
Under review as a conference paper at ICLR 2022

MIX-MAXENT: CREATING HIGH ENTROPY BARRIERS
TO IMPROVE ACCURACY AND UNCERTAINTY ESTI-
MATES OF DETERMINISTIC NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an extremely simple approach to regularize a single deterministic
neural network to obtain improved accuracy and reliable uncertainty estimates. Our
approach, on top of the cross-entropy loss, simply puts an entropy maximization
regularizer corresponding to the predictive distribution in the regions of the embed-
ding space between the class clusters. This is achieved by synthetically generating
between-cluster samples via the convex combination of two images from different
classes and maximizing the entropy on these samples. Such a data-dependent
regularization guides the maximum likelihood estimation to prefer a solution that
(1) maps out-of-distribution samples to high entropy regions (creating an entropy
barrier); and (2) is more robust to the superficial input perturbations. Via extensive
experiments on real-world datasets (CIFAR-10 and CIFAR-100) using ResNet
and Wide-ResNet architectures, we demonstrate that Mix-MaxEnt consistently
provides much improved classification accuracy, better calibrated probabilities for
in-distribution data, and reliable uncertainty estimates when exposed to situations
involving domain-shift and out-of-distribution samples.

1 INTRODUCTION

A particularly thriving sub-field of research in Deep Neural Networks (DNNs) concerns devising
efficient approaches towards obtaining reliable predictive uncertainty. NNs are known to be overcon-
fident for both, in- and out-distribution samples (i.e. for samples coming from the same distribution
from which the training distribution has been sampled (IND samples) and for samples not coming
from such distribution), leading to highly unreliable uncertainty estimates. They can be wrong with
very high confidence (Guo et al., 2017) not only on the test data similar to the one they have been
trained on, but also when facing previously-unseen conditions (Taori et al., 2016). The overconfi-
dence problem becomes even more concerning when just slight changes in illumination, atmospheric
conditions or in the image capturing process (domain-shift) can severely damage the actual accuracy
of the model (Taori et al., 2016). A desirable property of any model is to be robust to such superficial
changes that do not affect the label of the classified image, and to become uncertain (or indecisive)
when exposed to samples from a distribution different from the training distribution.

While the literature suggests that classifiers whose predictive distributions increase their entropy
the further away the test input gets from the training data are desirable, the implementation of
models satisfying such a property is not scalable, and can only occur at the cost of performing crude
approximations and by non-trivial modifications to the architecture of the neural network (Liu et al.,
2020a; Kristiadi et al., 2020). Such modifications sometimes lead to degraded accuracy.

Our motivation behind this work is based on the following observations. (1) We find that a trained
network (DNN) do not project out-of-distribution (OOD) and domain-shifted (DS) samples arbitrar-
ily away from the training data. In fact, all the OOD and domain-shifted inputs that we considered
(detailed discussion in Section 3) are projected within the smallest hypersphere that contains all of
the IND test data. Therefore, it might not be necessary to enforce the network to be uncertain every-
where away from the data, and perhaps, in-distribution data can be used to mimic the regions where
OOD and DS samples are being projected. (2) DNNs tend to embed OOD and DS samples in high
confidence (low-entropy) regions (see Figure 1). This contradicts the desired ideal behaviour (Liu

1

Under review as a conference paper at ICLR 2022

et al., 2020a; Pereyra et al., 2017), that would require a model to map such samples in high-entropy
regions.

Figure 1: DNN (Left), Ours (Right). Interpola-
tion experiment on CIFAR10 to show embeddings
of the linear interpolation of two randomly picked
input samples from class 1 (purple) and class 2
(yellow). Red and green samples are classified as
class 1, and orange and blue samples as class 2. As
the color changes from red to green, the predictive
entropy increases. Same for the color change from
blue to orange. Note, DNN classifies interpolated
points with very high confidence (low entropy)
even if the samples shift drastically from the data.
However, Mix-MaxEnt maps these samples into a
wide high-entropy region. Details of this visualiza-
tion are provided in Appendix F. More exhaustive
visualizations of this phenomenon are provided in
Section 5.2.2.

Given the observations above, we propose a
simple entropy maximization regularizer (called
Mix-MaxEnt), that induces a high entropy barrier
between class clusters, while the cross-entropy
optimization objective keeps the entropy low
close to the class clusters. The entropy regular-
izer is enforced for samples synthesized using
the convex combination of a pair of samples
from two different classes of the in-distribution
training data. When combined with the cross-
entropy loss, this regularizer prefers a maximum
likelihood solution such that the uncertainty of
the network increases while moving away from
the embeddings of one class in the direction of
another, and learns features that are robust to
local input perturbations.

Through extensive experiments using
WideResNet28-10 and ResNet50 architer-
ctures on CIFAR10 and CIFAR100 datasets,
we demonstrate that our method outperforms
all existing single model baselines in provid-
ing clean data accuracy. On Domain-Shift
experiments, it provides remarkably improved
accuracy compared to all the baselines including Deep Ensembles (DE) (Lakshminarayanan et al.,
2017). For instance, it provides 4.8% and 4.7% improvements over the highly competitive DE
and SNGP (Liu et al., 2020a), respectively, on CIFAR-10 using WideResNet. In terms of reliable
uncertainty estimates, it is either the best or, in a few cases, extremely competitive with respect to the
best performing one, with only slightly inferior performance. Overall, our experiments show that
Mix-MaxEnt is by far the best performing one compared to the existing single model approaches.

We would like to highlight that, along with its effectiveness, one of the core strengths of our approach
is its simplicity. As opposed to the recently proposed SNGP and DUQ (van Amersfoort et al., 2020),
it does not require any modifications to the architectures and does not trade accuracy in order to
improve uncertainty estimates. And, as opposed to the extremely competitive DE, it is a single
deterministic model, hence, extremely efficient.

2 RELATED WORKS

Modern NNs have been shown to be miscalibrated (Guo et al., 2017), implying, a mismatch between
model’s confidence and its accuracy. While recent approaches have been proposed to fix this issue on
in-distribution data (Guo et al., 2017; Mukhoti et al., 2020; Lakshminarayanan et al., 2017), such
calibrated models do not necessarily behave as well under domain-shift (Ovadia et al., 2019).

Uncertainty estimation methods The current state-of-the-art in producing reliable uncertainties
is the extremely expensive Deep Ensembles (Lakshminarayanan et al., 2017), whose training and
inference costs scale linearly with the number of members in the ensemble. This significantly limits
its applicability in real-world applications, where time and compute are of the essence. But even in
this case, the accuracy and calibration dramatically drop when facing data-shift. A current research
trend is to either emulate deep ensemble behaviour while avoiding its disadvantages (Havasi et al.,
2021; Wen et al., 2020; Huang et al., 2017)) or combining it with other methods (Ashukha et al.,
2020; Rahaman & Thiery, 2020; Wen et al., 2021).

An alternative approach to obtain a reliable predictive distribution is to rely on Bayesian NNs (Chen
et al., 2014; Zhang et al., 2020; Durmus et al., 2016). However, obtaining the exact posterior for
NNs is computationally infeasible, for this reason, it is necessary to rely on approximate inference
schemes whose effectiveness is in question (Hron et al., 2018; Foong et al., 2020). A recent trend in

2

Under review as a conference paper at ICLR 2022

literature has tried reducing the application of Bayesian inference only to the last layers to get the
benefit of the effectiveness of training deterministic networks with standard training procedures, and
the improved uncertainty estimation provided by Bayesian approaches (e.g. SNGP (Liu et al., 2020a),
KFAC-LLLA (Kristiadi et al., 2020), BM (Joo et al., 2020), DUQ (van Amersfoort et al., 2020)).

Unfortunately, many of these models often trade accuracy (due to changes in architecture or training
procedures) in exchange of marginal improvements in uncertainty estimation, and are hard to use in a
plug-and-play fashion since they are extremely sensitive to hyperparameter tuning.

Learning better features via augmentation or normalisation It has been shown (Shah et al.,
2020) that if NNs can identify simple (spurious) features to separate training data, they will prefer
those to semantically meaningful features. NNs also heavily rely on textures (Geirhos et al., 2018).
This agrees with recent literature, that has shown self-supervision (Winkens et al., 2020; Hendrycks
et al., 2019) or simple augmentation techniques like mixup (Thulasidasan et al., 2019) can produce
representations that yield better uncertainty estimation. A way to make NNs insensitive to noise is
imposing constraints on their sensitivity. An extensive literature studies how controlling Lipschitzness
impacts on the robustness and generalization performance (Bartlett et al., 2017; Neyshabur et al.,
2018; Yoshida & Miyato, 2017; Gouk et al., 2020; Arora et al., 2018).

3 ANALYSIS AND OBSERVATIONS

Figure 2: Histograms of the Euclidean distance
of the embeddings (model trained on CIFAR-10).
(Left) CIFAR-10 vs CIFAR-10-C. (Right) CIFAR-
10 (IND) vs CIFAR-100 (OOD) and SVHN (OOD).
Note, both corrupted and OOD embeddings lie
within the hypersphere S as their histograms are
left shifted relative to the histogram of CIFAR-10.
Also, the SVHN histogram is more shifted towards
the center than that of CIFAR-100, showing an
implicit ordering.

Consider the supervised task of learning a
predictive distribution p(y|x; θ), where y ∈
{1, · · · ,K} is the set of K-classes, x ∈ X ⊂
Rp is the space of input data, and θ respresents
the parameters of the underlying model (e.g. a
neural network). To obtain an optimal θ, the
standard approach is to collect a training data
set D = {xi, yi}ni=1 , and maximize the log-
likelihood p(y|x ∈ X ; θ) under D. Therefore,
the nature of the predictive distribution heavily
relies on the training data and the model under
consideration. In practice, however, because of
the high dimensionality of the input spaceX , the
training dataD is normally collected from a sub-
set XI ⊂ X , where XI denotes the in-domain
data manifold. Let us denote the out-domain
data manifold as XO = X \ XI .

Where do neural networks map XO? Modern softmax-based neural classifiers operate under
two essential assumptions: (1) a closed-world assumption (Bendale & Boult, 2015); (2) an implicit
clutering assumption (Hess et al., 2020; Lee et al., 2018). The closed-world assumption implies that
the classifier must select one out of K classes fixed at training time, even if the input belongs to
none of them. The clustering assumption depends on the presence of the softmax layer: the authors
of (Hess et al., 2020) have shown that softmax neural classifiers perform K-means clustering (which,
we recall, can be interpreted as a limit subcase of Expectation-Maximisation under Gaussian Mixture
Model (GMM) assumptions (Hastie et al., 2001; Bishop, 2006)) with K centroids at equal distance
from the center of the embedding space. The authors of (Lee et al., 2018) observed the embeddings
of modern neural network do empirically adapt well to GMM assumptions1. Following the above
insights, we consider a WideResNet (WRN) trained on CIFAR-10 (XI) and obtain the smallest
hypersphere S in the feature space that contains all the in-domain test samples. Note, as already
mentioned in Hess et al. (2020), we also found the mean of the embeddings of XI to be very close to
a zero vector, therefore, S is practically centred at zero. Given S , we would like to understand where
do XO (CIFAR-100 and SVHN) and data-shifted samples (corrupted CIFAR-10 test samples denoted
as CIFAR-10-C) lie with respect to S. These are our observations:

1It is important to observe that, given this empirical evidence, one would think that using the log-probability
of a GMM could be an optimal uncertainty measure for this task. However, in Appendix E we show that the
high-dimensional nature of the latent space makes the computation numerically unstable.

3

Under review as a conference paper at ICLR 2022

• The NN maps all (except one) out-of-distribution (XO) and data-shifted samples (corrupted)
inside the hypersphere S that was obtained using the test data belonging to XI .

• There exist an implicit ordering in the sense that CIFAR-100 is mapped closer to CIFAR-
10 than SVHN. This is clearly shown in the histogram (refer Figure 2) of the Euclidean
distances of the OOD and data-shifted embeddings from the center of the hypersphere S.
This behaviour can be explained by the fact that convolution kernels are learned using XI ,
therefore, will produce stronger activations if the similarity between the kernels learned on
XI and the features present in the input is high. On the other hand, dissimilarity between
kernels and features present in the input will produce weaker activations, thus driving the
embeddings closer to the origin.

Forcing classifiers to be uncertain where it truly matters Recall that an ideal classifier’s predic-
tive distribution p(y|x ∈ X ; θ) would assume the following form

p(y|x ∈ XI ; θ)p(x ∈ XI)︸ ︷︷ ︸
maximum likelihood estimate

+ p(y|x ∈ XO; θ)p(x ∈ XO)︸ ︷︷ ︸
unknown during training

.

Since XO is unknown during the maximum likelihood estimation (MLE) of θ, the model is com-
pletely unaware of the second part of the predictive distribution that depends on the presence of
XO. Therefore, in order for the model to be indecisive for out-of-distribution and domain-shifted
samples (assuming they are away from the in-distribution data), it is desirable that the model’s
uncertainty increases proportionally to the test sample distance2 from the training data XI . This is
the prime motivation behind the recent work called SNGP (Liu et al., 2020a) where the uncertainty
estimates of a NN is being improved by taking inspirations from the classic Gaussian Processes
literature (Rasmussen & Williams, 2005). While techniques like SNGP (Liu et al., 2020a) and
KFAC-LLLA (Kristiadi et al., 2020) try to increase the entropy everywhere away from the training
data, they need to resort to crude approximations of the theoretical models that provide such property
(both) and also have to modify the network’s architecture (SNGP). Most approaches also compromise
with the training accuracy because of such approximations.

Given the observations from our analysis, we find that the OOD and domain-shifted samples are
mapped to a specific embedding space S where the network tends to concentrate all its embed-
dings.This indicates that correcting its uncertainty estimates within this space S could be sufficient
to achieve better performance, rather than trying to increase entropy everywhere away from the
training data (i.e. mostly in regions where the network never projects its inputs). This is precisely the
motivation behind our work. In what follows, we present an extremely simple approach to regularize
the embedding space S such that entropy barriers are being created between different classes.

