
Zebra-Llama:
Towards Extremely Efficient Hybrid Models

Mingyu Yang∗, Mehdi Rezagholizadeh∗, Guihong Li∗, Vikram Appia, Emad Barsoum
Advanced Micro Devices, Inc. (AMD)

{mingyu.yang,mehdi.rezagholizadeh,guihong.li}@amd.com

Abstract
With the growing demand for deploying large language models (LLMs) across di-
verse applications, improving their inference efficiency is crucial for sustainable and
democratized access. However, retraining LLMs to meet new user-specific require-
ments is prohibitively expensive and environmentally unsustainable. In this work,
we propose a practical and scalable alternative: composing efficient hybrid language
models from existing pre-trained models. Our approach, Zebra-Llama, introduces a
family of 1B, 3B, and 8B hybrid models by combining State Space Models (SSMs)
and Multi-head Latent Attention (MLA) layers, using a refined initialization and
post-training pipeline to efficiently transfer knowledge from pre-trained Transform-
ers. Zebra-Llama achieves Transformer-level accuracy with near-SSM efficiency
using only 7–11B training tokens (compared to trillions of tokens required for
pre-training) and an 8B teacher. Moreover, Zebra-Llama dramatically reduces KV
cache size—down to 3.9%, 2%, and 2.73% of the original for the 1B, 3B, and
8B variants, respectively—while preserving 100%, 100%, and >97% of average
zero-shot performance on LM Harness tasks. Compared to models like MambaInL-
LaMA, X-EcoMLA, Minitron, and Llamba, Zebra-Llama consistently delivers com-
petitive or superior accuracy while using significantly fewer tokens, smaller teach-
ers, and vastly reduced KV cache memory. Notably, Zebra-Llama-8B surpasses
Minitron-8B in few-shot accuracy by 7% while using 8× fewer training tokens,
over 12× smaller KV cache, and a smaller teacher (8B vs. 15B). It also achieves
1.4×–3.3× higher throughput (tokens/s) than MambaInLlama. The source code is
released at https://github.com/AMD-AGI/AMD-Hybrid-Models.

1 Introduction

Figure 1: Comparing 8B-scale models on average
LM Harness score vs. KV cache size. Zebra-Llama
(green) matches or exceeds baselines with smaller
KV cache and fewer training tokens. Circle and
square sizes indicate training tokens (billions for
post-training, trillions for pre-training).

The exponential growth of deep learning applica-
tions has created an urgent demand for models
that strike a balance between accuracy and com-
putational efficiency—particularly in scenarios con-
strained by memory or limited hardware capabili-
ties. Transformer-based models, despite their im-
pressive performance across a range of tasks, are
fundamentally limited by the quadratic complexity
of their self-attention mechanisms and the substan-
tial memory required to store key–value (KV) caches.
These bottlenecks hinder their deployment in real-
world applications, especially on edge devices or in
latency-sensitive settings. At the same time, the rise
of large language models (LLMs) has amplified the
need for customization—that is, the ability to adapt
pre-trained models to meet diverse user needs, hard-
ware configurations, and application requirements.
However, developing new LLMs from scratch for each target environment is prohibitively expensive

∗Equal Contribution First Authors, with order determined randomly.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/AMD-AGI/AMD-Hybrid-Models

and environmentally unsustainable. Traditional solutions such as model compression, neural archi-
tecture search (NAS), and pre-training new architectures offer potential pathways but suffer from
significant limitations. Model compression often degrades quality while NAS or pre-training new
models have substantial computational costs.

To overcome these challenges, a promising new paradigm has emerged: hybrid models that aim to
reduce the computational cost of self-attention while maintaining generation quality. These archi-
tectures typically integrate efficient state-space models [1] or linear attention [2] with full attention
mechanisms, leveraging the strengths of both. However, many recent hybrid approaches, including
Samba [3] and Hymba [4], require extensive pre-training from scratch, which is computationally
expensive. Others, such as MambaInLLaMA [5], experience notable performance degradation when
attention is replaced too aggressively, often due to insufficient key–value cache compression or
ineffective knowledge transfer from the base model.

Our goal in this work is to develop a more efficient and sustainable alternative: to compose highly
efficient language models directly from existing pre-trained Transformers, avoiding the cost of full
pre-training while retaining performance. Our approach, called Zebra-Llama, introduces a family of
hybrid models (1B, 3B, and 8B) built on two complementary components: Multi-Latent Attention
(MLA) [6], a low-rank attention mechanism that compresses memory usage without sacrificing
quality under moderate compression; and Mamba2, a state-space model that eliminates KV caches
entirely but performs poorly when used alone [5]. Specifically, we first initialize pure MLA and
pure Mamba2 models from a pre-trained Transformer via a refined weight-mapping procedure. We
then use Intermediate Layer Distillation (ILD) to align their internal representations with those of
the original Transformer model, ensuring strong initialization. Finally, we strategically compose
hybrid architectures from the refined MLA and Mamba2 variants using a sensitivity-aware strategy
called SMART (Sensitivity Measure-Aware Replacement of Transformer layers) to select where each
component is most effective. This process results in highly efficient models that retain Transformer-
level quality with drastically reduced memory and compute requirements. Our Zebra-Llama family
of 1B, 3B, and 8B hybrid models, achieving 25×, 50×, and 36× KV cache compression relative to
their respective base Transformer models, while maintaining 100%, 100%, and >97% of the base
model’s average zero-shot performance on the LM Harness evaluation benchmark. Our models also
perform competitively on few-shot tasks. Notably, Zebra-Llama-8B improves the average few-shot
accuracy over Minitron-8B by 7%, despite using 8× fewer training tokens, >12× smaller KV cache,
and a smaller teacher model (8B vs. 15B). Additionally, our Zebra-Llama exhibits high inference
speed. Compared to the existing work MambaInLlama, it achieves 1.4–3.3× higher throughput with
1.8-5.5× less memory consumption. This work introduces a practical route for building efficient,
customizable LLMs from existing models. Our key contributions are:
• Architecture: We propose a hybrid model combining MLA and Mamba2 layers, replacing classical

Transformer blocks to reduce memory usage and address the quadratic bottleneck of attention.
• Training: We develop an efficient post-training pipeline including refined initialization, Intermedi-

ate Layer Distillation, and SMART layer selection for hybrid model composition.
• Empirical Results: Our models match or exceed Transformer-level performance with drastically

reduced KV cache and significantly improved inference throughput.

2 Related Work
Hybrid Models Prior work on hybrid models can broadly be categorized into two groups based
on their training strategy: pre-training-based and post-training-based approaches. Pre-training-
based methods, such as Jamba [7], Hymba [8], Samba [3] and Mamba-2-Hybrid [9], interleave
heterogeneous hybrid layers during full-scale model training, allowing the development of hybrid
models from scratch. While these models achieve strong performance, their training cost remains
high, limiting accessibility and sustainability. In contrast, post-training approaches insert efficient
modules into pre-trained Transformers, often leveraging knowledge distillation to transfer capabilities
without full re-training, including MambaInLLaMA [5], MOHAWK [10], and Llamba [11]. Our work
focuses on the post-training setting and pushes it further by targeting extremely efficiency—both in
terms of training tokens and runtime memory. We introduce a systematic method to build hybrid
models with minimal training costs, making them practical for broad deployment, especially where
hardware resources are critically constrained.

Efficient Post-training Several recent approaches specifically target post-training efficiency
through careful initialization, distillation, and model compression. For example, MambaInLLaMA [5]

2

Figure 2: Overview of our hybrid model composition pipeline. The process consists of three stages: (1) Weight
Initialization – we initialize pure Mamba2 and MLA models from a pre-trained Transformer via structured
mapping; (2) Refined Initialization through Intermediate Layer Distillation (ILD) – we refine both models by
aligning their internal representations with the base model on a small dataset; and (3) SMART Layer Selection
– we compose the final hybrid model by selecting MLA and Mamba2 layers based on sensitivity analysis.

replaces most self-attention blocks of a pre-trained Transformer with linear RNN layers. Through
the initialization of RNN layer parameters from the pre-trained Transformer’s weights, followed by
distillation-based fine-tuning, the hybrid model achieves comparable performance with the teacher
model. MOHAWK [10] introduces a multi-stage cross-architecture distillation strategy (aligning
attention “mixing” matrices, hidden states, and outputs) to transfer a Transformer’s knowledge into
a Mamba-based model using a fraction of the original training data. Building on this, Llamba [11]
scales the distilled recurrent architecture up to 8B parameters, attaining improved accuracy, while
markedly improving inference throughput and memory usage for deployment on edge devices.
Orthogonally, X-EcoMLA [12] “upcycles” a pre-trained Transformer’s attention into multi-head
latent attention modules, jointly compressing key–value caches significantly with teacher-guided
fine-tuning to preserve accuracy. Meanwhile, Minitron [13] compresses a 15B Nemotron Transformer
by pruning its depth, width, and attention heads, then retrains on only about 2–3% of the original
data via distillation; this yields 8B and 4B models that rival larger models’ performance without
full re-training. Our method offers significant advantages over previous distillation techniques like
Minitron, MambaInLlama, X-EcoMLA, and Llamba, which have each faced limitations in KV cache
compression, training efficiency or maintaining the base models’ performance.

3 Methodology
Our methodology focuses on designing and training a hybrid model architecture that achieves strong
performance with significantly enhanced efficiency. The overall approach consists of two key stages:
(1) constructing an extremely efficient hybrid model, and (2) applying a lightweight yet effective
training pipeline. An overview of the process is provided in Figure 2.

3.1 Composing Extremely Efficient Hybrid Model
To compose our hybrid model, we combine two complementary components: Mamba2 [14] and
MLA [6] blocks. Each of these blocks contributes differently to efficiency and performance:
• Mamba2 blocks are based on SSMs with zero KV cache usage, making them ideal for long-context

or memory-constrained settings. However, they often underperform when used exclusively [9].
• MLA blocks compress standard attention process to reduce KV cache requirements while maintain-

ing high performance. Yet, excessive compression can lead to noticeable performance drops [12].

Our hybrid architecture interleaves Mamba2 and MLA layers to set a balance between minimal
memory usage and strong predictive performance. The composition process consists of two key
stages: (i) we first construct a pure Mamba2 model and a pure MLA model by replacing all attention
blocks in the base Transformer with Mamba2 and MLA blocks, respectively, each initialized from
the original pre-trained weights; (ii) we then apply intermediate layer distillation (ILD) to align the
outputs of each layer in the Mamba2 and MLA models with those of the corresponding layers in the
base model, thereby preserving the original model’s knowledge during the transition.

