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ABSTRACT

Multivariate Time Series Classification(MTSC) is a conventional time series task
applied in the fields of finance, healthcare, and weather forecasting. However,
it is often plagued by a lack of high-quality labels in practical applications. To
address the label quality issues in real-world scenarios, the Partial Label Learn-
ing(PLL) paradigm has been proposed. This paradigm solves the problem of am-
biguous labels by allowing each training instance to be associated with a set of
candidate labels. The superiority of PLL has been verified in the field of image
classification. But due to the inherent difficulties in feature extraction for Multi-
variate Time Series(MTS) and the lack of appropriate data augmentation strate-
gies, PLL has not been applied in MTSC tasks. Motivated by this, we propose a
novel model: COntrastive label disambiguation framework with COmbined MTS
feature Encoder(CO-COME), which integrates a contrastive learning-based la-
bel disambiguation framework with an efficient MTS feature representation en-
coder, CTFE. The contrastive learning module leverages label prototypes to ef-
fectively resolve label ambiguity under the PLL setting, meanwhile the CTFE en-
coder is designed to capture both explicit and latent representations of time series
data, enabling robust and discriminative feature learning. Extensive experiments
on 20 UEA benchmark datasets demonstrate that our model achieves state-of-
the-art performance under partial-label conditions. Our method is available in
https://github.com/Noname9971/CO-COME.

1 INTRODUCTION

MTS is an important type of data that covers a wide range of areas such as disease diagnosis, traffic
analysis, financial prediction and so on. MTSC is one of the most fundamental tasks of MTS. It is
challenging due to diverse temporal dependencies and high dimensionality, which constrain perfor-
mance and deployment in real-world settings. MTSC has developed rapidly in recent years. Tradi-
tional methods such as the distance-based methods: Dynamic Time Warping(DTW) with 1-Nearest
Neighbor(1-NN)Bagnall et al. (2018) and feature-based methods: the bag of Symbolic Fourier Ap-
proximation(SFA)Schäfer & Leser (2017) have shown good performance in the MTSC tasks. Tra-
ditional MTSC methods rely on manual preprocessing and handcrafted features. They work on
small-scale or domain-specific tasks, but these predefined features generalize poorly and are unsuit-
able for most datasets. MTS data usually contains more implicit features which are often difficult
to manually capture and assess. The development of deep learning methods solve this problem to a
certain extent. Convolutional neural networks(CNNs) are generally adopted for extracting local fea-
tures. LSTMHochreiter & Schmidhuber (1997), GRUChung et al. (2014), and TransformerVaswani
et al. (2017) can automatically recognize the features from time domain information and analyze
the latent relation between them. Specific networks derived from these basic networks, such as Tap-
Net Zhang et al. (2020)and Densely Knowledge-Aware NetworkXiao et al. (2024), have achieved
significant improvements.

Deep neural networks often require large amounts of labeled data. However, collecting accurate
labels is challenging, especially in real-world applications. Labels are usually ambiguous or noisy.
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This issue is particularly serious in time series data, which lack visually intuitive patterns for humans
to recognize. As a result, labeling often depends on domain experts and is prone to errors. Label
ambiguity is common in MTSC, yet it is often overlooked by existing research. Consequently,
many state-of-the-art MTSC methods that achieve best on academic datasets don’t perform well on
industrial data due to their inability to handle ambiguous labels.

To address label ambiguity in MTSC, we adopt partial-label learning(PLL)Zhang et al. (2017),
where each training instance is associated with a candidate label set that typically contains the true
class. Although PLL is well studied in vision tasks, it remains underexplored for MTSC due to
challenges in representation learning and augmentation for multivariate sequences. We propose
CO-COME, which integrates PLL with a contrastive label-disambiguation framework and a com-
bined time series feature encoder (CTFE), enabling robust classification under ambiguous labels. To
effectively address the label ambiguity inherent in PLL, we draw inspiration from MOCOHe et al.
(2020) and PiCOWang et al. (2022) by introducing a contrastive learning framework coupled with
label prototypes to perform label disambiguation. Additionally, we design a dynamic multivariate
time series data augmentation module(DMDA), which adaptively adjusts augmentation intensity ac-
cording to dataset. To further enhance representation learning, we introduce CTFE, an encoder that
integrates inherent and explicit features with trainable latent representations for robust time series
encoding. In summary, the main contributions of this work are as follows:

• First work that applies PLL to MTSC: To our knowledge, this is the first work that
effectively applies PLL to MTSC, explicitly training with candidate-label sets under label
ambiguity. Our method achieves state-of-the-art performance under the PLL condition.