4 METHODOLOGY

Mix-MaxEnt Motivated by the evidence we collected, we define a simple regularization approach
to make the maximum likelihood estimate aware (increasing the uncertainty and becoming less
confident) of what is unknown to it during the training by simply putting a maximum entropy
regularizer (Pereyra et al., 2017) on synthetically generated samples that leverage the knowledge
of XI to drift towards XO. Specifically, since XO is unknown during the training, we take a simple
approach where we synthetically create samples x̄ ∈ X as follows:

x̄ = λ0xi + (1− λ0)xj , if yi 6= yj . (1)

Here, {xi,xj} ∈ XI , and λ0 ∼ Beta(α, β), where α and β are the parameters of the beta distribu-
tion. Note, we only choose pair of samples belonging to two different classes (yi 6= yj), so that x̄ will
mix features mimicking an off-data manifold image that has intermediate properties between those
of each class. We further ensure this by picking α = β >> 1 as, in this case, the beta distribution
will have the peak in the middle and the sharpness of the peak increases as α grows. Let us call the
collection of such synthetic intermediate samples X̄O. Then, our final objective function adds to the
usual cross-entropy optimisation term, an entropy maximisation term on such samples:

min
θ
− log p(y|x ∈ XI ; θ)−Hȳ(p(.|x ∈ X̄O; θ)), (2)

2Note, although the theory assumes Euclidean distance, it is arguable this distance notion reflects perceptual
dissimilarity in the image space.

4

Under review as a conference paper at ICLR 2022

where,Hȳ(.) is the entropy defined over the label support set ȳ = {yi, yj}. It is important to observe
that since the input image will contain features coming from the inputs of the two classes, it is
reasonable to maximise the entropy only over such classes while keeping the probability assigned
to the other classes to zero (since no input features endorses the presence of these classes). Indeed,
in our experiments we show that maximising the entropy over all the classes severely degrades the
performance while making the network underconfident. Since we increase the entropy only for mixed
(interpolated) samples from different classes, we call our approach Mix-MaxEnt.

Mix-MaxEnt vs mixup (Zhang et al., 2018) Though the sample interpolation in our approach is
similar to the one presented in mixup, there are fundamental differences between the two. The mixup
training goal is to reduce memorization by training around the vicinity of the samples (vicinal risk
minimization). Effectively, it slightly perturbs the data and uses its perturbed version for the log-
likelihood estimation. It optimises− log p(ỹ|x̄) where ỹ = λ0yi+(1−λ0)yj , x̄ = λ0xi+(1−λ0)xj ,
and yi and yj might be the same. Practically speaking, a small value of Beta distribution parameters
(α = β < 1) is typically chosen for mixup (Zhang et al., 2018; Thulasidasan et al., 2019; Wen et al.,
2021), thus, λ0 in this case is either ≈ 0 or ≈ 1. Because of this, one of the two interpolating samples
heavily dominates the interpolated sample x̄. Note, this is necessary for mixup as otherwise the
interpolated sample distribution would be different from the original data-distribution and, because of
the absence of the log-likelihood term over the clean samples (as in Mix-MaxEnt), there will be a
drop in the performance at test time.

However, Mix-MaxEnt (refer Eq (2)) uses clean unperturbed samples for the log-likelihood estimation
while interpolated samples are being used to regularize the network so that it prefers a solution
having high-entropy at regions in-between samples of different classes. Since the purpose of the
interpolated samples here is only to guide the log-likelihood solution, thus, as opposed to mixup, a
high interpolation factor can be used in this case. Hence, we use λ0 ≈ 0.5 to interpolate pair samples
from different classes so that the interpolated sample mimic points from outside the data-manifold
for entropy maximization.

5 EXPERIMENTS

Training Datasets and Network Architectures We employ WideResNet28-10 (WRN)
(Zagoruyko & Komodakis, 2016) and ResNet50 (RN50) (He et al., 2016) architectures that have
been shown to produce state-of-the-art classification accuracies on real-world datasets. We train them
on CIFAR-10 (C10) and CIFAR-100 (C100). For Domain-Shift experiments, we resort to the widely
used CIFAR10-C and CIFAR100-C, corrupted versions of C10 and C100 (Hendrycks & Dietterich,
2019). For Out-of-Distribution detection experiments, following SNGP (Liu et al., 2020a), we use
C100 and SVHN as OOD for models trained on C10. Similarly, for models trained on C100, we use
C10 and SVHN as OOD.

Methods considered for comparisons We consider both deterministic and Bayesian approaches
for comparison. Following (Liu et al., 2020a), we also create two additional strong and simple
baselines where a ResNet is enforced to be bi-Lipschitz using Spectral Normalization (SN) (Miyato
et al., 2018a) and Stable Rank Normalization (SRN) (Sanyal et al., 2020). Note, we are the first to
consider SRN for these experiments as it induces more compact clusters in the feature space than
SN (we provide a simple mathematical proof of this in the Appendix A). Therefore, we compare our
approach with the following baselines:

• DNN: Standard deterministic neural network trained using cross-entropy loss.
• DNN-SN:DNN with SN (Miyato et al., 2018a).
• DNN-SRN: DNN with SRN (Sanyal et al., 2020).
• SNGP: Spectrally Normalized Gaussian Process (Liu et al., 2020a).
• DUQ: Deterministic Uncertainty Quantification (van Amersfoort et al., 2020).
• Mixup: Standard Mixup training (Zhang et al., 2018).
• KFAC-LLLA: KFAC-Laplace Last Layer Approximation (Kristiadi et al., 2020). A method

that makes a model Bayesian at test time by taking Laplace approximation of the last layer
using a Kronecker-Factored approximation (Ritter et al., 2018). For the sake of completeness,
we provide a simple outline of this approach in Appendix B.

5

Under review as a conference paper at ICLR 2022

Clean Data Domain-Shift Out-of-Distribution
CIFAR100 (Test) CIFAR100-C CIFAR10 SVHN

Methods Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)
DNN 81.58 ± 0.13 3.88 ± 0.25 3.84 ± 0.24 52.54 ± 0.31 9.96 ± 0.21 9.94 ± 0.21 81.06 ± 0.29 77.35 ± 0.39 79.68 ± 4.81 88.46 ± 2.53

DNN-SN 81.60 ± 0.15 3.94 ± 0.23 3.81 ± 0.21 52.61 ± 0.23 11.62 ± 0.41 11.59 ± 0.41 81.10 ± 0.35 77.34 ± 0.19 83.43 ± 3.63 91.01 ± 2.05
DNN-SRN 81.38 ± 0.23 3.82 ± 0.27 3.71 ± 0.26 52.54 ± 0.17 11.04 ± 0.77 11.00 ± 0.78 81.26 ± 0.18 77.36 ± 0.30 85.51 ± 1.18 91.84 ± 1.12

Deep Ensembles 83.85 ± 0.13 3.31 ± 0.12 3.29 ± 0.08 55.58 ± 0.14 12.43 ± 0.13 12.36 ± 0.15 83.26 ± 0.14 79.82 ± 0.27 85.07 ± 1.58 91.65 ± 0.97
SNGP 79.20 ± 0.21 1.95 ± 0.25 1.94 ± 0.28 57.23 ± 0.25 10.45 ± 1.56 10.43 ± 1.56 79.05 ± 0.29 75.09 ± 0.34 86.78 ± 1.90 93.30 ± 1.05

KFAC-LLLA 81.56 ± 0.07 2.20 ± 0.31 2.30 ± 0.32 52.57 ± 0.27 8.97 ± 0.21 8.99 ± 0.21 81.04 ± 0.35 77.36 ± 0.34 80.32 ± 4.41 89.05 ± 2.30

Mixup 82.60 ± 0.37 1.77 ± 0.49 1.98 ± 0.43 56.99 ± 0.54 10.32 ± 0.64 10.45 ± 1.57 78.37 ± 1.20 75.95 ± 0.56 78.68 ± 4.29 88.27 ± 1.89

Mix-MaxEnt 83.23 ± 0.22 1.67 ± 0.59 1.76 ± 0.62 59.39 ± 0.72 7.93 ± 0.84 7.93 ± 0.84 81.04 ± 0.48 77.28 ± 0.35 89.32 ± 1.61 94.45 ± 0.90

Table 1: WideResNet28-10 trained on C100. See Appendix C for the cross-validated hyperparameters.

Clean Data Domain-Shift Out-of-Distribution
CIFAR10 (Test) CIFAR10-C CIFAR100 SVHN

Methods Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)
DNN 96.14 ± 0.08 1.26 ± 0.05 1.34 ± 0.03 76.60 ± 0.28 12.64 ± 0.77 12.62 ± 0.77 88.61 ± 0.34 88.91 ± 0.21 96.00 ± 1.10 98.08 ± 0.66

DNN-SN 96.22 ± 0.11 0.71 ± 0.14 1.12 ± 0.16 76.56 ± 0.24 11.13 ± 0.33 11.15 ± 0.33 88.56 ± 0.36 89.01 ± 0.34 95.59 ± 0.49 97.85 ± 0.22
DNN-SRN 96.22 ± 0.10 1.24 ± 0.08 1.36 ± 0.15 77.21 ± 0.39 11.97 ± 0.40 11.96 ± 0.4 88.46 ± 0.36 88.84 ± 0.37 96.12 ± 1.61 98.10 ± 0.81

Deep Ensembles 96.75 ± 0.05 0.81 ± 0.16 1.04 ± 0.08 78.32 ± 0.06 10.11 ± 0.17 10.31 ± 0.10 91.25 ± 0.14 91.12 ± 0.15 97.53 ± 0.69 98.84 ± 0.28
SNGP 95.98 ± 0.11 0.84 ± 0.13 0.87 ± 0.16 78.37 ± 0.22 11.33 ± 0.38 11.34 ± 0.39 90.61 ± 0.07 90.39 ± 0.12 95.25 ± 0.55 97.98 ± 0.18
DUQ 94.7 ± 0.02 3.4 ± 0.2 - 71.6 ± 0.02 18.3 ± 1.1 - - 85.4 ± 1.0 - 97.3 ± 1.0

KFAC-LLLA 96.11 ± 0.04 1.06 ± 0.08 1.12 ± 0.07 76.56 ± 0.48 11.69 ± 0.76 11.67 ± 0.76 89.33 ± 0.23 88.52 ± 0.20 94.17 ± 1.38 96.99 ± 0.94

Mixup 97.01 ± 0.11 0.94 ± 0.21 1.16 ± 0.13 81.68 ± 0.62 7.54 ± 0.83 7.83 ± 1.2 83.17 ± 0.87 85.47 ± 0.45 87.53 ± 6.07 95.08 ± 2.12

Mix-MaxEnt 97.44 ± 0.06 0.63 ± 0.08 0.50 ± 0.08 83.10 ± 1.48 10.13 ± 1.59 10.08 ± 1.59 89.13 ± 0.18 88.12 ± 0.37 96.22 ± 0.49 98.01 ± 0.41

Table 2: WideResNet28-10 trained on C10. See Appendix C for the cross-validated hyperparameters.

• DE: Deep Ensembles (Lakshminarayanan et al., 2017) with 5 members. Note, it is almost
5x slower than all other approaches mentioned above.

Code base For fair comparisons, we developed our own code base for all the approaches mentioned
above (except SNGP and DUQ) and performed an extensive hyperparameter search to obtain the
strongest possible baselines. For SNGP, we used the available code and made sure that we follow
exactly the same procedure as mentioned in their original paper. For DUQ, the original paper did not
perform large scale experiments similar to ours. Unfortunately, we could not manage to make their
code work on C100 as it exhibited unstable behaviour. For this reason, we borrowed numbers for
DUQ from the SNGP paper. Please note that the authors of SNGP performed non-trivial modifications
to the original DUQ methodology to make it work on C100. Further details provided in Appendix C.

Optimization and Hyperparameters We use SGD with Nesterov momentum 0.9 and a weight
decay of 5 × 10−4. For WRN, we apply a dropout p = 0.1 at train time. We perform extensive
cross-validation of all the hyperparameters for all the baselines. Details provided in Appendix C.

Evaluation Metrics For calibration, we employ: (1) the widely used Expected Calibration Error
(ECE) (Guo et al., 2017), and (2) the recently proposed Adaptive ECE (AdaECE) (Mukhoti et al.,
2020). For all the methods, the ECE and AdaECE are computed after performing temperature
scaling (Guo et al., 2017) with a cross-validated temperature parameter. Metrics and uncertainty
measures used for out-of-distribution detection are discussed in detail in Section 5.1.3.

5.1 EXPERIMENTAL RESULTS

5.1.1 ACCURACY AND CALIBRATION ON CLEAN DATA

Our first set of experiments evaluates the accuracy of the proposed method on the test sets of C100 and
C10. As it can be observed from the ‘Clean Data’ column of Tables 1 and 2, our method provides a
remarkable increase in accuracy compared to recently proposed approaches for improved uncertainty
estimation. For example, in the case of C100, it is 4.03% and 1.67% better than SNGP and KFAC,
respectively. Most of the time, while improving uncertainty estimates, such approaches degrade the
accuracy. However, Mix-MaxEnt not only provides much improved accuracy compared to these
approaches, it also shows either comparable or improved accuracy compared to DE as well. Note,
DE is computationally much more expensive than other approaches both at training and test time.

In terms of calibration, our method remarkably improves the ECE and AdaECE outperforming all
the baselines. Mixup turns out to be an extremely strong baseline in this regard. We provide ECE

6

Under review as a conference paper at ICLR 2022

and AdaECE without temperature scaling in Appendix D. Due to lack of space, results using the
ResNet50 architecture are presented in Appendix D.

5.1.2 ACCURACY AND CALIBRATION ON CORRUPTED DATA (DOMAIN-SHIFT)

To evaluate the behaviour of various models under domain-shift, we resort to the widely used CIFAR-
100-C and CIFAR-10-C datsets, corrupted versions of the C10 and C100 datasets (Hendrycks &
Dietterich, 2019). The dataset is made by applying 15 synthetically generated but realistic corruptions
at 5 degrees of intensity on the test sets of C100 and C10, respectively. The desired behaviour would
be to preserve the classification accuracy as much as possible as these corruptions do not impact
the underlying label, and to have an appropriate reduction in the confidence when the accuracy of
the model degrades so that it is not incorrect with very high confidence. We report the expected
accuracy, ECE and AdaECE, averaged over all the corruptions and degrees of intensities in the
column ‘Domain-Shift’ of Tables 1 and 2. It is evident that our approach produces a remarkable
improvement in the average accuracy compared to all the baselines. For instance, as shown in Table 1
(for C100), our method achieves an accuracy improvement of 6.85% over DNN, of 3.8% over DE,
and of 2.4% over Mixup. Similarly, in Table 2 (for C10), our method achieves an improvement of
almost 6.5% over DNN, of 4.78% over DE, of 1.42% over Mixup. Thus, setting new state-of-the-art
with significant improvements. In terms of calibration, Mixup outperforms all the approaches for
C10 experiments. Mix-MaxEnt turns out to be a strong runner-up in this case performing at least as
good as the expensive DE and outperforming SNGP and KFAC. However, for C100 experiments,
our approach again outperforms all the baselines. For instance, in terms of ECE (refer Table 1),
Mix-MaxEnt obtains a 4.5% improvement over DE, 2.4% over Mixup, and 2.5% over SNGP.

