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Abstract

This report is a reproducibility study of the paper CDUL: CLIP-Driven Unsupervised Learn-
ing for Multi-Label Image Classification (Abdelfattah et al., 2023). Our report makes the
following contributions: (1) We provide a reproducible, well commented and open-sourced
code implementation for the entire method specified in the original paper. (2) We try to ver-
ify the effectiveness of the novel aggregation strategy which uses the CLIP (Radford et al.,
2021a) model to initialize the pseudo labels for the subsequent unsupervised multi-label
image classification task. (3) We try to verify the effectiveness of the gradient-alignment
training method specified in the original paper, which is used to update the network param-
eters and pseudo labels.

1 Introduction

Multi-label image classification represents a complex challenge within the field of computer vision, marked by
the necessity to identify multiple objects or attributes within a single image. This task is further complicated
by the scarcity of comprehensively annotated datasets, which are essential for training supervised learning
models but are expensive and labor-intensive to produce. The reliance on extensive, accurately labeled data
poses a significant bottleneck, limiting the applicability of advanced models in real-world scenarios where
images often contain rich, diverse content. Unsupervised learning approaches offer a promising alternative,
aiming to leverage existing unlabeled data effectively, thereby circumventing the need for manual annotation
and potentially unlocking new capabilities in multi-label image classification.

To tackle this issue, Abdelfattah et al. (2023) propose CDUL (CLIP-Driven Unsupervised Learning), an
unsupervised learning method for multi-label image classification that leverages the powerful capabilities
of the CLIP (Contrastive Language-Image Pre-training) model (Radford et al., 2021b). The central idea
behind CDUL is to exploit the rich semantic knowledge encoded within CLIP, which was pre-trained on
a vast collection of image-text pairs, to generate high-quality pseudo labels for unlabeled images. These
pseudo labels serve as a proxy for manual annotations, enabling the training of a multi-label classification
model without the need for human-annotated data.

1.1 Background on the CDUL Method

The CDUL method comprises three main stages: initialization, training, and inference. In the initialization
stage, the authors propose a novel approach to extend CLIP for multi-label predictions based on a global-
local image-text similarity aggregation strategy. Specifically, they split each image into snippets and leverage
CLIP to generate similarity vectors for the whole image (global) as well as for each individual snippet (local).
These global and local similarity vectors are then combined through a similarity aggregator, resulting in a
set of initial pseudo labels that capture the multi-label nature of the input image.

During the training stage, the authors introduce an optimization framework that utilizes the generated
pseudo labels to train the parameters of a classification network. Crucially, they propose a gradient-alignment
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method that recursively updates not only the network parameters but also the pseudo labels themselves.
This iterative refinement process aims to minimize the loss function by aligning the predicted labels with
the updated pseudo labels, effectively learning to predict multiple relevant labels for unseen images.

The key components of the CDUL method are as follows:

1. Global Alignment Based on CLIP: Given an input image x, CLIP’s visual encoder Ev maps it to
an embedding vector f . The relevant similarity score between f and the text embedding wi for class i is
given by:

pglob
i = f⊤wi

||f || · ||wi||
(1)

sglob
i = exp(pglob

i /τ)∑
j exp(pglob

j /τ)
(2)

where τ is a temperature parameter learned by CLIP, and sglob
i is the normalized similarity score for class

i using a softmax function.

2. CLIP-Driven Local Alignment: To generate local alignments, the input image is split into N snippets
rj

N
j=1. For each snippet rj , the visual embedding gj is extracted from CLIP’s visual encoder: Ev(rj) = gj .

The cosine similarity scores between gj and the text embedding wi for class i are computed as:

ploc
j,i = gj⊤wi

||gj || · ||wi||
(3)

sloc
j,i =

exp(ploc
j,i /τ)∑

k exp(ploc
j,k/τ)

(4)

These local similarity scores are then aggregated into a local soft similarity vector Slocal
j for each snippet.

3. Global-Local Image-Text Similarity Aggregator: The global and local similarity vectors are aggre-
gated using a min-max strategy to form a unified local similarity vector Saggregate for each image:

γi =
{

1, if αi ≥ ζ

0, otherwise
(5)

sag
i = γiαi + (1 − γi)βi (6)

where αi = maxj s
loc
j,i , βi = minj s

loc
j,i , and ζ is a threshold parameter.

The final similarity vector Sfinal is then computed as the average of the global and aggregated local
similarity vectors:

Sfinal = 1
2(Sglobal + Saggregate) (7)

This Sfinal vector serves as the initial pseudo labels for the unobserved labels during the training stage.