• A contrastive label disambiguation framework with DMDA: We introduce a PLL
framework for MTSC that couples a contrastive learning strategy. Dynamic Multivariate
Data Augmentation(DMDA) estimates dataset-level inter-channel correlations and adjusts
augmentation strength accordingly, then produces two complementary views per sample: a
weakly augmented view(W) and a strongly augmented view(S) via calibrated operations.
Using these S–W pairs in a contrastive objective, the framework learns robust, ambiguity-
tolerant representations under PLL conditions.

• A comprehensive feature encoder CTFE: CTFE combines inherent, explicit features and
trainable, latent features as the MTS feature representation. The combination of explicit
features and trainable latent features effectively enhances the overall performance of the
framework.

2 RELATED WORK

2.1 LABEL AMBIGUITY AND PARTIAL LABEL LEARNING

Label ambiguity refers to the situation that a training sample is associated with uncertain, noisy,
or inconsistent labels. This situation is very common in real-world applications where labels are
collected through weak supervision, crowdsourcing, or other poor quality labeling ways.Tarekegn
et al. (2024) Noise-model-based and noise-model-free methods have been proposed to learn from
noisy labels. Noise-model-based methods attempt to model the latent noise distribution of labels,Yan
& Guo (2021) leveraging it to reduce the adverse effects caused by label ambiguity. The noise-
model-free methods try to develop inherently noise-robust strategies using a robust loss function or
a regularizer.Yu et al. (2018); Yan & Guo (2021)

Going a step further, when each training sample is annotated with a set of candidate labels, among
which only one is guaranteed to be the ground-truth, this condition is called Partial Label Learn-
ing(PLL). Generally, the PLL methods can be divided into two categories: one is conventional fea-
ture engineering with simple classifier, and the other is end-to-end deep learning method.Liu et al.
(2024a)

The conventional methods inculde two frameworks: the average-based and identification-based dis-
ambiguation framework. The average-based disambiguation strategy treats each candidate label
equally during model learning.Zhang & Yu (2015) The identification based disambiguation strategy
considers the ground-truth label as a latent variable. It identifies the ground-truth label by deriving
confidence scores for all candidate labels.Tang & Zhang (2017); Feng & An (2019) But the fatal
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weakness of these methods is that they heavily rely on the pre-acquired feature representations,
which means their scalability to large-scale datasets is greatly limited.

To some extent, end-to-end deep learning methods can solve the reliance problem on pre-acquired
feature representations thus demonstrating promising performance. For instance, Yao et al. (2020)
utilizes the temporally assembled pre- dictions on different epochs as additional supervision infor-
mation to guide the training of next epoch. Based on the contrastive learning, Xia et al. (2022) learns
progressively contrastive representa- tion space based on the ambiguity-induced positives selection
to extract potential information from label ambiguity. Furthermore,Wen et al. (2021) proposed a
family of loss functions named leveraged weighted loss with risk consistency that considered the
trade-off between losses on partial labels and non-partial ones.

Nevertheless, most existing studies on PLL have primarily focused on imaging, while overlooking
the important domain of time series classification. Moreover, many feature engineering techniques
and end-to-end models developed for image data are not directly applicable to MTS data due to their
distinct temporal and structural characteristics.

2.2 MULTIVARIATE TIME SERIES CLASSIFICATION

Multivariate time series classification has been extensively studied in the literature. In general, these
methods can be grouped into three categories: distance-based, feature-based, and end-to-end deep
learning-based methods.

Distance-based methods typically integrate Nearest Neighbor(NN)Peterson (2009); Martı́nez et al.
(2019) and Dynamic Time Warping(DTW)Berndt & Clifford (1994); Senin (2008) to compute simi-
larities between the spatial features of data and perform classification. A large number of DTW-NN-
based algorithms have been developed for MTSC,Iwana et al. (2020) e.g., hierarchical vote collec-
tive of transformation-based ensembles(HIVE-COTE),Lines et al. (2016); Middlehurst et al. (2021);
Lines et al. (2018) random interval spectral ensemble(RISE),Flynn et al. (2019) explainableby-
design ensemble method(XEM).Fauvel et al. (2022) For feature-based methods, ROCKET and
MiniROCKETDempster et al. (2021) applies thousands of randomly parameterized 1-D convo-
lutional kernels, computes simple per-kernel statistics and train a linear model for classification.
HULMPei et al. (2017) uses binary stochastic hidden units to model latent structure in the data.
WEASEL+MUSESchäfer & Leser (2017) uses the bag of SFA symbol model to classify MTS.
Studyies indicate that both distance-based and feature-based methods provide effective evaluation
for small datasets. Nevertheless, when applied to large-scale or high-dimensional datasets, these
methods often struggle to extract enough features, leading to poor performance.