5.1.3 PERFORMANCE WHEN EXPOSED TO OUT-OF-DISTRIBUTION SAMPLES

Following the standard evaluation methodology (Liu et al., 2020a), we report the performance in terms
of Area Under Receiver Operating Characteristic (AUROC) and Area Under Precision-Recall (AUPR)
curves for the binary classification problem between in- and out-distribution samples. The uncertainty
of the prediction of the model is normally used to obtain these curves. Given an uncertainty measure,
it is important for models to be able to provide reliable uncertainty estimates to obtain good AUROC
and AUPR. However, there is no consensus in the literature regarding which uncertainty measure
to use. Choice of the measure itself can have significant impact on the quality of the uncertainty
estimation. In fact, there are various such metrics and they are not yet compared and evaluated
properly on large scale experiments. To fill this gap, we performed extensive experiments with the
following metrics to understand their behaviour and choose the one that is stable and provides the
strongest possible baseline:

• Entropy: H(p(x)) = −
∑K
i=1 pi logpi.

• Dempster-Shafer (Sensoy et al., 2018): DS(x) = K/K+
∑K

i=1 exp(si).
• Energy: E(x) = − log

∑K
i=1 exp(si) (ignoring the temperature parameter). This metric

was used in (Liu et al., 2020b) for OOD.
• Maximum Probability Score: MPS(x) = maxi pi.
• Feature Space Density Estimation (FSDE): Assuming that the features of each class follow

a Gaussian distribution, there are several ways one can estimate the belief of a test sample
belonging to in-distribution data and treat it as a measure of uncertainty. One such approach
is to compute the Mahalanobis score arg mini∈y(φ(x)− µi)TΣ−1

i (φ(x)− µi), where µi
and Σi are class-wise mean and the covariance matrices of the train data. We define and use
other variants as well: a detailed discussion is provided in Appendix E.

Remarks regarding various metrics: We would like to highlight a few important observations
that we made regarding these metrics. (1) DS and E are equivalent as they are both decreasing
functions of

∑K
i=1 exp(si), and since log does not modify the monotonicity, both will provide the

same ordering of a set of samples. Hence, will give the same AUPR and AUROC values. (2) We
observed DS and H to perform similarly to each other except in a few situations where DS provided
improved results for all the approaches. (3) MPS, in many situations, was worse. (4) We found
Gaussian assumption based density estimation to be highly unstable. Though it provided extremely
competitive results for C10 experiments, sometimes slightly better than the DS based scores, it
performed very poorly on C100. We found this score to be highly unstable as it involves large matrix

7

Under review as a conference paper at ICLR 2022

Figure 3: First figure: Fisher criterion (α) on the embedding space for various degrees of elastic
corruption intensity levels for C10 (domain-shift). Higher α indicates more compact and separated
clusters in the feature space which is desirable. Right figures: heatmaps of the profile of entropies
as the interpolation factor between samples of two classes varies; left-most heatmap: DNN WRN
on C10, the entropy is mostly zero; right-most heatmap: Mix-MaxEnt WRN on C10, there is a high
entropy barrier separating the two classes, while the entropy is low close to the class clusters.

inversions. We applied the well-known tricks such as perturbing the diagonal elements and the
low-rank approximation with high variance-ratio, but the results were extremely sensitive to such
stabilization and there is no clear way to cross-validate these hyperparameters. We provide analyses
based on this metric and its variants in Appendix E. Based on these findings, we report all the results
in the main paper using DS3, and report the performance using other scores in Appendix E.

OOD results: In the case of SVHN as the OOD dataset (refer Tables 1 and 2 ‘Out-of-Distribution’
column), our method either outperforms all the existing approaches (2.54% higher AUROC than
the runner-up SNGP in C100 experiments) or it turns out to be a runner-up with the gap of 1.31%
compared to the top performing and expensive DE. Note, Mix-MaxEnt outperforms all the single
model approaches in these experiments as well. In the case of CIFAR as the OOD dataset, DE turns
out to be the best performing one. Mix-MaxEnt, along with KFAC-LLLA, is the runner-up in the case
of C100 experiments (refer Table 1) while SNGP is the runner-up in C10 experiments (refer Table 2).

5.1.4 WHICH METHOD IS THE BEST PERFORMING ONE?

We presented extensive results using a variety of experimental scenarios and metrics. In most of the
experiments, Mix-MaxEnt outperformed all the approaches including DE. However, there indeed
were a few cases where it was not the best performing one. Following observations further suggest
that Mix-MaxEnt is the best performing approach compared to the existing single deterministic
alternatives. Out of 20 different evaluations presented in Tables 1 and 2:

• Mix-MaxEnt outperformed all the approaches (including DE) in 11 of them.
• Mix-MaxEnt outperformed all the single model approaches in 14 scenarios.
• No existing single deterministic baseline outperformed all other approaches in more than 2

scenarios.

5.2 ANALYSING MIX-MAXENT

5.2.1 MIX-MAXENT ENCOURAGES COMPACT AND SEPARATED CLUSTERS

We use the well known Fisher criterion (Bishop, 2006, Chapter 4) to quantify the compactness and
separatedness of the feature clusters for various models. Let Ck denotes the indices of samples for
k-th class. Then, the overall within-class covariance matrix is computed as SW =

∑K
k=1 Sk, where

Sk =
∑
n∈Ck(φ(xn)−µk)(φ(xn)−µk)>, µk =

∑
n∈Ck

φ(xn)
Nk

, and φ(xn) denote the feature vector.

Similarly, the between-class covariance matrix can be computed as SB =
∑K
k=1Nk(µk − µ)(µk −

µ)>, where µ = 1
N

∑K
k=1Nkµk, and Nk is the number of samples in k-th class. Then, the Fisher

3for Mixup we report results using entropy as it provided the best performance

8

Under review as a conference paper at ICLR 2022

criterion is defined as α = trace(S−1
W SB). Note, α would be high when the within-class covariance

is small and between-class covariance is high, thus, a high value of α is desirable. In Figure 3, we
compute α over the C10 dataset with varying degrees of domain-shift. As the amount of corruption
increases, α gradually decreases for all the models, indicating that the model is not able to differentiate
different classes anymore and is projecting them too close to each other. This also explains why the
accuracy and the calibration of all the models decreases as the domain-shift increases. However,
Mix-MaxEnt consistently provides the best α. This also explains why Mix-MaxEnt performed so well
under domain-shift. We provide further plots and visualizations in Appendix J.

5.2.2 MIX-MAXENT CREATES A HIGH ENTROPY BARRIER BETWEEN CLASSES

In Figure 3, we provide heat-maps to visually show the entropy barrier. The heat-map is created as
follows. We randomly choose 1000 pairs of samples {xi,xj} such that yi 6= yj . For each pair, we
synthesize 20 samples x̄s using Eq (1) where λ0 is equally spaced between 0 to 1. The heat map is
then created using all the 20K samples. The intensity of each (λ, H) bin in the heat-map indicates the
number of samples in that bin. It is clearly visible that for standard DNN, although an entropy peak
between the two classes exist, the location of the peak is scattered and its intensity is inconsistent. For
most of the interpolated samples the entropy is close to zero, thus, making the model overconfident
even for samples with very high degree of interpolation. However, Mix-MaxEnt clearly creates a
high-entropy barrier that spans most of the space between the two classes. At the same time, the
entropy close to the clean samples is low. Therefore, the model is confident for clean samples and it
becomes indecisive as the degree of interpolation increases. We show additional such plots and an
alternative visualization of this phenomenon in Appendix F.

5.2.3 ANALYSING DIFFERENT FACTORS IN THE OBJECTIVE FUNCTION OF MIX-MAXENT

The importance of mixing samples between classes We empirically observe that not imposing
the constraint yi 6= yj does not produce significantly different performance (Table 13 in Appendix G).
This is because of the fact that the probability of sampling pairs with the same class is extremely low
(0.1 for CIFAR-10, 0.01 for CIFAR-100) compared to sampling pairs from different classes. However,
as we enforce the constraint that the pairs must belong to the same class yi = yj , the performance
degrades significantly (refer Table 14). Therefore, mixing samples between classes is crucial.

The importance of having an interpolation factor close to 0.5 In Table 11, we show that Mix-
MaxEnt performance relies on having interpolation factors close to 0.5. Mix-MaxEnt with α << 1
(i.e. making λ0 ≈ 0 or ≈ 1) degrades the OOD detection performance, the data-shift robustness, and
the calibration with respect to the case α >> 1 (i.e. making λ0 ≈ 0.5).

The importance of maximising the entropy defined over the support of the interpolated points
Recall that Mix-MaxEnt (refer Eq (2)) maximises the entropy on the two interpolated classes. The
rationale is that the input image will contain features from the two classes, not from any other classes.
Therefore, the classifier should assign a non-zero probability only to these classes and there is no
reason for it to assign a non-zero probability to other classes. We empirically check that this is a
sensitive choice as maximising the entropy over all the classes significantly degrades the performance
(refer Table 12). We also observed that, since α >> 1 (and hence λ0 ≈ 0.5), the entropy regularizer
can be replaced by the Mixup loss with no performance degradation.

6 CONCLUSION

We proposed Mix-MaxEnt, an extremely simple approach that regularizes a neural network to be
uncertain in regions of the data manifold that are unknown during training. We conducted a wide
range of experiments to show that Mix-MaxEnt significantly improves the reliability of uncertainty
estimates of deep neural networks, while also providing a notable boost in the accuracy. A potential
extension of our work regards the possibility of mixing features using more sophisticated methods.
An interesting future direction would be to elaborate more sophisticated mixing techniques either
based on data statistics (e.g. using PCA directions) or latent space geometry that would allow to map
out-of-distribution points closer to the center of the embedding space, and to further improve the
clustering for data-shift examples.

9

Under review as a conference paper at ICLR 2022

Ethics Statement. The fact that neural networks can be wrong with high confidence poses a
potential threat to the deployment of deep learning systems into the real-world applications such as
driverless cars and medical imaging. Therefore, finding fast and effective methods to train models that
can provide reliable uncertainty is of utmost importance. Hence, we are not particularly concerned
that the research presented in this paper can lead to harmful applications – on the contrary, we believe
that it can help deploying safer machine learning applications.

Reproducibility Statement. In this paper, we provide an extremely simple approach that can be
implemented in merely a few additional lines of code. We have provided all the details needed to
reproduce our and baseline results. All the training hyperparameters and details about the dataset (we
only used publicly available datasets) are provided in the manuscript. To facilitate further research on
this topic, we will release the code to reproduce all the experiments.

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 254–263, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
URL http://proceedings.mlr.press/v80/arora18b.html.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. arXiv preprint arXiv:2002.06470, 2020.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30, pp. 6240–
6249. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/
2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf.

Jens Behrmann, Will Grathwohl, Ricky T Q Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In ICML, November 2019.

Abhijit Bendale and Terrance Boult. Towards open set deep networks. November 2015.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In Eric P.
Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine Learn-
ing, volume 32 of Proceedings of Machine Learning Research, pp. 1683–1691, Bejing, China, 22–
24 Jun 2014. PMLR. URL http://proceedings.mlr.press/v32/cheni14.html.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. Backpack: Packing more into backprop. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=BJlrF24twB.

Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, and Gaël RICHARD. Stochastic
gradient richardson-romberg markov chain monte carlo. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29,
pp. 2047–2055. Curran Associates, Inc., 2016. URL https://proceedings.neurips.
cc/paper/2016/file/03f544613917945245041ea1581df0c2-Paper.pdf.

Andrew Y. K. Foong, David R. Burt, Yingzhen Li, and Richard E. Turner. On the expressiveness of
approximate inference in bayesian neural networks, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pp. 1050–1059. JMLR.org, 2016.

R Geirhos, P Rubisch, C Michaelis, M Bethge, and others. ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv,
2018.

10

Under review as a conference paper at ICLR 2022

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
networks by enforcing lipschitz continuity, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pp. 1321–1330. JMLR.org, 2017.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lak-
shminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks
for robust prediction. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=OGg9XnKxFAH.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. doi:
10.1109/CVPR.2016.90.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf.

Sibylle Hess, Wouter Duivesteijn, and Decebal Mocanu. Softmax-based classification is k-means
clustering: Formal proof, consequences for adversarial attacks, and improvement through centroid
based tailoring. January 2020.

Marius Hobbhahn, Agustinus Kristiadi, and Philipp Hennig. Fast predictive uncertainty for classifi-
cation with bayesian deep networks, 2021. URL https://openreview.net/forum?id=
KcImcc3j-qS.

Jiri Hron, Alex Matthews, and Zoubin Ghahramani. Variational Bayesian dropout: pitfalls and fixes.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2019–2028,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.
mlr.press/v80/hron18a.html.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get m for free, 2017.

Taejong Joo, Uijung Chung, and Min-Gwan Seo. Being Bayesian about categorical probability. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4950–4961. PMLR,
13–18 Jul 2020. URL http://proceedings.mlr.press/v119/joo20a.html.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparam-
eterization trick. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 28, pp. 2575–2583. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in ReLU networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5436–5446. PMLR, 13–18 Jul 2020. URL http://proceedings.
mlr.press/v119/kristiadi20a.html.

11

Under review as a conference paper at ICLR 2022

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 30, pp. 6402–6413. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks, 2018.

Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. In NeurIPS, June 2020a.

Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution
detection, 2020b.

Zhiyun Lu, Eugene Ie, and Fei Sha. Uncertainty estimation with infinitesimal jackknife, its distribution
and mean-field approximation, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, February 2018a.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018b.
URL https://openreview.net/forum?id=B1QRgziT-.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip HS Torr, and Puneet K
Dokania. Calibrating deep neural networks using focal loss. In NeurIPS, 2020.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In
H Wallach, H Larochelle, A Beygelzimer, F dAlché-Buc, E Fox, and R Garnett (eds.), Advances in
Neural Information Processing Systems, volume 32, pp. 4694–4703. Curran Associates, Inc., 2019.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V. Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift, 2019.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hinton. Regularizing
neural networks by penalizing confident output distributions. CoRR, abs/1701.06548, 2017. URL
http://arxiv.org/abs/1701.06548.

