of complex modalities within a single framework is the trans-
formation of heterogeneous data into a unified token representation, enabling the model to learn
underlying patterns via sequence modeling. Byte-Pair Encoding (BPE) has proven to be an effec-
tive tool for this purpose and has already been extended to non-linguistic domains such as vision
and biology. For example, From Pixels to Tokens transforms quantized image pixels into tokens,
providing new directions for visual generation Zhang et al. (2024); Multidimensional BPE reduces
the sequence length of multi-dimensional data, thereby improving generative efficiency Elsner et al.
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(2024); Unified Multimodal Understanding via Byte-Pair Visual Encoding explores the unification
of vision and other modalities within a shared token space through BPE Zhang et al. (2025); and
GraphBPE pioneers the transformation of molecular graphs into token sequences, enabling molec-
ular generation tasks to benefit from language model paradigms Shen and Póczos (2024). In ge-
nomics, DNABERT leverages the BERT pre-training framework to effectively capture contextual
features of DNA sequences Ji et al. (2021), DNAGPT introduces generative pre-training into ge-
nomic data Zhang et al. (2023), and GROVER demonstrates the ability to learn sequence contexts at
scale on the human genome Sanabria et al. (2024). Collectively, these studies highlight that repre-
senting complex modalities as tokens and modeling them under a unified pre-training paradigm not
only enhances representational power but also opens new avenues for spatial single-cell transcrip-
tomics.

3 PROBLEM DEFINITION

Subcellular resolution spatial transcriptomics data can be formalized as a point set

C = {(gi, xi, yi) | i = 1, 2, . . . , N},

where gi is the gene type of the RNA, (xi, yi) are the 2D coordinate positions, and N is the total
number of RNAs in the cell. This type of data exhibits sparsity, spatial dependence, and multi-
scale colocalization characteristics. Traditional BPE only merges high-frequency symbol pairs in
1D symbol sequences and cannot be directly applied to 2D format RNA data; while GraphBPE
introduces adjacency structures, it often loses continuous geometric information (such as Euclidean
distance and angle) at the subcellular level, making it difficult to characterize complex colocalization
patterns. Therefore, we aim to represent cells as a series of spatial tokens, i.e., learning the mapping

f : C −→ T = {t1, t2, . . . , tM}, M ≪ N,

where each token tj is obtained by aggregating the subset of RNAs it covers Ωj :

tj = ϕ ({(gi, xi, yi) | i ∈ Ωj}) ,

while explicitly preserving the distance between RNAs

dij = ∥(xi, yi)− (xj , yj)∥ ,

and angle

θij = arctan
yj − yi
xj − xi

.

The resulting token sequence not only compresses the sparse RNA distribution but also embeds
spatial and colocalization relationships in the serialized representation, providing more biologically
meaningful input features for pre-trained models.

4 METHOD

We propose a novel pre-training framework, STBPE (Spatial Transcriptomics Byte Pair Encoding),
which transforms subcellular-resolution RNA spatial distributions into structured token sequences
and learns their representations in a unified embedding space. The key innovation lies in the first
component, where we design a new Spatial BPE method specifically tailored for sparse point dis-
tributions. This method segments and merges RNA spots within a single cell to generate sparse
yet structured spatial token sequences, effectively compressing the original RNA point distribution
while preserving relative spatial relationships such as distances and angles—an advantage over con-
ventional graph-based approaches that rely solely on topology or adjacency. Building upon these
token sequences, STBPE adopts training paradigms inspired by Word2Vec/CBOW and BERT-style
masked modeling to learn contextual embeddings of RNA tokens and construct a unified vocabu-
lary and embedding space. Finally, the resulting token embeddings can be applied to a range of
downstream analyses, including cell type annotation, spatial pattern discovery, and the elucidation
of potential biological mechanisms, offering a new methodological perspective for spatial transcrip-
tomics in complex tissue environments.
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4.1 STBPE DETAILED ALGORITHM

The STBPE (Spatial Transcriptomics Byte Pair Encoding) mainly consisting of three core steps: data
preprocessing, statistical high-frequency RNA pair merging, and multiple rounds of iteration. The
algorithm takes single-cell RNA expression data as input, identifies spatially adjacent RNA pairs
through our custom position encoding and direction judgment mechanism, and iteratively merges
high-frequency combinations based on statistical frequency selection. The overall process design
follows a cyclic optimization mode of ”processing merging updating”, gradually optimizing the
spatial distribution of RNA through a preset number of iterations.For the detailed implementation of
the pseudocode, please refer to Appendix D.