Following this refined initialization, we compose the final hybrid model using our sensitivity measure-
aware replacement of transformer layers (SMART) layer selection strategy, which selects the optimal
placement configurations of Mamba2 and MLA layers based on layer-wise sensitivity analysis.
3.1.1 Refined Initialization
To initialize the MLA and Mamba2 blocks in pure MLA and pure Mamba2 models derived from a pre-
trained base model, we introduce an enhanced initialization strategy that goes beyond conventional
weight transfer.

3

Background: Multi-Head Attention Given an input hidden representation H ∈ Rl×d, MHA
projects it into query, key, and value matrices using learned weights:

Q = HWQ, K = HWK , V = HWV , (1)
where WQ,WK ,WV ∈ Rd×nhdh and nh, dh denote the number of heads and per-head dimension,
d is the hidden dimension, and l represents the sequence length. The attention operation computes:

A = Softmax
(
QK⊤/

√
d
)
, O = AVWO, (2)

with WO ∈ Rd×d. During inference, MHA requires caching K and V for all past tokens, incurring a
memory cost of 2nhdhl.

Background: Multi-Head Latent Attention MLA [6] introduces a low-rank compression scheme
to reduce memory usage. Instead of storing K and V directly, they are compressed into a latent
vector:

CKV = HWDKV , (3)
with WDKV ∈ Rd×rkv and rkv ≪ nhdh. Keys and values are reconstructed via:

KC = CKV WUK , V C = CKV WUV , (4)
where WUK and WUV are up-projection matrices. MLA can also compress the query:

CQ = HWDQ, QC = CQWUQ, (5)
where CQ ∈ Rl×rq and rq ≪ d. To retain compatibility with RoPE, MLA decouples positional
encoding using separate projections:

QR = RoPE(CQWQR), KR = RoPE(HWKR), (6)
where WQR ∈ Rrq×nhdr and WKR ∈ Rd×dr . The final queries and keys are then constructed
as: Q = [QC ;QR], K = [KC ; repeat(KR)], where repeat(KR) denotes replication across heads.
Overall, MLA reduces KV-cache size for inference from O(nhdhl) to O((rkv + dr)l).
Initializing MLA from Pre-trained MHA To construct an MLA-based hybrid model from a
pre-trained Transformer, we upcycle its attention modules by reparameterizing them into low-rank
latent attention. This conversion is initialized using a structured approach based on singular value
decomposition (SVD), enabling knowledge transfer while minimizing performance loss [12]. The core
MLA weights (i.e. query, key, and value projections) are initialized using low-rank approximations
derived from pre-trained MHA parameters. For query weights, we apply SVD on WQ:

WQ = UqΣqV
⊤
q , (7)

and set WDQ = Uq. The up-projection matrices WUQ and WQR are derived from ΣqV
⊤
q by

partitioning and reshaping into the appropriate query and RoPE dimensions. For key and value
projections, we concatenate WK and WV and apply joint SVD:

[WK ,WV] = UkvΣkvV
⊤
kv. (8)

We then set WDKV = Ukv , and derive WUK and WUV by partitioning and reshaping ΣkvV
⊤
kv . The

shared RoPE key projection WKR is initialized from the average WK across heads. We choose a
constant rank rq, rkv across all layers. Non-attention parameters such as the feedforward network
and output projection WO are directly copied from the pre-trained model. Additional details of MLA
initialization are provided in Appendix A.1.

Initializing Mamba2 from Attention Representations It has been shown in [5] that linear attention
can be reinterpreted as a special case of SSMs. This connection enables the initialization of Mamba2
blocks from pre-trained attention-based Transformers. In particular, the linearized form of attention
without softmax resembles a linear RNN update:

ht = mt−1,tht−1 +K⊤
t Vt, yt =

1√
D
Qtht, (9)

which parallels the linear RNN structure:
ht = Atht−1 +Btxt, yt = Ctht. (10)

To bridge this connection, MambaInLLaMA [5] proposes to initialize the continuous-time Mamba2
SSM parameters (A, B, C) from the weights of the attention blocks. This includes discretizing the
SSM over a learned sequence of sampling intervals ∆t to match the temporal dynamics of attention.
Specifically, K⊤

t Vt in attention is mapped to Btxt in Mamba2; Qt in attention plays the role of Ct;
and the memory coefficient mt−1,t corresponds to At in the recurrent update. Additional details of
MLA initialization are provided in Appendix A.2.

4

Refined Initialization through Intermediate Layer Distillation (ILD) After initializing the
parameters of MLA and Mamba2 layers from the pre-trained Transformer, we further refine their
weights through a lightweight ILD procedure on a small portion of the training data, akin to the
second phase of MOHAWK [10]. This focused training aligns the internal representations between
the MLA and Mamba2 layers and the pre-trained Transformer layers, ensuring a smoother start for
downstream optimization and better preservation of the knowledge embedded in the original model.
To perform ILD, we minimize the mean squared error (MSE) between the outputs of each pre-trained
Transformer attention layer hAttn

l and the corresponding outputs of MLA (hMLA
l) and Mamba2 (hM2

l)
layers. The ILD losses for Mamba2 and MLA are defined as:

LMamba2
ILD =

∑
l∈{1,2,...,L}

∥∥∥hAttn
l − hM2

l

∥∥∥2

2
, LMLA

ILD =
∑

l∈{1,2,...,L}

∥∥∥hAttn
l − hMLA

l

∥∥∥2

2
, (11)

where L denotes the total number of layers and hl refers to the output of the lth layer. Unlike
MOHAWK, where the weights of MLP within each layer remain frozen during distillation, we allow
training of all parameters in the Mamba2 and MLA layers. The refined initialization resulting from
this ILD has proven to be crucial for enhancing the subsequent end-to-end distillation process, as
evidenced in Section ??.

3.1.2 SMART: Sensitivity Measure-Aware Replacement of Transformer Layers

Figure 3: Layer sensitivity scores for Llama3.2-
1B using 4096 samples from the validation dataset.
Red markers indicate the MLA layer indices se-
lected by our SMART strategy with N = 4.

The final stage of our initialization process is to com-
pose our hybrid model from the full MLA and full
Mamba2 models. Let N denote the desired total
number of MLA layers. The set of layers assigned
as MLA is represented by LMLA ⊆ {0, 1, . . . , L−1}.
To minimize the performance gap between the hybrid
and fully attention-based models, we introduce a Sen-
sitivity Measure-Aware Replacement of Transformer
Layers (SMART) strategy, which leverages empirical
sensitivity analysis to guide the layer assignment. To
measure the sensitivity of each layer, we begin with
the full Mamba2 model after ILD. First, we compute
the KL divergence between the full attention-based
teacher model and the student model where all layers
are Mamba2. Then, for each layer i, we construct a variant of the student model in which only the ith

layer is replaced with MLA while the rest remain Mamba2, and measure the KL divergence against
the teacher. The sensitivity gain si for layer i is defined as the reduction in KL divergence relative to
the full Mamba2 model. The sensitivity score is formally computed as:

si =

T∑
t=1

KL [p(· | y1:t, x, θT) ∥ p(· | y1:t, x, θ)]−KL [p(· | y1:t, x, θT) ∥ p(· | y1:t, x, θ′i)] , (12)

where θT and θ denote the parameters of the teacher and full Mamba2 model, and θ′i corresponds
to the variant with MLA inserted at layer i. In this equation, y1:t refers to model predictions up
to time step t and x is the input sequence and T is total number of decoding time steps. A higher
score indicates that the ith layer plays a more critical role in aligning with the teacher and should
thus be prioritized for MLA replacement due to its higher representational capacity. Figure 3 shows
an example sensitivity profile for the Zebra-Llama 1B model after refined initialization, where we
observe that the earliest and latest layers tend to exhibit higher sensitivity, while middle layers are
typically less critical. While it may seem intuitive to simply select the top N layers with the highest
sensitivity scores, this strategy often leads to suboptimal layer placements—especially if it results in
large gaps between MLA layers. To enforce a more structured distribution and preserve the most
sensitive positions, we adopt the following three-step procedure:
• Terminal Preservation: We divide the total L layers into N roughly uniform partitions. We take

the first and last ⌊L/N⌋ layers in the first and last partitions. From these two partitions, we select
the layer with the highest sensitivity score as the first and last MLA layers, denoted LMLA

1 and
LMLA
N , respectively. This ensures that the most sensitive edge layers are preserved.

• Near-Uniform Intermediate Distribution: Given the range [LMLA
1 + 1, LMLA

N − 1], we aim to
place the remaining N − 2 MLA layers such that the gaps between consecutive MLA layers are as

5

uniform as possible. We constrain the gap between adjacent MLA layers to lie within the range
of min: ⌊L

MLA
N −LMLA

1 −N+1
N−1 ⌋, and max: ⌈L

MLA
N −LMLA

1 −N+1
N−1 ⌉. We enumerate all valid configurations

{Cj}Mj=1 that meet this spacing constraint, where each candidate Cj defines a possible set of
intermediate MLA layer indices.

• Maximal Sensitivity Scores: For each valid configuration, we compute the total sensitivity score
and choose the one with the highest cumulative score: C∗ = argmax

Cj

∑
i∈Cj

si.

Additional details and examples of this layer selection procedure are provided in Appendix B.

3.2 Efficient Training

After initialization and model composition, we follow an end-to-end knowledge distillation and DPO
training stages to incrementally improve model accuracy and efficiency.
End-to-End Knowledge Distillation This stage involves an end-to-end distillation with supervised
fine-tuning (SFT):

Lθ =

T∑
t=1

KL[p(·|y1:t, x, θT)||p(·|y1:t, x, θ)], (13)

where θ and θT are the parameters of the student model and the teacher model respectively. Such
distillation step is crucial for transferring the rich, pre-trained knowledge from the teacher model.
Direct Preference Optimization (DPO) In the final training stage, we perform DPO which is a
binary cross entropy loss to adjust the preference of the student model. We set the distilled student
model itself as the reference model as it makes the training much stabler.

4 Experiments and Results

4.1 Training Setup
All of our Zebra-Llama models are distilled from the Llama family: Llama3.2-1B-Instruct, Llama3.2-
3B-Instruct, and Llama3.1-8B-Instruct for our experiments. For ILD and SFT, we use the same
dataset as in [5] which includes multiple public datasets such as OpenHermes-2.5[15], GenQA[16],
and Infinity-Instruct [17], with a total number of 6.8 billion tokens. The dataset is splited into 20% and
80% for ILD and SFT separately. We repeat the same training data more than one epoch to match the
desired token budget. For DPO preference tuning, we adopt three datasets Llama3-ultrafeedback[18],
orca_dpo_pairs[19], and ultrafeedback_binarized[20]. All models were trained on a single node
equipped with eight AMD MI300 GPUs. Our training details are provided in Appendix A.4.