Rahul Rahaman and Alexandre H. Thiery. Uncertainty quantification and deep ensembles, 2020.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=Skdvd2xAZ.

A Sanyal, P H S Torr, and P K Dokania. Stable rank normalization for improved generalization in
neural networks and GANs. In ICLR, 2020.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
uncertainty. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31, pp. 3179–3189. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
a981f2b708044d6fb4a71a1463242520-Paper.pdf.

12

Under review as a conference paper at ICLR 2022

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
9573–9585. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/6cfe0e6127fa25df2a0ef2ae1067d915-Paper.pdf.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. July 2016.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
On mixup training: Improved calibration and predictive uncertainty for deep neural networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32, pp. 13888–13899. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
36ad8b5f42db492827016448975cc22d-Paper.pdf.

Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal Gal. Uncertainty estimation using
a single deep deterministic neural network. In ICML, 2020.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=Sklf1yrYDr.

Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W Dusenberry, Jasper Snoek, Balaji Lak-
shminarayanan, and Dustin Tran. Combining ensembles and data augmentation can harm
your calibration. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=g11CZSghXyY.

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Ledsam,
Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, Taylan Cemgil, S M
Ali Eslami, and Olaf Ronneberger. Contrastive training for improved Out-of-Distribution detection.
July 2020.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
(BMVC), pp. 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.
30.87. URL https://dx.doi.org/10.5244/C.30.87.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical
stochastic gradient mcmc for bayesian deep learning. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rkeS1RVtPS.

13

Under review as a conference paper at ICLR 2022

A THE EFFECT OF BOUNDING LOCAL SMOOTHNESS ON MIX-MAXENT

Let fθ = g ◦ h(x) be the neural network where h : x 7→ φ(x) is the feature extractor and g(.)
the last linear layer. It is desirable that the predictive distribution is robust to input perturbations
that do not alter the label of the image, so that the network is able to preferentially carry over the
true signal in the data. In other words, we would like our model to be bi-Lipschitz so that, given
an input perturbation, the change in the output is both upper and lower bounded. Of course, these
bounds should be reasonable so that the network neither looses its capacity (is trainable), nor it is too
sensitive, which otherwise would cost its generalization ability. It has also been shown that ResNet
architectures, because of their skip connections, are by design bi-Lipschitz if all the linear operators
are constrained to have a spectral norm of less than one (Behrmann et al., 2019). Recent work (Liu
et al., 2020a) built on this finding and showed that applying Spectral Normalization (SN) (Miyato
et al., 2018b) to a standard neural network does improve the quality of its uncertainty estimates.

As an alternative, in this work, we enforce bi-Lipschitzness via the application of Stable Rank
Normalization (SRN) (Sanyal et al., 2020). Let W be a linear operator with {σ1, · · · , σk} as
its ordered set of non-zero singular values. Then, SRN effectively provides a new matrix whose
singular values are {1, η σ2

σ1
· · · , η σk

σ1
}, where η ∈ (0, 1]. Note, if η = 1, SRN boils down to SN.

Mathematically speaking, along with controlling the largest singular value of a linear operator, the
SRN objective also allows us to minimize its stable rank (a softer version of the rank operator)4.

We prefer SRN for the following two reasons. (1) It has been shown to control noise sensitivity,
and provide better data-dependent empirical Lipschitz constant. (2) It encourages learning more
compact embeddings in the feature space (we prove in Proposition A.1), a property that is shown to
be important to obtain improved out-domain detection performance (Winkens et al., 2020).
Proposition A.1. Stable Rank Normalization (Sanyal et al., 2020) (SRN) encourages low volume
clusters compared to Spectral Normalization (SN).

Proof. Let {vi ∈ Rn}ni=1 be a set of zero-mean vectors with empirical covariance matrix as S =
1
n

∑n
i=1 viv

>
i . Let W0 be a linear mapping with {σi}ki=1 as its ordered non-zero singular values

(σ1 being the max). Let the SN and SRN versions of W0 be W1 and W2, respectively. Then,
the volume of the covarinace matrix when each vector vi is mapped using W0 can be obained as
Vol(S0) = det(1

n

∑n
i=1(W0vi)(W0vi)

>) = det(W0)det(S)det(W0) =
∏k
i=1 σ

2
i det(S)

(ignoring the multiplicative constant as all the matrices are in the same space). Note, we abuse
the notation where the determinant det(.) of a matrix is the product of non-zero singular values.
Similarly, the volume of the projected points when the vectors are mapped via W1 and W2 can be
obtained as Vol(S1) = 1

σ2k
1

∏k
i=1 σ

2
i det(S) and Vol(Ss) = η2(k−1)

σ2k
1

∏k
i=1 σ

2
i det(S), respectively.

Since η ∈ (0, 1] for SRN, it is trivial to note that Vol(S2) ≤ Vol(S1) ≤ Vol(S0). Hence, the
clusters obtained using SRN will have the lowest volume.

A.1 CONSIDERING DIFFERENT TECHNIQUES TO BOUND LOCAL SMOOTHNESS

In our experiments, we considered two techniques to bound local smoothness: (1) using Spectral
Normalization (SN) (Yoshida & Miyato, 2017), (2) using Stable Rank Normalization (SRN) (Sanyal
et al., 2020). We also considered a variant of our method without these two components. We report
the performance of these variants in Table 3. It is important to observe that, although in a few cases
SN can outperform SRN, in most cases they do not exhibit significantly different behaviour. We also
observe that, in the case of ResNet50, bounding local smoothness via SN/SRN does not produce
improvements (as already visible in Tables 5 and 6). This probably can be attributed to the high
capacity of the network and the (relatively) small quantity of training data in the datasets considered.

A.2 THE IMPACT OF SRN ON DATA-SHIFT ROBUSTNESS

In this section we report additional plots showing the impact of SRN when applied on top of the
maximum entropy regularizer. As it can be seen in Figures 4 and 5, for certain kinds of noises it
significantly improves the robustness to data-shift.

4srank(W) =
‖W‖2F
‖W‖22

, where ‖W‖2 is the spectral norm.

14

Under review as a conference paper at ICLR 2022

Methods Clean Corrupted CIFAR SVHN
Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

C10 R50

Mix-MaxEnt 96.69 ± 0.17 0.65 ± 0.11 0.94 ± 0.21 81.16 ± 1.48 12.61 ± 1.77 12.52 ± 1.78 87.63 ± 0.67 85.85 ± 0.83 94.39 ± 0.72 96.31 ± 0.49
Mix-MaxEnt-SN 96.80 ± 0.19 0.70 ± 0.11 0.74 ± 0.22 79.91 ± 1.19 13.86 ± 0.85 13.78 ± 0.86 87.99 ± 0.88 86.09 ± 1.21 93.32 ± 1.83 95.90 ± 1.39

Mix-MaxEnt-SRN 96.74 ± 0.09 0.68 ± 0.06 0.79 ± 0.14 81.35 ± 1.31 12.21 ± 1.84 12.12 ± 1.84 87.25 ± 0.71 86.19 ± 0.69 94.18 ± 0.92 96.76 ± 0.67

C100 R50

Mix-MaxEnt 81.49 ± 0.31 1.57 ± 0.18 1.53 ± 0.21 57.62 ± 0.30 13.42 ± 0.93 13.39 ± 0.94 79.44 ± 0.33 75.80 ± 0.14 88.68 ± 0.69 93.48 ± 0.34
Mix-MaxEnt-SN 81.39 ± 0.12 1.66 ± 0.21 1.68 ± 0.15 57.64 ± 0.17 12.98 ± 0.28 12.95 ± 0.27 79.89 ± 0.64 76.09 ± 0.29 86.38 ± 1.04 92.46 ± 0.43

Mix-MaxEnt-SRN 81.24 ± 0.36 2.55 ± 0.40 2.33 ± 0.42 56.94 ± 1.09 14.06 ± 1.81 14.03 ± 1.80 79.27 ± 0.37 75.66 ± 0.25 85.31 ± 2.09 91.65 ± 1.39

C10 WRN

Mix-MaxEnt 97.44 ± 0.06 0.63 ± 0.08 0.50 ± 0.08 83.10 ± 1.48 10.13 ± 1.59 10.08 ± 1.59 89.13 ± 0.18 88.12 ± 0.37 96.22 ± 0.49 98.01 ± 0.41
Mix-MaxEnt-SN 97.40 ± 0.07 0.53 ± 0.11 0.64 ± 0.12 83.15 ± 1.33 8.46 ± 0.59 8.48 ± 0.58 89.59 ± 0.73 88.56 ± 1.11 96.72 ± 0.42 98.32 ± 0.29

Mix-MaxEnt-SRN 97.51 ± 0.06 0.53 ± 0.12 0.62 ± 0.15 84.49 ± 0.53 8.00 ± 0.86 8.02 ± 0.84 89.33 ± 0.60 88.40 ± 0.73 97.22 ± 0.76 98.67 ± 0.38

C100 WRN

Mix-MaxEnt 83.23 ± 0.22 1.67 ± 0.59 1.76 ± 0.62 59.39 ± 0.72 7.93 ± 0.84 7.93 ± 0.84 81.04 ± 0.48 77.28 ± 0.35 89.32 ± 1.61 94.45 ± 0.90
Mix-MaxEnt-SN 83.87 ± 0.18 1.48 ± 0.30 1.41 ± 0.32 61.06 ± 0.69 7.42 ± 0.20 7.39 ± 0.21 80.83 ± 0.16 77.32 ± 0.19 91.05 ± 2.77 95.59 ± 1.25

Mix-MaxEnt-SRN 83.96 ± 0.18 1.73 ± 0.22 1.66 ± 0.30 60.70 ± 0.91 8.43 ± 1.52 8.40 ± 1.52 81.74 ± 0.31 78.05 ± 0.13 90.38 ± 2.40 95.15 ± 1.20

Table 3: Evaluation of our method considering a version without any regulariser to bound local
smoothness (Mix-MaxEnt), using Spectral Normalization (Mix-MaxEnt-SN) and using Stable Rank
Normalization (Mix-MaxEnt-SRN). The hyperparameters are set as in Table 4.

Figure 4: Accuracy, ECE and AdaECE for some corruptions that show the remarkable improvements
of using SRN for CIFAR-10-C over not using it, architecture WideResNet28-10.

15

Under review as a conference paper at ICLR 2022

Figure 5: Fisher criterion (and the spectral norm of its factors) for some corruptions that show the re-
markable improvements of using SRN for CIFAR-10-C over not using it, architecture WideResNet28-
10.

16

Under review as a conference paper at ICLR 2022

B KRONECKER-FACTORED LAST LAYER LAPLACE APPROXIMATION

A structural problem of using MLE logistic regression is that the produced uncertainties depend on
the decision boundary. On the other hand, replacing the MLE logistic regression with a Bayesian
logistic regression and estimating the predictive posterior employing a Laplace approximation
allows to produce better uncertainties (Kristiadi et al., 2020). However, a Bayesian training either
requires a modification in the architecture (Liu et al., 2020a) or makes the inference procedure
very expensive (Kingma et al., 2015; Gal & Ghahramani, 2016). Since the objective is to utilize
the standard MLE training of neural networks, the idea of Kronecker-Factored Last Layer Laplace
Approximation (Kristiadi et al., 2020) is making the network Bayesian at test time with almost no
additional cost.

Let w be the parameters of the of the last layer of a neural network, then we seek to obtain the
posterior only over w. Let p(w|x) be the posterior, then the predictive distribution can be written as:

p(y = k|x,D) =

∫
softmax(sk)p(w|D)dw, (3)

where, s is the logit vector and softmax(sk) is the k-th index of the softmax output of the
network.

The Laplace approximation assumes that the posterior p(s|D) ∼ N (s|µ,Σ), where µ is a mode of
the posterior p(w|D) (found via standard optimization algorithms for NNs) and Σ is the inverse of
the Hessian H−1 = −(∇2 log p(w|D)|µ)−1. For the formulations and definitions, including the
variants with the terms associated to the bias, we refer to (Kristiadi et al., 2020).

For our experiments, we obtain Σ using the Kronecker-factored (KF) approximation (Ritter et al.,
2018). Broadly speaking, the KF approximation allows to reduce the computational complexity of
computing the Hessian by factorizing the inverse of the Hessian as H−1 ≈ V−1 ⊗U−1, then the
covariance of the posterior evaluated at a point x takes following form Σ = (φ(x)TVφ(x))U. This
procedure can be easily implemented using the Backpack library (Dangel et al., 2020) to compute V
and U by performing a single pass over the training set after the end of the training, as detailed in
the Appendix of (Kristiadi et al., 2020) and clearly exemplified in the code-base of (Hobbhahn et al.,
2021).

Let Σk be the covariance matrix of the posterior over the last linear layer parameters for the k-
th class obtained using the Laplace approximation around µ, then, given an input x, we obtain
σk = φ(x)>Σkφ(x) representing the variance of k-th logit sk. Once we obtain the covariance matrix,
the Monte Carlo approximation of the predictive distribution (equation (3)) is obtained as:

p̃ =
1

m

m∑
i=1

softmax(s(i)), (4)

where, m logit vectors s(i) are sampled from a distribution with mean s and a covariance matrix
(depending on the approximation used). Lu et. al (Lu et al., 2020) showed that similar performance
can be achieved via the mean-field approximation which provides an approximate closed form
solution of the integration in equation (3) involving the re-scaling of the logits and then taking the
softmax of the re-scaled logit. The re-scaling is defined as follows:

s̃k =
sk√

1 + λσ2
k

(5)

Note, the scaling of the k-th logit depends on its variance (obtained using the Laplace approximation)
and a hyperparameter λ. This approximation is efficient in the sense that it does not require multiple
samples as required in the MC approximation (which can become expensive as the number of classes
and samples grow). In our experiments, we use the MC approximation, since we could not find an
obvious way to fine-tune λ. Additionally, we observe that the mean-field approximation imposes
a trade-off between calibration and OOD detection performance. Increasing λ, indeed, flattens
the softmax distribution and improves OOD detection scores; although, as a consequence, harms
calibration by making the network underconfident.

17

Under review as a conference paper at ICLR 2022

C EXPERIMENT DETAILS

Hyperparameters For all our experiments we set the batch size to 1285. At training time, we apply
standard augmentation (random cropping and horizontal flipping, similarly to (Liu et al., 2020a)).
The data is appropriately normalized before being fed to the network both at train and test time.

