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Abstract

Offline model selection (OMS), that is, choos-
ing the best policy from a set of many policies
given only logged data, is crucial for applying
offline RL in real-world settings. One idea that
has been extensively explored is to select poli-
cies based on the mean squared Bellman error
(MSBE) of the associated Q-functions. However,
previous work has struggled to obtain adequate
OMS performance with Bellman errors, leading
many researchers to abandon the idea. To this end,
we elucidate why previous work has seen pes-
simistic results with Bellman errors and identify
conditions under which OMS algorithms based
on Bellman errors will perform well. Moreover,
we develop a new estimator of the MSBE that is
more accurate than prior methods. Our estimator
obtains impressive OMS performance on diverse
discrete control tasks, including Atari games.

1. Introduction

Offline reinforcement learning (RL) (Ernst et al., 2005;
Levine et al., 2020) focuses on training an agent solely
from a fixed dataset of environment interactions. By not
requiring any online interactions, offline RL can be applied
to real-world settings, such as autonomous driving (Yu et al.,
2020) and healthcare (Weltz et al., 2022), where online data
collection may be expensive or unsafe but large amounts of
previously-logged interactions are available.

While there has been a recent surge of methods that can train
an agent offline (Fu et al., 2020; Gulcehre et al., 2020), such
methods typically tune their hyperparameters using online
interactions, which undermines the aim of offline RL. To
this end, we focus on the problem of offline model selection
(OMS), that is, selecting the best policy from a set of many
policies using only logged data. Common OMS approaches
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are based on off-policy evaluation (OPE) algorithms that
estimate the expected returns under a target policy using
only offline data (Voloshin et al., 2021b). Unfortunately,
such estimates are often inaccurate (Fu et al., 2021). As
an alternative, many works have explored using empirical
Bellman errors to perform OMS, but have found them to
be poor predictors of value model accuracy (Irpan et al.,
2019; Paine et al., 2020). This has led to a belief among
many researchers that Bellman errors are not useful for
OMS (Géron, 2019; Fujimoto et al., 2022).

To this end, we propose a new algorithm, Supervised Bell-
man Validation (SBV), that provides a better proxy for the
true Bellman errors than empirical Bellman errors. SBV
achieves strong performance on diverse tasks ranging from
healthcare problems (Klasnja et al., 2015) to Atari games
(Bellemare et al., 2013). In contrast, competing baselines
suffer from limitations that hinder real-world applicabil-
ity and perform no better than random chance on certain
tasks. In addition to demonstrating the potential utility
of Bellman errors in OMS, we also investigate when they
are effective by exploring the factors most predictive of
their performance. Our investigations help explain why
Bellman errors have achieved mixed performance in the
past, provide guidance on how to achieve better perfor-
mance with these errors, and highlight several avenues
for future work. Finally, we open-source our code at
https://github.com/jzitovsky/SBV. To help
others conduct experiments on Atari, our repository includes
over 1000 trained Q-functions as well as efficient implemen-
tations for several deep OMS algorithms (Appendix A.2).

2. Preliminaries
2.1. Offline Reinforcement Learning

In offline RL, we have a static dataset D = {(s,a,r,s')}
of transitions, where we observe the reward r and next
state s’ after taking action a on state s. We assume
the data comes from a Markov decision process (MDP)
M = (S, A,T,R,dy,~) (Puterman, 1994) with state and
action space S and A, transition probabilities T'(s’|s, a),
rewards R(s,a,s’) = r, initial state probabilities do(so)
and discount factor v € [0, 1). Throughout we assume that
A is discrete. Our proposed method has limited applica-
bility in continuous control problems for reasons discussed
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in Appendix F.1, though we discuss potential extensions to
overcome this limitation in Section 6. We assume that the
observed state-action pairs in D are identically distributed
as P*(s,a) = d"(s)u(a|s) where s is the behavioral policy
and d* is the marginal distribution of states over time points
induced by policy ¢ and MDP M (Levine et al., 2020).

A Q-function is any real-valued function of state-action pairs.
One such Q-function is the action-value function for policy
7, Q™ (s,a) = Ex[> ogV Re|So = s,Ap = a], where
E.. denotes expectation over MDP M and policy 7 !. The
optimal policy 7* is a policy whose action-value function
equals the optimal action-value function Q*. Tt is well-
known that 7* = 7o~ where mg(s) = argmax,(Q(s,a) is
the greedy policy of Q-function () (Sutton & Barto, 2018).

Our paper focuses on the offline model selection (OMS)
problem where we have a candidate set Q = {Q1,...,Qum },
or set of estimates for Q*, and our goal is to choose the
“best” among them based on some criterion. For example,
Q1, ..., Qs can be obtained by running a deep RL (DRL)
algorithm (Arulkumaran et al., 2017) for M iterations and
evaluating the Q-Network after each iteration, or it can
be obtained by running M different DRL algorithms to
convergence. Moreover, the number of candidates M need
not be fixed in advance. For example, if one evaluated
all the value models in Q and determined that none were
adequate, one could then augment Q with more Q-functions
obtained by running more DRL algorithms and evaluate
those Q-functions as well.

2.2. Bellman Errors

For any Q-function @, the Bellman operator B* satisfies:

B*Q(s,a) = E | Ry + ymax Q(Si41,a")|S: = 5, Ay = a|.
(H

It is known that Q = B*Q if and only if ) = Q* (Sutton
& Barto, 2018). The function (B*Q)(s, a) is known as the
Bellman backup of Q-function @ and (Q — B*Q)(s, a) is
known as its Bellman error. As the Bellman errors are
zero uniquely for QQ*, a reasonable approach is to assess
candidates Q,,,1 < m < M via their mean squared
Bellman error (MSBE):

Eapre [(@m(s.a) = (B'Qu)(s,0)]. @

Unfortunately, directly estimating the MSBE from our
dataset D is not straightforward. For example, consider
the empirical mean squared Bellman error (EMSBE):

2
Ep [(Qm(s,a) —T—vglg;;@m(é"va’o ] N E))

"Many works define Q-functions akin to action-value functions
but also refer to their estimates as Q-functions. To avoid confusion,
we define a Q-function as any function of the state-action.

where Ep denotes the empirical expectation over observed
transitions (s, a,r,s’) € D. Empirical Bellman errors re-
place the true Bellman backup with a single sample boot-
strapped from the observed dataset. Unless the environment
is deterministic, the EMSBE will be biased for the true
MSBE (Baird, 1995; Farahmand & Szepesvari, 2010).

Fitted Q-Iteration (FQI) (Ernst et al., 2005) and the DQN
algorithm (Mnih et al., 2015) perform updates:

2
Q¥+  argminEp {(f(s7 a) —r —ymax Q¥ (s, a’)) } .
f o

The terms Q*+V)(s,a) — r — ymax, Q¥ (s, a’) are of-
ten referred to as empirical Bellman errors as well, with
the true Bellman error being e*t1) = Q*+1) — B*Q(k),
We refer to e(*11) as a fixed-target Bellman error, as the
Bellman backup B*Q*) remains fixed while the Q-function
Q(k’*l) is being evaluated. In contrast, our version of the
Bellman error evaluates a Q-function by taking the differ-
ence between itself and its own Bellman backup, i.e. it
is a variable-target Bellman error. Unlike variable-target
Bellman errors, fixed-target Bellman errors can be reliably
replaced by their empirical counterparts, at least when using
them for model training. As a result, FQI updates will often
do a good job at minimizing the true fixed-target Bellman
errors e*T1) as well. Differences between these errors as
well as between FQI and SBV are further discussed in Ap-
pendix E.1. Unless otherwise specified, “Bellman errors”
refers to variable-target Bellman errors.

3. Related Work

The most popular approach for OMS is to use an off-
policy evaluation (OPE) algorithm, which estimates the
marginal expectation of returns J () = E.[> ;7' Ry
under policies of interest 7 € {mg,, 7Q,, ..., TQ,, } from D
(Voloshin et al., 2021b). For example, importance sampling
(IS) estimators such as per-decision IS estimators (Precup
et al., 2000), doubly-robust IS estimators (Jiang & Li, 2016;
Thomas & Brunskill, 2016) and marginal IS estimators (Xie
et al., 2019; Yang et al., 2020) estimate J(7) from D by
using importance weights to adjust for the distribution shift.
Fitted Q-Evaluation (FQE) estimates Q™ with an off-policy
RL algorithm (Le et al., 2019; Paine et al., 2020). Some
methods also perform statistical inference on the value func-
tion to aid in OMS (Thomas et al., 2015; Shi et al., 2021).

Unfortunately, these approaches often have difficulties with
accurately estimating J(m) (Fu et al., 2021). For example,
per-decision IS usually has prohibitively large estimation
variance while FQE introduces its own hyperparameters
that cannot be easily tuned offline. Doubly-robust and most
marginal IS estimators use function approximation to reduce
variance, but at the cost of introducing hyperparameter-
tuning difficulties shared by FQE.
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In contrast to the previous approaches which are model-
free, model-based approaches estimate the underlying MDP
using density estimation techniques (Zhang et al., 2021;
Voloshin et al., 2021a). Accurately modelling the MDP
in complex and high-dimensional settings can be difficult,
and the most well-known OMS experiments involving mod-
els are restricted to MDPs with low-dimensional states (Fu
et al., 2021). In contrast, while there have been a few works
that use models to help train policies in pixel-valued set-
tings (Rafailov et al., 2021; Schrittwieser et al., 2021), we
are unaware of previous attempts to tune hyperparameters
offline on Atari from model-based roll-outs, and the diffi-
culty of doing this successfully would likely warrant a paper
in and of itself. As our proposed method (which achieves
strong performance on Atari) is model-free, it is especially
advantageous when estimating a model is difficult. That
being said, even on a low-dimensional MDP, our method
still outperforms model-based roll-outs (see Table G.2).

The poor performance of empirical Bellman errors has led to
several proposed alternatives. One such alternative, BErMin
(Farahmand & Szepesvari, 2010), estimates an upper bound
on the MSBE with strong theoretical guarantees, and uses
regression to estimate the Bellman backup similar to our
method. Unlike our method, however, BErMin requires
calculating tight excess risk bounds of the regression al-
gorithm, which is often impractical in empirical settings.
Furthermore, BErMin uses separate datasets to estimate the
Q-functions and Bellman backups, reducing the amount of
data we can use to estimate both. Finally, empirical perfor-
mance was never evaluated.

Another alternative, BVFT (Xie & Jiang, 2021; Zhang &
Jiang, 2021), takes advantage of several theoretical proper-
ties of piecewise-constant projections, including the fact that
an Lo piecewise-constant projection of the Bellman operator
will still be an L., contraction with the same fixed point un-
der restrictive conditions. Instead of estimating the Bellman
error directly, BVFT calculates a related criterion with its
own theoretical guarantees. Our experiments on BVFT sug-
gest that our method is more robust (see Figure G.2). Lastly,
ModBE (Lee et al., 2022) compares candidate functional
classes by running FQI using one functional class and then
using the fixed-target empirical Bellman errors minimized
at every iteration to evaluate alternative classes. In contrast
to our work, ModBE performs OMS based on fixed-target
Bellman errors and can only compare nested model classes.
See Appendix E for more discussion comparing our method
to BErMin, BVFT and ModBE.

4. Supervised Bellman Validation

4.1. Methodology

To understand the intuition behind our algorithm, consider
the case where Q* (s, a) is actually known for observed

state-action pairs (s, a) € D and we wish to evaluate can-
didates @Q,,, 1 < m < M based on how well they estimate
Q*. An obvious criterion in this case would be the mean
squared error (MSE):

E(oayopn [(Q*(5,0) — Qu(s,a))?| . (4)

While P* is unknown, we can still estimate the expectation
in Equation 4 by randomly partitioning 80% of the trajec-
tories present in D into a training set Dr and reserving
the remaining 20% of trajectories as a validation set Dy .
We would then generate candidates Q = {Q1, ..., Q@ } by
running DRL algorithms on D7 with M different hyperpa-
rameter configurations, and use Dy to estimate the MSE for

each Q,, as Ep,, [(Q*(s, a) — Qm(s, a))ﬂ.

Typically, the targets @*(s, a), (s,a) € D are not known:
this is what separates supervised learning from RL. Instead
of using a criterion based on Equation 4, our algorithm,
Supervised Bellman Validation (SBV), uses a surrogate cri-
terion based on the MSBE (Equation 2). The relationship
between estimation error and Bellman error is discussed
more in Section 4.2. Similar to the supervised learning case,
SBV creates a training set D and a validation set Dy, by
randomly partitioning trajectories from D, and trains M
Q-functions @ = {Q1, ..., Qar} on Dr.

Note that the MSBE contains two unknown quantities: the
population density P*, and the M Bellman backup func-
tions B*Q,, 1 < m < M. We can see from Equation 1
that each (B*Q,,)(s, a) is just a conditional expectation.
Moreover, it is well-known that a regression algorithm with
an MSE loss function will estimate the conditional expec-
tation of its targets (Hastie et al., 2009). Therefore, the M
Bellman backup functions can be estimated by running M
regression algorithms on Dr, with the mth such algorithm
estimating B*(@,,, by fitting function f to minimize:

2
o | (74 rmx Qu(s) ~ ) |

We refer to Equation 5 as the Bellman backup MSE of Q..
Denote the fitted models from our regression algorithms as
B*Q1, ..., B*Qpr. The MSBE for each candidate @), can
then be estimated as Ep,, [(Qn(s,a) — (B*Q.)(s,a))?].