End-to-end deep learning-based methods encompass a variety of network architectures built upon
LSTMHochreiter & Schmidhuber (1997), CNN, and TransformerVaswani et al. (2017) models.
They have the ability to model hierarchical internal data representations by capturing the inher-
ent relationships among features. For example, the MLSTM-FCNsKarim et al. (2019) employs an
LSTM layer and a stacked CNN layer to extract features for classification. Similarly, TapNetZhang
et al. (2020) aggregates LSTM, stacked CNN, and attentional prototype network to learn the latent
features. OS-CNNTang et al. (2020) designs an Omni-Scale block to cover the best receptive field
size across different datasets. Nevertheless, feature representations derived from a single model are
often not sufficiently robust. In many cases, such models perform poorly on specific types of data or
under non-ideal conditions. Moreover, deep learning methods are highly sensitive to the quality and
quantity of the training data. When the dataset is small or noisy, these methods tend to see a clear
decrease in performance.

3 METHODS

In our study, we propose CO-COME, a contrastive partial-label method for MTSC that resists label
noise and delivers state-of-the-art results under PLL conditions. In this section, we will first formu-
late the definitions of MTSC with ambiguous labels, then we will introduce the architecture of our
CO-COME model.
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Figure 1: The overall architecture of our CO-COME model: The DMDA module applies adap-
tive augmentations to MTS with candidate label sets, generating weakly and strongly augmented
pairs(WAUG and SAUG). WAUG and SAUG are jointly used to fit a frozen MiniROCKET. Two
parallel encoders, CTFE-W and CTFE-S, initialized identically and sharing the same MiniROCKET,
extract MTS representations. CTFE-S is updated via momentum from CTFE-W. The resulting fea-
tures are used in a PICO-style contrastive learning framework for label disambiguation.

3.1 PROBLEM FORMULATION

A multivariate time series X ∈ RT×M is a sequence of real-valued vectors, X = {x1, x2, ..., xT },
where M is the feature dimension ,T is the length of the time series. Given a collection of MTS
X = {X1, X2, ..., XN} of N instances and its corresponding label set γ = {y1, y2, ...yN}, yi ∈
Y,Y = {1, 2, 3, ...C},the goal of multivariate time series classification is to learn model parameters
θ such that the predicted label set γ̂ = {fθ(Xi)}Ni=1 minimizes the discrepancy to the true label set
γ = {yi}Ni=1.

θ∗ = argmin
θ

1

N

N∑
i=1

ℓ (fθ(Xi), yi)

Transfering existing time series classification methods to industrial datasets would decrease the
model performance due to ambiguous labels. The definition of ambiguous labels is that for each
Xi, the previously given yi, yi ∈ Y may not be the actual correct label y′i . To address this issue, we
refer to the idea of partial label learning: we assume a candidate label set: Yi ⊂ Y that y′i ∈ Yi. Our
goal is to train a functional mapping f and its parameters θ on the partial label set that predicts the
one true label associated with the input time series X .

fθ : Xi → y′i

3.2 OVERALL ARCHITECTURE

Our CO-COME model is designed to effectively encode the MTS into feature representations and
disambiguate the partial label set. The overall architecture of our proposed CO-COME model is
shown in Figure 1. We adopt a partial label disambiguating framework including contrastive learn-
ing, pseudo-labeling and label prototype inspired by PiCOWang et al. (2022), MoCoHe et al. (2020),
and SupConKhosla et al. (2020).

Several specific modifications and improvements are introduced to better capture the characteris-
tics of MTSC. First, Dynamic MTS Data Augmentation(DMDA) module(Appendix 1) will evaluate
correlations of the input MTS data, set the suitable strength of data augmentation according to the
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Figure 2: CTFE: For each augmentation view (WAUG, SAUG), a frozen MiniROCKET ex-
tracts PPV features FR. A channel-independent Transformer encodes each channel separately to
FT .FusionGate computes cross-attention between FR and FT , applies element-wise rescaling to
each, and concatenates them to form FC .

correlations and generate weak and strong augmentation samples. The weak and strong augmenta-
tion samples are then respectively fed into the contrastive learning framework with two isomorphic
Combined Timeseries Feature Encoder(CTFE): CTFE-W and CTFE-S. The two CTFEs convert
MTS data into feature embeddings of same dimension. The Feature Memory Bank will store the
FeatureS of the entire dataset in a first-in-first-out order. Finally, we update the label prototypes
based on the FW ,FS , and then calculate the Lcls,Lcont

3.3 CONTRASTIVE LEARNING FRAMEWORK

We adopt a prototype-enhanced contrastive learning framework based on PiCO, tailored for MTSC.
During training, we assign each MTS sample xi a normalized vector si ∈ [0, 1]C as the pseudo
target, whose entries denote the probability of labels being the ground-truth. The framework consists
of a query encoder(CTFE-W) and a momentum-updated key encoder(CTFE-S) which share the same
architecture but operate on differently augmented views(WAUG and SAUG)of the input MTS data.
The encoder is a customized MTS encoder that combines inherent, explicit features and trainable,
latent features.