• for DNN-SN, DNN-SRN and Mix-MaxEnt the set of SN clamping factors we considered
in our experiments are c ∈ {0.5, 0.75, 1.0}, the target of stable rank r ∈ {0.3, 0.5, 0.7, 0.9}
(as r = 1 for SRN is the same as applying SN with c = 1.0).

• for Mixup, we considered the Beta distribution hyperparameters to be α ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, as suggested in the literature (Thulasidasan et al., 2019).

• for Mix-MaxEnt we considered the Beta distribution hyperparameters to be α ∈
{5, 10, 15, 20, 30}. In both cases we set α = β in Beta(α, β).

• for the KFAC-LLLA, we took 1000 samples. Although the number might seem quite high,
we could not notice significant improvements using a lower number of samples. We tuned
the prior variance σ0 needed for the computation of the Laplace approximation minimising
the ECE on the validation set. We also tried using the theoretical value σ0 = 1/τ (Kristiadi
et al., 2020), where τ represents the weight decay, but it produced inferior results with
respect to our cross-validation procedure.

• for Deep Ensembles we use 5 members.

• when temperature scaling is applied, the temperature T is tuned on the validation set,
minimising the ECE (we considered values ranging from 0.1 to 10, with a step size of
0.01). For Deep Ensembles, we first compute the mean of the logits, then scale it by the
temperature parameter before passing it through the softmax.

All the hyperparameters we chose are reported in Table 4. Such hyperparameters have been selected
performing cross-validation with stratified-sampling on a 90/10 split of the training set to maximise
Accuracy6. Indeed, it is important to observe that:

• optimising the hyperparameters based solely on the ECE can prefer models with lower
Accuracy but better calibration. However, Accuracy is commonly considered of primary
importance, and any method improving calibration should avoid degrading it.

• Optimising considering any of the corrupted experiments and OOD detection metrics would
be equivalent to overfitting the test set (indeed, both corruptions and OOD datasets are
assumed to be unknown at training time by all the considered methodologies, and so they
should be during the hyperparameter selection procedure).

For all of our experiments we train the methods initialising the networks with 5 different seeds
and report the average and standard deviation in percentage for all the metrics. For the hyperpa-
rameter search, we trained approximately 350 models. For the final tables (five seeds), we trained
approximately 250 models.

Code For the SNGP method we use the official code-base with the suggested hyperparameters and
training procedures. The code diverges slightly from the procedure described in their paper, hence the
slight differences in the performance. The only modification we performed to the official code-base
was to make the inference procedure consistent with the one described in the paper: indeed, in their
code they implement a mean-field approximation to estimate the predictive distribution (Lu et al.,
2020), while in their paper they use Monte Carlo Integration with a number of samples equal to the
number of members in the ensembles they use as a baseline, which provides better calibration. The
rationale is that we could not find an obvious way to tune the mean-field approximation hyperparame-
ters to improve at the same time both the calibration and OOD detection performance (indeed, the
mean-field approximation imposes a trade-off between calibration and OOD detection performance).
Additionally, since the standard KFAC-LLLA uses the same Monte Carlo Integration procedure,

5For SNGP and DUQ, we use the hyperparameters suggested in their original papers.
6Except for the σ0 of the KFAC-LLLA, as we could not observe significant differences in Accuracy between

hyperparameters optimising the Accuracy and ECE

18

Under review as a conference paper at ICLR 2022

Training Set Hyp C10 C100
Architecture WRN R50 WRN R50

DNN T 1.3 1.5 1.3 1.4

DNN-SN c 0.5 0.5 0.5 0.5
T 1.4 1.5 1.2 1.4

DNN-SR r 0.3 0.3 0.3 0.3
T 1.3 1.4 1.2 1.4

DE T 1.3 1.4 1.1 1.2
SNGP T 1.4 - 1.5 -

Mixup α 0.3 0.3 0.3 0.3
T 0.7 0.8 1.09 1.2

Mix-MaxEnt α 20 20 10 10
T 1.1 1.3 1.2 1.2

Mix-MaxEnt-SN
α 20 20 20 20
T 1.23 1.23 1.09 1.19
c 0.5 0.5 0.5 0.5

Mix-MaxEnt-SRN
α 20 30 20 10
T 1.2 1.3 1.09 1.09
r 0.9 0.9 0.9 0.9

KFAC-LLLA samples 1000 1000 1000 1000
σ0 1 0.6 4 0.1

Table 4: Hyperparameters selected via cross-validation (90/10 split with stratified sampling) for
all the methods we trained from scratch. We tuned T and σ0 by minimising the ECE. All other
hyperparameters have been tuned to maximise the Accuracy.

Methods Clean Corrupted CIFAR100 SVHN
Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

DNN 95.19 ± 0.23 1.38 ± 0.19 1.45 ± 0.19 75.18 ± 0.69 12.31 ± 0.84 12.29 ± 0.85 88.61 ± 0.66 88.05 ± 0.52 93.20 ± 1.98 96.43 ± 0.95
DNN-SN 95.20 ± 0.15 1.11 ± 0.09 1.27 ± 0.10 74.88 ± 0.96 11.75 ± 0.48 11.74 ± 0.49 88.19 ± 0.36 87.72 ± 0.32 93.46 ± 3.41 96.56 ± 1.87

DNN-SRN 95.39 ± 0.20 1.23 ± 0.08 1.27 ± 0.13 75.40 ± 0.67 12.22 ± 0.64 12.20 ± 0.64 88.82 ± 0.40 88.15 ± 0.31 93.54 ± 2.41 96.63 ± 1.27

Deep Ensembles 96.23 ± 0.05 1.27 ± 0.05 1.28 ± 0.03 77.63 ± 0.36 13.12 ± 0.32 12.68 ± 0.32 91.38 ± 0.21 90.75 ± 0.13 96.90 ± 0.07 98.27 ± 0.09
KFAC-LLLA 95.21 ± 0.26 0.79 ± 0.26 0.69 ± 0.24 75.18 ± 0.89 10.26 ± 0.97 10.23 ± 0.97 89.54 ± 0.41 88.30 ± 0.41 93.13 ± 1.01 96.25 ± 0.63

Mixup 96.05 ± 0.15 0.59 ± 0.39 2.17 ± 0.51 78.63 ± 0.72 10.17 ± 0.91 10.35 ± 0.95 84.24 ± 2.95 85.35 ± 1.76 89.40 ± 4.35 95.57 ± 1.41

Mix-MaxEnt 96.69 ± 0.17 0.65 ± 0.11 0.94 ± 0.21 81.16 ± 1.48 12.61 ± 1.77 12.52 ± 1.78 87.63 ± 0.67 85.85 ± 0.83 94.39 ± 0.72 96.31 ± 0.49

Table 5: ResNet50 trained on C10. The cross-validated hyperparameters are provided in Appendix C.

we opted for the latter for a fair comparison. For the KFAC-LLLA we leverage the official reposi-
tory7 (Hobbhahn et al., 2021) and the Backpack library (Dangel et al., 2020) for the computation of
the Kronecker-Factored Hessian. For the SNGP ResNet50 experiments, we tried running the official
implementation. The official implementation for ResNet50 is specifically fine-tuned for ImageNet,
and has not been used for experiments on CIFAR. We could not make SNGP converge to SOTA
accuracy values both on CIFAR-10 and CIFAR-100. All the other methods were implemented by us
in PyTorch and the training, cross-validation and evaluation code will be made publicly available
upon acceptance of the paper.

D ADDITIONAL RESULTS

D.1 RESNET50 EXPERIMENTS

In Tables 5 and 6 we report the experimental results for ResNet50.

D.2 CALIBRATION METRICS WITHOUT TEMPERATURE SCALING

For completeness, we report the calibration metrics over all the methods and considered datasets
without temperature scaling (Guo et al., 2017) in Table 7. We can observe that temperature scaling

7https://github.com/19219181113/LB_for_BNNs

19

Under review as a conference paper at ICLR 2022

Methods Clean Corrupted CIFAR10 SVHN
Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑)

DNN 79.19 ± 0.44 3.05 ± 0.29 2.94 ± 0.31 50.62 ± 0.42 19.80 ± 0.31 19.76 ± 0.31 79.33 ± 0.70 75.20 ± 0.61 82.45 ± 3.21 89.92 ± 1.99
DNN-SN 79.27 ± 0.25 3.15 ± 0.12 3.13 ± 0.15 50.55 ± 0.39 12.19 ± 0.47 12.16 ± 0.47 79.20 ± 0.17 75.22 ± 0.13 80.78 ± 1.08 88.87 ± 0.84

DNN-SRN 78.96 ± 0.42 2.98 ± 0.24 2.95 ± 0.24 50.48 ± 0.37 12.62 ± 0.58 12.59 ± 0.58 78.77 ± 0.14 74.87 ± 0.15 82.39 ± 2.83 89.52 ± 1.75

Deep Ensembles 82.09 ± 0.33 3.15 ± 0.10 2.98 ± 0.19 53.91 ± 0.37 12.53 ± 0.31 12.36 ± 0.31 81.93 ± 0.28 77.65 ± 0.34 85.08 ± 1.60 91.49 ± 0.88
KFAC-LLLA 79.41 ± 0.44 1.30 ± 0.09 1.19 ± 0.24 50.85 ± 0.49 10.59 ± 0.56 10.57 ± 0.56 79.30 ± 0.41 75.27 ± 0.38 82.80 ± 3.84 90.38 ± 2.17

Mixup 80.12 ± 0.28 7.49 ± 0.32 7.47 ± 0.35 53.96 ± 0.21 13.57 ± 0.38 13.52 ± 0.38 77.02 ± 0.41 74.40 ± 0.43 76.86 ± 3.40 87.36 ± 1.62

Mix-MaxEnt 81.49 ± 0.31 1.57 ± 0.18 1.53 ± 0.21 57.62 ± 0.30 13.42 ± 0.93 13.39 ± 0.94 79.44 ± 0.33 75.80 ± 0.14 88.68 ± 0.69 93.48 ± 0.34

Table 6: ResNet50 trained on C100. The cross-validated hyperparameters are provided in Appendix C.

Methods Clean Corrupted
ECE (↓) AdaECE (↓) ECE (↓) AdaECE (↓)

C10 R50

DNN 3.06 ± 0.20 3.02 ± 0.19 17.31 ± 0.73 17.30 ± 0.73
DNN-SN 2.92 ± 0.11 2.90 ± 0.11 17.41 ± 1.02 17.40 ± 1.02

DNN-SRN 2.85 ± 0.16 2.82 ± 0.16 17.18 ± 0.62 17.17 ± 0.62

Deep Ensembles 2.12 ± 0.01 2.10 ± 0.03 14.01 ± 0.32 13.99 ± 0.32
KFAC-LLLA 0.84 ± 0.26 0.76 ± 0.24 11.59 ± 0.62 11.52 ± 0.62

Mixup 2.84 ± 0.54 2.87 ± 0.46 11.17 ± 0.91 11.35 ± 0.95

Mix-MaxEnt (Ours) 1.64 ± 0.15 1.42 ± 0.13 12.21 ± 1.84 12.12 ± 1.84

C100 R50

DNN 9.51 ± 0.58 9.47 ± 0.60 25.18 ± 1.46 25.17 ± 1.47
DNN-SN 9.47 ± 0.44 9.44 ± 0.46 25.06 ± 0.73 25.04 ± 0.73

DNN-SRN 9.63 ± 0.23 9.59 ± 0.23 25.51 ± 0.69 25.50 ± 0.69

Deep Ensembles 6.65 ± 0.12 6.50 ± 0.04 19.80 ± 0.31 19.76 ± 0.31
KFAC-LLLA 1.56 ± 0.09 1.49 ± 0.24 12.11 ± 1.12 12.18 ± 1.12

Mixup 7.49 ± 0.32 7.47 ± 0.35 21.53 ± 0.38 21.52 ± 0.38

Mix-MaxEnt (Ours) 4.33 ± 0.43 4.17 ± 0.39 14.06 ± 1.81 14.03 ± 1.80

C10 WRN

DNN 2.30 ± 0.11 2.27 ± 0.11 15.94 ± 0.66 15.92 ± 0.66
DNN-SN 2.25 ± 0.12 2.21 ± 0.13 15.55 ± 0.23 15.53 ± 0.23

DNN-SRN 2.25 ± 0.12 2.23 ± 0.13 15.13 ± 0.44 15.11 ± 0.44

Deep Ensembles 1.76 ± 0.02 1.74 ± 0.03 13.54 ± 0.19 13.52 ± 0.18
SNGPGood 1.62 ± 0.09 1.51 ± 0.06 11.36 ± 0.37 11.33 ± 0.36

KFAC-LLLA 1.06 ± 0.08 1.12 ± 0.07 11.69 ± 0.76 11.67 ± 0.76

Mixup 2.02 ± 0.72 2.23 ± 0.64 7.88 ± 0.94 7.93 ± 0.97

Mix-MaxEnt (Ours) 0.92 ± 0.06 0.71 ± 0.13 8.93 ± 0.70 8.87 ± 0.69

C100 WRN

DNN 5.34 ± 0.38 5.30 ± 0.42 17.43 ± 0.75 17.38 ± 0.75
DNN-SN 5.15 ± 0.25 4.97 ± 0.24 16.39 ± 0.44 16.35 ± 0.45

DNN-SRN 5.12 ± 0.17 5.05 ± 0.25 15.75 ± 0.85 15.71 ± 0.85

Deep Ensembles 4.03 ± 0.16 3.92 ± 0.16 13.51 ± 0.28 13.47 ± 0.29
SNGPGood 5.68 ± 0.26 5.65 ± 0.28 10.97 ± 1.52 10.89 ± 1.52

KFAC-LLLA 2.20 ± 0.31 2.30 ± 0.32 8.97 ± 0.21 8.99 ± 0.21

Mixup 3.44 ± 1.08 3.60 ± 0.99 16.53 ± 1.52 16.54 ± 1.49

Mix-MaxEnt (Ours) 2.66 ± 0.07 2.47 ± 0.09 10.54 ± 1.49 10.49 ± 1.49

Table 7: Calibration metrics for all networks and all datasets, without temperature scaling

leaves the ranking among methods mostly unchanged. Details about the cross-validation procedure
used and the temperature T used are in Section C.

E COMPARING DIFFERENT UNCERTAINTY MEASURES

In Section 5.1.3, we reported the OOD detection performance using the DS score, except when it
damages the performance of a method (e.g. Mixup) or when it does not yield improvements (e.g.
KFAC-LLLA). For completeness reasons, in Table 8 we report the performance with respect to some
common uncertainty measures we defined in Section 5.1.3: (1) Maximum Probability Score (MPS),
(2) Entropy (H), (3) Energy Score (equivalent to Dempster-Shafer) (DS).