Our algorithm is summarized in Algorithm 1. Here H,,
fully specifies an algorithm and its relevant hyperparameters
for estimating QQ*. For DRL, this would include the training
algorithm (e.g. dueling DQN (Wang et al., 2016) or QR-
DQN (Dabney et al., 2018)), the Q-network architecture and
the number of training iterations. While the RL algorithm
can be tuned via SBV, the regression algorithm employed
by SBV to estimate the relevant Bellman backups itself
must be tuned. Fortunately, regression algorithms can easily
be tuned offline using MSE on a held-out validation set,
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Algorithm 1 Supervised Bellman Validation (SBV)

Require: Offline dataset D = {(s,a,r,s’)}
Require: Set of offline RL algorithms
H={H,...Hy}
1: Randomly partition trajectories in D to training set Dp
and validation set Dy,
2: for algorithm m € {1,..., M} do
3:  Estimate Q* as ), by running offline RL algorithm
Hm on DT N
4:  Estimate B*Q,, as B*@Q,, by minimizing the Bell-
man backup MSE of @,,, on Dy (Equation 5)
5. Estimate the MSBE of @, as
Ep, [(Qm (s, a) = (B*Qm)(s, a))?]
6: end for
7: Output: @Q,,~ as our estimate of Q* where m* =

argmin, ., <\ Epy [(Qu(5,0) = (B"Qu)(s,))?]

which in this case would be Dy . For example, Algorithm
A.1 extends Algorithm 1 to tune the regression algorithm,
separately for each Bellman backup that is estimated.

For complex control problems where deep RL is required,
it is a good idea to estimate each B*Q,,,, 1 < m < M with
a neural network approximator. In such cases, we will refer
to this neural network as a Bellman network. For compu-
tational efficiency, the same Bellman network architecture
and training configuration can be used for estimating all
Bellman backups. For example, Algorithm A.2 provides a
computationally-efficient implementation of SBV for tuning
the number of training iterations used by DQN.

4.2. Theoretical Analysis

We begin with some basic theoretical properties of Bell-
man errors, empirical Bellman errors and SBV. We
assume |S| < oo here: Extensions to uncountable
state spaces and relevant mathematical proofs can be
found in Appendix B. For any Q-function (), den-
sity P of state-action pairs and dataset of transitions
D = {(s,a,r,)}. et [|Q|% = Es.0)or[@(5.0)?) and
1QlIH = |DI™" X (s.0)en[Q(s,a)]. Define the empiri-
cal Bellman backups for Q-function Q) and dataset D as
(BpQ)(s,a) = r+ ymaxy Q(s',a'), (s,a,1,8") € D.
For example, the MSBE (Equation 2) and the EMSBE
(Equation 3) can be re-written as ||Q,, — B*Q,,||%,. and
[|Qm — BpQm||%, respectively.

The results and proof techniques of our first proposition,
Proposition 4.1, resembles those used by more recent theo-
retical work (e.g. Xie & Jiang (2021); Chen & Jiang (2022);
Uehara et al. (2021)). Proposition 4.1 states that the candi-
date Q-function selected by the MSBE is guaranteed to be an
accurate estimate of QQ* and have a high-performing greedy
policy provided the MSBE of the selected policy is suffi-

ciently small and the observed data covers the state-action
space adequately. In other words, the MSBE upper bounds
estimation error, lower bounds policy performance and is
minimized uniquely at Q*. Moreover, even if the MSBE
is unknown and estimated with error, the same results will
hold for the estimated MSBE provided the estimation is
sufficiently accurate. These properties constitute strong
guarantees of the MSBE and justify its utility in OMS.

Proposition 4.1. Assume P (s,a) > 1 for some b > 0
and all (s,a) € S x A. Let h(Qp,) be an estimate of
1Qm — B*Qmllpx with absolute estimation error
e(m(Qm)) and assume m(Qy,) < € and e(1(Qm,)) < 4.
Then i) ||Qum — Q*[|pr < = (e +0) and

i) J(r*) = J(mgq,,) < w(lzv)"‘ (e+ ).

Proposition 4.1 also suggests a few reasons why the MSBE
has performed poorly in previous literature: (1) The MSBE
was not estimated accurately; (2) The behavioral policy did
not perform enough exploration and there was not sufficient
diversity in the observed state-action pairs; (3) The evalu-
ated Q-functions all had MSBE values that were too high.
In Appendix B, we conduct a more thorough theoretical
analysis of the MSBE and propose additional factors that
could impact its performance. We also discuss how we can
relax our assumption that P (s, a) > 1) to a slightly weaker
coverage assumption that better resembles those made by
previous work (Munos, 2005). Note that the bounds on
estimation error are tighter than those on policy regret: This
implies that Bellman errors are more closely associated with
estimation error than with policy performance, and will
primarily select high-quality policies by selecting accurate
Q-functions.

Let PP(s,a) be the proportion of state-action pairs in
dataset D equal to (s,a). When studying the theoretical
performance of the EMSBE and SBV, we focus on the set-
ting where |D| = oo or PP = P*. An important avenue for
future work is to extend our theory to finite-sample settings.
Proposition 4.2 is similar to theoretical results derived in
previous work (e.g. Farahmand & Szepesvari (2010)) and
states that the EMSBE is not equal to the true MSBE even
with infinite samples unless the environment is deterministic.
This implies that the EMSBE is biased, with the degree of
bias depending on the amount of noise in the MDP.

Proposition 4.2. Assume that PP = P*. Then:
[|Qm — BDQm||’2D —1Qm — B*QmH?DM =

Es,,4,)~Pr {Var l:Rt +7 max Qm(St+1,a")| S, At:| } :

SBV reduces bias of the EMSBE by using a regression
algorithm. The goal of B*@),,, is not to be close to the targets
Ri+vymaxy Qm(St+1,a’) from Equation 5 per se. Instead,
we want g*Qm to be close to B*@Q,,, or the expectation



Revisiting Bellman Errors for Offline Model Selection

1.00 —_——
0.75
= o ol
=} ®* e
g 0.50
o
0.25
0.00 %
High Moderate Low

MSBE Category

Figure 1: Returns vs. MSBE. Each data point represents
an estimate of Q* and the mean return of its greedy policy.
Estimates are grouped by the size of their MSBE. The verti-
cal bars represent the range of observed returns within each
category. As the MSBE decreases, this range decreases and
returns get more concentrated around the optimal return.

of these targets conditional on (S, A;). This difference
matters because using these targets directly when estimating
the MSBE leads to bias, as shown in Proposition 4.2. As
the MSE loss function E[(Y — f(X))?] is minimized at
f(X) = E[Y|X] (Hastie et al., 2009), minimizing Equation
5 is effective at recovering B*Q,,. This is formalized in
Proposition 4.3, which states that SBV recovers the MSBE
asymptotically and indicates its potential in reducing bias.

Proposition 4.3. Assume PPV = PPT = P and
B*Qm = argming||Bp;Qm — f||2DT. Then ||Qm —
B*Qm”%V =|Qm — B*Qm”%u'

5. Empirical Results
5.1. Case Study: Toy Environment

To study the empirical properties of the MSBE (Equation
2), EMSBE (Equation 3) and SBV algorithm (Algorithm
1), we consider a simple 4-state MDP where the candidate
set consists of Q* as well as 29 Q-functions generated by
running ridge-regularized polynomial FQI on a small offline
dataset (see Appendix C.1 for details). In Figure 1, we
plot the returns of our various Q-functions and group Q-
functions by their MSBE values. MSBE values greater
than that of the zero function are considered “high” while
estimates with MSBE values close to zero are considered
“low”. We can see that as the MSBE decreases, the floor
of the observed return distribution increases and returns
get more concentrated around the optimal return. These
empirical findings are in-line with Proposition 4.1, verifying
that Bellman errors lower bound the expected return.

We can see from Figure G.1 that the Spearman correlation
between the MSBE and returns is imperfect, but this does

w
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Figure 2: Performance vs. Stochasticity. The environment is
deterministic when the stochasticity parameter is zero, and
becomes noisier as the stochasticity parameter increases.

not preclude the MSBE from selecting high-performing poli-
cies. Because high Spearman correlation is not necessary
for OMS, we do not focus on this metric for our experiments.
We can also see from Figure G.1 that among the high MSBE
Q-functions, the Q-function with smallest MSBE only has
return 0.185, while the best Q-function still has a return
of 0.953. The issue is that the MSBE values are all too
high to be informative. However, once the Q-functions with
low MSBE are included, the top Q-functions selected by
the MSBE all have returns very close to that of the optimal
policy. These results imply that the MSBE will be effec-
tive for OMS if our candidate set contains Q-functions with
sufficiently low MSBE (again in-line with Proposition 4.1).

The noise in the MDP dynamics is controlled by a stochas-
ticity parameter ¢, where ¢ = 0 corresponds to a deter-
ministic MDP. Figure 1 uses ¢ = 0.25. We then generated
offline datasets for different values of ¢, and generated
our candidate set similar to before. For each candidate
Qj,1 < j < 30, SBV estimated B*(); using polynomial
ridge regression with hyperparameters tuned to minimize
Bellman backup MSE on the validation set, as discussed in
Algorithm A.1. We compared SBV to the EMSBE over the
validation set (the EMSBE over the full dataset performed
worse). From Figure 2, we can see that the EMSBE’s per-
formance declines rapidly as noise increases, while the per-
formance of SBV remains stable. Relative to the EMBSE,
SBYV is more robust to environment noise and reduces bias,
in-line with Propositions 4.2 and 4.3.

5.2. Robotics and Healthcare Environments

We next assessed the empirical performance of SBV on two
well-known discrete control problems: The bicycle balanc-
ing problem (Randlgv & Alstrgm, 1998) and the mobile
health (mHealth) problem (Luckett et al., 2020). These en-
vironments were chosen due to their diverse characteristics:
the Bicycle MDP has highly nonlinear transition dynamics,
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sparse rewards and little environmental noise, and is typ-
ically associated with larger offline datasets. In contrast,
the mHealth MDP has simple transition dynamics, dense
rewards and a large amount of environmental noise, and is
typically associated with very small offline datasets.

In addition to SBV and validation EMSBE, we also eval-
uated weighted per-decision importance sampling (WIS)
(Precup et al., 2000) and Fitted Q-Evaluation (FQE) (Le
etal., 2019): WIS is one of the few OPE algorithms that can
tune its hyperparameters offline, while FQE has achieved
state-of-the-art performance in terms of model-free OMS
(Fu et al., 2021; Tang & Wiens, 2021). See Appendix A.2
for more discussion of these baselines. As doubly-robust
and marginal IS estimators suffer from large variance like
WIS or have hyperparameters that cannot be easily tuned
offline like FQE, we conjectured that the problems observed
from our selected OPE benchmarks would also be observed
by these estimators. Limited experiments on BVFT and
model-based evaluations were also discussed in Section 3,
Figure G.2 and Table G.2, though we leave a more compre-
hensive evaluation to future work.

For the Bicycle control problem, we generated 10 offline
datasets consisting of 240 episodes of 500 time steps each
and our candidate Q-functions were primarily random forest
functions fit using FQI, following Ernst et al. (2005). For the
mHealth control problem, we generated 10 offline datasets
consisting of 30 episodes of 25 time steps each, follow-
ing Luckett et al. (2020), and candidate Q-functions were
primarily polynomial functions fit by Least Square Policy
Iteration (LSPI) (Lagoudakis & Parr, 2003). When imple-
menting SBV, each Bellman backup function was estimated
using a different regression algorithm tuned to minimize
validation MSE, in-line with Algorithm A.1. Moreover, the
true behavioral policy was used when implementing WIS.
More details on our environments and experimental setup
can be found in Appendix C. Results are given in Figure 3.

The estimation variance of WIS makes it difficult to account
for long-term consequences of actions, as well as rewards
that occur far away from the initial state. For the Bicycle
datasets, a non-zero reward is usually only observed after
nearly 100 time steps. As a result, WIS gives an identical
estimate of zero for almost all policies (see Appendices A.2
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Figure 3: Mean Top-3 Policy Values. For each dataset and
method, we calculated the mean policy value of the top-3
policies and standardized to [0, 1]. Solid bars show the mean
and error bars show the std of this metric across datasets.
Only SBV performs well on both environments.

and C.2 for more details). On the other hand, the EMSBE
performs well as there is only a small amount of noise in
the MDP. For the mHealth datasets, rewards are dense and
long-term consequences of actions are less important, but
the MDP is noisier. Therefore, WIS performs much better,
while EMSBE performs much worse. Only SBV performs
well on both environments.

As SBV only requires a regression algorithm, its hyper-
parameters can be tuned offline using validation MSE. In
contrast, FQE requires an offline RL training algorithm to es-
timate the action-value function, and tuning this algorithm’s
hyperparameters offline is not nearly as straightforward.
This makes it difficult to compare FQE to competitors, as
its performance will depend on the arbitrary choice of what
algorithm we use to estimate the action-value function. For
example, in Table 1, we find that FQE performance varies
greatly with the algorithm utilized for estimating the action-
value function. We can also see that FQE is biased towards
Q™ estimation algorithms similar to its own training algo-
rithm (FQE choose its own training algorithm as the best
training algorithm for estimating Q* in three out of four
cases). More details about these training algorithms can be
found in Appendix C. While FQE does perform well with
the right training algorithm, we would not need OMS in
the first place if we knew in advance which RL training
algorithm performed best.

Table 1: Top Policies According to FQE. Note that FQE performance (top-3 policy value) is sensitive to its
training algorithm. As FQE cannot tune its hyperparameters offline, this sensitivity precludes it from being a
practical OMS algorithm. SBV doesn’t have this problem because it can be tuned via validation MSE.

Dataset FQE Training Algorithm Top-3 Policy Value Top-Ranked Estimator for Q*

Bike FQL Mmin = 625’ mtry =5 0.239 FQL Mmin = 17 mtry =1
FQL npyin = 5, Myy = 3 0.878 FQIL, nmin = 57 My = 3

mHealth Quadratic LSPI, A = 100 0 Quadratic LSPI, A = 100

Quadratic LSPI, A =0 0.984

Quadratic LSPI, A = 0
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Following previous work (Paine et al., 2020; Fu et al., 2021),
we also compared performance based on Spearman corre-
lation in Figure G.3, and based on max top-k policy value
for varying values of k in Figure G.4. We chose to focus on
mean top-3 policy value here instead of top-1 policy value
as the former relies on more than a single Q-function, thus
providing a more stable and robust measure of performance.
In this case, however, looking at top-1 policy values instead
yields similar conclusions (see Figure G.4).