4. Gradient-Alignment Network Training: During training, the pseudo labels yu are initialized from
Sfinal. The network parameters are updated based on the Kullback-Leibler (KL) divergence loss between
the predicted labels yp and the pseudo labels yu. Subsequently, the latent parameters of the pseudo labels
ỹu are updated using the gradient of the loss function with respect to yu:

ỹu = ỹu − ψ(yu) ⊙ ∇yu
L(Yu|Yp,X) (8)

where ψ(yu) is a Gaussian distribution centered at 0.5, and ⊙ denotes element-wise multiplication. This
process alternates between updating the network parameters and the pseudo labels, aiming to minimize
the total loss function L(Yp,Yu|X).

During inference, only the trained classification network is used to predict the labels for new input images,
without requiring any manual annotations.
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2 Report Contributions

In this reproducibility study, we aim to verify the effectiveness of the proposed global-local image-text
similarity aggregation strategy and the gradient-alignment training method. We provide an open-source
implementation of the CDUL method and conduct experiments on the PASCAL VOC 2012 dataset to
evaluate the validity of the authors’ claims. Through a comprehensive analysis, we seek to assess the
robustness and potential of this unsupervised approach for multi-label image classification tasks.

3 Scope of reproducibility

This report attempts to verify the following central claims of the original paper:

1. The effectiveness of the aggregation of global and local alignments generated by CLIP in forming
pseudo labels for training an unsupervised classifier.

2. The effectiveness of the gradient-alignment training method, which recursively updates the network
parameters and the pseudo labels, to update the quality of the initial pseudo labels.

To verify the claims made by the authors, it is necessary to conduct an independent reproducibility study
on the datasets, methods and hyperparameters that the authors specify.

4 Reproducibility Methodology

Since there is no availability of a public codebase or a paper supplementary, we create a well commented
codebase to the best of our understanding, for verifying the central claims of the paper. For verifying claim
1, we need to compute both the global similarity vectors and the local similarity vectors on the snippets of
an image, for all images of the dataset. After computing the local similarity vectors, an aggregate vector is
computed, which is then averaged with the global similarity vector to produce the initial pseudo labels for
the dataset. If the claim holds, then the mean average precision (mAP) for the pseudo label vectors for
a dataset split should be higher than the mAP of the pseudo labels when initialized using only the global
similarity vectors obtained from CLIP. For verifying claim 2, we need to train a classifier on the training set
by setting the targets of the dataset to the pseudo labels generated in the previous step. If the claim holds,
then the predictions from the classifier should improve over training epochs along with the improvement
in the quality of pseudo labels. This means that we should be able to see an increase in the mAP of the
predictions and the pseudo labels over training epochs.

4.1 Model descriptions

The authors use two models in their overall method:

1. CLIP: The initialization stage uses the CLIP model with ResNet-50 (He et al., 2016) as the image
encoder to generate similarity vectors for the global-local aggregation strategy to generate the pseudo
labels for the unlabeled data. For encoding the text, a fixed prompt, “a photo of a [class]”, where
class denotes the class labels of a dataset, is used.

2. ResNet-101 (He et al., 2016): Once the pseudo labels are generated for the unlabeled training set
using CLIP, a ResNet-101 classifier pre-trained on ImageNet (Deng et al., 2009) is used for training
and later for inferencing.

Here it is worth mentioning that although the authors stressed on the fact that the whole approach is
cost-effective during both training and inference phases, we differ from this view since generating the local
alignment vectors for a snippet size of 3 × 3 requires a lot of inferencing through the CLIP model for all
images of the dataset.
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4.2 Datasets

The original paper conducts experiments on four datasets: PASCAL VOC 2012 (Everingham et al., 2012),
PASCAL VOC 2007, MS-COCO (Lin et al., 2014) and NUSWIDE (Chua et al., July 8-10, 2009). Since
generating the pseudo labels with a small snippet size is a compute and time intensive process, we only tried
to verify the main claims on the PASCAL VOC 2012 dataset. This dataset contains 5717 training images
and 5823 images in the official validation set, which is used as the test set. Labels from the dataset are in
an XML format, where different objects found in the image are under the object field. An element from the
object list further contains a boolean field named occluded, which specifies whether an object is occluded.
Since the authors do not explicitly mention about ignoring occluded objects as a multi-label class, we do
not make any such assumptions and include occluded objects as well, in the ground truth one-hot encoded
multi-label vector.

4.3 Hyperparameters

For the first part, i.e generating the pseudo label vectors, we test their quality using the following snippet
sizes: [64, 32, 16, 3]. Since the authors do not specify the value of the threshold parameter ζ from section 3.1.3
“Global-Local Image-Text Similarity Aggregator” of the original paper, we assign ζ a logical value of 0.5. We
observed that changing this parameter to 0.3 or 0.7 did not affect the initial mAP of the pseudo labels. Since
section 3.2 “Gradient-Alignment Network Training” of the original paper doesn’t specify any pseudocode
or epoch frequency at which the pseudo labels are being updated, we consider that as a hyperparameter
and experiment over the values: [1, 10]. We set the value of σ to 1 for the Gaussian distribution, since it
isn’t specified as well. The ResNet-101 classifier is trained end-to-end while updating the parameters of the
backbone and classifier, with the original values of batch size = 8, learning rate = 10−5. For verifying the
original claims, we set the epochs to 20 and pseudo label update frequency to 1. We train for 100 epochs
when the pseudo label update frequency is set to 10.