4.1.1 DATA PREPROCESSING

To address non-uniform RNA coordinates across cells, we built a preprocessing and grid-
quantization framework that maps intracellular RNA molecules and boundary information to a stan-
dardized grid. Using geometric normalization (e.g., the minimum circumcircle), cells of varying
sizes and positions are aligned to a common coordinate system. A double-layer grid with a greedy,
collision-free assignment ensures each RNA is uniquely placed in a fine grid, while boundary points
use nearest-center alignment to preserve structure. The system supports automated batch processing
across multiple cells and layers, organizes outputs via a hierarchical directory scheme, and main-
tains a global gene dictionary for unique identifiers. A parameter self-optimization mechanism
selects grid settings based on data characteristics, balancing computational efficiency and spatial
resolution.

4.1.2 STATISTICAL ANALYSIS OF HIGH-FREQUENCY RNA FOR MERGING

Because RNA itself has spatial propertiessee Figure 2, when storing RNA pairs, we not only need
to record the distance but also the orientation. To solve this problem, we defined 8 positional rela-
tionships (such as top left, top right, etc.) based on the relative position encoding of RNA in spatial
coordinates, and provided direction reversal function to support symmetric positional relationship
processing. Position encoding adopts formatted binary representation as shown in the Table 1

Relative position Position code
Right 000

Upper right 001
Above 010

Upper left 011
Left 100

Lower left 101
Below 110

Lower Right 111

Table 1: Corresponding table of relative position and position code

At the same time, in order to reflect the specific direction, we designed rectangular distances to
represent the specific direction(see Figure 3 ). the above processing method ensures the clear trans-
mission of direction and distance information and the convenience of subsequent processing,

The merging module is the core of the algorithm, which identifies high-frequency RNA pairs by sta-
tistically analyzing the RNA pair counters generated during the preprocessing stage. For RNA pairs
that meet the merging criteria, the system calculates the mean of their spatial position coordinates
as the new position coordinates and updates relevant attributes. The merging process follows the
strategy of ”keep one line, delete one line” to ensure that data is not added or lost without reason.

4.1.3 MULTIPLE ITERATIONS

The iteration control module manages the execution logic of the entire merge process, ensuring the
stability and repeatability of the algorithm by dynamically creating intermediate output directories,
maintaining merge history records, and controlling the number of iterations. The output data of each
iteration will be used as input for the next iteration, forming a closed-loop optimization process.
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Figure 2: Double RNA Token Demonstration
(Original)

Figure 3: Double RNA Token Demonstration
(Tokenization)

4.2 TRAINING EMBEDDING

In order to better achieve RNA embedding vector training, we have designed a comprehensive im-
plementation scheme aimed at integrating gene expression data with spatial location information
to construct high-quality gene embedding representations. This scheme attempted the CBOW al-
gorithm and Skip gram algorithm, considering their effectiveness and training time. The CBOW
algorithm was chosen for training, and a comparison was made between randomly setting initial
embeddings and loading one hot encoding as initial embeddings. One hot convergence was faster.
The nearest neighbor data was calculated in memory, and the nearest neighbor gene list was ex-
tracted from the processed data to construct a training corpus. During the training process, the loss
was dynamically monitored and the best embedding vector was saved. Additionally, a combination
property regularization mechanism was applied to enhance the combination properties of embedded
RNA. We also attempted to generate positional codes by combining gene spatial location informa-
tion, but the effectiveness was not as good as adding positional information in subsequent training
processes.

4.3 TRAINING MODELS AND PREDICTIONS

We trained a deep learning based cell type classification prediction model that integrates multiple
strategies, including a BPE based gene sequence processing method that optimizes gene feature
representation through two merging mechanisms; Innovatively introducing dual spatial position en-
coding to effectively integrate the spatial coordinate information of genes into the model; Implement
multi-level data augmentation to improve model generalization ability; Using residual network ar-
chitecture to construct a classifier, and combining techniques such as noise addition, regularization,
Dropout, and gradient clipping to prevent overfitting. During the training process, adaptive learning
rate adjustment and early stopping mechanism were applied, and the model was able to map gene
expression data to multiple cell subtypes.