θCTFE−S ←− m · θCTFE−S + (1−m) · θCTFE−W

Given an input MTS sample with its weak and strong augmentation view, CTFE-W produces predic-
tion logits z and a feature embedding: FeatureW (Fw). To disambiguate partial labels, a masked
softmax is applied using the partial label, and the pseudo label ŷ is assigned by:

p = softmax(z)⊙ Y, ŷ = argmax p

Meanwhile, CTFE-S produces a feature embedding denoted as FeatureS(Fs), which is stored in a
first-in-first-out(FIFO) Feature Memory Bank(FMB). FMB maintains Fs for the entire training set
and is used in subsequent contrastive learning. Specifically,Fwand Fs are jointly compared with the
stored features in FMB to compute the contrastive loss.

A class-specific prototype vector µ is maintained for each class c and updated online using the
pseudo-labeled Fw:

µc = Normalize(γµc + (1− γ)Fw)

if c = argmax fCTFE−W (WAUG)
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Moreover, the pseudo target si is updated based on the similarity between the current feature em-
bedding Fs and the class-wise prototypes in the feature space.

s = ϕs+ (1− ϕ)z, zc =

{
1, if c = argmaxi∈Y Fs

⊤µi

0, otherwise

3.4 COMBINED TIMESERIES FEATURE ENCODER

CTFE combines inherent, explicit features and trainable, latent features as the MTS feature rep-
resentation. A CTFE module consists of a lightweight MiniROCKET and a channel-independent
transformer encoderLiu et al. (2023b).

The channel independent(CI) transformer encoder processes each channel independently using sep-
arate normalization and transformer encoders, thus better preserving the unique temporal dynamics
of each channel while reducing the risk of interference between unrelated variables. Since we ap-
ply both weak and strong data augmentations to the MTS, these operations may potentially distort
the intrinsic interchannel dependencies. In contrast to cross-channel transformer architectures, the
CI transformer encoder processes each channel separately, which helps to reduce the adverse im-
pact of augmentation-induced perturbations and improves the robustness of model to channel-wise
variations.

The MiniROCKET module employs a set of 84 deterministically designed kernels to compute a
single statistical feature PPV. It is a stable feature extractor that does not require iterative train-
ing. To ensure feature consistency between CTFE-W and CTFE-S , CTFE-W and CTFE-S share a
frozen MiniROCKET encoder with same parameters. This design enforces the extraction of com-
mon feature representations and prevents large discrepancies between the two branches, which could
otherwise compromise the effectiveness of the contrastive learning framework.

The feature representation FeatureR, extracted by the MiniROCKET module, and the output Fea-
tureC from the CI Transformer encoder are first passed through MLPs to obtain feature vectors of
the same dimension. Then, fusiongate module is applied to adaptively weight and concat the two
representations, resulting in the final feature FeatureOUT.

The FusionGate adapts cross-attention strategy. It applies symmetric query–key interactions be-
tween two feature vectors, generating element-wise sigmoid gates that adaptively rescale each in-
put. This design enables fine-grained cross-modulation and enhances robustness in multivariate time
series representation.

Query projection:

qA = WA
q A ∈ Rd, qB = WB

q B ∈ Rd

Key generation(per feature):

KB
f = Bf · kBf ∈ Rd, KA

f = Af · kAf ∈ Rd, f = 1, . . . , F

Scoring and gating:
sBf = 1√

d
⟨KB

f , qA⟩, sAf = 1√
d
⟨KA

f , qB⟩

gB = σ(sB) ∈ (0, 1)F , gA = σ(sA) ∈ (0, 1)F

Scaled outputs:
A′ = A⊙ gA, B′ = B ⊙ gB

In CTFE-W, FeatureC is additionally passed through a classification layer to generate a pseudo label.

4 RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets: We utilize the UEABagnall et al. (2018) benchmark to evaluate the performance of our
CO-COME model. These datasets vary in length, dimensions, and the size. Specifically, we remove
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Figure 3: Accuracy on six dataset(AWR, IW, LIB, NAT, SAD, UW) under PLL condition(partial-
rate={0, 0.125, 0.25, 0.375, 0.5, 0.625}). CO-COME maintains the highest accuracy and stability
compared with other models as partial-rate increases.

datasets with excessively high dimensionality or insufficient training data. Finally, we select 20
MTSC datasets from the UEA archive(Appendix A.2.1).

Implementation details: In our model, all parameter settings are categorized into three parts: con-
trastive learning framework parameters, CTFE encoder parameters, and basic training parameters.
We set the momentum coefficient m = 0.92, the prototype update rate γ = 0.9, the pseudo target up-
date rate ϕ = 0.9, the dci = 1024, dfeature = dprototype = 256, Batchsize = 512, lr = 0.00001
as the standard hyperparameter setting.