Feature Space Density Estimation scores Similar to (Winkens et al., 2020; Lee et al., 2018), we
also use feature space density estimation based score as an estimate of uncertainty. Assuming that a
Gaussian Mixture Model would estimate the density of the feature space accurately, the likelihood

20

Under review as a conference paper at ICLR 2022

Methods CIFAR SVHN
MPS DS H MPS DS H

AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)(↑)
C10 R50

DNN 88.30 ± 0.43 88.30 ± 0.43 88.61 ± 0.66 88.05 ± 0.52 88.52 ± 0.45 86.97 ± 0.45 91.41 ± 1.75 91.41 ± 1.75 93.20 ± 1.98 96.43 ± 0.95 91.76 ± 1.78 95.51 ± 0.91
DNN-SN 87.94 ± 0.25 87.94 ± 0.25 88.19 ± 0.36 87.72 ± 0.32 88.18 ± 0.24 86.70 ± 0.34 92.33 ± 1.87 92.33 ± 1.87 93.46 ± 3.41 96.56 ± 1.87 92.72 ± 2.01 96.03 ± 1.18

DNN-SRN 88.34 ± 0.35 88.34 ± 0.35 88.82 ± 0.40 88.15 ± 0.31 88.58 ± 0.34 86.86 ± 0.38 91.55 ± 2.01 91.55 ± 2.01 93.54 ± 2.41 96.63 ± 1.27 91.95 ± 2.11 95.65 ± 1.09

Deep Ensemble 90.70 ± 0.17 90.70 ± 0.17 91.38 ± 0.21 90.75 ± 0.13 90.97 ± 0.18 89.62 ± 0.14 94.94 ± 0.06 94.94 ± 0.06 96.90 ± 0.07 98.27 ± 0.09 95.41 ± 0.06 97.47 ± 0.05
Mixup 84.31 ± 2.63 84.31 ± 2.63 80.95 ± 4.05 83.68 ± 2.63 84.24 ± 2.95 85.35 ± 1.76 89.59 ± 3.85 89.59 ± 3.85 84.87 ± 6.98 93.99 ± 2.35 89.40 ± 4.35 95.57 ± 1.41

(Ours) 88.22 ± 0.36 88.22 ± 0.36 87.63 ± 0.67 85.85 ± 0.83 88.30 ± 0.40 86.62 ± 0.38 93.35 ± 0.55 93.35 ± 0.55 94.39 ± 0.72 96.31 ± 0.49 93.62 ± 0.59 96.52 ± 0.32

C100 R50

DNN 78.46 ± 0.51 78.46 ± 0.51 79.33 ± 0.70 75.20 ± 0.61 79.18 ± 0.53 75.11 ± 0.52 79.58 ± 2.52 79.58 ± 2.52 82.45 ± 3.21 89.92 ± 1.99 80.90 ± 2.78 89.36 ± 1.65
DNN-SN 78.47 ± 0.05 78.47 ± 0.05 79.20 ± 0.17 75.22 ± 0.13 79.13 ± 0.10 75.16 ± 0.10 78.22 ± 0.50 78.22 ± 0.50 80.78 ± 1.08 88.87 ± 0.84 79.32 ± 0.56 88.39 ± 0.44
DNN-SR 78.20 ± 0.13 78.20 ± 0.13 78.77 ± 0.14 74.87 ± 0.15 78.90 ± 0.08 74.95 ± 0.09 80.50 ± 2.06 80.50 ± 2.06 82.39 ± 2.83 89.52 ± 1.75 81.58 ± 2.33 89.45 ± 1.49

Deep Ensemble 80.76 ± 0.20 80.76 ± 0.20 81.93 ± 0.28 77.65 ± 0.34 81.53 ± 0.21 77.38 ± 0.34 81.40 ± 1.46 81.40 ± 1.46 85.08 ± 1.60 91.49 ± 0.88 82.98 ± 1.61 90.62 ± 0.86
Mixup 77.60 ± 0.25 77.60 ± 0.25 77.02 ± 0.41 74.40 ± 0.43 78.25 ± 0.29 75.10 ± 0.29 78.04 ± 2.60 78.04 ± 2.60 76.86 ± 3.40 87.36 ± 1.62 78.88 ± 2.78 88.17 ± 1.41

(Ours) 79.52 ± 0.12 79.52 ± 0.12 79.44 ± 0.33 75.80 ± 0.14 80.23 ± 0.13 76.77 ± 0.11 83.75 ± 1.41 83.75 ± 1.41 88.68 ± 0.69 93.48 ± 0.34 85.05 ± 1.59 91.66 ± 1.01

C10 WRN

DNN 88.74 ± 0.24 88.74 ± 0.24 88.61 ± 0.34 88.91 ± 0.21 88.90 ± 0.26 88.38 ± 0.15 95.04 ± 1.00 95.04 ± 1.00 96.00 ± 1.10 98.08 ± 0.66 95.43 ± 1.05 97.66 ± 0.70
DNN-SN 88.80 ± 0.28 88.80 ± 0.28 88.56 ± 0.36 89.01 ± 0.34 88.95 ± 0.29 88.58 ± 0.33 95.02 ± 0.41 95.02 ± 0.41 95.59 ± 0.49 97.85 ± 0.22 95.34 ± 0.42 97.61 ± 0.20

DNN-SRN 88.76 ± 0.22 88.76 ± 0.22 88.46 ± 0.36 88.84 ± 0.37 88.90 ± 0.23 88.45 ± 0.26 95.47 ± 1.21 95.47 ± 1.21 96.12 ± 1.61 98.10 ± 0.81 95.82 ± 1.28 97.89 ± 0.67

Deep Ensemble 90.98 ± 0.12 90.98 ± 0.12 91.25 ± 0.14 91.12 ± 0.15 91.19 ± 0.11 90.44 ± 0.15 96.40 ± 0.61 96.40 ± 0.61 97.53 ± 0.69 98.84 ± 0.28 96.87 ± 0.64 98.46 ± 0.27
SNGP 90.62 ± 0.09 90.62 ± 0.09 90.61 ± 0.07 90.39 ± 0.12 90.85 ± 0.09 89.28 ± 0.22 94.17 ± 0.20 94.17 ± 0.20 95.25 ± 0.55 97.98 ± 0.18 94.57 ± 0.23 97.33 ± 0.13
Mixup 83.70 ± 0.77 83.70 ± 0.77 76.73 ± 1.14 81.20 ± 0.78 83.17 ± 0.87 85.47 ± 0.45 88.58 ± 5.37 88.58 ± 5.37 74.56 ± 8.17 89.77 ± 3.04 87.53 ± 6.07 95.08 ± 2.12

(Ours) 89.27 ± 0.48 89.27 ± 0.48 89.33 ± 0.60 88.40 ± 0.73 89.43 ± 0.50 88.35 ± 0.46 95.59 ± 0.92 95.59 ± 0.92 97.22 ± 0.76 98.67 ± 0.38 96.07 ± 0.91 98.09 ± 0.46

C100 WRN

DNN 80.68 ± 0.22 80.68 ± 0.22 81.06 ± 0.29 77.35 ± 0.39 81.17 ± 0.26 77.48 ± 0.31 78.84 ± 4.37 78.84 ± 4.37 79.69 ± 4.81 88.46 ± 2.53 79.50 ± 4.57 88.53 ± 2.39
DNN-SN 80.89 ± 0.22 80.89 ± 0.22 81.10 ± 0.35 77.34 ± 0.19 81.30 ± 0.27 77.56 ± 0.17 81.66 ± 2.90 81.66 ± 2.90 83.43 ± 3.63 91.01 ± 2.05 82.68 ± 3.19 90.62 ± 1.77

DNN-SRN 80.99 ± 0.15 80.99 ± 0.15 81.26 ± 0.18 77.36 ± 0.30 81.42 ± 0.16 77.52 ± 0.28 83.00 ± 0.87 83.00 ± 0.87 85.51 ± 1.18 91.84 ± 1.12 84.29 ± 1.01 91.18 ± 1.05

Deep Ensemble 82.79 ± 0.08 82.79 ± 0.08 83.26 ± 0.14 79.82 ± 0.27 83.28 ± 0.09 79.89 ± 0.23 83.11 ± 1.40 83.11 ± 1.40 85.07 ± 1.58 91.65 ± 0.97 84.16 ± 1.49 91.25 ± 0.90
SNGP 78.42 ± 0.30 78.42 ± 0.30 75.54 ± 0.44 72.96 ± 0.32 78.99 ± 0.29 75.01 ± 0.34 77.69 ± 1.76 77.69 ± 1.76 86.78 ± 1.90 93.30 ± 1.05 79.91 ± 1.90 89.95 ± 1.07
Mixup 78.42 ± 0.71 78.42 ± 0.71 77.16 ± 1.58 75.03 ± 0.99 78.37 ± 1.20 75.95 ± 0.56 77.34 ± 7.27 77.34 ± 7.27 74.55 ± 10.13 87.30 ± 4.03 78.68 ± 4.29 88.27 ± 1.89

(Ours) 81.48 ± 0.18 81.48 ± 0.18 81.74 ± 0.31 78.05 ± 0.13 82.07 ± 0.23 78.61 ± 0.17 87.23 ± 2.31 87.23 ± 2.31 90.38 ± 2.40 95.15 ± 1.20 88.82 ± 2.47 94.29 ± 1.33

Table 8: OOD detection performance considering Maximum Probability Score (MPS), Desmpter-
Shafer/Energy (DS) and Entropy (H) as uncertainty metrics.

that a given sample x belongs to class c can be computed as:

p(y = c|x) =
exp(−(φ(x)− µc)TΣc

−1(φ(x)− µc))√
(2π)n det Σc

where, µc and Σc are the empirical mean and the covariance-matrix of training samples of c-th class.
Using p(y = c|x), following scores can be computed to estimate the uncertainty:

• Maximum Log-likelihood: m(x) = maxc log p(y = c|x). If the score m(x) is low then the
sample more likely belongs to OOD.

• Belief: This score indicates how likely is it that the sample x belongs to IND and is computed
as b(x) =

∑
c p(y = c|x).

We consider two variants of both the scores mentioned above: (1) tied-covariance (LDA assumption)
when all the covariance matrices are tied and there is one common covariance matrix for the entire
training data-set; and (2) per-class covariance matrix (QDA assumption) when the covariance
matrix is separately computed for each class. Note, in both the assumptions, the mean is always
class-dependent.

Note, the scores defined above require inverting matrices, computing logarithms and exponentials.
Practically, we observe that these computations introduce numerical instability8 leading to unreliable
uncertainty scores (although in a few cases they can achieve better performance). In particular,
the main sources of instability are caused by the inversion of the covariance matrices and by the
computation of their log-determinants (hence we evaluate the scores also without considering the
log-normalization term). We apply two known procedures to make the process numerically stable:

• Diagonal perturbation by addition of εI for the computation of the inverse, where ε is a small
positive constant.

• Low-Rank Pseudo-Inverse (LRP): preprocess the covariance matrices (see next), compute
the precision as the pseudo-inverse of the pre-processed covariance (stabilised further by
adding εI).

8The causes of such instability can depend on the high dimensionality of the latent space (h = 640 for
WideResNet28-10, h = 2048 for ResNet50) and the few datapoints that can be leveraged for the estimation of
the covariances.

21

Under review as a conference paper at ICLR 2022

Figure 6: DNN (Left), Ours (Center), Mixup (Right). Interpolation experiment on CIFAR10 to
show embeddings of the linear interpolation of two randomly picked input samples from class 1
(purple) and class 2 (yellow). Red and green samples are classified as class 1, and orange and blue
samples as class 2. As the color changes from red to green, the predictive entropy increases. Same
for the color change from blue to orange. Note, DNN classifies interpolated points with very high
confidence (low entropy) even if the samples shift drastically from the data. However, Mix-MaxEnt’s
entropy increases as we go away from the data. Details of this experiment is provided in Section 5.2.
Observe Mixup scale is different from the one of Mix-MaxEnt and DNN.

We preprocess the covariance matrices with the following procedure. Let’s assume A is a positive
semi-definite matrix, and call Â an approximation of A that exhibits better numerical stability to
inversion and log-determinant operations. We obtain Â as follows:

• compute the SVD decomposition of the A as A = UΣV T .

• select the top-k SVD components of A that explain the γ% of the variance. Let’s call Uk,
Σk and Vk the matrices obtained by considering only such components.

• produce an approximation Â of A as Â = UkΣkV
T
k

As it can be seen from Tables 9 and 10, the metric can show outsandingly good performance in
detecting OOD data in a few cases. For instance, in Table 9, consider DNN-SRN tested on SVHN:
with the LRP stabilisation and ε = 1e − 08, γ = 0.95 the the belief bc can achieve an AUROC of
97.84% and an AUPR of 99.06%, which are both superior to the AUROC of 96.12% and AUPR
of 98.10% reported in Table 8 with the DS metric for the same method. However, as it is clearly
visible, the behaviour of these metrics is highly inconsistent across different methods, training and
test datasets and stabilisation procedures.

For instance, let’s consider some examples from Table 9. It is evident how the mt is extremely
sensitive to the choice of ε for the DNN method: the OOD performance on SVHN drops from 93.99%
AUROC and 92.21% AUPR to 73.35% AUROC and 65.90% AUPR when using ε = 1e− 08 instead
of ε = 1e − 07. On the other hand, for the same variation in ε, the scores improve for DNN-SN
on the same task (increasing the AUROC from 98.34% to 98.40% and the AUPR from 97.05%
to 97.12%). Another example of such extreme sensitivity and inconsistency of the metric across
various stabilisation techniques and methods can be observed when comparing the bc, mc and mt

performance using the diagonal perturbation with ε = 1e− 07 or the LRP with same ε and γ = 0.99
for DNN and DNN-SN when tested on SVHN. For DNN, all the scores increase when adding the
LRP. For DNN-SN, the bc increases dramatically (from 76.89% AUROC to 95.35% AUROC, from
88.44% AUPR to 97.89% AUPR) but at the same time a significant drop is observed in mc and mt

(e.g. mt drops from 98.34% AUROC to 94.99%, and from 97.05% AUPR to 92.95%).

The fact the considered stabilisation procedures can produce inconsistent improvements and degra-
dations across various methodologies and metrics, and that such variations are extremely sensitive
to the choice of the stabilisation hyperparameters makes these metrics unreliable. Indeed, there is
no stabilisation procedure with a specific set of hyperparameters that dominates the others in all the
cases, and there is no obvious way to blindly (i.e. without resorting to OOD data at training time)
select such procedure and hyperparameters.