5.3. High-Dimensional Atari Environments

Finally, we evaluated SBV (Algorithm 1) on 12 offline DQN-
Replay datasets (Agarwal et al., 2020), corresponding to
three seeds each for four Atari games: Pong, Breakout,
Asterix and Seaquest. Atari games have high-dimensional
state spaces, making them more challenging than previous
environments evaluated so far. We chose to focus on these
four games in particular as they have received more atten-
tion in recent literature (Kumar et al., 2020; 2021a). The
performance of DQN is also sensitive to the number of train-
ing iterations for most of these games, making OMS more
challenging. As in Section 5.2, we also evaluated validation
EMSBE, WIS and FQE.

Following Agarwal et al. (2020), we performed uniform
sub-sampling to obtain 12 training and validation datasets
with 10M and 2.5M transitions each, respectively. We used
two training configurations for DQN: a shallow configu-
ration that uses the “DQN (Adam)” setup from Agarwal
et al. (2020), and a deep configuration that uses a deeper
architecture, a slower target update frequency and double
Q-learning targets (Hasselt et al., 2016). For each training
configuration, we ran DQN for 50 iterations (one iteration
= 640k gradient steps) and evaluated the Q-network after
each iteration. This resulted in evaluating 100 Q-functions
for each Atari dataset.

Unlike in previous experiments, the same Bellman network
training configuration was used by SBV to estimate most
Bellman backup functions?, and was tuned offline so as

?For Pong datasets, we used a simpler Bellman network and
only evaluated the shallow Q-networks to speed-up experiments.

to minimize validation error across Bellman backups and
datasets. The Bellman network (Section 4.1) incorporates
prevalent design choices for image classification such as
batch normalization (Toffe & Szegedy, 2015), skip connec-
tions (He et al., 2016) and squeeze-and-excitation units
(Chollet, 2017). While the behavioral policy was known in
previous datasets, it is unknown for our Atari datasets. Thus,
we estimated it with behavioral cloning (Osa et al., 2018)
using a similar training configuration as that of the Bellman
network prior to running WIS. Due to the computational
cost of FQE (Appendix D.3) and the difficulty of tuning its
hyperparameters offline, we only applied FQE to a single
dataset per game using the same Q-network architecture and
target update frequency as Mnih et al. (2015). See Appendix
D for more details on our experimental setup.

From Tables 2 and G.1, we can see that SBV performed
comparable to or better than competing methods on every
environment with respect to its top-5 selected policies. We
also evaluated the ability of each method to perform early
stopping in Figures 4 and G.6, assuming the optimal training
configuration was used. SBV performs as well as or better
than no early stopping for all datasets, while the same cannot
be said for WIS and the EMSBE. This suggests that SBV is a
more robust early stopping procedure. While FQE was more
effective in tuning the number of iterations than WIS and
EMSBE, it usually ranked shallow Q-functions as superior
to deep Q-functions, even though the best-performing Q-
functions for Breakout, Asterix and Seaquest were from the
deep configuration. This is why overall performance for
FQE was poor for these games (see Table 2).

Compared to Section 5.2 where we only looked at the top-3
policies, we looked at the top-5 policies here as the total
number of Q-functions being evaluated was much higher.
We also compared performance based on max top-k policy
values in Figure G.5 and obtained similar conclusions. The
tricks we employed to speed-up computations involving
SBYV hindered us from calculating Spearman correlations
with policy returns (see Appendix D.2), though as discussed
in Section 5.1, this metric is not critical for OMS anyway.

Table 2: Standardized Top-5 Policy Mean Returns. A mean return of 0% (100%) for a dataset implies that the
method choose the worst (best) five policies possible on the given dataset. Due to its computational demands,
we only report mean returns of FQE for one dataset per game. For other methods, we report the average and
range of these mean returns across three datasets per game.

Method Pong Breakout Asterix Seaquest
SBV (Ours) 95% (93-98%) 81% (73-90%) 69% (62-74%) 65% (60-71%)
EMSBE (Equation 3) 87% (77-98%)  64% (43-77%)  60% (51-67%)  47% (44-52%)

WIS (Precup et al., 2000)
FQE (Le et al., 2019)

66% (45-90%)
98%

37% (34-39%)
41%

43% (37-55%)
53%

24% (13-34%)
34%
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Figure 4: Learning Curves from the Best Configuration for Four Datasets. Returns are standardized to [0, 1]. The dashed
horizontal line represents performance with no early stopping. The vertical lines represent the iterations where training was
stopped according to different methods. SBV and FQE performs as well as or better than no early stopping for all games.

However, the same cannot be said for WIS and the EMSBE.

5.4. Ablation Experiments

Recall that SBV uses the same dataset D to both estimate
the Q-functions @)1, ..., Qs via offline RL and estimate
their Bellman backups B*Q1, ..., B*Q s via regression. An
alternative strategy was proposed by BeRMin (Farahmand &
Szepesvari, 2010) to reduce estimation bias of the Bellman
backup estimators. In this alternative strategy, we further
partition Dy into two training sets D, and Dr,, generate
Q-functions by running offline RL on D7, and estimate their
Bellman backups by running regression on Dr,.

When using separate partitions for estimating the Q-
functions and their Bellman backups, we expect no more
than 50% of the data reserved for Bellman backup estima-
tion, with the rest used for estimating the Q-functions. Thus,
we investigated whether training the Bellman network on
a dataset independent to the Q-functions and of 50% size
achieves better performance than SBV’s trained Bellman
network. From Figures 5 and G.7, we see that SBV consis-
tently yields lower validation error of the Bellman network.
While using the same data to estimate both the Q-function
and its Bellman backup may increase bias of the estimated
backup, this is offset by a reduction in variance from using
more data. Moreover, Figure 5 simplifies the comparison
by assuming each partitioning scheme generates the same
Q-functions. In practice, requiring separate partitions for
the Q-functions and Bellman backups will also mean less
data for training the Q-functions, which means Q-functions
will perform worse as well.

As discussed in Sections 4.2 and 5.1, the MSBE may not
be effective for OMS unless the candidate set includes Q-
functions with small MSBE. This was also observed on
Atari. For example, Q-networks trained by the deep con-
figuration yield low Bellman error when early stopping is

applied, while Q-networks trained by the shallow config-
uration have large Bellman error at every iteration. As a
result, SBV performs suboptimally when only shallow Q-
functions are in the candidate set, selecting Q-functions
much worse than the best shallow Q-functions. We can en-
sure that our candidate set contains Q-functions with small
MSBE by exploring a large number of RL training configu-
rations. However, evaluating many training configurations
with SBV is computationally demanding, especially if the
configurations are also sensitive to the number of training
steps. In contrast, by using architectures for the Q-network
that performed well as Bellman networks, and by reducing
target update frequency, we were able to get Q-functions
with low Bellman error without having to explore many RL
configurations.

o
o
S
o

o
o
@
a

0.030

0.025

Bellman Backup MSE
o
o
N
o

2 4 6 8 10
DON (Shallow) lteration

Partitioning - SBV - Separate

Figure 5: Partitioning Ablation on Seaquest. For the first 10
Q-functions generated by shallow DQN, we estimate their
Bellman backups using the same dataset as that used to run
DQN and plot their validation MSE in red. We then do the
same for a separate dataset of 50% size in blue.
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Table 3: Relationship between Bellman Network and Q-Network Performance. We evaluated policy per-
formance when running DQN using different Q-network architectures, and evaluated validation MSE when
using the same architectures as Bellman networks. Architectures that perform better as Bellman networks

also perform better as Q-Networks.

Architecture Q-Network Return  Bellman Network MSE
DQN Nature (Mnih et al., 2015) 7169 0.097

IMAPLA-deep (Espeholt et al., 2018) 8691 0.089

Moderate Depth 18337 0.079

Deep (Appendix D.1) 22573 0.065

REM, 5x data (Agarwal et al., 2020) 8795

To showcase this, we consider four Q-network architectures:
the original Nature DQN architecture (Mnih et al., 2015),
IMPALA-deep (Espeholt et al., 2018), the architecture used
by our deep DQN configuration (Appendix D.1) and a mod-
erately deep architecture that is in between the Nature and
deep architectures. For each Q-network architecture, we ran
DQN on one of the Seaquest datasets, with other training hy-
perparameters fixed from the deep DQN configuration and
online evaluations used to apply early stopping. These archi-
tectures were then used to estimate the Bellman backup of
one of the shallow DQN Q-functions via regression. From
Table 3, we can see that better Bellman network architec-
tures also perform better as Q-networks. See Appendix F.2
for further discussion. We also applied a more modern train-
ing algorithm, Random Ensemble Mixtures (Agarwal et al.,
2020), using 5x as much data, and performance was still
worse than DQN with deeper architectures.

Recent offline RL literature has focused almost exclusively
on improving the training algorithm (Prudencio et al., 2023),
with the Q-network architecture and other training hyperpa-
rameters fixed. However, our results add to a growing body
of work suggesting that improving the architecture and other
hyperparameters may be quite important (Wu et al., 2019;
Kumar et al., 2021b). These results also suggest that SBV
may be useful in developing better Q-network architectures,
in addition to performing OMS.

6. Discussion and Future Work

In this work, we proposed a new algorithm based on the
MSBE that was effective at selecting high-performing poli-
cies across diverse offline datasets, from small simulated
clinical trials to large-scale Atari datasets. Tuning SBV’s
regression algorithm to minimize validation MSE was criti-
cal to achieving robust performance, as it allowed SBV to
choose different regressors (e.g. linear models, trees, neu-
ral networks) based on what was ideal for a given offline
dataset. In addition to demonstrating the potential utility of
our proposed algorithm and of the MSBE more generally,
we also investigated which factors were most predictive of
Bellman error performance and developed guidelines on

how to improve this performance in practice. These guide-
lines allowed us to develop a new Q-network architecture
that achieves state-of-the-art performance on some of the
Atari datasets. Overall, we believe that our paper challenges
current beliefs and will help shape future research in OMS.

Despite its achievements, our work still has a few limita-
tions we hope will be addressed in future work. First, while
implementing SBV on the non-Atari datasets took under 10
minutes, running SBV on Atari took almost one week per
dataset with six A100 GPUs. Reducing this computational
load would be very helpful. We should point out that while
the EMSBE exhibits bias in stochastic environments, it can
be computed much faster. In Appendix D.4 we compare
computational performance between SBV and competing
algorithms and discuss when the EMSBE might be preferred
over SBV. Second, theoretical guarantees of the MSBE re-
quire the observed data to adequately covers the state-action
space. While guarantees of many OPE methods require
similar assumptions (Janner et al., 2019; Le et al., 2019;
Xie et al., 2019), extending the MSBE to have better guar-
antees in the face of partial coverage (Uehara et al., 2021)
could yield a more practical algorithm for narrow or biased
datasets (Fu et al., 2020). Third, we have assumed through-
out that the candidate set contains Q-functions with low
MSBE, and extending SBV to perform well when this con-
dition is violated would make it more applicable in settings
where estimating an accurate Q-function is difficult.

Finally, SBV cannot currently tune actor-critic or policy
gradient algorithms for reasons discussed in Appendix F.1.
Using SBV to tune FQE and then using FQE to select the
policy could overcome this limitation. We also expect the
MSBE to more closely correlate with FQE performance than
with DQN performance as estimation accuracy is of direct
interest with FQE. The main challenge would be combining
SBYV and FQE without making computation prohibitive.
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Appendix

A. Extended Details of OMS Algorithms
A.1. Extended SBV Algorithms

Algorithm A.1 SBV with Tuned Regression Algorithm

Require: Offline dataset D = {(s,a,r,s’)}
Require: Set of offline RL algorithms
H = {Hl, ceay HA[}
Require: Set of regression algorithms
R ={Ry,...,Rn}
1: Randomly partition trajectories in D to training set D
and validation set Dy,
2: for RL algorithm m € {1,..., M} do
3:  Estimate Q* as ), by running offline RL algorithm
H,, on Dy
for regression algorithm n € {1,..., N} do
5: Estimate B*Q),, as gfLQm by running regression
algorithm R,, on D7 to minimize Bellman backup
MSE (Equation 5)
6: Evaluate the error of R,, in estimating B*(Q,,, as
Erry, ., = Ep, [(r + ymaxy Qum (s, a’) — ﬁ;Qm)Z}
7:  end for
8:  Estimate B*Q;, using the best regression algorithm
as BZ*(m)Qm with n*(m) = argmin, ., « yErty,
9:  Estimate the MSBE of @), as

~

Epy [(Qm(5,0) = B () Qun(5,))?]
10: end for
11: Output: Q.- as our estimate of Q* with m*

argmin Ep,, [(Qn(s,a) — (EZ*(m)Qm)(Sa a))?]
1<m<M

A.2. Extended Details of Model-Free Baselines

Computationally- and memory-efficient implementations of
Supervised Bellman Validation (SBV), the empirical mean
squared Bellman error (EMSBE), weighted per-decision
importance sampling (WIS) (Precup et al., 2000), Fitted
Q-Evaluation (FQE) (Le et al., 2019) and Batch Value
Function Tournament (BVFT) (Xie & Jiang, 2021) on

Atari can be found in our repository https://github.

com/jzitovsky/SBV. The methodologies of validation
EMSBE, WIS and FQE is discussed below and implementa-
tion details on Atari are discussed in Appendix D.3. SBV
is discussed in Section 4 and its implementation on Atari is
discussed in Appendix D.2. BVFT is discussed in Appendix
E.3 and its implementation is discussed in Figure G.2. Also
see Sections 2 and 3 for relevant background and notational
definitions.
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Algorithm A.2 Applying Early Stopping to DQN with SBV.
Here Qy, ., denotes the trained Q-Network after k + 1 it-
erations of the DQN algorithm while By, , denotes the
Bellman network subsequently updated by SBV in order to
approximate B*Qg, _ , .