IPE =
∑
i∈x,y

positional encoding(i) + Initial gene embedding (1)

5 EXPERIMENTS

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS AND ABLATION STUDIES ON STBPE

Moffitt et al. (2018) constructed a publicly available benchmark dataset using MERFISH, an
imaging-based method for in situ cell type identification and mapping. This dataset comprises spa-
tially resolved single cells from the mouse hypothalamic preoptic region, providing transcriptomic
profiles and spatial coordinates for approximately one million cells across seven samples, along with
high-confidence cell type annotations. To evaluate the cell annotation performance of STBPE, we
conducted a comprehensive comparison against several state-of-the-art methods on this benchmark
dataset. Specifically, we compared STBPE with STAGC and five recently released spatial clustering
algorithms: DSCT, scDOT, TripletCell, TopACT, and Tosica.
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Table 2: Results on Hypothalamic Preoptic Region Mouse 1 and Hypothalamic Preoptic Region
Mouse 2. We report average ACC, Macro F1 Score (F1), as well as the Adjusted Rand Index (ARI).
We highlight the best and second best mean.

Model Hypothalamic Preoptic Region Mouse 1 Hypothalamic Preoptic Region Mouse 2

ACC F1 ARI ACC F1 ARI

STBPE 0.88± 0.01 0.86± 0.01 0.55± 0.08 0.86± 0.02 0.83± 0.03 0.53± 0.06
Tosica 0.86± 0.02 0.83± 0.03 0.32± 0.13 0.83± 0.03 0.81± 0.02 0.40± 0.09
scDOT 0.84± 0.02 0.81± 0.01 0.37± 0.10 0.83± 0.02 0.80± 0.03 0.41± 0.12
DSCT 0.83± 0.01 0.81± 0.03 0.29± 0.10 0.79± 0.04 0.76± 0.04 0.32± 0.11

TripletCell 0.81± 0.02 0.79± 0.03 0.17± 0.12 0.77± 0.04 0.76± 0.03 0.19± 0.09
TopACT 0.76± 0.03 0.74± 0.03 0.22± 0.13 0.73± 0.05 0.71± 0.06 0.26± 0.10

On both Hypothalamic Preoptic Region Mouse-1 and Mouse-2 datasets, STBPE consistently
achieves the best performance across all metrics. It outperforms Tosica, scDOT, DSCT, TripletCell,
and TopACT, with the highest ACC (0.88/0.86), F1 (0.86/0.83), and ARI (0.55/0.53), demonstrating
superior accuracy and robustness in cell type annotation.

Table 3: Ablation study on embedding dimension and positional encoding.
(128/256/512 denote the size of token embeddings, and “Position” indicates the use of positional
encoding.)

Model Hypothalamic Preoptic Region Mouse 1 Hypothalamic Preoptic Region Mouse 2

ACC F1 ARI ACC F1 ARI

STBPE-128 0.81± 0.02 0.80± 0.01 0.49± 0.05 0.80± 0.02 0.76± 0.02 0.49± 0.06
STBPE-256 0.85± 0.01 0.84± 0.03 0.51± 0.06 0.84± 0.01 0.81± 0.02 0.51± 0.08
STBPE-512 0.83± 0.02 0.82± 0.01 0.46± 0.10 0.81± 0.02 0.78± 0.04 0.47± 0.10
STBPE-256-

Position 0.88± 0.01 0.87± 0.01 0.55± 0.08 0.86± 0.02 0.83± 0.03 0.53± 0.06

The ablation study shows that embedding size and positional encoding are critical to STBPE’s per-
formance. Among different embedding dimensions, 256 achieves the best overall results (ACC
0.88/0.86, F1 0.87/0.83, ARI 0.55/0.53). Larger (512) or smaller (128) embeddings perform slightly
worse, while removing positional encoding leads to a clear drop across all metrics, confirming the
importance of spatial information.

We further conducted an ablation study to examine the effect of varying the number of nearest
neighbors during token embedding training. This analysis allows us to assess how local contextual
information influences model performance. The detailed results are provided in Appendix E.

