DAWZY: A New Addition to AI powered '"Human in
the Loop'' Music Co-creation

Aaron C Elkins Sanchit Singh Adrian Kieback
San Diego State University San Diego State University ~ San Diego State University
aelkins@sdsu.edu ssingh1949@sdsu.edu akieback@sdsu.edu
Sawyer Blankenship Uyiosa Philip Amadasun Aman Chadha*
San Diego State University San Diego State University San Diego State University
sablankenship@ucdavis.edu uamadasun@sdsu.edu hi@aman.ai
Abstract

Digital Audio Workstations (DAWSs) offer fine control, but mapping high-level
intent (e.g., “warm the vocals”) to low-level edits breaks creative flow. Existing
artificial intelligence (AI) music generators are typically one-shot, limiting oppor-
tunities for iterative development and human contribution. We present DAWZY, an
open-source assistant that turns natural-language (text/voice/hum) requests into
reversible actions in REAPER. DAWZY keeps the DAW as the creative hub with a
minimal GUI and voice-first interface. Its LLM-based code generation replaces
complex menus with a simple chat box, reducing time spent learning interfaces.
DAWZY also uses three Model Context Protocol tools for live state queries, param-
eter adjustment, and Al beat generation. It maintains grounding by refreshing state
before mutation; and ensures safety and reversibility with atomic scripts and undo.
In evaluations, DAWZY performed reliably on common production tasks and was
rated positively by users across Usability, Control, Learning, Collaboration, and
Enjoyment. We show reliability on common production tasks; code and a short
demo are available.

1 Introduction

Modern music production centers on Digital Audio Workstations (DAWSs) [Leider| [2004]], which
democratize pro-quality creation but burden users with option overload that disrupts flow [Kjus|
2024]. A gap persists between high-level intent (e.g., “make the vocals warmer”) and the low-level
steps to realize it.

Prior work points to a path forward: mature DAW scripting (Ableton’s Max for Live/Live API
[Ableton, |2024], REAPER’s ReaScript/JSFX [Cockos Incorporated, 2024]), co-creative agents inside
production loops (e.g., Juice [Bricard et al., [2024]), fully generative systems largely outside fine-
grained editing (e.g., Suno [Sunol 2024]]), advances in code generation [Chen et al.l 2021]], and
standardized tool invocation via the Model Context Protocol (MCP) [Anthropic| 2024, |[Hou et al.,
2025]).

We introduce DAWZY, an open-source assistant that maps natural-language requests to precise,
context-aware, reversible ReaScript actions in REAPER. DAWZY queries live session state, emits
auditable edits, and favors a minimal-GUI, voice-first workflow with plain-language explanations to
support learning. It primarily interacts with REAPER through LLM code generation. Ableton-MCP
[Ableton, 20235]] is an open-source, similar but less powerful tool that allows LLMs to c the Ableton
Live API. Related efforts (e.g., Mozart Al [Mozart Al 2025]]) explore closed-source adjacent ideas;
DAWZY emphasizes open-source availability and ReaScript-specific reliability, complementing
rather than replacing existing tools.

*Work done outside role at Amazon.
ZResources: Code (anonymous)| Demo (anonymous)

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al for Music.

https://anonymous.4open.science/r/DAWZY-92BE/README.md
https://www.youtube.com/watch?v=RQmCuYLkEDk

Primary Contributions

* System design & open-source prototype. REAPER-targeted pipeline mapping natural language
to safe, reversible ReaScript grounded in live state (Sec.[2).

* MCP tool suite. Permissioned tools for state query, unit-consistent FX parameter adjustment, and
Al beat generation; supports future cross-DAW portability (Sec. [2.2).

* Minimal-GUI, voice-first interaction. Natural-language control with buttons for common
tasks(“start,” “stop,” “record,” “undo”) to reduce GUI micromanagement (Sec.[2.1).

» Explain-as-you-go pedagogy. Plain-language rationales accompany each edit to support learning
and auditability.

* ReaScript-focused model adaptation. Plan to fine-tune an open-source LLM for reliable REAPER
code generation (Sec. f).