4.2 Performance Evaluation
Evaluation Tasks We adopt the LM Harness Eval benchmark [21] to perform zero-shot and few-
shot evaluations on language understanding tasks, which includes ARC-Challenge (ARC) [22], ARC-
Easy (ARE) [22],HellaSwag (HS) [23], MMLU (MM) [24], OpenBookQA (OB) [25], PIQA [26],
RACE (RA) [27], and WinoGrande (WG) [28]. We provide more details for model evaluations in
Appendix A.5.

Zero-shot Results The results of our zero-shot evaluations are summarized in Table 1. We
compare our Zebra-Llama with the base Llama models and other baselines based on distillation:
MambaInLLaMA (Hybrid Mamba2-GQA)[5], X-EcoMLA (Pure MLA)[12], Llamba (Pure Mamba2)
[11], and Minitron (Pruning) [13]. Besides the evaluation results, we list the teacher model size,
number of training tokens, student model size (the number of parameters), and the KV cache size
compared to the base Llama models. For the MLA layers in Zebra-Llama, we set rkv = 128 for
the 1B and 3B models and rkv = 160 for the 8B models. For each model size, we tested various
combinations of MLA and Mamba2 layers.

As shown in Table 1, compared to the base Llama models, our Zebra-Llama achieves extreme KV
cache compression without noticeable performance drop. For 1B and 3B models, we achieves 3.91%
(25.6× compression) and 2.01% (49.78× compression) KV cache size with even higher performance
than the base Llama models. For the 8B models, we reach 5.47% (18.3× compression) and 2.73%
(36.6× compression) KV cache size with only 1% and 2.15% performance drop. Note that for the
8B models, we achieve such compression ratio using only same size teachers. Further more, our
Zebra-Llama achieves a better balance between KV cache compression and performance with much

6

Model and Setting Teacher Tokens Size KV Size ARC ARE HS MM OB PI RA WG Avg.

Llama3.2-1B-Inst - 9T 1.24B 100% 37.97 63.30 60.65 46.05 34.80 74.32 38.18 59.67 51.87
MambaInLlama-1B-50%* 8B 7B 1.27B 50% 40.78 65.57 61.4 40.17 39.2 74.32 38.28 58.72 52.31
X-EcoMLA-1B (rkv = 64) 8B 7B 1.23B 9.37% 40.02 67.17 58.4 38.53 37.8 73.83 39.43 60.93 52.01
Llamba-1B 1B+70B 8B 1.41B 0% 37.12 65.36 61.31 38.11 36.8 73.78 37.61 60.62 51.34
Zebra-Llama-1B, 8MLA-8M2 8B 7B 1.27B 7.81% 42.49 67.38 60.54 38.94 41.6 72.91 38.37 61.25 52.94
Zebra-Llama-1B, 6MLA-10M2 8B 7B 1.28B 5.86% 43.94 67.51 60.46 38.21 41.2 73.23 37.61 61.17 52.92
Zebra-Llama-1B, 4MLA-12M2 8B 7B 1.28B 3.91% 42.32 66.96 58.93 37.91 40.6 72.96 37.7 58.88 52.03

Llama3.2-3B-Inst - 9T 3.21B 100% 46.08 67.93 70.38 60.34 36.4 75.79 40.86 67.25 58.13
MambaInLlama-3B-50% 70B 20B 3.35B 50% 54.1 80.26 74.45 52.47 42.4 77.69 43.44 67.32 61.52
X-EcoMLA-3B (rkv = 816) 3B 7B 3.21B 42.97% 48.38 70.37 72.41 57.51 38.2 76.28 46.41 68.11 59.71
X-EcoMLA-3B (rkv = 128)* 8B 7B 3.21B 9.37% 52.05 75.38 70.95 53.2 40.8 77.09 44.69 66.85 60.13
Llamba-3B 3B+70B 10B 3.66B 0% 45.65 73.78 73.31 52.32 42.4 78.02 40.1 70.01 59.45
Zebra-Llama-3B, 14MLA-14M2 8B 9B 3.27B 4.69% 51.28 76.14 72.57 52.1 42.4 77.53 45.93 67.56 60.69
Zebra-Llama-3B, 8MLA-20M2 8B 9B 3.36B 2.68% 51.96 75.97 72.38 48.16 42.8 77.64 43.54 65.67 59.77
Zebra-Llama-3B, 6MLA-22M2 8B 9B 3.39B 2.01% 50.77 76.09 71.46 50.06 43.4 77.26 42.49 66.46 59.75

Llama3.1-8B-Inst - 15T 8.03B 100% 54.86 79.55 79.23 68.13 43 80.9 44.69 73.88 65.53
MambaInLlama-8B-50% 70B 20B 8.3B 50% 59.73 84.81 79.69 59.74 44 80.03 46.12 74.11 66.03
Minitron-8B 15B† 94B 8.3B 66.67% 52.73 79.5 77.4 62.95 45.2 81.39 39.71 72.69 63.95
X-EcoMLA-8B (rkv = 128)* 8B 7B 8.03B 9.37% 56.57 79.04 77.38 58.6 42.8 79.6 48.33 70.96 64.16
Llamba-8B 8B+70B 12B 8.32B 0% 53.84 79.71 76.25 60.29 44 79.16 40.38 72.77 63.3
Zebra-Llama-8B, 16MLA-16M2 8B 11B 8.19B 5.47% 58.62 78.37 79.27 58.17 43.4 80.03 49.28 72.61 64.97
Zebra-Llama-8B, 8MLA-24M2 8B 11B 8.38B 2.73% 58.87 79.17 78.4 54.6 43.6 79.43 46.22 72.45 64.12

Table 1: Zero-shot evaluation on the LM Harness Eval benchmark across eight tasks: ARC-Challenge (ARC),
ARC-Easy (ARE), HellaSwag (HS), MMLU, OpenBookQA (OB), PI, RACE (RA), and WinoGrande (WG). All
the teacher models are Llama3.1-8B/70B or Llama3.2-1B/3B execpt for Minitron (which is †Nemotron-15B).
∗The X-EcoMLA results are reproduced by ourselves.

more efficient training (i.e., fewer training tokens or smaller teacher size) than other distillation-based
methods. For example, compared with hybrid MambaInLlama, Zebra-Llama has similar performance
with 12.79× and 24.88× smaller KV cache for 1B and 3B models. For 8B models, Zebra-Llama
achieves 9.14× KV cache compression with only 1.6% performance degradation by using a much
smaller teacher (8B) and fewer training tokens (11B). Similarly, our method has roughly the same
performance as the pure-MLA X-EcoMLA models, but with up to 3.4× less KV cache size. Moreover,
compared to the pure Mamba model Llamba-8B, Zebra-Llama shows significantly better performance
with both smaller teacher and fewer training tokens with minimal KV cache overhead. Moreover, we
further compare Zebra-Llama with state-of-the-art hybrid models trained from scratch in Appendix C
(see Table 11). While prior methods like SAMBA and Mamba-2-Hybrid rely on 1.5T–3.5T training
tokens, our Zebra-Llama models achieve competitive or superior performance using only 7–11B
tokens—representing a 214×–500× reduction in training data.

Model and Setting KV % ARC HS MM WG TQ Avg.

Llama3.1-8B-Inst 100% 60.75 80.12 68.23 73.72 53.99 67.36
Minitron 66.7% 49.49 81.61 64.34 72.77 43.97 62.44
MambaInLlama-50% 50% 60.41 77.97 56.67 71.35 66.6 66.6
MambaInLlama-25% 25% 59.22 76.88 53.94 64.88 64.64 63.91
MambaInLlama-12.5% 12.5% 53.33 72.16 50.85 63.61 61.12 60.21
MambaInLlama-0% 0% 53.51 70.31 44.21 58.91 52.31 55.85
Llamba 0% 57.94 77.13 59.89 72.77 49.46 63.44
X-EcoMLA-8B (128)* 9.37% 59.64 76.9 58.73 71.43 60.86 65.51
Zebra-Llama, (16-16) 5.47% 60.49 78.29 58.84 71.98 64.28 66.78
Zebra-Llama, (8-24) 2.73% 60.41 76.11 55.06 71.11 61.01 64.74

Table 2: Few-shot evaluation on the LM Harness Eval bench-
mark across five tasks.

Few-shot Results In Table 2, we re-
port the results of few-shot evaluations
on the Zebra-Llama-8B models under 25-
shot ARC-Challenge (ARC), 10-shot Hel-
laSwag (HS), 5-shot Winogrande (WG),
5-shot MMLU (MM), and 0-shot mc2 for
Truthful-QA (TQ) tasks. Among all mod-
els, our Zebra-Llama achieves the best per-
formance with only 5.47% KV cache usage.
The closest one to us is MambaInLlama-
50% but it’s trained with 1.8×more tokens
and has 9.14× more KV cache usage. For pure Mamba2 models such as MambaInLlama-8B-0%
and Llamba-8B, they don’t use any KV cache but their performance is significantly worse than
Zebra-Llama even with more training tokens and larger teachers. Complete few-shot results for
Zebra-Llama-1B and Zebra-Llama-3B can be found in Appendix E.

Results on GSM8k In Table 3, we evaluate the math-reasoning ability of Zebra-Llama via 8-
shot GSM8K task, comparing its performance against baseline models. For the Zebra-Llama-1B
architecture, the 8MLA-8Mamba2 configuration achieves the highest accuracy, even outperforming
the base Llama-3.2-1B-Instruct model by 6.7%. Increasing the number of MLA layers to 12 results
in a performance drop from 41.09% to 29.57%; however, this result remains superior to both
MambaInLlama-1B and Llamba-1B by 4.63% and 6.75%, respectively. For Zebra-Llama-3B, it is
slightly worse than X-EcoMLA-3B given more than 2x smaller KV cache. However, our Zebra-Llama

7

Figure 4: Inference throughput vs. context length of
various 8B-size models. We measure the throughput
under batch size 48 and output length 1024.

Figure 5: Inference peak memory vs. context length
of various 8B-size models. The out-of-memory sce-
narios are marked with ’OOM’.

is still 9.71% and 15.01% better than MambaInLlama-3B and Llamba-3B with 14 MLA layers and
14 Mamba2 layers. Even we decrease the number of MLA layers to 8, which leads to only 2% of
the original KV cache, our Zebra-Llama is still 2.1% and 7.43% better than MambaInLlama-3B and
Llamba-3B. This consistent superiority demonstrates that our hybrid model structure and tailored
training strategy effectively preserve, and in many cases enhance, the math-reasoning capabilities of
the underlying base model while maintaining high KV cache efficiency.