5.2 STBPE UNCOVERS CELL-TYPE-SPECIFIC SPATIAL TOKENS

In Figure 4, we visualize how STBPE transforms sparse RNA distributions into structured spa-
tial tokens that correspond to distinct cell types and functional modules. For instance, astrocytes
are captured by the token Aqp4+Cxcl14, highlighting the coupling between glial identity and im-
mune chemokine signals; pericytes are represented by tokens such as Rgs5+Vtn and Flt1+Rgs5,
reflecting their role in vascular stability and angiogenesis; excitatory cortical neurons are marked
by Satb2+Tle4, while layer-specific projection neurons are characterized by Ptprk+Rorb; and mi-
croglia are revealed through Clq1+Slc30a3, indicating spatial interplay between immune regulation
and synaptic activity. Moreover, novel tokens like Ndnf+Wipf3 and Parm1+Slc22a3 suggest previ-
ously underappreciated co-localization patterns, demonstrating that STBPE not only recovers known
cell-type markers but also uncovers new spatial gene associations with potential biological relevance.
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Figure 4: STBPE transforms sparse RNA distributions into structured spatial tokens linked to dis-
tinct cell types and functions.

Figure 5: important tokens identified by IG analysis for four representative cell types (all cell and
Endo cell)

5.3 INTERPRETABILITY ANALYSIS OF TOKEN IMPORTANCE USING THE INTEGRATED
GRADIENTS (IG) METHOD

To better understand how STBPE contributes to cell classification, we perform an interpretability
analysis using the Integrated Gradients (IG) method. This approach quantifies the contribution of
each token to the model’s predictions, allowing us to identify the most informative tokens and un-
cover biologically meaningful gene co-localization patterns.

Figure 5 presents the interpretability analysis of token importance using Integrated Gradients (IG).
The top 30 most important tokens in the overall cell classification task (Figure 5.a) reveal that several
higher-order tokens—such as (Slc30a3+Wipf3)+Slc30a3 and (Slc30a3+Wipf3)+Cux2—achieve the
highest importance scores, surpassing most pairwise or single-gene tokens. This indicates that com-
positional tokens integrating multiple RNA signals capture richer spatial and functional contexts,
which are critical for distinguishing fine-grained cell identities. For endothelial cells (Endo) (Figure
5.b), tokens such as (Cldn5+Flt1)+Cldn5 and Cldn5+Timp3 dominate, reflecting the role of Cldn5
and Flt1 as canonical endothelial markers of vascular integrity and angiogenic signaling. These

8
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Figure 6: 2D visualization reveals the spatial proximity of tokens with high biological relevance.

analyses demonstrate that higher-order tokens capture biologically coherent co-localization patterns,
integrating cell-type markers with regulatory and signaling genes, thereby offering mechanistic in-
sights into cellular identity. Additional examples of cell-type-specific key tokens are provided in the
Appendix G.

5.4 VISUALIZATION OF SPATIAL TOKEN EMBEDDINGS

To further examine whether STBPE embeddings capture biologically meaningful struc-
tures(Figure 6), we projected the 256-dimensional RNA token embeddings into a 2D space for
visualization. Figure 6 presents the resulting distribution, where tokens with functional or spa-
tial relevance cluster together. The orange zoom-in panel highlights a trajectory from Cxcl14 to
Cxcl14+Sulf2 to Sulf2, illustrating how merged tokens naturally bridge their component genes
and reflect the coupling between immune chemokine signaling and developmental regulation. The
blue zoom-in panel shows that tokens with related biological semantics tend to cluster, such as
(Cldn5+Flt1)+Cldn5 and Clnd5+Timp3 (endothelial barrier and remodeling), or Rgs5+Vtn and
Gfap+Timp3 (vascular and pericyte–astrocyte interactions). These results demonstrate that the em-
bedding space organizes tokens into biologically coherent modules, with higher-order tokens serving
as bridges that encode multi-gene co-localization patterns.