Experimental design: We design three main experiments to evaluate the effectiveness of our
method:

1. MTSC with PLL: In this experiment, we simulate the PLL setting by randomly generating
candidate label sets using threshold selection on standard MTSC datasets. For a label set
γ = {y1, y2, ...yN}, yi ∈ Y,Y = {1, 2, 3, ...C}, we take the following steps to generate a
simulated candidate label set:
(a) Generate a random vector ri ∈ [0, 1]C from the uniform distribution:

ri = [r
(1)
i , r

(2)
i , . . . , r

(C)
i ], r

(c)
i ∼ U(0, 1)

(b) Define a threshold τ (e.g., based on partial rate), and construct an initial candidate
vector vi ∈ {0, 1}C :

v
(c)
i =

{
1, if r(c)i < τ

0, otherwise

(c) Ensure the ground-truth label yi is included in the candidate set by forcing v
(yi)
i = 1.

(d) The candidate label set Si is then defined as:

Si =
{
c ∈ Y

∣∣∣ v(c)i = 1
}

We evaluate model performance under varying partial label rates and compare it with other
methods. The analysis includes basic classification accuracy, degradation trends under
different partial label rates.

7
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2. Standard MTSC Benchmark: This experiment evaluates our model on standard mul-
tivariate time series classification(MTSC) tasks without partial labels. We compare the
classification accuracy of our method against state-of-the-art baselines to verify its effec-
tiveness in fully supervised scenarios.

3. Ablation Study: We conduct ablation experiments by removing key modules from our
framework to analyze their contributions. This helps validate the necessity and rationality
of the overall design.

Baselines: We select some classic baselines and recent advanced MTSC-dedicated models in the
MTSC field. Baselines are as follows: MLSTM-FCN, XEM, TapNet, DA-NetChen et al. (2022),
MiniROCKET, Conv-GRULiu et al. (2023a), TS2VecYue et al. (2022), TodyNetLiu et al. (2024b),
MICOSHao et al. (2023), TimesURLLiu & Chen (2024).

Table 1: Performance comparison with the recent advanced MTSC models on 20 UEA datasets. In
the table, ’N/A’ indicates that the results for the corresponding method could not be obtained.

Dataset
IDX

MLSTM
-FCN XEM Tapnet DA-net Mini

ROCKET
Conv
-GRU TS2Vec TodyNet Ours

AWR 0.973 0.993 0.987 0.980 0.992 0.973 0.980 0.987 0.993
EW 0.504 0.527 0.489 0.489 0.954 0.811 0.840 0.840 0.895
EP 0.761 0.986 0.971 0.883 1.000 0.978 0.942 0.971 0.986
EC 0.373 0.372 0.323 0.338 0.380 0.332 0.285 0.350 0.430
FD 0.545 0.614 0.556 0.648 0.631 0.640 0.517 0.627 0.685
FM 0.580 0.590 0.530 0.510 0.450 0.580 0.540 0.570 0.600
HW 0.286 0.287 0.357 0.159 0.511 0.451 0.579 0.436 0.375
HB 0.663 0.761 0.751 0.624 0.771 0.746 0.737 0.756 0.766
IW NA 0.228 0.208 0.567 0.595 0.208 0.179 NA 0.700
LIB 0.856 0.772 0.850 0.800 0.878 0.889 0.867 0.850 0.900

LSST 0.373 0.652 0.568 0.560 0.643 0.548 0.545 0.615 0.676
MI 0.510 0.600 0.590 0.500 0.550 0.512 0.460 0.640 0.640

NATOPS 0.916 0.939 0.323 0.878 0.928 0.916 0.922 0.972 0.850
PD 0.978 0.977 0.980 0.980 0.965 0.939 0.981 0.987 0.987
PM 0.110 0.288 0.175 0.093 0.292 0.215 0.231 0.309 0.261
RS 0.803 0.941 0.868 0.803 0.868 0.888 0.901 0.803 0.855

SCP1 0.874 0.839 0.652 0.924 0.874 0.843 0.741 0.898 0.924
SCP2 0.472 0.550 0.550 0.561 0.522 0.556 0.556 0.550 0.600
SAD 0.990 0.973 0.983 0.980 0.100 0.863 0.978 NA 0.990
UW 0.891 0.897 0.894 0.833 0.916 0.919 0.913 0.850 0.934

Total best accuracy 1 2 0 1 2 0 1 4 14
Total second accuracy 0 5 1 1 6 3 1 1 2

Ours 1-to-1-Wins 18 15 19 19 14 17 16 15 -
Ours 1-to-1-Draws 1 2 0 0 0 0 1 2 -
Ours 1-to-1-Losses 1 3 1 1 6 3 3 3 -