Require: Offline dataset D = {(s,a,r,s’)}
1: Randomly partition trajectories in D to training set D
and validation set Dy,
2: Initialize deep Q-network @)y, with trainable weights
0y and Bellman network By, with trainable weights ¢
3: for iteration k € {0, ..., K — 1} do
4:  Update Q-network weights from 6y, to 61 by run-
ning DQN on D for one iteration
5. Update Bellman network weights from ¢ to ¢r11
by running gradient descent with loss function:
L(QZS) = EDT [(r + 7y MaXxe! Q9k+1 (5/1 a/) - Bd)(81 a))2:|
6:  Estimate the MSBE of Qy, ., , as
Ep, [(Q9k+1 <S7 a) - B¢k+1 (87 a))2]
7: end for
8: Output: Qy,. as our estimator of * where k*

argmin, < g Ep,, [(Qoy (5,a) — By, (s, a))?]

We define validation EMSBE as:

2
Ep, [(Qm(s, a)—r— Y max Qm(s, a’)) (A1)

More discussion of the EMSBE can be found in Section 2.2,
Section 4.2 and Appendix D.3. The WIS estimator from
Precup et al. (2000) is defined as:

T apirrt mALSH

=07V Rt llomo wiatysh
T + t W(AHSZ) ’

2 =0V =0 wcatish

where S is the state of the ith observed trajectory at time
step t and similarly for A! and R{, and T is some large
horizon time of interest. Some works also define weighted
IS differently (Thomas & Brunskill, 2016). In the event that
all trajectories end in a terminal state, we can set T' = T;
where T; is the length of the ¢th observed trajectory and the
horizon becomes infinite. It can be shown that as the number
of observed trajectories N — oo, Jyyg () converges with
probability one to a normalized version of J (7). In the event
that the behavioral policy p is unknown, we can estimate it
by behavioral cloning (BC) (Osa et al., 2018). As the only
potential hyperparameters of WIS relate to those of the BC
algorithm, and as a BC model can be evaluated and tuned
offline via cross-entropy on a held-out validation set, we say
that WIS can easily tune its own hyperparameters offline.

N

Jwis(m) =

i=1

(A.2)

The main problem with this estimator is the estimation
variance: the sample variance of the importance weights

t Ay|Sy) - . . ..
ZE ™ Svg increases exponentially with v, making it
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difficult for the WIS estimator to accurately model long-
term dependencies between actions and rewards and take
into account rewards occurring far after the initial state.

FQE estimates the action-value function Q™ of policy 7 as
@™ using a modified off-policy Q-learning or actor-critic al-
gorithm. For example, we could estimate Q™ by modifying
FQI or DQN to perform updates:

QU+Y « argmin Ep {(f(&a) o W/EG,NM.‘S,)Q(M(SQa,))z] '
J () is then estimated as:
JrQE(™) =E, 7 [Q"(s. (), (A3)

where dj is the empirical distribution of initial states. There
is currently no established or well-known procedure to
choose or tune the algorithm used to estimate ™, though
there have been a few approaches proposed in very recent
work (Zhang & Jiang, 2021; Miyaguchi, 2022).
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B. Extensions to Infinite State Spaces with Mathematical Proofs

We begin with some additional preliminaries: Let A be the dominating measure of density P such that E( 4y~ pu [Q(s,a)] =
S5y Q(s,a)P*(s,a)d\ and let || f||o denote the essential supremum of function f with respect to measure \. If
the state space is finite, A is equal to the counting measure, (s o)~ pr[Q(s,a)] = Z(S’a)GSW‘[Q(s, a)PH(s,a)] and
[[flloc = max(sqyesxalf(s,a)|. Let d(s) = d(s,a) = I(sisterminal). Let Py (s,a,r,s") = d"(s)u(als)T(s|s,a)
denote the underlying population distribution of our observed transitions. Let F'* denote the (cumulative) distribution
function (CDF) of P} and FP denote the empirical distribution function (EDF) of transitions associated with D. Under
general conditions, ||F'P — F*||,, — 0 as |D| — oo with probability one (Kotz et al., 2006). Theoretical results given here
imply those present in Section 4.2 when the state space is finite.

We make a few notes about the assumptions used by the first proposition. First, when our state space is finite, our assumptions
about dy, d* and T' always hold. Second, our assumptions on P*, dy and T could be weakened, but this would lead to
our derived bounds being less interpretable. Specifically, it is sufficient for max, ||v/(1 — d) P/ P"||s = o(1/7") and
maxy ., ||/ (1 — d)my /PH||o = o(1/~") where P[ is the distribution of state-action pairs induced from starting at
state-action pair (sg, ag) ~ P* and following policy 7 for ¢ time steps and m7 is the distribution of state-action pairs
induced from starting at state so ~ dy, following policy 7 for ¢ time steps and then applying policy m for a final time step.
Under this weakened assumption, we still have that Cg < C; < oo by the (Cauchy) ratio test for series convergence, which

now depends on Y ;o ' max, ||\/(1 — d) P[] /P"|| and Y2 ) v maxy m ||/ (1 — d)m] / PF||.

While our analysis in Section 4.2 focused on components unrelated to the MDP such as the behavioral policy and estimation
accuracy of the MSBE, our analysis here shows that the MSBE’s theoretical performance will also depend on the MDP’s
ability to control the rate at which distribution shift occurs when following alternative policies to p. This rate is automatically
bounded when the transition and initial state probabilities are bounded, though as discussed above this assumption is not
necessary. There may also be a way to add a regularization term to the MSBE to strengthen theoretical guarantees when
stochasticity in the behavioral policy, transitions or initial state distribution is more restricted. We leave this to future work.

Proposition B.1. Assume P*(s,a) > v and d"(s), (1 — d)dy(s), (1 — d)(s")T(s'|s,a) < Br for some 0 < ¢, By < 0o
and all (s, a,s") € Sx AxS with probability one. Let (Q.,,) be an estimate of ||Qn — B* Q|| pn with absolute estimation
error e(m(Q,)) and assume that m(Q,,) < € and e(1(Qy,)) < 0. Then with probability one i) ||Q* —Qp, || pr < Cq(e+9)

)
where Cg = \/E\/(??’Y) and ii) J (%) — J(7q,,) < Cj(e + 6) where Cj = %.

We will prove this proposition using a series of lemmas, from which this proposition will be a direct corollary.

Lemma B.1.1. If1(Q,,) < eand e(n(Qn)) < 6, then ||Q* — Q|| pr < C(e+ §) where C' = W‘/(]fifv) with probability
one.

Proof. For any density function P of state-action pairs, we have by Minkowski’s inequality:

|Qm — Q%[|lp < |Qm — B"Qml|lp + [|B"Qm — Q"|lp = [|Qm — B*Qmllp + ||B*Qm — B*Q"||p.

As for the first term from the last line, we can use importance sampling to obtain the identity ||Q,, — B*Qu||p =

(@~ B°Qu) PIPP

policy of @,,,. Let P*(s’, a’) be the marginal density of state-action pairs wrt dominating measure A induced from sampling
(so0,a0) ~ P and sampling s;11 ~ T'(-|st, a;) and az41 ~ m(+|s¢+1) for v time steps (we assume this density always
exists). Observe that for any v > 0:

. As to the second term, let m(s) = argmax,|Q.,(s,a) — Q*(s, a)| denote the max-error
Pnr
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1B*Qum — B*Q*[|% =E(s ay~py {(ES/NT('S,@ [r + v max Qun(s', ') |~ Eyor(lsa [T " WH};}XQ*(s’,a’)DZ}
B { (Bt [mgx Qo) ~ mps 0] )}
Bt { Banttismarmmio) @m(s' ) = Q' (s a)))* |
<VE(art {EvntCinamammrs |[(@ulsa) = Q(sa))’] |
VB anrt,, [(@nls'a) = Q(, )]

2
< (11Qm = B Qullps, +1B"Qm = BQllps,, ) -

where the inequality on the third-to-last line comes from Jensen’s inequality. Putting this all together, we have for any
N eN:

||Qm - Q*HP“ SHQm - B*QmHPé‘ + ||B*Qm - B*Q*”PA‘
<11Qm = B*Qullpg +7 (10m — B*Qullpy: + 1B°Qu — B Q" Il )
<@ — B @l +7 || (@ — B Q) PFTFE|
<1Qu = @Il +7|(@n = B Q77

+7* (1@m = B*Qullpy +11B*Qu = B*Q" Iz )

o7 (1Qm = B Qullpg + 11B°Qm = B Q"I )

(Qm — B"Qm)\/ P/ P

+ 72
Py

Py

N
<> 9 [(@Qm — B Q) P/ PY
t=0

+ 54 (11Qm = B Quillpg, +11B°Qum — BQ Il )

N+1
n
PO

We assume that the following assumptions hold almost surely with respect to P*: (A1) Qu, = (1 — d)Qm, |Qm| < Bg
and |r| < Bp for some Bg, Br < 00; (A2) PJ' > 1 for some ¢ > 0; (A3) d"(s), (1 — d(s"))T(s'|s,a) < Br for
some Br < oo and all (s,a,s’) € S x A x S. The first assumption on @, is arbitrary, and assuming that the reward
function is bounded is standard. Under condition (A1), we have that ||Q., — B*Qm|co, [|B*Q@m — B*Q*||cc < o0,

which means that lim o vV (||Qm —B*Qmllpr  +||B*Qm — B*Q*||pr

N+1 N+1

(1 —d)P* < d* < Br and we have by mathematical induction that for ¢ > 1:

= 0. Moreover, by condition (A3),
(1-d)Pl'(s',d) = / (1 —d)(s',a"ym(a'|s")T(s'|s,a) Pl (s,a)d\(s,a) < Br P! | (s,a)d\ = Br.
SxA SxA

Therefore, under conditions (A1)-(A3), we have for any ¢t > 0:
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2

H(Qm _ B Q)PP ey [(Qm@,a) ~ (B*Qum)(s.a))° ig;]
* 2 (1_d(s7a))PtN(S7a)
s [ (@n(sv) = (B Qs L=t M)
S%IIQm B Q3.

Therefore:

1@ = Q[ v Slimy-sac {ZN 7 |[(@n = B @u)VEITES| 45" (1@ = B Qg + 15"Qu ~ 5@ Hm)}

= Z’yt (Qm - B*Qm) \/ PtM/PéL
t=0 Py

<HQm _B*QmHPé‘\/E >
< NG Y

<[(Qm) + e(m(Qm))]

VEBr
V(1 —7)

Lemma B.1.2. If||Q* — Qun.||pr < € it holds that J(7*) — J(7q,,) < Ce with probability one where C' = \/%V(fiy).

Proof. Let m,, = mg,, and m(als) be the max-error policy of Q,,, defined in the proof for the previous lemma. Let d2(s)
be the marginal density of states induced from sampling sg ~ dg and sampling a; ~ 7, (+|s¢) and s;+1 ~ T'(-|s¢, ay) for
v time steps, and let m, (s, a) be the density of state-action pairs wrt dominating measure \ defined as d(s)m(als) (we
assume this density always exists). Observe that for any v > 0:

1V = V7 | =y [(Q7(5,7°(5) — Q7 (5, mn()?
“Evs [ 7 (5) — @ (5, 7n(5)) + @ (5,7 (8)) — Q7 (5,7 (5)))°]
s~d |: 7T* (3 Q*(57 ﬂ-m(s)) =+ ’YES '~T (48, mm () [V* (Sl) - VQm (8,)])2:|

)
<Eoa (@ < () = Q5,7 (5)) + Qun(5, 7 (5)) = Q" (5, 7om(5)
FVE oo [V (5) = VO ()] -

Note that for any s € S, it holds that a(s) = Q*(s,7*(s)) — Q*(s,™m(s)) = max, Q*(s,a) — Q*(s,mn(s)) > 0,

b(s) = —Qum(s,7"(5)) + Qum (s, mm(s)) = =Qum(s, 7" (s)) + maxe Qum(s,a) > 0and c(s) = YEyor( s, (s) [V (s') —
VO (8")] = YEg/mr(-fs mm (s)) [Maxs VT (s") = VO ()] = 0. Then (a(s) +c(s))* < (a(s) +b(s) +¢(s))? forany s € S,
which implies the inequality on the final line. Then by Minkowski’s inequality and Jensen’s inequality:
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|V* — V7am

0 5\ [Bama (@ (5,7 (5) = Q7 (D] + Bty (@5, (6)) — @7 (5))°

+ \/]ESng [(VES/NTHS,M(S))[V*(S’) - VQ”L(S')]ﬂ

<2 BB [(Q* (5, @) = Qo (5,0))2] 47 B B o) (VA (1) = VO ()

,Mu(8,a

=2\/1E<s,a)~pu (@ (5.0) = Quls. ) S | b B, (77 = V()P
=20(Q" ~ Qume PPl 4 AV Vg

vl

Therefore, for any N € N:

(V= =V la, <2||(Q@ m)V/mo/Pr||pu +4||[VF = V|,

Q" = Q)] P +291(@ = Qun) /P + 2RIV VO

lag

n
dN+1

N
< S 01(@ — Qu) v PH||pw + AV [V~ v
t=0

We make the same assumptions as Lemma B.2.1 and additionally assume that dy(s) < By for all s € S with probability one
(A4). Under condition (A1), we have that ||V* — V™|, < oo, which means that limy_, o YV FL|V* — V™ || = 0.

N+1
Moreover, under conditions (A3) and (A4), (1 — d)mq(s,a) < do(s) < Br and for t > 1, we have by mathematical

induction that:

(1 —d)ymy(s',a’) = /s A(l —d)(s',a"ym(d'|s")T(s'|s, a)mm(als)d)_ 1 (s)A\(s,a) < BT/5 ) dl'_ 1 (s)mm(als)A = Br.