6 CONCLUSION

In this work, we introduced STBPE, a generative pre-training framework that transforms subcellular-
resolution RNA spatial distributions into spatial tokens while explicitly preserving relative posi-
tional relationships such as distances and angles. Through comprehensive experiments, we demon-
strated that STBPE consistently improves cell type annotation accuracy, generalizes robustly across
datasets, and uncovers biologically meaningful co-localization patterns that extend beyond con-
ventional markers. Furthermore, interpretability analyses reveal that higher-order tokens capture
coherent regulatory modules, offering new insights into the molecular basis of cellular identity and
disease mechanisms. Looking ahead, STBPE provides a foundation for constructing multimodal
pre-trained models that integrate spatial transcriptomics with other omics and imaging modalities,
thereby opening new avenues for biological discovery and translational medicine.
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Shen, Y. and Póczos, B. (2024). Graphbpe: Molecular graphs meet byte-pair encoding. arXiv
preprint arXiv:2407.19039.
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D ALGORITHM 1 STBPE (SPATIAL TRANSCRIPTOMICS
BYTE-PAIR-ENCODING)

Algorithm 1 STBPE (Spatial Transcriptomics Byte Pair Encoding)
Require: Cell database (RNA groups by cell), Number of merges K
Ensure: Vocabulary V (initial + merged RNAs), Merge rules R (with spatial info)

1: for each cell in database do
2: Sort RNAs ▷ Prevent merge ambiguity
3: end for
4: V ← {unique RNAs in database}
5: freq← {RNA frequency counts}
6: R← {id,RNA, position,H*W}
7: for i← 1 to K do
8: pair freq← {}
9: for each cell in database do

10: for each RNA r in cell do
11: n← FindNearestRNA(r, cell) ▷ Euclidean distance
12: pair← (r, n)
13: pair freq[pair]← pair freq.get(pair, 0) + freq[r]
14: end for
15: end for
16: if pair freq is empty then break
17: end if
18: best← argmaxp∈pair freq pair freq[p]
19: v ← Concatenate(best[0], best[1])
20: V.add(v)
21: R[best]← {order : i, names : best,
22: orientation : CalculateOrientation(best),
23: size : CalculateSize(best)}
24: freq← {rna : f | (rna, f) ∈ freq, rna /∈ best}
25: freq[v]← pair freq[best]
26: end for
27: return V,R
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E ABLATION ON NEAREST NEIGHBOR SIZE IN TOKEN EMBEDDING

Figure 7: Enter Caption

Impact of varying the number of nearest neighbors during token embedding training. We evaluated
neighbor sizes of 3, 4, 5, 6, 8, 10, 12, and 20 on two benchmark samples. The results show that
increasing the number of neighbors generally enriches contextual information and improves model
performance, with Nearest-5 achieving the best overall scores (Sample 1: ACC = 0.88, F1 = 0.87,
ARI = 0.55; Sample 2: ACC = 0.86, F1 = 0.83, ARI = 0.53). However, when the neighbor size
becomes too large, the benefit diminishes and performance declines, likely due to informative signals
being diluted across excessive neighbors.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

F OVERVIEW OF THE MOUSE HYPOTHALAMIC PREOPTIC REGION DATA

Figure 8: Cell type composition in Sample 1 of the mouse hypothalamic preoptic region dataset.

Figure 9: Top 30 most abundant RNA species in Sample 1.
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Figure 10: Top 50 most frequent tokens after STBPE tokenization in Sample 1.

Figure 11: Top 30 most frequent binary tokens after STBPE tokenization in Sample 1.
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G APPENDIX D CELL-TYPE-SPECIFIC STRONGLY ASSOCIATED TOKENS
IDENTIFIED BY IG ANALYSIS

Figure 12: Key tokens of neuron-associated cells reveal cell-type-specific molecular co-localization
patterns

Top 20 important tokens identified by IG analysis for four representative cell types (VLMC, Vip,
Sncg, and Sst). The IG analysis highlights cell-type-specific token importance patterns. For VLMCs
(vascular and leptomeningeal cells), tokens such as Igfbp6+Wnt7b and Igf2+Vtn dominate, reflect-
ing their roles in extracellular matrix organization and vascular support. For Vip interneurons, to-
kens including Cxcl14+Wnt7b and (Slc30a3+Wipf3)+Cux2 are enriched, suggesting the interplay
between chemokine signaling and neuronal differentiation programs. For Sncg neurons, tokens such
as Trp53i11+Wipf3 and Slc32a1+Wipf3 appear as key drivers, pointing to regulatory and synaptic
scaffolding factors crucial for neuronal identity. For Sst interneurons, tokens like Slc32a1+Wipf3
and (Slc30a3+Wipf3)+Cux2 are most important, indicating a convergence of synaptic regulation
and transcriptional control in defining inhibitory interneuron subtypes. Collectively, these results
demonstrate that IG analysis reveals biologically coherent and cell-type-specific multi-gene token
patterns, offering interpretable insights into the molecular basis of cell identity.
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Figure 13: Top 20 important tokens identified by IG analysis for four representative cell types (SMC,
PWM, Pvalb, and Peri).