22

Under review as a conference paper at ICLR 2022

Method Stabilisation bc bt mc mt

AUROC (↑) AUPR(↑) AUROC (↑) AUPR(↑) AUROC (↑) AUPR(↑) AUROC (↑) AUPR(↑)
IND: C10, OOD: SVHN

ε =1e-07 75.78 ± 0.93 89.30 ± 1.06 40.93 ± 6.32 70.61 ± 6.24 90.51 ± 15.17 84.75 ± 25.13 93.99 ± 9.79 92.21 ± 11.05
ε =1e-07 LRP γ =0.99 92.20 ± 1.89 96.57 ± 0.66 27.75 ± 4.06 60.10 ± 2.38 94.13 ± 1.44 92.81 ± 1.21 95.46 ± 0.61 93.64 ± 0.69
ε =1e-07 LRP γ =0.95 94.42 ± 1.43 97.59 ± 0.58 45.57 ± 3.61 70.54 ± 2.43 93.47 ± 1.23 91.82 ± 1.26 93.01 ± 0.88 91.00 ± 0.93
ε =1e-07 LRP γ =0.85 91.21 ± 2.70 96.31 ± 1.16 71.07 ± 6.71 79.87 ± 5.39 94.23 ± 1.79 92.33 ± 1.96 87.53 ± 0.95 86.00 ± 0.81

DNN ε =1e-08 68.21 ± 7.28 80.20 ± 8.31 45.09 ± 5.31 68.42 ± 2.99 91.13 ± 6.21 84.40 ± 11.62 73.35 ± 25.14 65.90 ± 31.38
ε =1e-08 LRP γ =0.99 90.34 ± 3.76 95.01 ± 2.90 27.90 ± 3.94 60.12 ± 2.23 86.94 ± 8.97 70.10 ± 17.71 95.39 ± 0.64 93.58 ± 0.69
ε =1e-08 LRP γ =0.95 94.68 ± 1.45 97.67 ± 0.64 45.59 ± 4.26 70.52 ± 2.56 78.93 ± 27.54 76.41 ± 29.15 93.09 ± 0.89 91.07 ± 0.89
ε =1e-08 LRP γ =0.85 90.98 ± 1.88 96.20 ± 0.86 71.62 ± 6.76 80.19 ± 5.40 93.38 ± 2.38 91.15 ± 2.59 87.57 ± 0.79 86.03 ± 0.67

ε =1e-07 76.89 ± 12.75 88.44 ± 7.08 51.82 ± 12.39 75.57 ± 6.23 96.68 ± 0.58 95.45 ± 0.61 98.34 ± 0.35 97.05 ± 0.49
ε =1e-07 LRP γ =0.99 95.35 ± 0.91 97.89 ± 0.44 36.48 ± 7.91 64.47 ± 4.09 94.60 ± 0.33 93.23 ± 0.43 94.99 ± 1.12 92.95 ± 1.24
ε =1e-07 LRP γ =0.95 96.16 ± 1.50 98.31 ± 0.71 56.81 ± 7.58 76.33 ± 5.00 93.64 ± 0.86 92.07 ± 0.63 93.10 ± 1.11 91.14 ± 1.20
ε =1e-07 LRP γ =0.85 95.62 ± 2.04 98.02 ± 1.00 75.70 ± 4.13 83.36 ± 4.46 93.70 ± 1.22 92.22 ± 0.93 88.12 ± 1.39 86.61 ± 1.50

DNN-SN ε =1e-08 76.66 ± 12.77 88.31 ± 7.16 49.64 ± 11.90 74.38 ± 5.97 96.72 ± 0.57 95.49 ± 0.61 98.40 ± 0.34 97.12 ± 0.49
ε =1e-08 LRP γ =0.99 94.29 ± 0.17 97.37 ± 0.07 30.13 ± 6.13 61.33 ± 3.46 91.74 ± 1.67 74.47 ± 5.84 95.74 ± 0.98 93.74 ± 1.19
ε =1e-08 LRP γ =0.95 95.60 ± 1.81 98.02 ± 0.84 57.19 ± 9.67 76.74 ± 6.14 70.59 ± 23.63 52.27 ± 25.02 91.82 ± 2.32 88.07 ± 5.19
ε =1e-08 LRP γ =0.85 93.50 ± 1.12 96.93 ± 0.62 77.34 ± 5.18 85.19 ± 5.12 93.69 ± 0.10 87.87 ± 4.19 74.43 ± 14.78 58.78 ± 28.95

ε =1e-07 78.16 ± 15.07 89.11 ± 8.23 57.36 ± 20.24 77.96 ± 10.57 96.79 ± 0.67 95.61 ± 0.59 98.24 ± 0.37 96.96 ± 0.53
ε =1e-07 LRP γ =0.99 94.24 ± 4.77 97.17 ± 2.58 33.66 ± 16.61 62.69 ± 7.51 94.76 ± 1.08 93.58 ± 0.76 95.78 ± 1.97 94.10 ± 2.00
ε =1e-07 LRP γ =0.95 96.22 ± 2.28 98.33 ± 1.13 52.62 ± 19.75 73.62 ± 10.63 93.90 ± 0.79 92.69 ± 0.59 93.35 ± 2.32 91.87 ± 2.02
ε =1e-07 LRP γ =0.85 96.07 ± 2.50 98.26 ± 1.21 71.84 ± 8.46 80.62 ± 6.50 93.66 ± 0.88 92.16 ± 0.91 88.44 ± 3.31 87.36 ± 2.95

DNN-SRN ε =1e-08 77.87 ± 13.54 89.37 ± 7.35 57.64 ± 18.29 78.49 ± 9.72 96.64 ± 0.68 95.31 ± 0.81 98.08 ± 0.50 96.74 ± 0.72
ε =1e-08 LRP γ =0.99 96.38 ± 0.06 98.30 ± 0.12 30.70 ± 9.92 60.80 ± 3.94 93.60 ± 0.24 87.80 ± 4.66 96.14 ± 0.54 94.41 ± 0.24
ε =1e-08 LRP γ =0.95 97.83 ± 0.04 99.06 ± 0.03 50.86 ± 9.50 71.66 ± 4.79 57.85 ± 35.58 55.77 ± 36.66 93.02 ± 1.44 91.41 ± 1.15
ε =1e-08 LRP γ =0.85 96.10 ± 2.38 98.23 ± 1.18 73.52 ± 6.05 81.33 ± 5.65 92.93 ± 1.25 90.93 ± 1.46 85.95 ± 5.92 79.31 ± 14.72

IND: C10, OOD: C100

ε =1e-07 75.98 ± 2.38 78.04 ± 1.75 66.19 ± 10.03 68.82 ± 11.22 85.85 ± 11.68 84.83 ± 14.96 85.97 ± 10.02 85.95 ± 9.94
ε =1e-07 LRP γ =0.99 83.00 ± 1.55 83.79 ± 1.24 46.57 ± 1.79 50.66 ± 1.53 89.57 ± 0.13 89.74 ± 0.12 86.93 ± 0.40 87.32 ± 0.36
ε =1e-07 LRP γ =0.95 82.64 ± 1.17 83.12 ± 1.12 54.27 ± 2.43 57.65 ± 1.85 89.69 ± 0.12 89.97 ± 0.18 86.43 ± 0.42 87.80 ± 0.41
ε =1e-07 LRP γ =0.85 83.42 ± 0.67 84.18 ± 0.55 63.92 ± 2.76 59.78 ± 3.42 90.03 ± 0.16 90.27 ± 0.18 86.08 ± 0.70 87.35 ± 0.51

DNN ε =1e-08 71.17 ± 6.84 67.49 ± 12.00 60.85 ± 11.16 60.44 ± 14.17 76.14 ± 14.87 76.48 ± 15.00 74.64 ± 15.73 75.60 ± 14.60
ε =1e-08 LRP γ =0.99 81.32 ± 3.47 80.70 ± 5.54 46.52 ± 1.58 50.60 ± 1.30 82.37 ± 6.42 76.12 ± 8.07 86.87 ± 0.44 87.29 ± 0.40
ε =1e-08 LRP γ =0.95 82.54 ± 1.39 83.01 ± 1.24 54.37 ± 2.35 57.71 ± 1.86 83.21 ± 12.66 81.74 ± 15.98 86.37 ± 0.48 87.74 ± 0.46
ε =1e-08 LRP γ =0.85 83.11 ± 0.83 83.86 ± 0.66 63.96 ± 2.72 59.71 ± 3.52 89.41 ± 0.48 88.30 ± 1.60 86.10 ± 0.70 87.38 ± 0.52

ε =1e-07 75.67 ± 1.26 77.11 ± 1.32 74.67 ± 0.80 76.36 ± 0.62 91.19 ± 0.17 91.53 ± 0.23 90.51 ± 0.26 90.22 ± 0.34
ε =1e-07 LRP γ =0.99 82.86 ± 0.93 83.95 ± 0.57 50.25 ± 1.22 53.74 ± 0.79 89.85 ± 0.09 90.03 ± 0.13 86.77 ± 0.26 87.10 ± 0.38
ε =1e-07 LRP 0γ =0.95 81.96 ± 1.14 82.42 ± 1.12 57.20 ± 2.77 59.69 ± 2.94 90.08 ± 0.14 90.24 ± 0.19 85.81 ± 0.48 87.25 ± 0.36
ε =1e-07 LRP γ =0.85 83.61 ± 0.96 84.33 ± 0.83 61.40 ± 1.13 58.30 ± 1.50 90.38 ± 0.13 90.69 ± 0.12 86.31 ± 0.85 87.54 ± 0.64

DNN-SN ε =1e-08 75.65 ± 1.48 77.14 ± 1.58 74.35 ± 0.95 76.11 ± 0.69 91.19 ± 0.16 91.54 ± 0.20 90.50 ± 0.27 90.23 ± 0.34
ε =1e-08 LRP γ =0.99 82.83 ± 0.28 83.55 ± 0.03 50.42 ± 0.37 53.94 ± 0.06 86.55 ± 0.90 79.31 ± 2.19 86.81 ± 0.10 87.36 ± 0.16
ε =1e-08 LRP γ =0.95 81.23 ± 1.39 81.30 ± 2.13 57.63 ± 3.14 59.82 ± 3.31 77.65 ± 13.26 71.43 ± 14.06 84.79 ± 1.50 85.23 ± 3.30
ε =1e-08 LRP γ =0.85 83.14 ± 2.19 83.46 ± 2.35 61.56 ± 0.48 58.01 ± 0.54 88.00 ± 2.43 83.78 ± 6.67 81.57 ± 4.87 77.12 ± 10.71

ε =1e-07 74.93 ± 1.80 76.78 ± 1.79 74.06 ± 1.66 76.03 ± 1.30 91.11 ± 0.16 91.40 ± 0.22 90.46 ± 0.15 90.24 ± 0.31
ε =1e-07 LRP γ =0.99 83.49 ± 0.28 84.11 ± 0.45 48.97 ± 3.59 52.81 ± 2.65 89.68 ± 0.22 89.75 ± 0.30 87.08 ± 0.37 87.31 ± 0.30
ε =1e-07 LRP γ =0.95 82.01 ± 0.82 82.25 ± 1.02 55.67 ± 3.07 59.04 ± 2.67 90.17 ± 0.31 90.38 ± 0.35 86.20 ± 0.52 87.59 ± 0.47
ε =1e-07 LRP γ =0.85 83.86 ± 0.77 84.41 ± 0.88 61.29 ± 5.99 57.99 ± 5.04 90.45 ± 0.13 90.75 ± 0.16 86.78 ± 0.07 87.88 ± 0.31

DNN-SRN ε =1e-08 75.88 ± 2.11 77.73 ± 2.15 74.86 ± 2.70 76.78 ± 2.41 91.10 ± 0.14 91.41 ± 0.20 90.52 ± 0.18 90.39 ± 0.36
ε =1e-08 LRP γ =0.99 83.29 ± 0.23 84.08 ± 0.57 48.11 ± 1.96 52.09 ± 0.94 88.70 ± 0.40 86.37 ± 2.86 87.09 ± 0.12 87.47 ± 0.22
ε =1e-08 LRP γ =0.95 80.11 ± 2.99 80.57 ± 3.23 52.96 ± 2.49 56.08 ± 1.48 76.80 ± 13.19 74.44 ± 15.77 85.99 ± 0.44 87.46 ± 0.51
ε =1e-08 LRP γ =0.85 83.97 ± 0.80 84.62 ± 0.95 61.59 ± 5.35 57.84 ± 4.92 89.96 ± 0.47 89.73 ± 1.29 85.03 ± 2.95 84.44 ± 6.10

Table 9: OOD detection performance when using Feature Density-based estimation methods. The
results are reported for WideResNet28-10, trained on CIFAR10. Stabilisation legend: ε alone denotes
only the addition of εI , LRP denotes Low-Rank Pseudoinverse, γ is the fraction of the explained
variance.

Figure 7: Left figure: (λ,H)-heat map for Mixup (α = 0.3) trained using WideResNet28-10 on
CIFAR-10.