Therefore, under conditions (A1)-(A4), we have for any t > 0 ||(Q* — Q) /Mt /PH||%,. < BT I|Q* — Qm||%.. Putting
this all together, we have:

2/Br

J(m") = J(mm) = [[VF = V™ ||q0 < =)

HQ QmHP”'

Proposition B.2. Assume that |[FP — F*||,, = 0. Then:

||Qm - BDQm||2D - HQm - B*QmHQPﬂ =

E(St,At)~P# {Var {Rt + aﬂ}gﬁ Qm(StJrla a/)\Su At:| } .

PVOOf: Suppose ||FD - FM”OO = 0. Note E(s,a,r,s’)qu’f [f(sa a, T, 5/)] = IE(s,a)NPF‘Es/r\aT(<|s,a) [f(sv a, R(Sv a, sl)v S/)] for
any function of transitions f. Then:
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2
1B5Qn ~ @y =Bty | (749035 (s') = Qs )|
2
:E(s,a,r,s’)NPq'f |:<7" + ")’H;E}X Qm(slv al) - B*Qm(s’ a) + B*Qm(sa CL) - Qm(sv a)) ]
:HB*Qm - QmH%u
2
+ E(s,0)~PrEsiar()s,a) [(R(s,a, s') +ymax Q(s',a’) — B*Qm(s,a)) ]
+2E (5,0~ PrEsrnr(|5,0) {(B*Qm(s, a) — Qum(s,a)) (R(s, a,s’) + 7 max Qm(s',a") — B*Qum(s, a)} )

Note that Egwr(|s,a) [(R(s, a,s") +ymaxy Qum(s’,a') — B*Qum(s, a))z} is equal to
Var [R; + vy maxg Qum(St+1,a’)|S: = s, Ar = al.

Moreover:

B arr {Eart(lsn) (B Qm(s,0) = Qu(s,0)) (R(s,0.8) + 7 max Qu(s', ) = B'Qui(s,a) | }
“E(s.aypi { (B Qun(5,0) = Quu(5,0)) By o) | (R(5,0,8') + ymax Quu(s,0') = B*Qu(s,0)] }
:E(s,a)wP“ {(B*Qm(s7a) - Qm(sv a)) (B*Qm(sa a’) - B*Qm(sv a))} =0.

Therefore:

1Qm — BDQmHQD = |Qm — B*QmH%’H + ]E(Sf,,z‘\t)wpM {Var [Rt + Pymaa/XQm(StJrla al)‘S“ At} } ’

This concludes the proof. O

Proposition B.3. Assume that |FPV — F¥||o, = ||[FPT — F'||o = 0 and B*Q,, = arginf;||Bp; Qm — fl|p,.. Then
||Qm - B*QMHQDV = ||Qm - B*QmH%“

Proof. As||FPT — FH||,, = 0, we have:

2
||BDTQm - f||’2DT :E(S,a7’l‘,8/)~P” l:(r + 'YH}IE}X Qm(sla a/) - f(57 a’)) :|

2
:]E(s,a)wPHEs’NT(-\s,a) |:(R<Sa a, 5/) + 'yrrza/x Qm(8/7 a/) - f(87 a)) :| .

This is just a population MSE loss function with targets y = R(s, a, s’) +ymax, Qm(s’,a’), s’ ~ T(:|s, a) and covariates
x = (s,a) ~ P". Itis well-known that the function f minimizing this expectation satisfies f(z) = E[Y|X = z] = B*Qn,
except possibly for some set X such that P*(x € X¢) = 0 (see for example Hastie et al. (2009)). We thus have that
B*Q,n = B*Q,, almost surely with respect to P, Then it is easy to see that ||Q, — B*Qu||5n = ||Qm — B*Qum|[3..
Finally, as ||[FPV — FF||o = 0, ||Qum — g*QmHQDV = ||Qm — B*Qun|[3... This concludes the proof. O

Our last proposition is an analogue of Proposition B.1 in L, space. Because the Bellman operator is an L, contraction,
our derived bounds based on the L., norm of the Bellman error is much tighter than those based on the Ly norm of the

Bellman error.
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Proposition B.4. Let B*Q,,, be an estimate of B*Q.,, and assume that [|Qm — B*Qp l|oo < €and ||l;j’\”k Qm—B* Qoo <.
Then i) ||Qm — Q*[loc < 125 (€ + ) and i) [[V™" — V™an || < 7253 (e +9).

Proof. Suppose ||@Q, — E*QmHOO < eand Hé*Qm — B*Qm||oo < d. Then:

||Qm - Q*Hoc :||Qm - B*Qm + B*Qm - Q*Hoo

<@ — B* Q| + ||1B*Qm — Q|0 (Subadditivity of L. norm)
=|Qm — B*Qumlloo + |I1B"Qm — B*Q"|| (Q* is a fixed point of B*)
<@m — B* Qumlloo +71Q@m — Q7|0 (B* is a y-contraction)

= ([Qm — Q" sﬁnczm B Qull
i 110m = BQu+ B'Qu — BQull
Sﬁ (IIQm — B Qulloo + [1B*Qum — B*leloo) (Subadditivity of L. norm)
<

1_7(€+5)'

Moreover, it was proven in Lemma 1.11 of Agarwal et al. (2022) that ||[V* — V7™em ||, < %HQm — Q*||oo- This
concludes the proof. O
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C. Extended Details of non-Atari Experiments
C.1. Extended Details of Toy Experiments

For our toy environment, we consider a stochastic MDP with
four continuous states and a binary action (A = {0, 1}).
Let S; ; denote the jth component of the observed state at
time step t. The states are initialized from standard normal
distributions and evolve as described below:

Si+11 =vVxSi1 + (A — 0.5) + €,
Sit1,5 stt,j +ej, je€{2,3,4},
e ~N(0,0.75 — x), &5 ~ N(0,3 — 4z).

The variable € [0.5,0.75] controls the stochasticity of
the environment: the MDP is deterministic when x = 0.75,
and entropy in the transition probabilities increase as x
decreases. We define the stochasticity variable as ¢ =
0.75 — x, so that ¢ corresponds to the signal-to-noise ratio
of R; and is zero when the MDP is deterministic. The
reward is taken as the first component of the next state
(R: = S¢+1,1). This MDP was constructed to be simple
and interpretable. For example, it is easy to see that for
any choice of z, the first and second univariate moments
of the state remain constant over time ¢, 7*(s) = 1 for all
states s, @Q* is a linear function, and Sy41,5,j € {2, 3,4} is
independent of both the action and reward.

The observed datasets used in our experiments consisted of
N = 25 trajectories of length T = 25 each, which we split
into training datasets of N = 20 trajectories and validation
datasets of N = b trajectories. The behavioral policy was
a completely random policy. We chose a discount factor
of v = 0.9 during training. Our candidate set Q primarily
consisted of estimates fit by FQI with polynomial ridge
regression used as the regression algorithm. These estimates
varied in the polynomial degree d and L, weight penalty
parameter A. Also included in Q was the true optimal action-
value function @Q*. For each ),, € Q, SBV estimated
B*Q,, by training a polynomial ridge regression algorithm
on the training set with degree-penalty combination (d, \)
tuned to minimize error on the validation set.

To estimate the true MSBE ||B*Q,,, — Qu||%,., we approx-
imated B*(Q),,, using a KNN algorithm with a test set Dp,
of 2000 trajectories each with 100 time steps and generated
using behavioral policy p, & = 100 neighbors, and S; 1
multiplied by two prior to calculating Euclidean distances
(recall that Sy ;, 2 < k < 4 are independent of Sy 11,1 = Ry
and A;_; and thus should have diminished importance). We
then approximated P* using an independent test set D, of
1000 trajectories each with 25 time steps. We approximated
Q™ via linear regression with covariates (Ao, So 1) and out-

comes Zzi% 7' Ry, on a test set Do generated by running
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optimal policy 7* = 1 on 10, 000 simulated patients. Fi-
nally, the returns Er [>"i20 7' R:] were estimated by run-
ning each greedy policy ¢, on 1000 simulated patients for
100 time steps. Similar to what is often done on Atari ex-
periments (Agarwal et al., 2020), we used a larger discount
factor of v = 1 for evaluation, so that returns correspond to
the expected sum of rewards over a trajectory.

C.2. Extended Details of Bicycle Experiments

In the bicycle balancing control problem (Randlgv & Al-
strgm, 1998), the MDP relates to a bicycle in a simulated
physical environment which moves at constant speed on a
horizontal plane. There are four relevant observed contin-
uous state variables: the angle from vertical to bicycle w,
its instantaneous rate of change w, the displacement angle
of the handlebars from normal ¢ and its instantaneous rate
of change 6. While previous descriptions of the MDP in-
clude three additional states, these states are independent
to the first four states and rewards, thereby being irrelevant
to the control problem of interest, and two are usually con-
sidered hidden. A terminal state is reached when |w| > 12,
at which point the bicycle has fallen down. The actions
are the torque 7' € {—2,0,2} applied to the handlebars
and the displacement d € {—0.02,0,0.02} of the rider.
The noise in the system is a uniformly distributed term in
[—0.02, 0.02] added to the displacement. The reward func-
tion R(s¢,at, $¢+1) = —1I(|we| > 12) corresponds to an
optimal control problem that teaches an agent to balance the
bicycle for as long as possible.

The Bicycle MDP consists of highly nonlinear transition
dynamics with sparse rewards and long-term consequences
of taking certain actions. However, there is little noise in
the environment, and the observed data typically consists
of over 1000 episodes. For our experiments, we chose
a discount factor of v = 0.99 and a completely random
behavioral policy p(als) = 1/9. The environment, as well
as the method it was created to benchmark, is well-known
and has been extensively studied in the offline RL literature
(Lagoudakis & Parr, 2003; Ernst et al., 2005; Sutton &
Barto, 2018). More details about the MDP can be found
in Randlgv & Alstrgm (1998) and Ernst et al. (2005). The
value of a policy is measured as the expected number of
time steps before a terminal state is reached when applying
the policy online.

For the Bicycle MDP, we generated 10 offline datasets
consisting of 240 episodes of 500 time steps each, with
160 episodes partitioned for training and the remaining
80 episodes reserved for validation. Following Ernst et al.
(2005), Our candidate set Q were primarily fit by FQI with
random forests used as the regression algorithm, with differ-
ent hyperparameters for the number of training iterations K,
the minimum node size n,,;, of the trees and the number



Revisiting Bellman Errors for Offline Model Selection

of covariates 1y randomly sampled to be considered at
each split during tree growing. Also included in Q was
the zero Q-function ( = 0 corresponding to the behav-
ioral policy (ties are broken randomly when calculating
greedy policies) and polynomial Q-functions fit by minimiz-
ing EMSBE on the training set. For each Bellman backup
function B*Q,,, Q. € Q of interest, SBV used a separate
random forest regression algorithm with the hyperparame-
ters tuned to minimize MSE on the validation set.

To maximize sample-efficiency when implementing WIS
and FQE, we used the full dataset when calculating the
sums in Equation A.2 as well as estimating the action-value
function Q™ and initial state distribution d in Equation A.3.
Note that when g is a completely random policy and 7 is
a deterministic policy, Pr,, ([T _, Zgﬁzlgzg #0)=|Al7".
Moreover, for the Bicycle datasets a non-zero reward is
observed only when a terminal state is reached and is usually
only observed after nearly 100 zero rewards. As the Bicycle
datasets have under 250 observed trajectories, it is easy from
Equation A.2 why WIS would yield Jyyyg(7) = 0 for most
policies . As WIS gave identical ranks to all policies with
standardized policy values ranging from 0 to 1, we assigned
it a mean top-3 policy value of 0.5 (corresponding roughly
to random chance) for constructing Figure 3.

C.3. Extended Details of mHealth Experiments

In the mHealth control problem (Luckett et al., 2020), the
MDP relates to a disease process that evolves over time
for patients in a simulated micro-randomized clinical trial
(Klasnja et al., 2015). There are two observed continuous
state variables, a binary action (indicating whether to apply
treatment or do nothing) and a continuous reward function
which trades-off the burden/cost of applying treatment with
its effectiveness. The MDP has quadratic transition dynam-
ics, dense rewards and short-term consequences of taking
actions. However, the transitions are much noisier than those
of the Bicycle MDP, reflecting the stochasticity typically
observed in human health outcomes and behavior (Kazdin
et al., 2000). Moreover, the observed data typically consist
of under 100 episodes, reflecting the smaller sample sizes
that typically plague clinical trials and micro-randomized
studies. All episodes in the observed datasets follow a com-
pletely random behavioral policy p(als) = 1/2. Following
Luckett et al. (2020), an initial burn-in period of 50 time
steps were applied prior to both data generation and online
policy evaluation to ensure stationary. The environment, as
well as the method it was created to benchmark, is well-
known and has been extensively studied in healthcare RL
(Zhu et al., 2020; Tsiatis et al., 2019; Liao et al., 2021; Yu
et al., 2021; Liao et al., 2022; Shi et al., 2022). More details
can be found in Luckett et al. (2020). The value of a pol-
icy is measured as the expected reward when applying the
policy online for 100 time steps.
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For the mHealth MDP, observed datasets consisted of 30
episodes of 25 time steps each, with 24 episodes parti-
tioned for training and the remaining 6 episodes reserved
for validation. Following (Luckett et al., 2020), Our can-
didate Q-functions Q were primarily polynomial functions
fit by ridge-penalized least square policy iteration (LSPI)
(Lagoudakis & Parr, 2003), with different hyperparameters
for the degree of the polynomial d and the Lo weight/ridge
penalty parameter A. Also included in Q was polynomial
Q-functions fit by minimizing EMSBE on the training set,
and random forest Q-functions fit by FQI and varying in
the hyperparameters 7, and myy (see Appendix C.2 for
details on these parameters).