Model KV % Tokens GSM8K (8)

Llama-3.2-1B-Instruct 100% 9T 38.51
MambaInLlama-1B 50% 7B 24.94

X-EcoMLA-1B 9.37% 7B 38.06
Llamba-1B 0% 8B 22.82

Zebra-Llama-1B (8-8) 7.81% 7B 41.09
Zebra-Llama-1B (4-12) 3.91% 7B 29.57
Llama-3.2-3B-Instruct 100% 9T 70.89

MambaInLlama-3B 50% 20B 53.06
X-EcoMLA-3B 9.37% 7B 65.28

Llamba-3B 0% 10B 47.76
Zebra-Llama-3B (14-14) 4.69% 9B 62.77
Zebra-Llama-3B (6-22) 2.01% 9B 55.19

Table 3: 8-shot GSK8K results for Zebra-
Llama and baselines.

Throughput Evaluation Figures 4 and 5 detail the
inference efficiency of Zebra-Llama in terms of through-
put and memory consumption for the models that are
distilled from Llama-3.1-8B. All experiments are con-
ducted on a single AMD MI300X GPU with 192GB
memory. We fix the batch size to 48 and the output
length to 1024 and measure the inference throughput
across various context/input lengths. As shown, our
Zebra-Llama significantly outperforms the base Llama-
3.1-8B model by 3.9× for throughput with only 17%
peak memory at 16k input tokens. Similarly, Zebra-
Llama outperforms the MambaInLlama model by 3.28×
in throughput with only 18.2% of its peak memory at
32k input tokens. Beyond 16k and 32k tokens, the Llama-3.2-8B model and MambaInLlama-8B
model will both run out of memory. In constrast, our Zebra-Llama model only occupied 62.68GB
(8MLA-24Mamba2) and 104.6GB (16MLA-16Mamba2) even with 131k input tokens, showcasing
its brilliant ability for memory efficiency.

4.3 Ablation Studies
In this section, we present a series of ablation studies aimed at justifying key design decisions in
our approach. Specifically, we examine the impact of initialization strategies, the effectiveness of
our SMART layer selection mechanism, the trade-offs between the number and size of MLA and
Mamba2 layers, and the role of teacher model scaling.

4.3.1 Effect of Initialization Strategies Selection Strategy MLA Indices Total sen. Avg. Score

Uniform #1 [0,4,8,12] 1787.9 48.84
Uniform #2 [3,7,11,15] 1055.8 49.72
Max score [0,1,2,14] 2672.5 48.98

Possible middle #1 [0,4,9,14] 2125.7 49.76
Possible middle #2 [0,5,9,14] 2297.5 49.95

SMART (ours) [0,5,10,14] 2500.2 50.15

Table 4: SFT results with different layer selec-
tion strategies on Llama-3.2-1B model. Except
for the selected MLA indices, all models are
trained with same configuration.

Figure 6 presents our assessment of various initialization
methodologies through a comparison of three scenar-
ios: Random weight initialization without ILD, Struc-
tured weight initialization without ILD, and the proposed
Structured weight initialization with ILD.

The results highlight that both structured weight initial-
ization and ILD significantly boost SFT performance,
especially when used together. For Mamba layers, ILD
is crucial for aligning their outputs with the original models due to architectural differences from at-
tention layers, providing the primary performance uplift. As for MLA layers, structured initialization
can boost the accuracy significantly, which offers a strong foundation further refined by ILD.

4.3.2 Impact of SMART Layer Selection
In Table 4, we demonstrate the benefits of our SMART layer selection strategy by comparing with
other layer selections for our Zebra-Llama-1B with 4 MLA layers, by using the configs shown in

8

Figure 6: Performance of various initialization
strategies after SFT for different model architectures.
Generally, our proposed two-stage method achieves
the highest average scores.

Figure 7: Tradeoff between KV rank rkv and the
number of MLA layers when fixing the total KV-
cache size of given model.

Figure 3 as an example. First, by comparing the first two layer selections sets and our optimal
solutions, we can conclude that Terminal Preservation strategy (i.e., always selecting layers from the
first and last few layers) are important for preserving model accuracy. Second, we also testify the
naive greed selection greedy method (the third row); the results shows that uniformly distributing the
MLA layers has a major contribution to final performance as well, which verified the effectiveness of
our Near-Uniform Intermediate Distribution strategy. Third, by analyzing the last three selections,
together with Terminal Preservation and Near-Uniform Intermediate Distribution , Maximal Sensitiv-
ity Scores is indeed a good indicator for final accuracy score. In short, these outcomes underscore
how each of the three pillars–when appropriately combined–contributes critically to the SMART layer
selection strategy’s effectiveness. While we believe that SMART offers a systematic and principled
alternative to heuristic layer selection, we look forward to further exploration and advancement of
this direction in future work.

4.3.3 Tradeoff between number of MLA layers and rkv
The KV-cache size in Zebra-Llama is determined by two factors: the number of MLA layers and
the KV rank rkv of each MLA layer. Figure 7 presents our findings from varying these two factors
for our 1B model while maintaining a constant total KV-cache size. We observed that for significant
KV-cache compressions, such as 12.8× and 25.6×, optimal performance typically occurs with a
moderate number of MLA layers, around six, coupled with an intermediate rkv. Deviating from
this balance will hurt the model’s performance. On one hand, increasing the number of MLA layers
excessively, like to 16 layers at a 25.6× compression, forces the rkv per layer to become very small
(e.g., rkv =8), which significantly degrades performance. On the other hand, reducing the number
of MLA layers too much also leads to a decline in performance, since the model will then consist
almost entirely of Mamba2 layers, which typically have a higher capacity gap with MHA layers than
MLA layers do.

4.3.4 Scaling the Teacher
Effective knowledge transfer from a well-chosen, pre-trained teacher model is crucial for our method’s
success. As shown in Table 5, appropriately scaled teachers significantly enhance student model
performance though with a diminishing return when gradually increasing size of teacher models. This
is due to the "capacity gap" phenomenon in knowledge distillation, where a smaller student model
struggles to fully absorb and generalize the complex teacher’s representations when the teacher model
far exceeds student mimicry capabilities [29, 30]. Therefore, it’s vital to select a teacher model that is
sufficiently powerful to provide rich knowledge but not so extremely larger than the student model,
thereby balancing distillation efficacy with student-teacher compatibility. Investigating adaptive
teacher scaling or multi-stage distillation offers future solutions to these capacity limitations.

4.4 Extension to Qwen models
We further demonstrate that the proposed initialization and distillation strategy is not limited to Llama
models but also applicable to other popular model families such as Qwen [31], which we refer to as
Zebra-Qwen models. We choose Qwen-2.5-0.5B-Instruct and Qwen-2.5-1.5B-Instruct as the base
models. For the 0.5B model, we use the 1.5B mode as the teacher and replace 4 layers to MLA and
20 layers to Mamba2, resulting in 6.25% KV cache size. For the 1.5B model, we use itself as the
teacher model and replace 14 layers to MLA and 14 layers to Mamba2, with a KV size of 12.5% of
the original target model. The performance is illustrated in Table 6. The conclusion remains the same

9

Model and Setting Teacher Size ARC ARE HS MM OB PI RA WG Avg.

Llama3.2-1B-Inst - 37.97 63.30 60.65 46.05 34.80 74.32 38.18 59.67 51.87
Zebra-Llama-1B, 4MLA-12M2 1B 38.91 61.7 55.03 33.83 37.2 71.93 35.41 58.88 49.11
Zebra-Llama-1B, 4MLA-12M2 3B 39.51 62.79 57.61 37.94 38.20 72.52 36.94 56.59 50.26
Zebra-Llama-1B, 4MLA-12M2 8B 42.32 66.96 58.93 37.91 40.6 72.96 37.7 58.88 52.03
Zebra-Llama-1B, 4MLA-12M2 70B 43.17 69.57 57.77 39.45 38.80 72.80 38.09 59.83 52.44

Llama3.2-3B-Inst - 46.08 67.93 70.38 60.34 36.4 75.79 40.86 67.25 58.13
Zebra-Llama-3B, 8MLA-20M2 3B 45.48 69.28 69.04 47.69 40.80 74.81 42.01 63.38 56.56
Zebra-Llama-3B, 8MLA-20M2 8B 51.54 75.55 71.52 47.12 43.6 77.2 42.68 65.9 59.39
Zebra-Llama-3B, 8MLA-20M2 70B 51.96 77.23 69.46 48.32 43.4 76.01 43.35 65.19 59.37

Llama3.1-8B-Inst - 54.86 79.55 79.23 68.13 43 80.9 44.69 73.88 65.53
Zebra-Llama-8B, 8MLA-24M2 8B 56.48 78.79 76.84 53.72 44.4 79.43 44.31 70.64 63.08
Zebra-Llama-8B, 8MLA-24M2 70B 58.53 80.72 76.64 53.82 45.4 80.03 43.06 69.61 63.48

Table 5: Impact of scaling up teacher size on model performance trained on 7B tokens. Except for teacher size,
we use the same training configurations for the same size of student models.

Model and Setting Teacher Tokens KV Size ARC ARE HS MM OB PI RA WG Avg.

Qwen2.5-0.5B-Inst - - 100% 33.11 59.05 52.26 45.86 34.2 70.62 32.06 56.27 47.93
Zebra-Qwen-0.5B, 4MLA-20M2 1.5B 7B 6.25% 38.74 66.92 50.83 38.43 37.2 69.91 32.34 55.09 48.68

Qwen2.5-1.5B-Inst - - 100% 47.01 75.84 68.24 60.13 41 76.01 37.8 62.67 58.59
Zebra-Qwen-1.5B, 14MLA-14M2 1.5B 7B 6.25% 48.63 75.17 67.64 53.87 41.6 75.73 38.66 64.01 58.16

Table 6: Zero-shot evaluation on the LM Harness Eval benchmark for Zebra-Qwen models.

as Llama models - The 0.5B Zebra-Qwen model achieves 3.65% higher accuracy than the base model
and 1.5B Zebra-Qwen model only experiences 0.7% performance degradation with 8× KV cache
compression.

4.5 Extended Long-Context Evaluation
Model KV% 4K 8K 16K

MambaInLlama-1B 50% 38.75 21.55 3.88
Zebra-Llama-1B 3.91% 35.75 24.80 13.37
MambaInLlama-3B 50% 41.71 22.62 0.88
Zebra-Llama-3B 4.69% 58.69 38.24 9.97

Table 7: RULER benchmark results at 4K, 8K, and
16K context lengths.