Description. The IG analysis highlights key token patterns that are highly specific to vascular-
and neuron-associated cells. For smooth muscle cells (SMC), tokens such as Igf2+Vtn and
Vtn+Vtn dominate, reflecting their central role in extracellular matrix organization, vascular con-
tractility, and structural support. For perivascular macrophages (PWM), important tokens include
(Slc30a3+Wipf3)+Cux2 and Cldn5+Timp3, which indicate interactions between immune regula-
tion, vascular barrier integrity, and transcriptional control. In parvalbumin interneurons (Pvalb),
tokens such as Slc32a1+Wipf3 and Sulf2+Wnt7b are most important, emphasizing the role of in-
hibitory synaptic transmission and Wnt-mediated developmental pathways. For pericytes (Peri),
tokens like Vtn and (Vtn+Vtn)+Rgs5 stand out, underscoring their function in vascular stability and
vessel–matrix interactions. Collectively, these results suggest that STBPE captures biologically co-
herent, cell-type-specific co-localization patterns, integrating canonical markers with regulatory and
signaling genes to reveal deeper insights into vascular and neuronal cell identities.
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Figure 14: Top 20 important tokens identified by IG analysis for four representative cell types
(Lamp5, OPC, Oligo, and Micro).

The IG analysis reveals token patterns reflecting the molecular basis of glial and immune-related
cell identities. For Lamp5 interneurons, tokens such as Slc32a1+Wipf3 and Sulf2+Wnt7b dom-
inate, highlighting the importance of inhibitory synaptic regulation and developmental signaling
in these specialized interneurons. For oligodendrocyte precursor cells (OPC), key tokens include
Sulf2+Wnt7b and Pdgfra+Sulf2, consistent with their roles in differentiation and developmental
signaling pathways. For oligodendrocytes (Oligo), the most important tokens are Sulf2+Wnt7b and
Marcks1+Wnt7b, reflecting the integration of Wnt-mediated differentiation signals with membrane-
associated scaffolding crucial for myelination. For microglia (Micro), tokens such as Ctss,
Sulf2+Wnt7b, and Rorb+Wnt7b dominate, pointing to immune and proteolytic functions (Ctss), de-
velopmental signaling (Wnt7b), and transcriptional regulation (Rorb) as key drivers of microglial
identity. Collectively, these results demonstrate that STBPE captures biologically coherent and
cell-type-specific co-localization modules across inhibitory neurons, glial cells, and immune cells,
thereby enhancing interpretability of spatial transcriptomics data.
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Figure 15: Top 20 important tokens identified by IG analysis for four excitatory neuron subtypes
(L6 CT, L5/6 NP, L6b, and L6 IT Car3).

The IG analysis highlights subtype-specific molecular signatures within deep-layer excitatory
neurons. For L6 corticothalamic neurons (L6 CT), tokens such as (Slc30a3+Wipf3)+Slc30a3
and Sulf2+Wnt7b dominate, reflecting the importance of synaptic scaffolding and Wnt signal-
ing in corticothalamic specification. For L5/6 near-projecting neurons (L5/6 NP), tokens like
Trp53i11+Wipf3 and Tnc+Z (with Sulf2+Wnt7b also enriched) indicate regulatory and extracel-
lular matrix–associated signals essential for projection neuron identity. For L6b neurons, key tokens
include Sulf2+Wnt7b and Trp53i11+Wipf3, pointing to the convergence of developmental cues and
transcriptional regulation in this distinct late-born cortical population. For L6 IT Car3 neurons, to-
kens such as (Slc30a3+Wipf3)+Cux2 and Ptpn4+Wnt7b are most important, highlighting transcrip-
tional regulators and Wnt signaling modules that underlie intratelencephalic projection. Collectively,
these results suggest that STBPE uncovers biologically coherent, subtype-specific co-localization
patterns, providing mechanistic insights into the molecular programs that diversify cortical excita-
tory neurons in deep layers.
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