Avg.ACC all(↑) 0.623 0.689 0.630 0.656 0.691 0.690 0.685 0.651 0.752
Avg.ACC w/o IW,SAD(↑) 0.637 0.699 0.634 0.642 0.729 0.708 0.697 0.723 0.742

4.2 MTSC-PLL RESULTS

We set Partial-rate={0, 0.125, 0.25, 0.375, 0.5, 0.625}to compare the performance of our model and
other models under the PLL condition. We use standard hyperparameter settings for the models
used for comparison(including CO-COME). Figure 3 illustrates the results of 6 datasets(see the Ap-
pendix2.3 for results on other datasets): cross all evaluated datasets(AWR, IW, LIB, NAT, SAD,
UW), CO-COME consistently achieves the highest or near-highest accuracy when the partial rate
increases. In low label ambiguity scenarios(partial-rate=0), our performance is comparable to other
strong baselines(e.g., MiniROCKET, MICOS). When the partial-rate grows, competing methods ex-
perience steep performance degradation. By contrast, CO-COME shows markedly slower accuracy
decay and remains stable even at partial-rate=0.5. For example, on SAD and UW, CO-COME retains
above 0.95 and 0.68 at partial-rate=0.625, clearly outperforming others. These results demonstrate
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Table 2: Ablation study on the modules: DMDA,CI-Encoder,MiniROCKET-Encoder,FusionGate.
Dataset Setting Accuracy

DMDA CI
Encoder

MiniROCKET
Encoder

Fusion
Gate

partial
0

partial
0.25

partial
0.5

AWR

0.983 0.967 0.527
✗ 0.981 0.807 0.187

✗ 0.967 0.920 0.290
✗ 0.977 0.912 0.350

✗ 0.970 0.933 0.263

IW

0.671 0.652 0.601
✗ 0.669 0.647 0.584

✗ 0.658 0.643 0.594
✗ 0.577 0.424 0.230

✗ 0.641 0.629 0.572

that CO-COME provides robust classification under severe label ambiguity, validating the effective-
ness of its design for partial-label time series classification.

4.3 MTSC-BASIC RESULTS

Our method consistently demonstrates superior performance across the 20 UEA standard datasets
compared to all the baseline in Table 2. Our method achieves the highest average accuracy of
0.752 across all datasets, outperforming all compared baselines. Even when excluding datasets
where some baselines lack reported results(IW and SAD), our approach maintains leading perfor-
mance with an average accuracy of 0.742. In terms of per-dataset comparison, our method achieves
the highest number of first-place scores 14, significantly ahead of the next best(TodyNet with 4).
In head-to-head comparisons, our method records 15+ wins against most baselines, with minimal
losses. Particulally, these results indicate the robustness and generalization ability of our approach
across diverse time series classification tasks.

4.4 ABLATION STUDIES

To evaluate the effectiveness of different components, we conduct ablation experiments on two
datasets with 4 variants under three different partial label conditions. Table 2 illustrates the results:
compared to the base line, removing any component leads to a decrease in accuracy, especially
when the partial rate increases. Ablation results clearly verify that each component contributes to
the overall robustness of our framework. The performance gaps become larger as the partial label
ratio grows, indicating that DMDA, CI-Encoder, MiniROCKET-Encoder, FusionGate, and CTFE
are all necessary for maintaining stable performance.

5 CONCLUSION

Experimental results demonstrate that our proposed CO-COME model achieves state-of-the-art per-
formance on multivariate time series classification(MTSC) under both standard and partial-label
learning(PLL) conditions. This work effectively fills the gap in MTSC under the PLL condition and
offers a practical solution for real-world scenarios.

Beyond benchmarks, our framework can be used in industrial pipelines to mitigate label noise by re-
framing it as a partial-label problem and training with CO-COME. Noisy or conflicting annotations
are converted into candidate label sets via confidence thresholds, annotator-agreement filters, tax-
onomy coarsening, or top-k model scores. CO-COME then disambiguates labels through learning
robust representations, which reduce relabeling cost and improve reliability on real-world multivari-
ate time series.
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A APPENDIX

A.1 DMDA

Excessive or insufficient data augmentation can impair the effectiveness of contrastive learning by
reducing its representation quality. Moreover, aggressive augmentation may shift the data distri-
bution between the training and test sets, causing a significant discrepancy in the fixed features
extracted by the MiniROCKET module across these domains.

The DMDA module analyzes inter-variable correlations across the entire MTS dataset and computes
key statistical indicators, including the average, maximum, and minimum correlation coefficients.
These metrics are used to guide the selection and strength of augmentation strategies.