For each Bellman backup function B*Q,,,, @,, € Q of in-
terest, SBV used a separate regression algorithm tuned to
minimize MSE on the validation set. The space of possible
regression algorithms considered included random forest al-
gorithms with different hyperparameters for n,,i, and myy,
and polynomial ridge regression with different hyperparam-
eters for d and A\. To maximize sample-efficiency when
implementing WIS and FQE, we used the full dataset when
calculating the sums in Equation A.2 as well as estimating
the action-value function Q™ and initial state distribution dg
in Equation A.3.

The scripts present in our repository https://github.
com/ jzitovsky/SBV can reproduce all the results from
our paper. For those interested, these scripts contain infor-
mation on the exact grid of hyperparameters used to tune
the (Q* estimation algorithm and SBV for the toy, mHealth
and bicycle datasets. All scripts have some element of multi-
threading. Non-Atari experiments were conducted using
2.50 GHz Intel CPU cores from our university’s computing
cluster. The most computationally-intensive experiments
were from the bicycle environment: Here implementing
tree-based FQI for all configurations in our hyperparameter
grid was the primary computational bottleneck, and took
approximately three hours per dataset with 30 CPUs.

D. Extended Details of Atari Experiments
D.1. Q-Learning Configurations for Atari

There were two training configurations explored when run-
ning Q-learning on Asterix, Seaquest and Breakout: a shal-
low and a deep configuration. For Pong, only the shallow
configuration was used to speed-up our experiments. The
shallow configuration uses the standard Nature DQN ar-
chitecture and training algorithm (Mnih et al., 2015) but
with an Adam optimizer instead of an RMSProp optimizer.
Most of the details of this configuration can be found in
Agarwal et al. (2020) (they call this configuration “Offline
DQN (Adam)”) and thus we do not repeat them here. We
did however change the batch size from 32 to 128 to speed-
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up training. We should also mention that our definition
of “training iteration” differs from that of Agarwal et al.
(2020) in that it involves more weight updates to the Q-
network overall (640,000 training steps instead of 250,000
training steps) as well as more frequent re-loading of data
from disk into memory to reduce the correlation of the mini-
batches sampled for training. These changes apply to both
the shallow and deep configurations. The scripts we wrote
to run DQN with these configurations made heavy use of
the Dopamine library (Castro et al., 2018).

The deep configuration uses a deeper and more complex
Q-Network architecture that features 16 convolution layers
as well as max pooling layers, leaky ReLU activation layers
(Géron, 2019) and skip connections (He et al., 2016). The
architecture here is just a high-performing architecture for
the Bellman network that doesn’t use batch normalization
(Ioffe & Szegedy, 2015), according to validation Bellman
backup MSE. While architectures that used batch normal-
ization performed better as Bellman networks, they made
DQN training prohibitively slow. We tweaked the learning
rate and target update frequency (as defined in Agarwal et al.
(2020)) to 2.5e-5 and 32,000, respectively, so as to improve
training stability. Finally, we used double Q-learning targets
(Hasselt et al., 2016) to reduce overestimation bias, though
we found that this modification had a minor effect relative
to the other modifications discussed.

The network graph of the deep configuration architecture
can be found in Figure D.1. We use Leaky ReLU activation
layers in place of the standard ReLU activation layers to
mitigate issues with vanishing gradients and dying ReLLUs
(Géron, 2019). A pre-processing layer first divides each
element of the input state s € S by 255 to scale the ele-
ments to the [0, 1] range where S = {0, 1, ..., 255 84x84x4,
After the pre-processing layer, the network starts with two
convolutional layers and a pooling layer, with the first con-
volutional layer having a kernel size of 5 x 5 and both
convolutional layers having a filter size of 48. After this are
three units which we will call (DQN) convolutional stacks.
Each DQN convolutional stack consists of four convolution
layers, all of which have the same number of filters, with
a pooling layer inserted after the first two convolution lay-
ers. Moreover, the input to the stack is connected to the
output of the pooling layer of the stack via a skip connection
similar to other ResNet architectures (Chollet, 2017), and
the input to the third convolution layer is connected to the
output of the final convolution layer of the stack via a skip
connection as well. The three convolution layers have filter
sizes 72, 144 and 248, in ascending order. After the three
convolution stacks is a global average pooling layer and
a dense layer with units equal to the number of possible
actions |.A|. The output of this layer gives the Q-network
estimates Qy(s,a),a € A of the true optimal action-values
Q*(s,a),a € A for the given input state s € S.
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D.2. Implementation Details of SBV for Atari

We used two training configurations for the Bellman net-
work: A simpler configuration for Pong and a more complex
one for the other three games. The more complex archi-
tecture was tuned to minimize validation MSE across the
Breakout, Asterix and Seaquest datasets and performs signif-
icantly better (in terms of validation MSE) than previously-
used architectures and configurations such as Nature (Mnih
et al., 2015) and IMPALA (Espeholt et al., 2018). In theory,
we could have used a different training configuration for ev-
ery dataset, or even for every Bellman backup function, but
we avoided doing this to simplify the experiments. The com-
plex Bellman network configuration is more reminiscent of
the deep neural networks applied to modern image classifica-
tion problems such as ImageNet (Russakovsky et al., 2015)
than the small networks typically employed in deep RL and
includes commonly-used design choices in deep learning,
such as batch normalization (Toffe & Szegedy, 2015) and
residual connections (He et al., 2016), to maximize gener-
alization. The simpler configuration applied to Pong was
utilized because it achieved almost the same performance
on Pong as the more complex configuration while requiring
significantly less computational resources. The more com-
plex configuration is described below. Details of the simpler
configuration are not as important and are not described
here.

An illustration of the full network graph can be found in
Figure D.2. As is standard in supervised deep convolutional
neural networks, we follow every convolutional layer with a
batch normalization layer except for those preceding pooling
layers: these convolutional layers are followed first by a
pooling layer and then by a batch normalization layer. We
use Leaky ReL.U activation layers in place of the standard
ReLU activation layers to mitigate vanishing gradient and
dying ReLU problems (Géron, 2019).

A pre-processing layer first scales each pixel value present
in the input state s € S to the [0, 1] range, as is standard
for image-based neural networks. After the pre-processing
layer, the network starts with three convolutional layers
and a pooling layer. After this are four units which we
will call (Bellman) convolutional stacks. Each Bellman
convolutional stack consists of three convolutional layers,
a pooling layer and a squeeze-and-excitation (SE) block
(Hu et al., 2018). The SE block in this case consists of
a global average pooling layer, a hidden dense bottleneck
layer with 1/4th as many hidden neurons as the input width
(+ batch norm + leaky ReLU), and an output layer with
softplus activation. The input signal is connected to the
output of the SE block via a skip connection similar to other
SE-ResNet architectures (Hu et al., 2018). After the four
convolutional stacks are two convolutional layers that use
depthwise separable convolutions (Chollet, 2017) followed
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Figure D.1: Network Graph of the Deep Configuration of DQN. Unlabeled arrows represent feed-forward connections.
Unless otherwise specified, all layers use the default parameters specified by TensorFlow v2.5.0 (Abadi et al., 2015), with
the following exceptions: 1) convolutional layers use 3x3 kernels, zero padding (padding="“SAME”) and a He uniform
weight initialization (He et al., 2015); 2) max pooling layers use 3x3 kernels, a vertical and horizontal stride of 2 and apply

zero padding (padding=“"SAME”).

by an SE block. A skip connection connects the input of the
first depthwise separable layer to the output of this final SE
block.

The number of feature maps per layer increases with depth,
increasing from 48 feature maps for the first convolutional
layer to 240 for the final depthwise separable layers. Follow-
ing the final SE block is a global average pooling to reduce
the number of parameters and a dense layer with units equal
to the number of possible actions |.A|. The output of the
network By(s, a) is the dot product between the output of
this dense layer and a one-hot transformation of the inputted
action a € A, and is an estimate of the Bellman backup
(B*Qm) (s, a) where @y, is a candidate Q-function that we
are trying to evaluate.

The network weights are trained on D7 to minimize MSE
via the NAdam optimization algorithm (Dozat, 2016). To
speed up computations, we enabled the mixed precision fea-
ture of TensorFlow (Abadi et al., 2015) for the computations
and used a batch size of 512. For the learning rate scheduler,
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we used an initial learning rate of 5 x 10~* and multiplied
the learning rate by a factor of 0.33 whenever training loss
did not improve by at least 0.001 x var(Bp,Qm(st,at)))
over 2 consecutive iterations where var(Bp, Q. (s¢, at)) is
the sample variance of the targets within D7 being used to
train Bg. Training was terminated after the first iteration
with the learning rate equal to 5 x 10~% x 0.332. The per-
formance of the network after each epoch was evaluated by
calculating the MSE from validation set Dy, and only the
weights from the iteration with the lowest validation loss
were saved.

For Asterix, Seaquest and Pong, rather than loading all the
data into memory at once, we sharded the data into 100
separate files and performed a training epoch by repeatedly
loading 10 different files into memory. This reduced mem-
ory costs substantially, and was found to not significantly
degrade computational or generalization performance on
most games. An exception was for Breakout, where we
noticed modest gains in generalization error by loading the
full data into memory all at once when conducting training.
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Figure D.2: Network Graph of Bellman Network. Unlabeled arrows represent feed-forward connections. Unless otherwise
specified, all layers use the default parameters specified by TensorFlow v2.5.0 (Abadi et al., 2015), with the following
exceptions: 1) convolutional layers use 3x3 kernels, zero padding (padding="“SAME”), no bias and a He uniform weight
initialization (He et al., 2015); 2) max pooling layers use 3x3 kernels, a vertical and horizontal stride of 2 and apply zero
padding (padding=“"SAME”); 3) SENet() uses an identical architecture to the squeeze-and-excitation units in Hu et al.
(2018), except the bottleneck layer uses a reduction factor of 4 instead of 16 and a leaky ReLLU activation instead of the
standard ReLU, and the output layer uses a softplus activation instead of sigmoid.
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Denote @y, as the trained Q-network after the kth iteration
for a particular DQN configuration. We wish to estimate
the Bellman backup functions B*Qg,,1 < k& < 50. Let
By, denote the trained Bellman network for estimating the
B*Qo,,. We perform two additional tricks to speed up com-
putations. First, for most iterations, we initialize the trained
weights of By, ., as ¢ before conducting training, simi-
lar to Algorithm A.2. This can be thought of as a kind of
transfer learning and greatly speeds up computation. We
do, however, occasionally re-randomize initial weights for
an iteration via He and Xavier initialization schemes (Glo-
rot & Bengio, 2010; He et al., 2015) to avoid overfitting.
The number of consecutive iterations I where weights are
transferred from previous iterations before re-randomizing
the weights is a hyperparameter that we tuned to minimize
validation MSE. In our case, we set I = 5 for Pong, I = 3
for Seaquest and Breakout, and I = 1 for Asterix.

The second trick we apply is stopping training once the
top-5 policies according to SBV fail to change for five con-
secutive iterations. By stopping after it is clear that the
optimal iteration has been found, we avoid wasting time
and resources evaluating Q-functions that aren’t going to
be selected anyway. As calculating Spearman correlations
with policy returns would require running SBV on all 100
Q-functions for all 12 datasets, this trick meant that Spear-
man correlations between SBV and policy returns would
not be available. Given that Spearman correlation is not
the most important metric anyway for reasons discussed in
previous sections, we felt that calculating these Spearman
correlations was not necessary for the Atari games and their
exclusion was worth the improved compute.

D.3. Other Implementation Details for Atari

As WIS requires knowledge of the unknown behavioral
policy u, we estimated it using a neural network approxi-
mator jig with trainable parameter vector 5 which we dub
our propensity network. g was trained on Dr so as to
maximize log-likelihood >, . cp[log pg(als)] while its
log-likelihood on Dy was used to tune hyperparameters
and evaluate performance. We ended up using the same
configuration for the propensity network as that of the Bell-
man network (Figure D.2), except with the loss function
changed to categorical cross-entropy, the output activation
layer changed to softmax, and the initial learning rate oc-
casionally reduced to avoid divergence. We found that the
Bellman network architecture achieved higher validation
log-likelihood than other custom architectures explored as
well as architectures used in previous literature such as IM-
PALA (Espeholt et al., 2018). From our propensity network
1g, we calculated Equation A.2 on Dy to avoid bias is-
sues with using the same dataset to train and evaluate the
Q-network and propensity network (Nie et al., 2022). We
found that not using such data partitioning yielded worse
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performance. The code repository associated with Kostrikov
& Nachum (2020) helped write our scripts for implement-
ing WIS. When implementing FQE (Equation A.3), we
estimated the action-value function on D by modifying the
shallow DQN training algorithm to perform policy evalua-
tion instead of optimization, and estimated the initial state
distribution using Dy . Similar to SBV, the neural network
for estimating the value of a DQN configuration after a spe-
cific iteration was oftentimes initialized using the trained
neural network from the previous iteration to speed-up com-
putation.

For generating all tables and figures related to Atari, the
value of a policy is measured as the expected sum of re-
wards from the beginning of a game to its termination, or the
expectation of returns E [}, , 7" R;] observed from apply-
ing the policy online but with v = 1. For those interested in
more details related to our Atari experiments, including the
SBV implementation on Pong and our ablation experiments
in Section 5.4, please see the relevant scripts in our reposi-
tory https://github.com/jzitovsky/SBV.