2 DAWZY Architecture

DAWZY comprises three layers (Figure : User Interaction, Processing, and Execution, which
capture natural-language intent, interpret it, and translate it into precise DAW operations.

2.1 User Interaction Layer

The User Interaction Layer is a minimal-GUI entry point for expressing intent via text, speech,
or humming, mediated by an Electron.js app [[OpenJS Foundation, [2024]]. Given the complexity
of traditional DAW interfaces, DAWZY prioritizes direct, natural-language control to reduce GUI
micromanagement. (1) Text — Users type commands/questions in Electron; queries are forwarded
as text. (2) Speech - Spoken commands are transcribed by Whisper [Radford et al., |2022]] and
follow the same downstream path (hands-free). (3) Humming - A “record hum” button captures
sketches; a local BasicPitch pipeline [Spotify, Bittner et al.l 2022a]] converts audio to MIDI, which is
auto-imported into REAPER as a new track.

2.2 Processing Layer

The Processing Layer turns user input into context-aware DAW operations. Off-the-shelf LLM
approaches often hallucinate commands, mis-index tracks/parameters, or ignore live state. DAWZY
constrains behavior via a reliable LLM, and context grounding.

* Electron gateway. Routes all queries to the LLM and returns responses/confirmations; hummed
audio is sent to the hum-to-MIDI pipeline.

* LLM. We use OpenAl GPT-5 [OpenAll [2025alb] to interpret intent, call MCP tools, and emit Lua
ReaScript. Open-source baselines (e.g., Qwen3-Coder-480B-A35B-Instruct [Qwen Team)| [Team,
2023])) underperformed, frequently producing invalid indices when the full context (track/parameter
mappings) was not considered; GPT-5 generated reliable edits.

* Model Context Protocol (MCP). Exposes DAW capabilities as explicit, permissioned functions
between the LLM and REAPER:

— State query. Enumerates tracks, items, FX, and routing to ground edits in live session state and
keep tool calls synchronized.

— FX parameterization (fxparam). Converts human units (dB, ms) to ReaScript slider ranges
(e.g., 0—1, 0-4) to prevent scaling errors. Code generation failed here because the LLM could
not reliably convert between units.

— Beat generation. Meta’s MusicGen-small (300M) model is run locally to create an audio
waveform based on a text description [Meta Al [Copet et al.,|[2023].

* Hum to MIDI. The open-source Spotify BasicPitch model is run locally to convert hums into
MIDI data [Spotity, Bittner et al., | 2022b].

N
‘ User

I
T
DAW Command / Question (Text)

DAW Command / Question (Speech) HUmmlng Audio

Hum-to-MIDI

[Electron.js APP ’

User Interaction Layer

Speech-to-Text

L Text Command / Query ’

7S

Text Response ‘(o User’ [

Processing Layer User's Query
v

LLM
‘ (Determines user intent and calls MCP to execute tasks or generate content.) ’

A
Execution Result / State

I

Generate Music from Text Prompt

I
Tool Call

Request DAW State

Adjust Parameter Values

Execution Result
/ State Data

[Text-to-Music Model {Hum-to-MlDl Model

Generated Audio (WAV) MIDI DATA
A4
Execution Layer Y
g FX Param Script Get State Script Add Track Script
Execute Dynamic Generated |
ReaScript T +
Apply FX parameters Request DAW State
v
[Reaper DAW ‘

Figure 1: DAWZY Architecture. User intent (text/speech/hum) flows through the Electron gateway
to the LLM and MCP tools, then executes as reversible ReaScripts in REAPER. Rounded rectangles
denote AI/MCP components; sharp rectangles denote DAW/runtime components; dashed arrows
indicate data queries; solid arrows indicate state-changing actions.

2.3 Execution Layer

The Execution Layer (Figure[T)) performs edits in REAPER safely, reversibly, and transparently by
grounding actions in live project state. (1) ReaScript actuation - GPT-5 generates Lua that ReaPy
executes to modify the project; changes are reversible. (2) Utility scripts - Specialized scripts handle
(i) FX parameter updates, (ii) project-state summaries, and (iii) audio/MIDI import as new tracks.