Based on the correlation analysis, we apply a set of tailored data augmentation strategies. The
selected augmentation techniques include:

• Time Mask: This method randomly masks a small portion of the time steps within each
channel. Given a multivariate time series X ∈ RT×M , we define the masked index set as:

S = {(ti,mi) | ti ∈ {1, . . . , T}, mi ∈ {1, . . . ,M}}
|S| = ⌊σ · T ·M⌋

Then, we apply the mask:

Xt,m =

{
ε, if (t,m) ∈ S
Xt,m, otherwise

with ε ≈ 10−8, ε > 0

• Time Warp: This method applies a deterministic sinusoidal perturbation to each channel,
introducing smooth, non-linear temporal distortion. For each channel m, we generate a
sinusoidal vector of length T and apply it with scaling coefficient α:

δ(t) = sin

(
t

T
· π

)
, t ∈ {1, . . . , T}

Xwarp
t,m = Xt,m + α · δ(t)

where α controls the warping strength. This operation preserves the signal structure while
applying smooth temporal modulation.

• Scaling: This method perturbs the amplitude of each channel by scaling factor β. For each
channel m, we sample a scaling coefficient:

sm ∼ U(1− β, 1 + β)

and apply it to all time steps in the channel:

Xscale
t,m = sm ·Xt,m, ∀t ∈ {1, . . . , T}

• Frequency Perturbation: This method perturbs the frequency components of the time se-
ries via the Fast Fourier Transform (FFT). We transform each channel m into the frequency
domain:

Fm = FFT(X:,m)

Then add random Gaussian noise in the frequency domain:

F̃m = Fm + ηm, ηm ∼ N (0, λ2)

Finally, we inverse transform to obtain the perturbed signal:

X freq
:,m = IFFT(F̃m)

A.2 EXPERIMENTAL SETTINGS

A.2.1 DATASETS

The public UEA benchmark datasets, collected from various real-world applications, constitute a
comprehensive archive for MTSC across several domains, including EEG, insects, speech, human
activity, and audio data, etc. We remove the dataset with excessively high dimensionality or insuffi-
cient training data. Table 3 summarizes the selected datasets, including index(IDX), dataset name,
number of classes, training and test set sizes, series length, and number of dimensions.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Detail information of the selected 20 UEA datasets
Dataset
Index

Dataset
Name

Num
Classes

Train
Size

Series
Length

Test
Size

Num
Dimensions Type

AWR ArticularyWordRecognition 25 275 144 300 9 Motion
EW EigenWorms 5 128 17984 131 6 Motion
EP Epilepsy 4 137 206 138 3 HAR
EC EthanolConcentration 4 261 1751 263 3 HAR
FD FaceDetection 2 5890 62 3524 144 EEG/MEG
FM FingerMovements 2 316 50 100 28 EEG/MEG
HW Handwriting 26 150 152 850 3 HAR
HB Heartbeat 2 204 405 205 61 AS
IW InsectWingbeat 10 30000 30 20000 200 AS
LIB Libras 15 180 45 180 2 HAR

LSST LSST 14 2459 36 2466 6 Others
MI MotorImagery 2 278 3000 100 64 EEG/MEG

NAT NATOPS 6 180 51 180 24 HAR
PD PenDigits 10 7494 8 3498 2 EEG/MEG
PS Phoneme 39 3315 217 3353 11 AS
RS RacketSports 4 151 30 152 6 HAR

SCP1 SelfRegulationSCP1 2 268 896 293 6 EEG/MEG
SCP2 SelfRegulationSCP2 2 200 1152 180 7 EEG/MEG
SAD SpokenArabicDigits 10 6599 93 2199 13 AS
UW UWaveGestureLibrary 8 120 315 320 3 HAR

A.2.2 IMPLEMENTATION DETAILS

All comparative methods are reproduced using their official code implementations and settings.
Furthermore, each experiment is conducted on a workstation with an NVIDIA H20 GPU. We set the
momentum coefficient m = 0.92, the prototype update rate γ = 0.9, the pseudo target update rate
ϕ = 0.9, the loss weight, Batchsize = 512, lr = 0.00001. Keeping the above parameters, we vary
the CTFE parameters dci and dfeat across five configurations:

A : dci = 256, dfeat = 64

B : dci = 512, dfeat = 64

C : dci = 512, dfeat = 128

D : dci = 1024, dfeat = 128

E : dci = 1024, dfeat = 256

As shown in Table-4, small dci and dfeat yield lower accuracy and weaker robustness as the partial
rate increases. With dci = 1024, overall accuracy is almost strong across datasets. Moreover, at
dci = 1024, choosing dfeat = 256 surpasses dfeat = 128 by delivering higher aggregate accuracy
and slower accuracy decay at larger partial rates. Particularly, although the IW dataset achieves its
best performance with dci = 256 and dfeat = 64, we adopt dci = 1024 and dfeat = 256 for
subsequent experiments to optimize overall accuracy and robustness across datasets.