D.4. Computational Performance on Atari

Atari experiments were conducted using a mix of A100 and
V100 GPUs from both our university’s computing cluster
and GCP virtual machines. Running the deep DQN configu-
ration for 50 iterations took around six days with a single
A100 GPU. However, it is worth noting that the best Q-
function was almost always obtained in under 25 iterations.
SBV and FQE both had to fit a separate neural network
for every Q-function being evaluated, making computation
quite intensive. With four A100s and four V100s (or with
six A100s), running SBV on a single dataset would usually
take around a week, while running FQE on the same dataset
would usually take around two weeks. SBV had a tendency
to output a very large criterion when evaluating Q-functions
trained using a large number of iterations. This allowed
us to “early stop” SBV after its criterion became too large
and avoid evaluating all Q-functions without changing the
top-5 Q-functions selected by SBV (see Section D.2). On
the other hand, FQE did not share this tendency, making
such an early stopping procedure difficult to apply to FQE.
The ability to avoid evaluating all Q-functions with SBV
is one reason why it required less computational resources
than FQE. Another reason why SBV required less compute
is that it was stopped training the Bellman network when
validation loss stopped improving. No similar validation
metric exists for FQE, and with no ability to cease neural
network training early, FQE ended up using many more
epochs than SBV. Finally, while SBV used a much larger
and deeper architecture than FQE, this was offset by a larger
batch size and not having to keep track of a separate target
network during training.
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We can easily derive and compare computational complex-
ity of SBV to other baselines. Let V' and 7" be the number
of transitions in the validation and training set respectively
and M be the number of Q-functions we wish to evaluate.
Suppose DQN approximates the value function, SBV ap-
proximates the backups and FQE approximates the value
function with a deep neural network, and each such network
has P parameters and is trained for K epochs. The number
of operations for evaluating all Q-functions is O(TPK M)
for FQE and SBV vs. O(V PM) for EMSBE. While FQE
and SBV have similar computational complexity in theory,
SBV is faster to execute in practice for reasons discussed
above. However, the EMSBE is much faster than SBV both
in theory and in practice, with computation times negligible
compared to FQE and SBV. EMSBE does not fit a regres-
sion algorithm like SBV, but rather only calculates a sample
mean, and can be computed almost instantly. For noisy
MDPs, the EMSBE can select arbitrarily poor policies (see
Figure 2), and in these cases its computational performance
is secondary. However, for low-noise MDPs, the EMSBE
will only be slightly biased, and because it is faster it may
be preferred for datasets where SBV would be slow to im-
plement. Moreover, in deterministic MDPs, the validation
EMSBE is unbiased and would likely perform better than
SBV due to not incurring any function approximation error.

An important diagnostic when running SBV is to compare
the Bellman backup MSE to the EMSBE on the validation
set Dy . It is easy to see that the EMSBE upper bounds the
Bellman backup MSE when the Bellman network is close
to the true Bellman backup. Therefore, if validation MSE
of the regression estimator is larger than validation EMSBE,
this means that the Bellman network has room for improve-
ment and it may be worth changing the architecture or other
training hyperparameters. Also recall from Proposition 4.2
that the EMSBE is positively biased for the true MSBE.
Thus, if the SBV estimate of the MSBE is larger than the
EMSBE, this would also indicate a problem.
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E. The Relationship between SBV and Other Algorithms

For the subsections below, we assume readers have already read Section 4.

E.1. The Relationship between SBV and FQI

For this section, we assume readers are already familiar with Fitted Q-Iteration (Ernst et al., 2005). Recall from Proposition
4.3 that the expected value of the (variable-target) EMSBE (Equation 3) is approximately equal to the (variable-target)
MSBE (Equation 2) plus a bias term related to the variance of the targets. Therefore, the EMSBE will favor Q-functions with
less-variable targets more than the MSBE, making the EMSBE a poor proxy for the MSBE for model selection. Likewise,
the loss function minimized by FQI at every iteration can be considered a fixed-target EMSBE, and this will also be biased
for the corresponding fixed-target MSBE with bias proportional to the target variance. The main difference, however, is that
the targets do not change when evaluating different Q-functions to perform an FQI update. This means that FQI updates will
not be affected by the bias in the fixed-target empirical Bellman errors, and minimizing over the fixed-target EMSBE will
give a similar solution as minimizing over the fixed-target MSBE. Therefore, the fixed-target EMSBE will still be a good
proxy for the fixed-target MSBE for model training.

To fix ideas, suppose we had an estimate @* for Q* obtained by running FQI for K iterations over functional class F. In
other words, we iteratively update a Q-function as Q(**+1) argmin ;. Ep,. [(r +ymax, QW (s a') — f(s, a))Q} for

iterations k = 0,1, ..., K — 1, and then set Q* = QUS). It can be shown that:3
2
B [(r+1mx Q. a) - @4 (s.0)) | 50 - @,
a/
+E(s,,4,)~Pn [Var (Rt + v max QW (S¢i1,a)|Ss, At” .

It is easy to see that argmin, . zEp, [(r +ymax, QW) (s',a’) — f(s,a))Q} ~ argmianB*Q(k) — fl|%.. This is
because the targets 7 + ymax, Q¥ (s’,a’) are not affected by the minimizing function f and thus the bias term

E(s, a,)~pu [Var (Ry + ymaxqe Q¥ (Sy41,a')[ Sy, A;)] does not affect the optimization. Therefore, when applying
FQI updates, the empirical fixed-target Bellman errors will be a good substitute for the true fixed-target Bellman errors.

To understand why SBV is still needed to tune hyperparameters of FQI, suppose we now wished to evaluate the qual-
ity of Q" in estimating Q*. This would make sense, for example, if we wished to compare Q* to other proposed
estimates of Q*. We could use SBV to evaluate Q* by estimating its MSBE ||Q* — B*Q*||%.., as it can be shown
that the MSBE upper bounds estimation error ||@* — Q*||%,. (Proposition 4.1). However, instead of SBV, suppose
that we were to assess @* using the empirical loss functions minimized throughout FQI but applied to the valida-
tion set, Y1 Ep, {(r + ymaxy QW) (s, a’) — Q(’f“)(s,a))Z] It can be shown that 3, [|B* Q") — Q-+,
upper bounds estimation error of FQI in a manner similar to the MSBE (Munos, 2005), and to the untrained eye,
> Epy {(7’ + ymax, QW) (s, a’) — Q1) (s, a))Q} may seem like a reasonable proxy for >°, ||[B*Q%) — Q++V)|2, .

The problem here is that when using Y., Ep, {(r—i—'ymaxar Q(k)(s’,a’)—Q(’““)(&a))ﬂ to evaluate Q,

this term will depend not only on Y, ||B*Q®) — Q*+V|2 but also on the variance of the targets
Sk Es,,a~pn [Var (R + ymaxe QW (Sy11,d")|S;, Ar)]. Evenif 3, ||B*Q™) — Q¥+ |2, = 0 (indicating that
@* ~ (Q*), our proposed criterion may still be very large because the targets have high variance. This also means that when
evaluating two candidates (7 and Q- estimated by FQI, such a procedure may choose ()1 over (2 even though Qs yields a
smaller value of 3, ||B*Q®) — Qk+1)||2, because the targets observed throughout training for Q1 have smaller variance.

Therefore, while the errors used by FQI are effective for model training, they are less effective for model evaluation and
selection, necessitating the use of SBV. This also highlights the key difference between fixed-target Bellman errors estimated
by FQI and variable-target Bellman errors estimated by SBV: empirical fixed-target Bellman errors are good proxies for
the true fixed-target Bellman errors with FQI because the targets are treated as fixed in the relevant optimization problems.

3This approximation holds exactly for transitions in Dy, but for transitions in Dr, the fact that Q*) was trained on Dy introduces an

additional bias term that depends on the complexity of F, the iteration number k and the sample size (Antos et al., 2007). For simplicity,
we assume that the sample size is sufficiently large relative to the complexity of F such that this approximation is accurate.
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However, the empirical variable-target Bellman errors used by the EMSBE (Equation 3) are not good proxies for the true
variable-target Bellman errors, because the targets are are not fixed when evaluating different Q-functions, but rather will
change depending on the Q-function being evaluated.

Now let’s suppose we were to run a K + 1th iteration of FQI and assess Q* using Ep,, [(QU) (s,a) — Q&1 (s,a))2).
This is equivalent to our SBV estimate Ep, [(Q* (s, a) — B*Q* (s, a))?] when B*Q* (s, a) is estimated by minimizing the
Bellman backup MSE (Equation 5) over the same functional class  used for FQI. The problem with using this quantity to
assess Q" is that it assumes QX1 ~ B*Q* (s, a). SBV makes no such assumption. Instead, B*Q* (s, a) is estimated by
minimizing Bellman backup MSE over functional class G, where G # F in general and is tuned to minimize validation error
Ep, [(r + v maxe Q* (s, a’) — B*Q* (s, a))?], thus ensuring that B*Q* ~ B*Q*. It is also worth noting that SBV can be
used to evaluate estimates of @Q* generated by training algorithms other than FQI, such as Least Square Policy Iteration
(Lagoudakis & Parr, 2003).

See also Appendix F.2.

E.2. The Relationship between SBV and BErMin

For this section, we assume readers are already familiar with BErMin (Farahmand & Szepesvari, 2010). SBYV first
splits the observed data D into a training set D and a validation set Dy. We then obtain a set of M estimates of

= {@,...,Q M} by runnlng M different offline RL algorithms on Dz, and estimate their Bellman backups
B*Ql, .., B*Qxr as B Q, ... B @ by running M regress10n algorithms on Dp. Finally, we perform offline model
selection using assessment criterion SBV(Qu) = ||Qm — B*Qn| |%,,» which aims to be an accurate point estimator for
MSBE(Qu) = ||Qm — B*Qum||%,.. While our theoretical results are restricted to infinite-data settings, we demonstrated
strong empirical performance on a diverse set of challenging problems.

In contrast, BErMin splits the observed data D into two independent training sets Dy, and Dr, and a validation set Dy, .
As before, a set of M estimates of Q*, Q = {Q1, ..., Qs } are obtained by running M different offline RL algorithms on
Dr, . Now, however, their Bellman backups B*Q1, ..., B*Q s are estimated as E*Ql, e g*Q a by running M regression
algorithms on a separate training set Dr,. In other words, BErMin assumes the data used to generate the Q-functions is
independent of that used to estlmate their Bellman backups. Moreover, we perform offline model selection using assessment
criterion BErMin(Q,,) = (1 1 @m — B*Qm||DV + by, where [|B*Qun — B* Q|2 < by, with probability 1 — §/2M

and a € (0, 1) is a tuning parameter determining the relative weight of b, relative to ||Q,, — B*Qn, [|py - BEtMin(Q,,)
aims to be an accurate upper bound for MSBE(Q,,) = ||Qn — B* Q.|| %,.. BEtMin also extend this assessment criterion to
deal with the case where M is very large (potentially infinite) and where the user can give greater prior weight to certain
Q-functions over others (e.g. based on complexity). For simplicity our description is restricted to the case where M is finite
and small and where no Q-functions are favored to others a priori. With () the Q-function selected by BErMin, it can

be shown that MSBE(Q#) < 4(1 + a)(1 — a) 2 minj << |2MSBE(Q,) + 354 + O(n~1log(6~1)) with probability

1 — 4. Therefore, assuming maxi<m<m l;m — 0 at a sufficiently fast rate with dataset size (i.e. our upper bound becomes
tighter and our regression algorithm becomes more accurate with sample size), BErMin is theoretically guaranteed to select
a Q-function with MSBE close to the Q-function from Q with smallest MSBE, up to a constant (see also Theorem 3 of
Farahmand & Szepesvari (2010)).

BErMin thus has much stronger finite-sample theoretical guarantees than what was derived for our method. However, to
our knowledge, BErMin has never been successfully applied to deep RL benchmarks like Atari, despite being published
in 2011. We believe there are a few reasons for this. First, BErtMin requires specification of tight probabilistic bounds on
the excess risk of the regression algorithm, or on ||B*Q,,, — B*Q,||%,.. While an upper bound on the generalization MSE

E(s,a)~ Pt ,s'~T( |5,0) {(R(s, a,s') +ymaxy Qum(s’,a’) — Qm(s, a))z} can be easily obtained using a held-out validation

set, bounding the excess risk ||B*Q,, — B Qm||%,. is more difficult as it involves the unknown Bellman backup B*Q,,.
For example, even if we wanted to apply BErMin to Atari, it is not clear how we would derive excess risk bounds for our
trained neural network given in Figure D.2 that are tight enough to be useful without making overly restrictive assumptions.
To the best of our knowledge, finite-sample excess risk bounds for neural networks that have been derived in previous work
make assumptions on the dependence between observations, class of architectures considered and function class that the
true Bellman backup belongs to that would make such bounds inapplicable to our settings. Most such bounds are also likely
far too loose to be useful for our observed sample size.
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Moreover, BerMin requires further partitioning the training set Dr into separate datasets Dr, and Dr, to estimate the
Q-functions and Bellman backups, respectively, which essentially halves the amount of data that can be used for both. In
contrast, SBV uses the same data Dy to estimate the Q-functions and backups, and this leads to both estimators performing
better, as they can use more data (see Section 5.4). Finally, applying SBV (or BErMin) to deep RL settings requires building
and tuning a regression neural network to minimize validation MSE, and this was non-trivial for Atari. For example, the
typical DQN (Mnih et al., 2015) and Impala-CNN (Espeholt et al., 2018) architectures were ineffective at achieving small
MSE and we needed components common in deep learning but not in deep RL, such as batch normalization, leaky ReLU
activations and squeeze-and-excitation units (see Appendix D.2 for details).

E.3. The Relationship between SBV and BVFT

For this section, we assume readers are already famlhar with BVFT (Xle & Jiang, 2021). For each candidate @,,, € Q, SBV
uses assessment criterion SBV(Q,,,) = ||Qm — B*Qm| |D where B*Qm uses a regression algorithm trained on D7 to solve
argming -, . oep, (1 +ymaxe Qu(s’,a’) — f(s, a)) and tuned to minimize validation error 3, . . .ep, (r +
ymaxy Qm(s,a’) — g*Qm(s, a))?. The goal is for g*Qm to be as accurate an estimator for 5*(@),,, as possible, so
that ||Q, — B*Qm||3, will be an accurate estimator of the true MSBE ||Q,, — B*Qyn |3, In contrast, BVFT uses

assessment criterion BVFT(Q),,) = maxgeo ||Qm — B* QWH%V where Q&? discretizes (),,, with resolution

G(Q%,Q®)
€, B;( —(o) Q(F))Qm is a weighted Lo projection of B*Q,, onto functional class G(Qm, )% , Q%)) with weights given by the
empirical distribution of Dy, and G ( Q(e)) is the smallest piecewise-constant functional class containing both Qm and

Q9. For details, please see Xie & Jlang (2021).