3 Evaluation

We evaluate DAWZY using both objective and qualitative performance tasks, as well as subjective
user ratings.

3.1 Objective Evaluation

To test reliability, we designed four reproducible tasks: (1) Multi-instruction FX processing —
"Double the first track’s volume, increase the decay, and set the attack to 10 ms," (2) GUI navigation
— "Open the FX browser for the first track," (3) Workflow automation — "Duplicate the first track,
pitch it up one octave, and blend it in at 20%," and (4) Educational interaction — "What does
attack time do in the second track’s compressor?". Building on the four tasks, we ran 3 trials per
task for 4 different LLMs. Open-source baselines (QWEN-480B, GPT-OSS-120B, GPT-OSS-20B)
achieved only 25-50% success, often failing due to hallucinated or invalid ReaScript functions and
mis-indexed parameters. All models did however pass all 3 trials on the Education task.

3.2 Ableton-MCP Comparison

We compared DAWZY and Ableton-MCP on three qualitative tasks: "Make notes slide into each
other" (Wavy), "Make the track bouncy" (Bouncy), and "Make the track fade" (Fade). Success was
determined by perceived audio changes or external validation (Google/ChatGPT). Both systems
used Claude Sonnet 4.5. DAWZY (REAPER with custom prompt) encountered 3 execution errors
on Fade but otherwise performed successfully. Ableton-MCP (Ableton Live via Claude Desktop)
failed Wavy and Fade due to reported API limitations for modifying notes and volume. For Bouncy,
it either incorrectly claimed success or created new segments instead of modifying existing ones.
DAWZY’s superior performance likely reflects Claude’s pre-training on REAPER’s publicly available
documentation, whereas Ableton Live’s API is newer and underrepresented in training data. Based of
this result we expect similar results for open-source models like GPT-OSS-120B.

Task DAWZY Ableton-MCP
Wavy 3 0
Bouncy 1 0

Fade 0 0
Success Rate 44% 0%

Table 1: Task success comparison. Scores denote successful trials out of three attempts per task.
3.3 Subjective Evaluation (MOS Test)

We conducted a Mean Opinion Score (MOS) test with 2/ participants, who rated DAWZY’s
Enjoyment as 4.48, Learning as 4.38, Collaboration as 4.29, Usability as 4.14, and Control as 3.81
out of 5.

DAWZY System Evaluation: Mean Opinion Scores

n = 21 responses
5‘ —‘7 .

IS

Mean Opinion Score
w

Usability Control Learning Collaboration Enjoyment
Evaluation Criteria

Figure 2: Mean Opinion Score (MOS) results for DAWZY (N=21). All categories scored above
neutral (3).

4 Conclusion

DAWZY shows that natural-language control can enhance—not replace—human creativity in music
software. By combining state tracking with context-aware code generation, it makes precise, reversible
edits while keeping users in control. Current limitations stem from software-specific scripting
languages and the need to adapt our system for each music program; our prototype focuses on core
functions rather than advanced plugin features. As music software expands scripting capabilities

Ableton AG|[2025]] and Al code generation improves [Alenezi and Akour, [2025], p. 2], we expect
wider adoption in professional settings. Our key contribution is transparency: users can see and
modify what the system does. Next steps: (i) qualitative user studies, (ii) training or finetuning
models specifically for more accurate music software scripting, and (iii) supporting scriptable DAWs
beyond REAPER. We invite the community to try our demo and collaborate on this open framework
for natural-language creative software control.

References
Colby N. Leider. Digital Audio Workstation. McGraw-Hill, Inc., USA, 1 edition, 2004. ISBN 0071422862.

Yngvar Kjus. The platformization of music production: How digital audio workstations are turned into platforms
of labor market relations. New Media & Society, 2024. doi: 10.1177/14614448241304660. First published
online December 11, 2024.

Ableton. Ableton reference manual, version 12 — max for live, 2024. URL https://www.ableton.com/en/
manual/max-for-live/. Accessed 2025-08-18.