A.2.3 MTSC-PLL RESULTS

We conduct PLL experiments on 15 datasets, Figure4 illustrates the results: Across 11 datasets,
when partial-rate reaches 0.625, CO-COME outperforms all baselines by large margins. On nine
datasets(AWR, IW, LIB, NAT, SAD, UW, EW, FD, RS), the gap emerges and persists when partial-
rate reaches 0.375. By contrast, on HW and LSST all methods exhibit a similar downward trend
with increasing partial-rate, and accuracies drop to low levels. These two datasets contain > 10
classes. We attribute this to the inherent difficulty of these tasks. For HB and SCP2, accuracies
are largely insensitive to partial-rate. This means that the relationship between labels and data in
these two datasets is not that strong, the datasets themselves may have certain defects. Overall, CO-
COME maintains strong performance and robustness at high partial-rate, supporting its effectiveness
in disambiguating partial labels.
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Table 4: Accuracy across partial rates for four datasets under four hyperparameter settings.

Dataset partial-rate dci=256
dfeat=64

dci=512
dfeat=64

dci=512
dfeat=128

dci=1024
dfeat=128

dci=1024
dfeat=256

AWR

0.0000 0.777 0.787 0.890 0.980 0.987
0.0625 0.803 0.820 0.917 0.983 0.990
0.1250 0.743 0.707 0.800 0.987 0.990
0.1875 0.610 0.543 0.613 0.983 0.983
0.2500 0.580 0.467 0.570 0.987 0.967
0.3125 0.533 0.403 0.350 0.893 0.983
0.3750 0.303 0.233 0.223 0.827 0.837
0.4375 0.213 0.173 0.203 0.707 0.683

∆ (0→0.4375) 0.564 0.614 0.687 0.273 0.304

IW

0.0000 0.678 0.664 0.666 0.663 0.655
0.0625 0.676 0.656 0.664 0.653 0.652
0.1250 0.674 0.658 0.661 0.643 0.645
0.1875 0.669 0.655 0.657 0.646 0.645
0.2500 0.666 0.650 0.651 0.646 0.645
0.3125 0.666 0.646 0.640 0.640 0.632
0.3750 0.653 0.635 0.635 0.630 0.631
0.4375 0.645 0.627 0.618 0.600 0.609

∆ (0→0.4375) 0.033 0.037 0.048 0.063 0.046

LIB

0.0000 0.628 0.733 0.700 0.900 0.894
0.0625 0.656 0.689 0.672 0.861 0.883
0.1250 0.667 0.639 0.650 0.833 0.817
0.1875 0.661 0.611 0.661 0.839 0.839
0.2500 0.639 0.600 0.606 0.800 0.800
0.3125 0.622 0.517 0.422 0.783 0.778
0.3750 0.567 0.389 0.394 0.722 0.706
0.4375 0.500 0.211 0.272 0.500 0.672

∆ (0→0.4375) 0.128 0.522 0.428 0.400 0.222

NAT

0.0000 0.778 0.800 0.794 0.828 0.833
0.0625 0.733 0.772 0.811 0.839 0.822
0.1250 0.772 0.739 0.772 0.806 0.794
0.1875 0.772 0.750 0.778 0.800 0.800
0.2500 0.722 0.722 0.772 0.794 0.789
0.3125 0.717 0.744 0.773 0.806 0.833
0.3750 0.717 0.739 0.750 0.800 0.828
0.4375 0.711 0.711 0.778 0.789 0.794

∆ (0→0.4375) 0.067 0.089 0.016 0.039 0.039

SAD

0.0000 0.975 0.973 0.972 0.982 0.985
0.0625 0.977 0.975 0.974 0.982 0.986
0.1250 0.974 0.971 0.972 0.983 0.983
0.1875 0.972 0.972 0.970 0.976 0.978
0.2500 0.974 0.970 0.967 0.977 0.977
0.3125 0.969 0.964 0.968 0.977 0.975
0.3750 0.970 0.964 0.962 0.972 0.970
0.4375 0.965 0.963 0.960 0.971 0.971

∆ (0→0.4375) 0.010 0.010 0.012 0.011 0.014

UW

0.0000 0.800 0.853 0.825 0.931 0.916
0.0625 0.794 0.863 0.831 0.925 0.906
0.1250 0.778 0.872 0.825 0.947 0.910
0.1875 0.769 0.834 0.841 0.925 0.910
0.2500 0.763 0.828 0.844 0.900 0.906
0.3125 0.734 0.784 0.806 0.888 0.916
0.3750 0.559 0.816 0.813 0.919 0.891
0.4375 0.550 0.797 0.750 0.875 0.890

∆ (0→0.4375) 0.250 0.056 0.075 0.056 0.026

Best count 8 0 0 23 24
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Figure 4: Accuracy on 15 datasets under PLL condition.
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