Note that the projected Bellman backups in BVFT are restricted to projections onto piecewise-constant functional classes
that depend on the resolution hyperparameter € and the candidate set Q. In contrast, while SBV can use piecewise-constant
projections, it can also use neural network projections, elastic-net penalization, tree-based ensembles, or any other training
scheme to estimate the Bellman backup, depending on what maximizes accuracy. Moroever, while SBV uses a single
projection of the Bellman error (namely the most accurate that can be found) to assess @,,,, BVFT takes the maximum of
multiple projections, which could induce overestimation issues when the number of projections is large. These characteristics
make SBV a more direct and principled estimator of the MSBE compared to BVFT.

However, this does not mean that SBV is better than BVFT per se. Indeed, Xie & Jiang (2021) showed that a weighted
Ly projection of the Bellman operator onto a piecewise-constant functional class with weights based on P* will still be a
~-contraction in L., norm and will still have a unique fixed point at Q*, even though it may be very different from the real
Bellman operator, so long as this piecewise-constant functional class contains Q* and P*(s,a) > 0 for all (s,a) € S x A.
Therefore, it can be seen that if Q* € Q and QQ* does not change following discretization (because it is piecewise-constant),
asymptotically BVFT(Q,,) will give a value of zero if Q,, = Q* and will give a value greater than zero if Q,,, # Q*. In
such cases, BVFT will correctly recover the true optimal value function regardless of whether or not BVFT outputs accurate
estimates of the MSBE for all candidates. Moreover, provided the discretization resolution € declines with sample size at
the right rate, BVFT can still be proven to perform well even if Q* is not piecewise-constant. Finally, piecewise-constant
projections are stable and allow for the asymptotic guarantees of BVFT to easily extend to finite-sample settings. As a result,
Xie & Jiang (2021) were able to derive state-of-the-art finite-sample guarantees for BVFT.

While the primary goal of SBV is to estimate the MSBE as accurately as possible, it is more useful to think of BVFT as
outputting a related quantity that is different from the MSBE but still has its own theoretical guarantees.
E.4. The Relationship between SBV and ModBE

For this section, we assume readers are already familiar with ModBE (Lee et al., 2022). To best explain the differences
between SBV and ModBE, we consider a finite-horizon non-discounted MDP where the only hyperparameters of interest
are the model class (e.g. not the optimizer or any penalty terms) and we wish to select between two nested model classes
F1 C Fy for running FQI. Let fjk be the kth time-step Q-function obtained by running finite-horizon FQI using model class
F; (Lee et al., 2022). SBV compares:

Z]EDV [(f1 s,0) = B[ (s,0) } vs. ZEDV {(f2 s,a) — B §+1(s,a))1, (E.1)
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where B*fFtl(s,a) = argmingeg, > . 5)epy (9(5,0) — 7 — maxy k(¢ a/))? and B*fFT(s,a) =

argmingeg, > o 0 onepy (9(8; @) =7 —max, FE(s a)))2. B fF+1 (s, a) estimates B* £+ (s, a) using functional class
G tuned to minimize error on validation set Dy, i.e. to maximize accuracy of 3* f“ (s,a), and similarly Gs is tuned to
maximize accuracy of B* f2k + (s, a). The regression model classes G; and G5 can be completely different than the FQI model

classes F; and F». The ultimate objective of our goal is to compare 3", || fF — B* ff |3, vs. 3, || £ — B* f5 4 [3,...

In contrast, ModBE compares:
2
ZEDV {(fl s,a) — 7 — max R G ) ] vs. ZEDV [(gg $,@) — T — max 1’“"’1(3’,@’)) ] +P, (E2)

where g5 = argminge z, > (s, 1 s)epy (9(5, @) — r — maxy *+1(s',a’))?, P is a penalty constant that depends on
|F1], | F2|, |D| and the horizon length, among other terms. Unlike Equation E.1, Equation E.2 is not comparing the MSBE
between ff and f§ because f§ is not even calculated. Instead, it is measuring the ability of F» to model with greater
accuracy the same intermediate targets as those obtained by running FQI with model class F;. These are fixed-target
empirical Bellman errors as we defined in Section 2.2. If the right-hand-sum sum of Equation E.2 is smaller than the
left-hand sum, this suggests JF7 is not complete (Munos & Szepesvari, 2008; Chen & Jiang, 2019) and we should choose the
more complex model class F>. Otherwise, we should stick to /7, since it yields smaller estimation variance.

Let B}- ka approximate B* f] F+1 using an L, weighted projection onto function class F with weights given by the

empirical distribution of Dr. We can also compare ModBE and SBV by noting that ff = B £ k“ and f§ = B ., k+1.
The comparison for ModBE is then:

2
ZEDV [(Bﬂ 1 *1(s,a) — r — max 1’““(5’7(1’)) } vs.
g (E.3)
2
S o, | (Bt (s0) — - ma ) 4
& a

In contrast, SBV compares:

S Eo B0, (e B £ ) | s > ro, (#e0-B it ea) ] @

ModBE compares estimation accuracy for B* {H‘l using model classes F; and F» (averaged over k), and

chooses Fj if accuracy is better. Meanwhile for SBV, we can think of G; as being derived by conducting
similar comparisons in equation E.3 but without the penalty term and over many possible functional classes
G1.1,G1,2,...,G1,n, and choosing that which is smallest. In other words, G; = minj<,<n L(G1 n, f1) where

2
L(Gin, f1) = Y. Ep, [(Bgl (s, a) — r — max, f“(s',a')) ] Likewise, G would be derived as G, =

ming <, <n L(Ga,n, f2) with potentially different candidates G3 1, G2 2, ..., G2, . In this case, SBV performs similar com-
parisons as ModBE. However, unlike in ModBE, the model classes G 1, G 2, ..., G1,5 compared can be different from
F1 and F,. Moreover, SBV doesn’t ultimately choose the function class for FQI based on the Bellman backup accuracy
comparisons L(Gy ,, f1) and L(Gz , f2). Rather, finding the function classes G; and G5 that maximizes Bellman backup
estimation accuracy is a proxy for estimating the true MSBE accurately, and we ultimately compare estimated MSBE
(Equation E.4) between f7 and fs.
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F. Additional Notes

F.1. Bellman Errors and Continuous Control Tasks

Continuous control problems are typically solved by deep
policy gradient algorithms (Schulman et al., 2015) or deep
actor-critic algorithms (Lillicrap et al., 2016). Bellman er-
rors measure the error of an estimated action-value function,
and as policy gradient algorithms do not estimate action-
value functions, there are no Bellman errors that can be
computed. In contrast, deep actor-critic algorithms require
two neural network models: a Q-network (or critic) Qg and
a policy model (or actor) 7. The y-contraction properties
of the Bellman operator and policy iteration theory (Buso-
niu et al., 2010) suggests that we would need to ensure that
(1) Qo =~ B™ Qg and (2) Qo (s, m4(s)) ~ max, Qg(s,a),
where B™Q(s, a) is equal to:

]E[Rt + ’YEa’Nw(-ISHl)Q(StJrh a’)|St = &At = CL].

Indeed, even if the first condition is satisfied completely,
this would only relate to the critic (Qy accurately estimating
Q7¢, and the actor 7, could still be arbitrarily sub-optimal.
While SBV could help ensure the first condition, extending
SBYV to deal with both conditions is less trivial and left for
future work. We should also note that there are a few deep
off-policy RL algorithms for continuous control settings that
use stochastic optimization to avoid specification of an actor
network (Kalashnikov et al., 2018; Kahn et al., 2021), and
SBV would be directly applicable to such algorithms.

F.2. Using Bellman Networks to Improve DQN

In the Atari setting, we found that by using architectures
for the Q-network that performed as well as Bellman net-
works, and by greatly reducing target update frequency, we
were able to achieve Q-functions with low Bellman error
without having to explore a large number of different RL
training configurations. For example, the Q-network ar-
chitecture utilized for our deep DQN configuration is just
an architecture that performed well as a Bellman network
according to validation MSE on the four analyzed Atari
environments (see Appendix D.1 for more details). We also
found a similar relationship for other environments: In the
mHealth environment for example, quadratic functions usu-
ally performed best both for estimating @* and Bellman
backups of the candidate Q-functions. Our results indicate
that SBV should perform well on remaining Atari environ-
ments as well, provided the Bellman network validation
error is further reduced and the Q-network architecture is
further improved using a similar strategy.

We further compare SBV and DQN to provide some
insight into why this phenomenon might be occur-
ring. Recall that DQN performs updates Q*t1)

argmin ;. zEp,. [(r +ymax, QW (s, a') — f(s, a))2],
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where F is a functional class corresponding to a pre-
specified neural network architecture and the minimization
is performed using a small number of gradient descent
steps determined by the target update frequency. Intu-
itively, a good choice of F is one that can accurately
estimate E[R; + ymaxy, Q(Siy1,a’)|St, A¢] for all
Q = QW , QY. ... € F. This is related to an impor-
tant condition for FQI theoretical guarantees known
as completeness (Munos & Szepesvari, 2008;AChen &
Jiang, 2019). In contrast, SBV uses estimators B*Q,,
argmin ;. zEp,. [(r + ymaxay Qum(s',a’) — f(s,a))?]
for @,, € Q where minimization is over a large number
of gradient descent steps determined by prediction error
on Dy. Intuitively, a good choice of F is one that can
accurately estimate E[R; + ymax, Q(Sty1,a’)|St, At
forall Q@ = Q1, ..., Qn € Q. While these problems are not
identical, they are similar: In both cases, we are essentially
trying to solve regression problems on the same dataset
using the same covariates, with targets given by the reward
plus a complex neural-network function of the next state.
We would thus expect some relationship between the
optimal function approximator or training algorithm for
each task.
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G. Additional Tables and Figures
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Figure G.1: Returns vs. MSBE Ranks. An MSBE rank of 30
means the estimate has the highest observed MSBE, while
a rank of zero means the estimate has the lowest MSBE.
MSBE values are grouped similarly to Figure 1, though
we use a more color blind-friendly scheme here. Note that
even though the relationship between MSBE and returns is
not perfectly monotonic, the top policies according to the
MSBE (i.e. those categorized as having “low” MSBE) still
perform very well.
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Figure G.2: BVFT Performance on Two Environments. We
tuned the discretization resolution of BVFT as in Zhang
& Jiang (2021). We report the standardized top-3 policy
value averaged over datasets similar to Figure 3. While
BVFT performs comparably to SBV on Asterix datasets, it
performs worse than random chance on mHealth datasets
(see Sections 5.2 and 5.3 for more details on these datasets
and metrics). We admit that we only became aware of a
practical implementation of BVFT (Zhang & Jiang, 2021)
very recently. Hence, we did not have time to evaluate
BVFT as thoroughly as other OMS algorithms.
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Figure G.3: Absolute Spearman Correlation with Policy
Value. Mean (Std) of this metric across datasets is reported
for each method. While SBV achieves the highest Spearman
correlation for both environments, it is still rather low for
the Bicycle datasets. Despite this, SBV is still effective at
selecting high-quality policies (Figures 3 and G.4).
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Figure G.4: Max Top-k Policy Values for Bicycle and
mHealth Environments. Each data point represents the max-
imum policy value observed among the top-k policies se-
lected for a particular method, averaged over 10 datasets.
The max top-k policy value is a useful metric for situations
where an online environment is available but can only eval-
uate up to k policies for safety or cost reasons. While SBV
performs well across environments, WIS performs poorly
on Bicycle for all values of k£ while the EMSBE performs
poorly on mHealth for small values of k£ (i.e. when only
limited online interactions are available).

Table G.1: Performance of SBV on the Same Four Datasets
Evaluated by FQE. Displayed are the top-5 policy returns
analogous to Table 2.

Method Pong Breakout Asterix Seaquest
SBV B% 69% 73% 70%
FQE B% 41% 53% 34%
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Pong Breakout Asterix Seaquest
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Figure G.5: Max Top-k Policy Values for Atari Environments. Each data point represents the maximum expected return
observed among the top-% policies selected for a particular method, averaged over 3 datasets. The max top-£ policy value is
a useful metric for situations where an online environment is available but can only evaluate up to & policies for safety or
cost reasons. On average, SBV significantly outperforms competitors across environments and values of k.

36



Revisiting Bellman Errors for Offline Model Selection
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Figure G.6: Learning Curves for the Best Configuration for all 12 analyzed Atari datasets. Returns are standardized to a
[0, 1] range within each dataset. The dashed horizontal line represents performance when no early stopping is applied. The
vertical lines represent the iterations where training was stopped according to different methods. Only SBV performs nearly
as well as or better than no early stopping for all datasets. FQE was only evaluated on the four datasets present in Figure 4
and is thus excluded here.

Table G.2: Performance of Model-Based Evaluation on the Bicycle Balancing Problem (see Section 5.2). Similar to previous
work (Janner et al., 2019), we modelled state transition dynamics as a multivariate normal distribution with a diagonal
covariance matrix, where the vector of means and log-standard deviations were outputted from a single feed-forward neural
network with two hidden layers of 200 units each. Below the mean (4 sd) of the top-3 policy values across 10 datasets is
given for each method, similar to Figure 3. Model-based evaluation performs worse on average and has more variability
between datasets.

Method Top-3 Policy Return

SBYV (Ours) 82% (+£15%)
EMSBE (Equation 3) 83% (+16%)
Model-Based Evaluation  72% (4+25%)
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Figure G.7: Partitioning Ablation on Breakout. For the first
10 Q-functions generated by the deep DQN configuration,
we estimated their Bellman backups using the same dataset
as that used to run DQN and plot their validation MSE in
red. We then do the same for a separate dataset of 50% size
in blue.
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