4.4 Experimental setup and code

Since there is no public codebase available, as part of the main contribution of our report, we create a well
commented codebase, referring to relevant equations, to the best of our understanding of the original paper.
We use PyTorch as our deep learning framework. The entire codebase is configuration driven with the help
of Hydra and Makefile. We provide well structured configuration files for all the experiments, which can
be run using simple make commands, making all our experiments completely reproducible. We provide a
README.md file detailing out the repository setup and reproducibility of our experiments. Since generating the
aggregate vectors from section 3.1.3 “Global-Local Image-Text Similarity Aggregator” requires inferencing
CLIP on several 3x3 snippets of all images from the dataset, we cache the generated global and aggregate
vectors for future use in running multiple experiments for training the classifier. As part of our contribution,
we provide the generated cache as well, since its computation can be time intensive, as detailed out in the
computational requirements section.

4.5 Evaluation metrics

The mean average precision (mAP) across all the classes is used as the metric for evaluating the methods
for the task of multi-label image classification. For an easy and robust implementation, we utilise the
MultilabelAveragePrecision 1 metric from the TorchMetrics 2 library along with a ClasswiseWrapper
3 to evaluate the average precision (AP) per class.

4.6 Computational requirements

We conducted all our experiments on a single NVIDIA Tesla V100-SXM2-32GB GPU. If there are N images
in the dataset (the train split) with an average image size of a × a, then the total number of snippets formed

1https://lightning.ai/docs/torchmetrics/stable/classification/average_precision.html
2https://lightning.ai/docs/torchmetrics/stable/
3https://lightning.ai/docs/torchmetrics/stable/wrappers/classwise_wrapper.html

4

https://lightning.ai/docs/torchmetrics/stable/classification/average_precision.html
https://lightning.ai/docs/torchmetrics/stable/
https://lightning.ai/docs/torchmetrics/stable/wrappers/classwise_wrapper.html


Under review as submission to TMLR

with a snippet size k × k is of the order O(N a2

k2 ). Table 1 lists the approximate time taken to generate the
global and aggregate vector caches for the PASCAL VOC 2012 dataset on the train split containing 5717
images.

Table 1: Approximate time for cache generation for different snippet sizes

Cache Approx. Time Taken
Global 3min 49s
64 × 64 Aggregate 2hr 14min
32 × 32 Aggregate 10hr 50min
16 × 16 Aggregate 41hr 15min
3 × 3 Aggregate >30 days

The values in table 1 show that computing the cache becomes extremely time intensive with a decrease in
the snippet size. Once the cache has been generated, training the classifier is relatively less compute and
time intensive. Our best run of 100 epochs with a pseudo label update frequency of 10, took 3hr 55min to
run.

5 Results

5.1 Claim 1

The original paper directly uses a snippet size of 3 × 3 in generating the aggregate vectors, which in turn
are used along with the global similarity vectors to initialize the pseudo labels for the unlabeled training
dataset. Table 2 shows the mAP on the train split of PASCAL VOC 2012, using the final pseudo labels
obtained using the “Global-Local Image-Text Similarity Aggregator” method from the original paper.

Table 2: mAP (in %) of the pseudo label vectors generated using different snippet sizes on the train split
of the PASCAL VOC 2012 dataset. Here “Global” indicates that pseudo labels were generated directly from
the similarity scores obtained from CLIP on the entire image (without any averaging with the aggregate
vectors).

Snippet Size Ours Table 3 of the original paper
Global 85.9 85.3
64 × 64 84.62 (Not computed)
32 × 32 84.99 (Not computed)
16 × 16 85.19 (Not computed)
3 × 3 85.47 90.3

The mAP values computed by us for the global alignment vectors differ slightly (by 0.6%) from the ones
reported in the original paper. Although section 4.3 of the original paper suggests an increase in the quality
of pseudo labels from the global counterparts to be nearly +5% (for the PASCAL VOC 2012 dataset) using
the “Global-Local Image-Text Similarity Aggregator” strategy, we observe the contrary. For all snippet sizes
in our experiments, the mAP is lower than the global counterpart. We observe a very small increase the
mAP as the snippet size decreases from 64 × 64 to 3 × 3.
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5.2 Claim 2

For verifying claim 2, we train a ResNet-101 classifier using ImageNet pre-trained weights on the generated
pseudo labels from the previous step. In our case, since the quality of pseudo labels did not improve over
the global counterpart using the “Global-Local Image-Text Similarity Aggregator” strategy, we directly use
the global image-text similarity vectors (Sglobal) as the initial pseudo labels (denoted by Pℓ).