For the long-context evaluation of our models,
a few factors should be considered. First, as-
sessing long-context performance requires models
that have been trained on datasets with extended
sequence lengths. However, due to efficiency
and resource constraints, our current models were
trained with a maximum sequence length of 2048
tokens. Such a training configuration is generally not optimal for long-context benchmarks like
RULER [32]. Despite this limitation, we conducted RULER benchmark evaluations at 4K, 8K,
and 16K context lengths and the results are summarized in Table 7. We observe that, at the 3B
scale, Zebra-Llama surpasses MambaInLlama across all context lengths, while at the 1B scale
it performs on par at 4K and exceeds MambaInLlama at 8K and 16K. Importantly, these gains are
achieved with a substantially smaller memory footprint—Zebra-Llama uses only ∼5% of the KV
cache, whereas MambaInLlama requires nearly ten times more KV memory.

As future work, we aim to extend our models to support longer context lengths and reasoning.

5 Conclusion
In this work, we addressed the growing need for efficient LLMs by proposing a practical and scalable
framework for composing hybrid models from existing pre-trained Transformers. Motivated by the
cost and environmental impact of retraining large models for downstream use, we introduced Zebra-
Llama, a family of 1B, 3B, and 8B hybrid models built using SSMs and MLA layers. We developed
an effective initialization scheme and a post-training knowledge transfer pipeline that enabled these
models to inherit capabilities from larger teacher models with minimal additional training. Our
approach significantly reduced memory while preserving the accuracy of strong baselines.
Limitations and Future Work Our work establishes several promising directions for future
research. A primary next step is to move beyond a single family of base models and explore hybridiza-
tion strategies across diverse LLM architectures, particularly incorporating modular frameworks like
Mixture-of-Experts (MoE). Scaling our training pipeline to larger models and extending the approach
to reasoning-intensive architectures remain critical frontiers. Furthermore, addressing the reliance
on strong teacher models is essential. In constrained scenarios, investigating alternative knowledge
transfer strategies—such as teacher-free or efficient self-distillation—will be key to understanding
how hybrid architectures can effectively learn with reduced supervision.

10

References
[1] Albert Gu and Tri Dao. “Mamba: Linear-time sequence modeling with selective state spaces”. In: arXiv

preprint arXiv:2312.00752 (2023).

[2] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. “Transformers are rnns:
Fast autoregressive transformers with linear attention”. In: International conference on machine learning.
PMLR. 2020, pp. 5156–5165.

[3] Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. “Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling”. In: arXiv preprint
arXiv:2406.07522 (2024).

[4] Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, et al. “Hymba: A hybrid-head
architecture for small language models”. In: arXiv preprint arXiv:2411.13676 (2024).

[5] Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The Mamba in the Llama:
Distilling and Accelerating Hybrid Models. 2025. arXiv: 2408.15237 [cs.LG]. URL: https:
//arxiv.org/abs/2408.15237.

[6] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. “Deepseek-v2: A strong, economical, and efficient mixture-of-experts
language model”. In: arXiv preprint arXiv:2405.04434 (2024).

[7] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked
Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman,
Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz,
Mor Zusman, and Yoav Shoham. Jamba: A Hybrid Transformer-Mamba Language Model. 2024. arXiv:
2403.19887 [cs.CL].

[8] Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Lin, Jan Kautz,
and Pavlo Molchanov. Hymba: A Hybrid-head Architecture for Small Language Models. 2024. arXiv:
2411.13676 [cs.CL]. URL: https://arxiv.org/abs/2411.13676.

[9] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. “An empirical study of mamba-based
language models”. In: arXiv preprint arXiv:2406.07887 (2024).

[10] Aviv Bick, Kevin Y Li, Eric P Xing, J Zico Kolter, and Albert Gu. “Transformers to ssms: Distilling
quadratic knowledge to subquadratic models”. In: arXiv preprint arXiv:2408.10189 (2024).

[11] Aviv Bick, Tobias Katsch, Nimit Sohoni, Arjun Desai, and Albert Gu. “Llamba: Scaling distilled recurrent
models for efficient language processing”. In: arXiv preprint arXiv:2502.14458 (2025).

[12] Guihong Li, Mehdi Rezagholizadeh, Mingyu Yang, Vikram Appia, and Emad Barsoum. “X-EcoMLA:
Upcycling Pre-Trained Attention into MLA for Efficient and Extreme KV Compression”. In: arXiv
preprint arXiv:2503.11132 (2025).

[13] Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. “Compact language models via
pruning and knowledge distillation”. In: Advances in Neural Information Processing Systems 37 (2024),
pp. 41076–41102.

[14] Tri Dao and Albert Gu. “Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality”. In: arXiv preprint arXiv:2405.21060 (2024).

[15] Teknium. OpenHermes 2.5: An Open Dataset of Synthetic Data for Generalist LLM Assistants. 2023.
URL: https://huggingface.co/datasets/teknium/OpenHermes-2.5.

[16] Jiuhai Chen, Rifaa Qadri, Yuxin Wen, Neel Jain, John Kirchenbauer, Tianyi Zhou, and Tom Gold-
stein. “Genqa: Generating millions of instructions from a handful of prompts”. In: arXiv preprint
arXiv:2406.10323 (2024).

[17] Beijing Academy of Artificial Intelligence (BAAI). Infinity Instruct. https://huggingface.co/
datasets/BAAI/Infinity-Instruct. 2024.

[18] Junxiong Wang. Llama3 ultrafeedback-armorm dataset. https://huggingface.co/datasets/
JunxiongWang/llama3-ultrafeedback-armorm. 2024.

11

https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/2411.13676
https://arxiv.org/abs/2411.13676
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/BAAI/Infinity-Instruct
https://huggingface.co/datasets/BAAI/Infinity-Instruct
https://huggingface.co/datasets/JunxiongWang/llama3-ultrafeedback-armorm
https://huggingface.co/datasets/JunxiongWang/llama3-ultrafeedback-armorm

[19] Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium". OpenOrca:
An Open Dataset of GPT Augmented FLAN Reasoning Traces. https://https://huggingface.
co/Open-Orca/OpenOrca. 2023.

[20] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. UltraFeedback: Boosting Language Models with High-quality Feedback. 2023. arXiv:
2310.01377 [cs.CL].

[21] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. “A framework for few-shot language model evaluation”. In:
(2023).

[22] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. “Think you have solved question answering? try arc, the ai2 reasoning challenge”. In: arXiv
preprint arXiv:1803.05457 (2018).

[23] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. “Hellaswag: Can a machine
really finish your sentence?” In: arXiv preprint arXiv:1905.07830 (2019).

[24] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. “Measuring massive multitask language understanding”. In: arXiv preprint arXiv:2009.03300
(2020).

[25] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. “Can a suit of armor conduct electric-
ity? a new dataset for open book question answering”. In: arXiv preprint arXiv:1809.02789 (2018).

[26] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. “Piqa: Reasoning about physical common-
sense in natural language”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 34. 05.
2020, pp. 7432–7439.

[27] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. “Race: Large-scale reading
comprehension dataset from examinations”. In: arXiv preprint arXiv:1704.04683 (2017).

[28] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. “Winogrande: An adversarial
winograd schema challenge at scale”. In: Communications of the ACM 64.9 (2021), pp. 99–106.

[29] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. “Improved knowledge distillation via teacher assistant”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 34. 04. 2020, pp. 5191–5198.

[30] Aref Jafari, Mehdi Rezagholizadeh, Pranav Sharma, and Ali Ghodsi. “Annealing knowledge distillation”.
In: arXiv preprint arXiv:2104.07163 (2021).

[31] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. “Qwen2. 5-coder technical report”. In: arXiv preprint arXiv:2409.12186
(2024).

[32] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. “RULER: What’s the Real Context Size of Your Long-Context Language Models?”
In: arXiv preprint arXiv:2404.06654 (2024).

[33] Stephanie Lin, Jacob Hilton, and Owain Evans. “Truthfulqa: Measuring how models mimic human
falsehoods”. In: arXiv preprint arXiv:2109.07958 (2021).

[34] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. “Gpqa: A graduate-level google-proof q&a benchmark”. In:
First Conference on Language Modeling. 2024.

[35] Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro Von
Werra, Thomas Wolf, et al. “The fineweb datasets: Decanting the web for the finest text data at scale”. In:
Advances in Neural Information Processing Systems 37 (2024), pp. 30811–30849.

12

https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://arxiv.org/abs/2310.01377

A More Experimental Details for Zebra-Llama

A.1 Structured MLA Initialization

Algorithm 1 Python-like pseudocode of the proposed SVD initialization for MLA.

MHA weights: W_Q, W_K, W_V
MLA weights: W_DQ, W_UQ, W_QR, W_DKV, W_UK, W_KR, W_UV

Initialization of W_DQ, W_UQ, and W_QR
U_q, sigma_q, V_q = svd(W_Q)
W_DQ = U_q
W_UQR_bar = (sigma_q @ V_q).view(r_q, n_h, d_h)
W_UQ = W_UQR_bar[:, :, :d_qk].view(r_q, n_h*d_qk)
W_QR = W_UQR_bar[:, :, -d_r:].view(r_q, n_h*d_r)

Initialization of W_DKV, W_UK, W_KR, W_UV
U_kv, sigma_kv, V_kv = svd(torch.cat((W_K, W_V), -1))
W_DKV = U_kv
W_K_avg = W_K.view(d, n_kv, d_h).mean(1)
W_KR = W_K_avg[:, -d_r:]

W_UKV = sigma_kv @ V_kv
W_UK_bar = W_UKV[:, :d_h*n_kv].view(r_kv, n_kv, d_h)
W_UK = W_UK_bar[:,:,:d_qk].view(r_kv, n_kv*d_qk)
W_UV = W_UKV[:, d_h*n_h:]

Our SVD-based MLA layer initialization follows the methodology outlined in X-EcoMLA [12] for
Multi-Head Attention (MHA). However, for Generalized Question Answering (GQA) models like
the Llama 3 series, our approach diverges slightly by keeping the number of key/value heads from
the base model for MLA while X-EcoMLA forces the number of key/value heads to be the same as
the number of query head. With such modification, we notice trivial performance difference but with
slightly fewer number of parameters.

Essentially, the matrices from the base MHA/GQA module could be expressed as WQ ∈ Rd×nhdh ,
and WK ,WV ∈ Rd×nkvdh , where d denotes the hidden dimension, nh denotes the number of
attention heads, nkv denotes the number of key/value heads. For MHA, we have nh = nkv while for
GQA we have nh > nkv .