Cockos Incorporated. Reascript documentation. https://www.reaper.fm/sdk/reascript/reascript,
phpl 2024. Accessed 18 Aug 2025.

S. Bricard, F. D’Errico, M. Devis, A. Bitton, D. ADC, and E. Vincent. Juice: A framework for co-creative agents
in digital audio workstations. arXiv:2402.19323,2024. URL https://arxiv.org/abs/2402.19323,

Suno. Suno. https://suno.com/, 2024. Accessed 18 Aug 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, and et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374,2021. URL https://arxiv.org/abs/2107.03374.

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol| 2024. Accessed 18 Aug 2025.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape, security
threats, and future research directions, 2025. URL https://arxiv.org/abs/2503.23278,

Ableton. Abletonmcp overview. https://deepwiki.com/ahujasid/ableton-mcp, 2025.

Mozart Al. Mozart ai — ai-powered music production daw, 2025. URL https://getmozart.ai/. Product
site; Accessed 2025-08-18.

OpenlJS Foundation. Electron. https://www.electronjs.org/, 2024. Accessed 18 Aug 2025.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356, 2022. doi: 10.48550/
arXiv.2212.04356. URL https://arxiv.org/abs/2212.04356,

Spotify. Basic pitch — about. https://basicpitch.spotify.com/about, Product page; accessed 18 Aug
2025.

Rachel M. Bittner, Juan José Bosch, David Rubinstein, Gabriel Meseguer-Brocal, and Sebastian Ewert. A
lightweight instrument-agnostic model for polyphonic note transcription and multipitch estimation. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Singapore, 2022a.

OpenAl. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025a. Accessed 18 Aug
2025.

OpenAl. Gpt-5 system card. https://openai.com/index/gpt-5-system-card/, 2025b. Accessed 18
Aug 2025.

Qwen Team. Qwen3 models — hugging face collection. https://huggingface.co/collections/Qwen/
qwen3-67dd247413f0e2e4£653967f. Collection page; accessed 18 Aug 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388,

Meta Al. facebook/musicgen-small. https://huggingface.co/facebook/musicgen-small. Hugging
Face model card; accessed 18 Aug 2025.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. Simple and controllable music generation. Advances in Neural Information Processing Systems,
36:47704-47720, 2023.

Rachel Bittner, Min Kim, Juan José Bosch, Aren Jansen, Gordon Wichern, and Longshaop Hantrakul. A
lightweight polyphonic pitch transcription model. arXiv preprint arXiv:2203.09893, 2022b. URL https:
//arxiv.org/abs/2203.09893|

Ableton AG. Ableton live 12. https://www.ableton.com/, 2025. Accessed 18 Aug 2025.

Mamdouh Alenezi and Mohammed Akour. Ai-driven innovations in software engineering: A review of current
practices and future directions. Applied Sciences, 15(3):1344, 2025. doi: 10.3390/app15031344. URL
https://www.mdpi.com/2076-3417/15/3/1344,

https://www.ableton.com/en/manual/max-for-live/
https://www.ableton.com/en/manual/max-for-live/
https://www.reaper.fm/sdk/reascript/reascript.php
https://www.reaper.fm/sdk/reascript/reascript.php
https://arxiv.org/abs/2402.19323
https://suno.com/
https://arxiv.org/abs/2107.03374
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://arxiv.org/abs/2503.23278
https://deepwiki.com/ahujasid/ableton-mcp
https://getmozart.ai/
https://www.electronjs.org/
https://arxiv.org/abs/2212.04356
https://basicpitch.spotify.com/about
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-5-system-card/
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://arxiv.org/abs/2505.09388
https://huggingface.co/facebook/musicgen-small
https://arxiv.org/abs/2203.09893
https://arxiv.org/abs/2203.09893
https://www.ableton.com/
https://www.mdpi.com/2076-3417/15/3/1344

	Introduction
	DAWZY Architecture
	User Interaction Layer
	Processing Layer
	Execution Layer

	Evaluation
	Objective Evaluation
	Ableton-MCP Comparison
	Subjective Evaluation (MOS Test)

	Conclusion