Table 3: Gradient-Alignment Network Training

Epochs Pℓ Update Frequency Train mAP Pℓ mAP Val mAP Val mAP
(in epochs) (Ours) (Ours) (Ours) (Original)

20 1 31.1 67.9 23.1 88.6
100 10 84.8 86.1 70.6 -

Table 3 shows the experiment using the original hyperparameters proposed by the authors and the additional
one where we train for a longer duration of 100 epochs along with a pseudo label update frequency of 10
epochs (this basically means that the latent parameters of the pseudo labels are updated after 10 epochs
instead of every epoch). We observe that the original hyperparameters lead to a poorly trained network (see
Fig 1 top row), whereas increasing the training epochs and decreasing the pseudo label update frequency
to once per 10 epochs leads to a much better val mAP (see Fig 1 bottom row). Updating pseudo labels
every epoch causes their quality to decrease from an original 85.9 mAP to 67.9 in 20 epochs. Decreasing
the pseudo label update frequency to once per 10 epochs leads to a steady increase in the quality of pseudo
labels over epochs. However, even with this strategy, the quality of pseudo labels only reaches an mAP
of 86.1, which is just a 0.2% improvement over the initialized value. Although we observe the quality of
pseudo labels to increase marginally, the overall validation mAP only reaches a value of 70.6%, which is far
below the training counterpart and the value reported in the original paper.

6 Discussion

6.1 Verifying claims

Claim 1 - We were unable to verify claim 1 due to the time intensive computation of generating the
aggregate vectors for a snippet size of 3 × 3. In all our ablation experiments with different snippet sizes
ranging from relatively larger 64 × 64 ones to the smallest 16 × 16 ones, we found the mAP of the final
pseudo label vectors to be lesser than their global counterparts. We however observed the mAP of the final
pseudo label vectors to increase, as the snippet sizes decreased from 64 × 64 to 16 × 16.

Claim 2 - We were unable to reproduce claim 2 of the original paper completely using the specified
hyperparameters. However, we did observe an improvement in the quality of pseudo labels across training
epochs when decreasing the frequency of updating the latent parameters of the pseudo labels once every 10
epochs. Hence, we were only able to weakly support the “Gradient-Alignment Network Training” claim of
improving the quality of pseudo labels during training.

6.2 What was easy

The ideas presented in the paper were relatively well structured, making it easy for us to implement them
using PyTorch.
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(a) Pℓ mAP with Pℓ update frequency 1 (b) val mAP with Pℓ update frequency 1

(c) Pℓ mAP with Pℓ update frequency 10 (d) val mAP with Pℓ update frequency 10

Figure 1: mAP values across epochs for different Pℓ update frequencies

6.3 What was difficult

Unavailability of a public codebase - The main difficulty in verifying the central claims of the paper
came from the unavailability of a public codebase.

Computational restraints - The process of generating the soft similarity aggregation vectors as part of the
initialization step of training a classifier is highly time and compute intensive, as detailed out in section 4.6.
The “Pre-Training Setting” subsection from section 4.1 of the original paper mentions that all unsupervised
models are initialized and trained using the generated pseudo labels as initials for the unlabeled data. It
would be highly insightful for the research community if the details on generating the pseudo labels such
as optimizations, choice of using a 3 × 3 snippet size and computational requirements are made publicly
available. Moreover, for large datasets such as MS-COCO, with around 82,081 images and NUSWIDE with
around 150k images (in the trian splits), an open sourced cache of the pseudo label vectors would aid the
research community in building further upon the work of the authors.

Unavailability of pseudo-code - We found it difficult to comprehend the following statements from section
3.2 of the original paper:

• “Once the pseudo labels are updated, we can fix them again and re-update the network parameters.
This optimization procedure will continue until convergence occurs or the maximum number of
epochs is reached” - This initial statement seems to update the pseudo labels and network parameters
simultaneously in every epoch.
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• “When the training is done, we fix the predicted labels and update the latent parameters of pseudo
labels” - This statement could be interpreted to mean that only the network parameters are updated
for certain epochs and then the pseudo labels are being updated.

A PyTorch style pseudo-code would have been highly insightful in understanding the optimization procedure.
Nonetheless, we conducted experiments incorporating both these ideas, with the second approach being more
superior as per our experiments.

Unknown hyperparameters - We were unable to find any reference for the value of the threshold param-
eter ζ as well as the value of σ for the Gaussian distribution.

6.4 Communication with original authors

We tried contacting the authors over the official emails specified in the paper for clarifications related to the
the above difficulties, but we did not get any response.

6.5 Future work

We plan to conduct experiments on subsets of other datasets and try to improve over the current optimization
strategy.
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