All the matrices we need to initialize in MLA could be expressed as WDKV ∈ Rd×rkv , WUK ∈
Rrkv×nkvdqk , WUV ∈ Rrkv×nkvdv , WDQ ∈ Rd×rq , WUQ ∈ Rrq×nhdqk , WKR ∈ Rd×dr , and
WQR ∈ Rrq×nhdr , where rkv represents the latent dimension for key/value, dqk denotes the head
dimension for query/key, dv denotes the head dimension for value, rq denotes the latent dimension
for query, and dr represents the dimension for RoPE embeddings. For all the experiments, we keep
dv = dh and dqk + dr = dh.

Initialization of WDQ, WUQ, and WQR Given that query compression in MLA can be viewed as
a low-rank approximation of attention layers, we initially perform SVD on the pre-trained weight
matrix WQ:

WQ = UqΣqV
T
q , (14)

where Uq ∈ Rd×rq , Σq ∈ Rrq×rq , and Vq ∈ Rdhnh×rq . For constructing the up-projection matrices,
we reshape the product ΣqV

T
q to form W

UQR ∈ Rrq×nh×dh and subsequently split this tensor at
the last dimension into WUQ, containing the first dqk elements, and WQR, containing the remaining
dr elements. The down-projection matrix WDQ is directly assigned with Uq . This method of initial
assignment is formulated as:

WDQ = Uq, WUQ = reshape(W
UQR

[:, :, : dqk]), WQR = reshape(W
UQR

[:, :,−dr :]), (15)
where the function reshape(.) is used to integrate the last two dimensions of the specified tensor.

13

Method MLA Indices rkv rq dqk dr Model Size

Zebra-Llama-1B, 8MLA8M2 [0,2,4,8,10,12,14] 128 1344 32 32 1.27B
Zebra-Llama-1B, 6MLA10M2 [0,2,5,8,11,14] 128 1344 32 32 1.28B
Zebra-Llama-1B, 4MLA12M2 [0,5,10,14] 128 1344 32 32 1.28B

Zebra-Llama-3B, 14MLA14M2 [0,2,4,6,8,10,12,14,16,18,20,22,24,26] 128 1536 64 64 3.27B
Zebra-Llama-3B, 8MLA20M2 [0,4,8,12,16,20,24,26] 128 1536 64 64 3.36B
Zebra-Llama-3B, 6MLA22M2 [0,5,10,16,21,26] 128 1536 64 64 3.39B

Zebra-Llama-8B, 16MLA16M2 [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30] 160 2048 64 64 8.19B
Zebra-Llama-8B, 8MLA24M2 [0,4,8,12,16,20,25,30] 160 2048 64 64 8.38B

Table 8: Configurations of Zebra-Llama models’ architecture.

Initialization of WDKV , WUK , WUV , and WKR The initialization of the MLA weights associ-
ated with keys and values is more complicated because of the decoupled RoPE mechanism. First, a
joint SVD is performed on the concatenated WK and WV :

[WK ,WV] = UkvΣkvV
T
kv, (16)

where Ukv ∈ Rd×rkv , Σkv ∈ Rrkv×rkv , and Vkv ∈ R2dhnkv×rkv . For the down-projection matrix
WDKV , we directly set it to Ukv. To derive the up-projection matrix WUV and WUK , we first set
WUKV = ΣkvV

T
kv. Since we have dv = dh, we simply extract the last dhnkv columns of WUKV

as WUK . For WUK , we first extract the first dhnkv columns of WUKV and reshape them into
W

UK ∈ Rrkv×nkv×dh . Then, we select the first dqk elements along the last dimension of W
UK

and
reshape it back to obtain WUK . In general, this process can be expressed as:

WDKV = Ukv, WUV = WUKV [:, : nkvdh], WUK = reshape(W
UK

[:, :, : dqk]). (17)

In the final step, the initialization of the RoPE key embedding matrix WKR requires a distinct
approach, given that all attention heads in MLA utilize the identical RoPE key embedding. First, the
average key projection matrix WK

avg ∈ Rd×dh is calculated for all attention heads. Then, the final dr
columns are extracted for initializing WKR, formulated as follows:

WKR = WK
avg[:,−dr :]. (18)

The detailed initialization algorithm can be found in Algorithm 1.

A.2 Structured Mamba2 Initialization

The structured initialization process of Mamba2 layers follows precisely to the solution of MambaIn-
Llama [5]. As outlined in Section 3.1.1, excluding the softmax operation in attention shows a direct
one-to-one mapping between Bt, xt, and Ct in linear RNN and Kt, Vt, and Qt in attention layers.
In the Mamba2 framework, Bt, xt, and Ct for the continuous-time SSM are derived from input ot
via passing through a MLP followed by a 1d convolution layer. The MLP is replaced directly with
pre-trained transformer layer weights as follows:

xt = WV ot ∈ Rb×nkvhd , Bt = WKot ∈ Rb×nkvhd , Ct = WQot ∈ Rb×nhhd , (19)

where b signifies the batch size. Subsequent to this, x, B, and C are processed through the 1d
convolutional layer for temporal fusion before undergoing discretization in Mamba SSM. It is
important to highlight that for GQA and MQA scenarios where nkv < nq, xt and Bt are replicated
after the convolution to ensure that xt, Bt, and Ct share identical dimensions. Other parameters, such
as A and ∆t, adhere to the original initialization procedure within the Mamba2 layers.

A.3 Model Structure Details

Detailed architectures of our 1B, 3B, and 8B models, as presented in Table 1, are comprehensively
outlined in Table 8. This includes MLA layer selections, parameters specific to the MLA layers,
and the overall model size. Layers not categorized as MLA are Mamba2 layers, which follows the
configuration used in MambaInLlama [5].

14

Stage Model Teacher Tokens BS LR Time (H)

ILD Zebra-Llama-1B-MLA Llama3.2-1B 1.36B 96 8e-5 1.8
ILD Zebra-Llama-1B-Mamba2 Llama3.2-1B 1.36B 96 8e-5 1.7
ILD Zebra-Llama-3B-MLA Llama3.2-3B 1.36B 96 8e-5 3.9
ILD Zebra-Llama-3B-Mamba2 Llama3.2-3B 1.36B 96 8e-5 4.4
ILD Zebra-Llama-8B-MLA Llama3.1-8B 1.36B 48 4e-5 9.2
ILD Zebra-Llama-8B-Mamba2 Llama3.1-8B 1.36B 48 4e-5 10.3
SFT Zebra-Llama-1B Llama3.1-8B 5.44B 192 8e-5 ≈ 13.7

SFT Zebra-Llama-3B Llama3.1-8B 7.44B 96 4e-5 ≈ 31.2

SFT Zebra-Llama-8B Llama3.1-8B 9.44B 64 4e-5 ≈ 78.1

DPO Zebra-Llama-1B N/A 0.2B 32 5e-7 ≈ 0.5

DPO Zebra-Llama-3B N/A 0.2B 32 5e-7 ≈ 1.2

DPO Zebra-Llama-8B N/A 0.2B 32 5e-7 ≈ 2.3

Table 9: Training hyper-parameters of Zebra-Llama models.

Layer Index Sensitivity Score Layer Index Sensitivity Score
0 1185.06 8 238.1
1 382.73 9 120.56
2 480.68 10 323.23
3 350.95 11 228.9
4 196.03 12 168.69
5 367.82 13 233.87
6 250.45 14 624.03
7 114.44 15 361.47

Table 10: Concrete sensitivity score in Figure 3.

A.4 Training Details

In Table 9, we present the training configurations for our Zebra-Llama series models, including the
number of tokens, batch size, learning rate, and total training time. All experiments are conducted on
a single node equipped with eight AMD MI300 GPUs, each featuring 192GB of memory. We apply a
learning rate warmup over the first 1% of training data, followed by cosine annealing. The models
are optimized using AdamW, with hyperparameters set to β = (0.9, 0.8). Additionally, all models
process input sequences of length 2048 through sample packing.

A.5 Evaluation Details

We evaluate all models using the lm-evaluation-harness library (commit from the big-refactor branch)
following the task-specific few-shot configurations defined by the Open LLM Leaderboard. For zero-
shot evaluation, we report performance across a broad suite of language understanding tasks: MMLU,
HellaSwag, PIQA, ARC-Easy, ARC-Challenge, Winogrande, OpenBookQA, and RACE. Evaluations
are performed using the command-line interface with ROCm-enabled devices and a batch size of 16.
For few-shot runs targeting leaderboard comparisons, we use the officially recommended number of
shots per task (e.g., 25-shot for ARC-Challenge, 10-shot for HellaSwag, 5-shot for Winogrande and
MMLU, 0-shot mc2 for Truthful-QA(TQ)) [33]. We report average scores across tasks, following
the same protocol as prior work.

B SMART Layer Selection Algorithms

We provide the pseudo code for SMART in Algorithm 2. Besides, we provide three examples for the
layer selection process of our Zebra-Llama 1B models following SMART. The examples are based
on the sensitivity analysis shown in Figure 3, whose actually values are listed in Table 10.

15

https://github.com/EleutherAI/lm-evaluation-harness

Algorithm 2 Pseudo code: SMART—Structured MLA Layer Selection via Sensitivity Scores

Require: Sensitivity scores {s1, s2, . . . , sL}, number of MLA layers N
Ensure: Selected MLA layer indices {LMLA

1 , . . . , LMLA
N }

1: // Terminal Preservation
2: Divide L layers into N equal partitions
3: LMLA

1 ← highest-sensitivity layer in first partition of layers
{
i, i ∈

[
1,
⌊
L
N

⌋]}
4: LMLA

N ← highest-sensitivity layer in last partition of layers
{
i, i ∈

[
L−

⌊
L
N

⌋
+ 1, L

]}
5: // Near-Uniform Intermediate Distribution
6: // Define Valid Intermediate Layer Range
7: Let rstart ← LMLA

1 + 1
8: Let rend ← LMLA

N − 1
9: Let R← list of candidate intermediate layers in [rstart, rend]

10: // Compute Allowable Gap Bounds
11: Let T ← LMLA

N − LMLA
1 −N + 1

12: Let gmin ←
⌊

T
N−1

⌋
13: Let gmax ←

⌈
T

N−1

⌉
14: // Enumerate All Valid Configurations
15: Initialize empty list of configurations C ← []
16: for all combinations of N − 2 layers from R do
17: Sort the selected layers in ascending order to form Cj

18: Let Gj ← list of gaps between consecutive layers in {LMLA
1 } ∪ Cj ∪ {LMLA

N }
19: if all gaps in Gj satisfy gmin ≤ gap ≤ gmax then
20: Append Cj to C
21: end if
22: end for
23: // Maximal Sensitivity Scores
24: C∗ ← argmaxCj

∑
i∈Cj

si

25: return {LMLA
1 } ∪ C∗ ∪ {LMLA

N }

Example 1: Zebra-Llama-1B with N = 4
• Terminal Preservation: LMLA

1 = 0, LMLA
N = 14

• Near-Uniform Intermediate Distribution:
– Define intermediate layer range: rstart = 1, rend = 13, R = {1, 2, . . . , 13}.
– Compute allowable gap bounds: T = 11, gmin = 3, gmax = 4.
– Enumerate valid Configurations: C = {{4, 9}, {5, 9}, {5, 10}}.

• Maximal Sensitivity Scores:
– Calculate total sensitivity score:

* s4 + s9 = 316.59,
* s5 + s9 = 488.38,
* s5 + s10 = 691.05

– Layers with maximal score: C∗ = {5, 10}.
– Return {0, 5, 10, 14}.

16

Model and Setting Tokens Size ARC ARE HS MM OB PI RA WG

Mamba-2-Hybrid 3.5T 8.66B - - - -/47.7 77.23/- - - - - - - -/77.68 51.46 - - - -/42.8 79.65/- - - - 39.71 71.27
SAMBA 3.5T 1.7B 48.21/- - - - 79.25/- - - - 49.74/- - - - 48.01 37.20/- - - - 77.10/- - - - - 72.93
SAMBA 3.5T 1.3B - 58.21/- - - - - - - -/54.73 - - 72.36/- - - - - 55.72
Hymba 1.5T 1.5B 42.32/- - - - 74.54/- - - - 53.55/- - - - - - 76.66/- - - - - 66.61
Zebra-Llama, 8MLA-8M2 7B 1.27B 39.68/42.83 72.35/67.3 45.26/60.59 38.99 30.2/41.6 72.91/73.29 38.56 61.33
Zebra-Llama, 14MLA-14M2 9B 3.27B 50/52.65 80.47/76.35 53.52/72.43 51.97 31.8/44.4 76.61/76.99 46.99 67.8
Zebra-Llama, 16MLA-16M2 11B 8.19B 57.17/58.96 83.59/79.92 57.82/77.73 57.18 35.20/44.6 79.65/80.2 48.71 72.38

Table 11: Comparing our Zebra-Llama with state-of-the-art hybrid models that are trained from
scratch. We report two accuracy scores for each model, i.e, accuracy and normalized accuracy (acc /
acc_norm). The missing results (‘-’) in the table means the results are not reported in original paper.

Example 2: Zebra-Llama-1B with N = 6
• Terminal Preservation: LMLA

1 = 0, LMLA
N = 14

• Near-Uniform Intermediate Distribution:
– Define intermediate layer range: rstart = 1, rend = 13, R = {1, 2, . . . , 13}.
– Compute allowable gap bounds: T = 9, gmin = 1, gmax = 2.
– Enumerate Valid Configurations: C = { {2, 5, 8, 11}, {3, 5, 8, 11},
{3, 6, 8, 11}, {3, 6, 9, 11}, {3, 6, 9, 12}}.

• Maximal Sensitivity Scores:
– Calculate total sensitivity score:

* s2 + s5 + s8 + s11 = 1315.5,
* s3 + s5 + s8 + s11 = 1185.8,
* s3 + s6 + s8 + s11 = 1068.4,
* s3 + s6 + s9 + s11 = 950.86,
* s3 + s6 + s9 + s12 = 890.65.

– Layers with maximal score: C∗ = {2, 5, 8, 11}.
– Return {0, 2, 5, 8, 11, 14}.

Example 3: Zebra-Llama-1B with N = 8
• Terminal Preservation: LMLA

1 = 0, LMLA
N = 14

• Near-Uniform Intermediate Distribution:
– Define intermediate layer range: rstart = 1, rend = 13, R = {1, 2, . . . , 13}.
– Compute allowable gap bounds: T = 7, gmin = 1, gmax = 1.
– Enumerate Valid Configurations: C = {{2, 4, 6, 8, 10, 12}}.

• Only one valid configuration. Return {0, 2, 4, 6, 8, 10, 12, 14}.

C Comparison with Pre-training Methods

In Table 11, we include more comparisons of our Zebra-Llama with other hybrid models based on
pre-training instead of distillation. It can be observed that our method could achieve competitive
performance as the pre-trained baselines 214 × −500× fewer training tokens, demonstrating our
advantage in the training efficiency. For instance, Zebra-Llama (16MLA–16M2) matches or exceeds
the accuracy of Mamba-2-Hybrid (8.66B, 3.5T tokens) and SAMBA (1.7B, 3.5T tokens), while
using only 11B tokens and smaller model sizes. This highlights the efficiency and practicality of
our post-training hybrid composition strategy, as it achieves high performance with a fraction of the
training budget required by scratch-trained models.

17

Figure 8: Inference throughput vs. batch size of various 8B-size models. We measure the throughput with
output sequence length 8192.

Figure 9: Peak memory usage during inference vs. batch size of various 8B-size models. We measure the
memory footprint with output sequence length 8192.

D More Inference Evaluations

In Figure 8 and 9, we include more inference evaluations for 8B models iunder a setting where the
prompt length is fixed at 1, the output length at 8192, and the batch size gradually increases from
32 to 1024. All measurements are recorded on a single AMD MI300 GPU with 192GB of memory
with Hipgraph. Our Zebra-Llama models demonstrate significant throughput gains compared to
Llama, X-EcoMLA (pure MLA), and MambaInLlama (hybrid GQA-Mamba). Additionally, the KV
cache compression in our Zebra-Llama models translates to notable memory savings, as illustrated
in Figure 9. Models incorporating GQA layers experience a sharp increase in memory usage as the
batch size grows. In contrast, MLA-based approaches, such as X-EcoMLA and our Zebra-Llama
models, demonstrate superior memory efficiency.

E Extended Few-Shot Evaluation Results

In the main text, we focused on reporting the few-shot performance of the 8B model due to space
constraints. However, for completeness, we include the full few-shot evaluation results for the 1B
and 3B model variants as well. As shown below, our Zebra-Llama models maintain competitive
few-shot performance across multiple benchmarks even at smaller scales, demonstrating that our
hybrid MLA–Mamba design preserves strong generalization while significantly reducing KV cache
requirements. At both 1B and 3B scales, the proposed Zebra-Llama configurations maintain or even
exceed the baseline performance on several tasks, while operating with drastically reduced KV cache
memory (as low as 2.9%). This demonstrates that our hybrid MLA–Mamba2 architecture effectively
balances efficiency and few-shot reasoning ability even at smaller model sizes.

18

Model and Setting KV% Avg. ARC(25) HS(10) MMLU(5) WG(5) TQ(0)
Llama3.2-1B-Instruct 100% 49.98 41.38 59.80 45.48 59.35 43.88
MambaInLlama-1B-50%* 50% 48.60 42.32 60.46 35.55 59.35 45.31
X-EcoMLA-1B 9.37% 47.97 41.04 56.13 35.32 60.77 46.59
Llamba-1B 0% 47.57 41.72 60.34 31.88 60.69 43.20
Zebra-Llama-1B, 8MLA-8M2 (Ours) 7.80% 49.68 45.56 59.44 37.81 60.77 44.80
Zebra-Llama-1B, 6MLA-10M2 (Ours) 5.86% 49.06 44.03 59.22 36.06 60.54 45.46

Table 12: Few-Shot Performance for 1B Models. Each model is evaluated on five standard few-shot
benchmarks: ARC (25-shot), HellaSwag (10-shot), MMLU (5-shot), Winogrande (5-shot), and TruthfulQA
(0-shot). KV% denotes the relative KV-cache size compared to the dense Llama baseline.

Model and Setting KV% Avg. ARC(25) HS(10) MMLU(5) WG(5) TQ(0)
Llama3.2-3B-Instruct 100% 60.54 52.39 73.51 59.71 67.32 49.75
MambaInLlama-3B-50% 50% 61.18 51.88 74.58 52.31 67.64 59.51
X-EcoMLA-3B* 9.37% 57.50 49.49 69.20 52.26 66.69 49.86
Llamba-3B 0% 58.01 50.09 74.21 49.87 70.09 45.79
Zebra-Llama-3B, 14MLA-14M2 (Ours) 4.69% 60.12 53.67 71.30 51.05 67.64 56.94
Zebra-Llama-3B, 8MLA-20M2 (Ours) 2.86% 58.49 54.52 70.44 46.43 65.98 55.07

Table 13: Few-Shot Performance for 3B Models. Same benchmarks and settings as Table 12.

E.1 Extending Evaluation to More Challenging Benchmarks

In this section, we evaluate our models on more challenging benchmarks for assessing deeper
reasoning capabilities, particularly given the architectural innovations in our hybrid design. Here, we
report our results on GSM8K for mathematical reasoning, GPQA [34] for graduate-level scientific
question answering and RACE [27], a well-established benchmark for reading comprehension and
multi-sentence reasoning. These benchmarks provide a broader view of our models’ reasoning and
generalization abilities. The results are summarized in Table 14 and we can draw the following
insights:

• 1B scale: The Zebra-Llama-1B (8MLA-8M2) achieves the best average score, outperform-
ing the target Llama-3.2-1B-Instruct model with only 7.81% of the KV cache.

• 3B scale: The Zebra-Llama-3B models show only a 1.46% and 0.55% drop compared to
the target model and X-EcoMLA, respectively, while achieving 21.3× and 2× KV cache
compression. Even at 2.01% KV cache, performance remains higher than both Mamba-In-
Llama and Llamba.

• 8B scale: The Zebra-Llama-8B variants exhibit a modest 7.1% and 4.2% performance gap
relative to Llama-3.1-8B-Instruct and Mamba-In-Llama, respectively, despite 18.3× and
9.1× KV cache compression. The primary contributor to this gap appears to be the more
challenging GSM8K task. We note that Mamba-In-Llama used a 70B teacher and 20B
tokens, whereas our setup used an 8B teacher and 11B tokens, suggesting room for further
improvement with additional training data.

• Across all model scales, Zebra-Llama consistently outperforms Llamba, confirming the
effectiveness and scalability of our hybrid MLA–Mamba architecture.

F MMLU Performance Discussion

When comparing the different size Zebra-Llama models to their corresponding base models, we
observed that MMLU performance reaches approximately 84% of the base model at the 1B scale,
86% at the 3B scale, and 83% at the 8B scale, which is pretty consistent performance across different
sizes. We explain the potential reasons for the observed MMLU performance gap below:

MMLU Task Formatting Difficulty: The observed gap in MMLU performance between hybrid
models and pure Transformer baselines may stem from formatting sensitivity in MMLU’s multiple-
choice structure. The study by [9] shows that state-space models (SSMs) like Mamba struggle with
the standard MMLU format, which involves selecting a single letter (A/B/C/D) corresponding to the

19

Model & Setting KV Size Teacher Tokens Avg. GSM8K (8-shot) GPQA (Main) GPQA (Diamond) RACE
1B Models

Llama-3.2-1B-Instruct 100% – – 32.44 38.51 26.79 26.26 38.18
Mamba-In-Llama-1B 50% 8B 7B 30.04 24.94 26.12 30.80 38.28
X-EcoMLA-1B 9.37% 8B 7B 31.30 38.06 21.43 26.26 39.43
Llamba-1B 0% 1B+70B 8B 27.67 22.82 25.00 25.25 37.61
Zebra-Llama-1B, 8MLA-8M2 (Ours) 7.81% 8B 7B 32.64 41.09 25.67 25.25 38.56
Zebra-Llama-1B, 4MLA-12M2 (Ours) 3.91% 8B 7B 29.36 29.57 23.21 26.77 37.89

3B Models

Llama-3.2-3B-Instruct 100% – – 42.32 70.89 29.24 28.28 40.86
Mamba-In-Llama-3B 50% 70B 20B 38.62 53.06 27.68 30.30 43.44
X-EcoMLA-3B 9.37% 8B 7B 41.93 65.28 27.46 30.30 44.69
Llamba-3B 0% 3B+70B 10B 34.35 47.76 22.77 26.77 40.10
Zebra-Llama-3B, 14MLA-14M2 (Ours) 4.69% 8B 9B 41.70 62.77 27.23 29.80 46.99
Zebra-Llama-3B, 6MLA-22M2 (Ours) 2.01% 8B 9B 39.12 55.19 28.35 30.81 42.11

8B Models

Llama-3.1-8B-Instruct 100% – – 47.42 78.17 35.49 31.31 44.69
Mamba-In-Llama-8B 50% 70B 20B 45.98 75.05 29.46 33.30 46.12
X-EcoMLA-8B 9.37% 8B 7B 44.78 70.81 29.69 30.30 48.33
Llamba-8B 0% 8B+70B 12B 38.28 57.62 28.35 26.77 40.38
Zebra-Llama-8B, 16MLA-16M2 (Ours) 5.47% 8B 11B 44.05 68.16 29.02 30.30 48.71
Zebra-Llama-8B, 8MLA-24M2 (Ours) 2.73% 8B 11B 40.90 63.53 27.46 28.28 44.31

Table 14: Additional Evaluation on Challenging Benchmarks. Results are reported for GSM8K (8-shot),
GPQA (Main and Diamond), and RACE. KV Size indicates the fraction of KV cache relative to the dense Llama
baseline.

correct answer. While SSMs contain the same underlying knowledge as Transformers, they require
more training to learn the task format, particularly the routing of information from multiple choices
into a single output token—something Transformers handle more naturally via self-attention. This
suggests that Zebra-Llama’s hybrid use of Mamba/MLA layers may inherit some of this difficulty
(inefficient decoding under MMLU’s standard prompting format), especially in tasks like MMLU that
rely heavily on understanding structured input-output formatting, rather than open-ended generation
or reasoning.

Importance of Training Data Selection We believe that careful curation and selection of training
datasets play a crucial role in enhancing model performance, particularly for knowledge-intensive
benchmarks such as MMLU. Our Zebra-Llama models were trained using the same datasets as
Mamba-In-Llama (our main initial baseline)—namely, OpenHermes-2.5 [15], GenQA [16], and
Infinity-Instruct [17]. However, as highlighted in the Llamba paper [11], training on a carefully
filtered version of FineWeb-Edu [35] leads to substantial improvements in MMLU scores following
distillation.

To further examine this effect, we re-trained a Llamba model using our dataset configuration (without
FineWeb-Edu). As demonstrated in Table 15, the MMLU score dropped from 38.11 (as reported
in the original paper) to 27.35. In contrast, our Zebra-Llama model—trained on the exact same
dataset and using the same training pipeline—achieved a significantly higher MMLU score of 36.91.
This result suggests that Zebra-Llama would likely surpass Llamba even further if trained with
similarly curated data. We view this as an exciting opportunity for future work, and encourage
the broader community to explore the interplay between hybrid architectures and dataset quality in
reasoning-intensive domains.

Model Training Dataset MMLU Score
Llamba (Original paper) FineWeb-Edu (filtered) + OpenHermes-2.5 38.11
Llamba (Our re-training) OpenHermes-2.5 + GenQA + Infinity-Instruct 27.35
Zebra-Llama (Ours) OpenHermes-2.5 + GenQA + Infinity-Instruct 36.91

Table 15: MMLU Comparison Across Training Datasets. FineWeb-Edu filtering notably improves reasoning
performance, and our Zebra-Llama model demonstrates strong robustness even without access to curated data.

G Evaluating Llamba and Zebra-Llama Under Consistent Training
Conditions

To provide a fair and controlled comparison between our Zebra-Llama and Llamba models, we
re-implemented both Zebra-Llama and Llamba under identical training pipelines and datasets.

20

We conducted this study at the 1B model scale and Both models were trained using the three-stage
pipeline introduced in the Llamba paper. Since the filtered FineWeb-Edu dataset is not publicly
available, we used the same dataset configuration as in Zebra-Llama, totaling approximately 6B
tokens. We maintained the same token distribution across stages as in Llamba: 225M tokens for
Stage 1, 2.025B for Stage 2, and 3.75B for Stage 3. All other hyperparameters were kept identical to
ensure consistency.

• Target model: Llama-3.2-1B-Instruct
• Teacher model: Llama-3.2-1B-Instruct
• Initial learning rate: 8e-5
• Batch size: 96

The results in Table 16 show that Zebra-Llama surpasses Llamba (pure SSM) across all eight tasks
while using only 3.91% of the KV cache, highlighting the benefits of integrating efficient attention
modules (MLA) with Mamba.

Model & Setting KV Size Avg. ARC ARE HS MMLU OBQA PIQA RA
WG
Llama-3.2-1B-Instruct 100% 51.87 37.97 63.30 60.65 46.05 34.80 74.32 38.18
59.67
Llamba-1B 0% 47.23 34.98 62.12 54.41 27.35 34.60 71.82 34.83
57.70
Zebra-Llama-1B, 4MLA-12M2 (Ours) 3.91% 49.32 37.12 62.67 55.54 37.10 35.80 72.20 35.50
58.64

Table 16: Controlled Comparison of Llamba and Zebra-Llama (1B scale). Both models are trained
with identical datasets and pipelines. Zebra-Llama achieves higher average performance with over
25× KV cache compression.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarized our contributions at the end of the introduction section in
three main items: architecture, training and our results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work is discussed in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

22

Justification: Our paper is not a theory paper and we do not have theoretical assumption and
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have all details of our experiments in the paper and appendix. We also will
release the codes for reproducing our results when the paper is accpeted.
We provide detailed descriptions of our methodology, model architecture, training pipeline,
and experimental setup in both the main paper and the appendix. This includes model
configurations, training schedules, and evaluation procedures. While our code is not released
at submission time, we commit to making them publicly available upon paper acceptance to
further support reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

23

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have described all the training and evaluation data in the paper and they
are publicly available. Our codes for training are ready to be released when the paper is
accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the appendix for hyperparamters of our experiments. We have all the
details of our experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the large scale of our models (ranging from 1B to 8B parameters),
running multiple independent training runs to compute standard deviations or confidence
intervals is computationally prohibitive. As a result, we do not report error bars. This is a
common constraint in large model research, where the focus is typically placed on extensive
ablations, benchmark diversity, and comparative baselines rather than repeated trials.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper reports detailed information about the computational resources
used for training, including GPU type, training time, and hardware configuration. This
information is presented both in the main results section and in the appendix. For instance,
Table 8 includes training time and model structure details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research complies with its guidelines. Our work does not involve human subjects, personally
identifiable information, or any sensitive data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

25

https://neurips.cc/public/EthicsGuidelines

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work focuses on improving the efficiency of large language models through
post-training hybridization, making them more accessible for deployment in resource-
constrained environments. The positive societal impacts include reducing the environmental
and financial cost of training and serving LLMs, and enabling broader access to advanced
language models, especially for smaller institutions or regions with limited computational
infrastructure.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not release any new datasets or pretrained models that pose
a high risk of misuse. The research focuses on the methodology for constructing efficient
hybrid language models using components from existing publicly available models. As such,
it does not introduce new assets that require additional safeguards for responsible release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

26

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in our work—including pretrained models, datasets,
and libraries—are properly cited in the paper. We used publicly available models and
datasets under their respective open-source licenses. For each asset, we include appropriate
references and URLs when applicable, and we ensure that all licenses and terms of use have
been respected throughout our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce new hybrid model variants and will release the codebase used
for training and evaluation upon paper acceptance. The release will include documentation
detailing the model architecture, training configurations, and usage instructions to support
reproducibility and adoption. All assets will be shared under a permissive open-source
license and accompanied by clear guidelines.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve any crowdsourcing or experiments with human
subjects. All evaluations were conducted using automated benchmarks and publicly available
datasets, without human annotation or feedback.
Guidelines:

27

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: While our work builds hybrid language models using components from existing
pretrained LLMs, the usage of these models follows standard practices in the field (e.g.,
distillation, benchmarking, initialization). No LLMs were used in a novel or non-standard
way as part of the methodology. Therefore, no declaration is required under the NeurIPS
2025 LLM policy.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Composing Extremely Efficient Hybrid Model
	Refined Initialization
	SMART: Sensitivity Measure-Aware Replacement of Transformer Layers

	Efficient Training

	Experiments and Results
	Training Setup
	Performance Evaluation
	Ablation Studies
	Effect of Initialization Strategies
	Impact of SMART Layer Selection
	Tradeoff between number of MLA layers and rkv
	Scaling the Teacher

	Extension to Qwen models
	Extended Long-Context Evaluation

	Conclusion
	More Experimental Details for Zebra-Llama
	Structured MLA Initialization
	Structured Mamba2 Initialization
	Model Structure Details
	Training Details
	Evaluation Details

	SMART Layer Selection Algorithms
	Comparison with Pre-training Methods
	More Inference Evaluations
	 Extended Few-Shot Evaluation Results
	Extending Evaluation to More Challenging Benchmarks

	MMLU Performance Discussion
	Evaluating Llamba and Zebra-Llama Under Consistent Training Conditions