23

Under review as a conference paper at ICLR 2022

Method Stabilisation bc bt mc mt

AUROC (↑) AUPR(↑) AUROC (↑) AUPR(↑) AUROC (↑) AUPR(↑) AUROC (↑) AUPR(↑)
IND: C100, OOD: SVHN

ε = 1e-07 74.92 ± 4.45 84.06 ± 2.83 67.19 ± 4.76 78.96 ± 2.64 89.05 ± 0.97 80.60 ± 3.26 83.59 ± 3.25 73.00 ± 6.28
ε = 1e-07 LRP γ =0.99 74.13 ± 4.40 84.09 ± 2.38 68.71 ± 2.62 79.03 ± 1.61 79.42 ± 5.43 58.66 ± 10.07 83.23 ± 3.16 73.98 ± 5.20
ε = 1e-07 LRP γ =0.95 71.62 ± 4.28 82.73 ± 2.46 72.52 ± 3.67 82.23 ± 2.34 64.59 ± 5.39 41.18 ± 6.91 81.16 ± 4.13 71.38 ± 5.92
ε = 1e-07 LRP γ =0.85 71.94 ± 5.91 83.18 ± 3.35 77.36 ± 3.46 85.39 ± 2.18 63.64 ± 18.10 41.83 ± 17.87 79.45 ± 3.86 69.01 ± 6.76

DNN ε = 1e-08 74.97 ± 4.48 84.10 ± 2.86 66.78 ± 4.67 78.67 ± 2.55 89.08 ± 0.94 80.64 ± 3.21 83.78 ± 3.29 73.33 ± 6.25
ε = 1e-08 LRP 0γ = .99 76.43 ± 4.31 85.50 ± 2.60 64.57 ± 2.21 77.23 ± 1.84 81.17 ± 9.25 67.49 ± 15.20 63.07 ± 13.63 42.73 ± 15.93
ε = 1e-08 LRP γ =0.95 73.93 ± 5.65 84.22 ± 3.39 63.61 ± 12.43 76.71 ± 7.55 86.16 ± 3.15 78.33 ± 4.27 63.63 ± 15.63 48.36 ± 15.70
ε = 1e-08 LRP γ =0.85 72.48 ± 6.25 83.49 ± 3.72 77.39 ± 2.25 85.61 ± 1.32 86.06 ± 1.56 78.00 ± 2.24 77.97 ± 2.59 65.06 ± 4.51

ε = e-07 78.39 ± 7.09 87.57 ± 4.41 70.78 ± 9.13 82.65 ± 5.35 87.17 ± 3.64 80.46 ± 4.07 85.47 ± 3.16 77.06 ± 5.06
ε = 1e-07 LRP γ =0.99 80.04 ± 5.92 88.38 ± 3.77 72.15 ± 8.68 82.09 ± 5.19 75.21 ± 8.75 60.33 ± 13.59 81.08 ± 4.80 73.59 ± 5.78
ε = 1e-07 LRP γ =0.95 78.26 ± 7.84 87.25 ± 5.45 78.73 ± 6.55 86.95 ± 4.61 67.24 ± 9.36 43.96 ± 9.70 77.90 ± 4.02 69.75 ± 5.77
ε = 1e-07 LRP γ =0.85 79.08 ± 6.69 88.35 ± 4.02 81.27 ± 5.18 88.68 ± 3.60 75.03 ± 9.64 56.05 ± 13.94 78.68 ± 3.61 69.64 ± 5.34

DNN-SN ε = 1e-08 78.43 ± 7.10 87.59 ± 4.39 70.61 ± 9.09 82.51 ± 5.27 86.84 ± 3.83 80.14 ± 4.26 85.67 ± 3.12 77.34 ± 5.04
ε = 1e-08 LRP γ =0.99 80.94 ± 6.24 88.95 ± 4.01 70.13 ± 8.56 80.54 ± 4.90 82.95 ± 5.01 75.80 ± 5.56 68.23 ± 16.51 51.03 ± 22.15
ε = 1e-08 LRP γ =0.95 79.52 ± 6.86 88.36 ± 4.25 77.62 ± 6.66 86.46 ± 4.64 83.20 ± 4.37 75.69 ± 5.06 76.18 ± 5.85 66.05 ± 8.43
ε = 1e-08 LRP γ =0.85 79.35 ± 6.87 88.49 ± 4.17 81.01 ± 5.52 88.68 ± 3.91 82.02 ± 5.39 72.97 ± 7.56 75.98 ± 5.58 64.94 ± 7.76

ε = 1e-07 83.40 ± 3.27 90.28 ± 2.31 75.35 ± 4.21 84.87 ± 2.74 85.47 ± 2.90 78.86 ± 3.14 85.54 ± 2.38 77.61 ± 3.32
ε = 1e-07 LRP γ =0.99 83.79 ± 2.12 90.52 ± 1.72 77.51 ± 1.62 85.27 ± 1.31 74.79 ± 10.68 57.64 ± 17.23 78.86 ± 1.72 71.90 ± 1.78
ε = 1e-07 LRP γ =0.95 83.62 ± 2.49 90.62 ± 2.01 81.47 ± 2.59 88.56 ± 1.94 65.29 ± 14.76 47.76 ± 18.71 77.10 ± 1.37 70.28 ± 1.69
ε = 1e-07 LRP γ =0.85 83.35 ± 2.80 90.51 ± 2.22 83.46 ± 2.20 89.95 ± 1.49 64.23 ± 20.69 49.43 ± 18.12 77.31 ± 1.80 69.36 ± 1.78

DNN-SRN ε = 1e-08 83.40 ± 3.20 90.29 ± 2.26 75.06 ± 4.12 84.63 ± 2.63 84.94 ± 2.98 78.26 ± 3.20 85.86 ± 2.26 78.02 ± 3.17
ε = 1e-08 LRP γ =0.99 84.85 ± 1.85 91.25 ± 1.48 73.59 ± 3.26 81.88 ± 3.14 82.66 ± 1.99 75.12 ± 1.82 55.40 ± 15.66 44.30 ± 18.25
ε = 1e-08 LRP γ =0.95 83.11 ± 0.44 89.82 ± 0.33 72.14 ± 0.83 80.99 ± 0.97 84.16 ± 0.13 75.27 ± 0.15 41.96 ± 3.81 27.90 ± 4.82
ε = 1e-08 LRP γ =0.85 83.14 ± 0.68 90.01 ± 0.45 81.96 ± 3.31 88.10 ± 2.17 84.21 ± 0.62 75.88 ± 0.54 77.80 ± 5.28 67.80 ± 3.03

IND: C100, OOD: C10

ε = 1e-07 75.87 ± 0.30 72.63 ± 0.08 76.66 ± 0.43 73.63 ± 0.11 74.60 ± 0.07 78.22 ± 0.13 79.68 ± 0.16 79.13 ± 0.32
ε = 1e-07 LRP γ =0.99 78.02 ± 0.41 74.56 ± 0.49 73.99 ± 0.75 70.55 ± 0.63 65.66 ± 5.16 62.37 ± 3.87 75.28 ± 0.58 77.02 ± 0.63
ε = 1e-07 LRP γ =0.95 77.87 ± 1.22 73.98 ± 1.38 73.35 ± 0.78 70.68 ± 0.19 59.26 ± 4.39 57.64 ± 5.76 78.76 ± 0.16 79.77 ± 0.22
ε = 1e-07 LRP 0γ = .85 78.03 ± 0.52 74.42 ± 0.58 74.47 ± 0.46 71.63 ± 0.32 68.85 ± 4.10 65.08 ± 5.02 79.48 ± 0.48 80.31 ± 0.46

DNN ε = 1e-08 75.90 ± 0.32 72.65 ± 0.08 76.70 ± 0.45 73.66 ± 0.12 74.51 ± 0.10 78.14 ± 0.11 79.62 ± 0.17 79.04 ± 0.34
ε = e-08 LRP γ =0.99 77.33 ± 0.61 73.80 ± 0.69 70.75 ± 1.22 66.03 ± 2.57 68.85 ± 2.35 69.14 ± 4.43 57.93 ± 10.05 57.55 ± 7.90
ε = 1e-08 LRP γ =0.95 77.51 ± 0.66 73.87 ± 0.79 62.18 ± 10.65 58.97 ± 10.98 73.25 ± 0.54 76.76 ± 0.78 65.94 ± 9.03 65.91 ± 8.36
ε = 1e-08 LRP γ =0.85 77.41 ± 0.75 73.72 ± 0.86 73.52 ± 1.70 70.37 ± 1.21 73.90 ± 0.75 76.95 ± 1.35 77.26 ± 1.70 77.73 ± 2.34

ε = 1e-07 75.50 ± 1.04 72.32 ± 0.91 76.24 ± 0.89 73.16 ± 0.84 73.02 ± 0.55 76.98 ± 0.41 79.43 ± 0.27 79.38 ± 0.53
ε = 1e-07 LRP γ =0.99 78.16 ± 0.68 74.97 ± 0.67 73.50 ± 1.75 70.33 ± 1.17 66.45 ± 8.70 66.48 ± 9.41 74.46 ± 1.04 77.09 ± 1.07
ε = 1e-07 LRP γ =0.95 78.53 ± 0.44 74.12 ± 1.82 72.47 ± 1.30 70.50 ± 1.41 59.81 ± 6.43 57.16 ± 5.65 78.10 ± 1.13 80.18 ± 0.88
ε = 1e-07 LRP γ =0.85 78.23 ± 0.61 74.86 ± 0.49 74.47 ± 1.36 71.72 ± 1.57 68.25 ± 3.73 64.42 ± 6.23 79.84 ± 0.39 81.20 ± 0.44

DNN-SN ε = 1e-08 75.49 ± 1.07 72.27 ± 0.94 76.24 ± 0.89 73.15 ± 0.86 72.26 ± 0.52 76.34 ± 0.41 79.41 ± 0.27 79.34 ± 0.51
ε = 1e-08 LRP γ =0.99 77.79 ± 0.49 74.61 ± 0.57 72.51 ± 1.81 68.01 ± 1.96 72.17 ± 0.43 76.05 ± 0.17 59.90 ± 10.30 59.94 ± 11.11
ε = 1e-08 LRP γ =0.95 78.07 ± 0.35 74.81 ± 0.42 71.01 ± 1.14 68.92 ± 1.48 73.01 ± 0.24 76.62 ± 0.69 76.81 ± 0.67 78.65 ± 0.99
ε = 1e-08 LRP γ =0.85 77.88 ± 0.30 74.59 ± 0.41 73.82 ± 1.09 70.91 ± 1.14 72.62 ± 0.98 74.34 ± 2.95 78.46 ± 0.81 79.88 ± 1.16

ε = 1e-07 76.60 ± 0.84 72.96 ± 0.81 77.18 ± 0.58 73.78 ± 0.59 72.56 ± 0.37 76.57 ± 0.29 79.41 ± 0.27 79.14 ± 0.52
ε = 1e-07 LRP γ =0.99 78.68 ± 0.40 75.10 ± 0.45 74.75 ± 0.95 71.45 ± 0.68 67.65 ± 3.26 63.10 ± 3.73 74.82 ± 0.42 77.03 ± 0.68
ε = 1e-07 LRP γ =0.95 79.14 ± 0.52 75.45 ± 0.58 73.60 ± 0.87 70.95 ± 0.53 64.27 ± 3.92 60.71 ± 3.34 78.54 ± 0.47 80.21 ± 0.60
ε = 1e-07 LRP γ =0.85 79.24 ± 0.44 75.52 ± 0.49 75.42 ± 0.56 72.23 ± 0.42 58.33 ± 10.11 56.41 ± 7.85 79.78 ± 0.54 80.90 ± 0.57

DNN-SRN ε = 1e-08 76.60 ± 0.85 72.94 ± 0.83 77.20 ± 0.58 73.81 ± 0.58 71.84 ± 0.35 75.95 ± 0.29 79.36 ± 0.27 79.08 ± 0.51
ε = 1e-08 LRP γ =0.99 78.58 ± 0.54 74.96 ± 0.62 69.78 ± 2.67 64.10 ± 4.41 71.89 ± 0.32 75.53 ± 0.45 52.72 ± 13.14 56.92 ± 12.20
ε = 1e-08 LRP γ =0.95 78.72 ± 0.65 75.15 ± 0.92 69.90 ± 1.69 64.89 ± 1.95 72.71 ± 0.35 76.26 ± 0.36 52.74 ± 5.53 54.01 ± 1.80
ε = e 1e-08 LRP γ =0.85 78.78 ± 0.74 75.19 ± 1.00 75.21 ± 0.46 71.54 ± 0.83 72.76 ± 0.42 76.19 ± 0.58 75.00 ± 3.20 73.91 ± 5.78

Table 10: OOD detection performance when using Feature Density-based estimation methods. The
results are reported for WideResNet28-10, trained on CIFAR100. Stabilisation legend: ε alone
denotes only the addition of εI , LRP denotes Low-Rank Pseudoinverse, γ is the fraction of the
explained variance.

24

Under review as a conference paper at ICLR 2022

Methods Accuracy (↑) ECE (↓) AdaECE (↓) C-Accuracy (↑) C-ECE (↓) C-AdaECE (↓) CIFAR SVHN
AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

C10 WRN

α =0.1 96.36 2.00 2.02 80.00 13.01 12.99 82.70 85.32 88.57 95.66
α =0.2 96.54 1.01 1.48 80.41 11.58 11.66 80.39 83.25 91.42 96.83
α =0.3 96.92 0.70 0.94 81.91 10.09 10.11 77.67 80.37 82.81 92.95
α =0.4 96.77 0.75 0.79 82.54 9.82 9.86 75.66 76.64 56.72 79.17
α =0.5 97.04 0.86 1.14 82.40 10.77 10.80 78.52 81.58 78.57 90.80
α =0.6 97.28 0.87 0.91 82.57 9.60 9.64 76.29 78.95 81.40 91.91
α =0.7 97.10 0.99 0.91 82.69 9.14 9.15 75.00 75.81 65.30 81.58
α =1 97.47 0.48 0.59 83.33 8.60 8.56 76.87 75.62 78.18 87.60

λ ∈ [0.25, 0.75] 97.49 0.69 0.56 85.18 7.44 7.38 87.50 86.09 94.09 96.39
λ ∈ [0, 0.25] ∪ [0.75, 1] 96.61 1.08 1.49 77.62 14.14 14.24 72.88 75.30 74.55 88.41

C100 WRN

α =0.1 82.78 4.75 4.68 56.00 16.14 16.11 80.00 76.49 80.04 88.36
α =0.2 82.82 5.17 5.08 56.55 17.85 17.78 79.30 76.02 81.52 90.01
α =0.3 83.28 2.77 2.75 57.31 15.44 15.40 78.34 75.95 83.72 90.87
α =0.4 83.38 4.00 3.77 57.87 16.51 16.46 76.47 74.37 69.74 83.85
α =0.5 83.44 3.09 3.10 57.85 15.72 15.68 76.79 74.17 85.14 92.03
α =0.6 83.31 3.86 3.64 57.92 16.54 16.49 76.81 74.12 85.05 92.00
α =0.7 83.52 2.63 2.36 58.14 14.38 14.34 77.78 74.73 85.72 92.77
α =1 83.38 3.92 3.80 58.56 15.51 15.46 77.58 74.92 83.97 91.28

λ ∈ [0.25, 0.75] 83.26 4.23 4.14 61.01 12.05 12.03 80.25 76.63 91.82 95.97
λ ∈ [0, 0.25] ∪ [0.75, 1] 81.46 5.44 5.31 52.84 20.88 20.84 76.31 74.80 68.34 82.50

Table 11: WideResNet28-10, Mix-MaxEnt with low α or controlled interpolation factor

F ADDITIONAL VISUALIZATION OF THE MAXIMUM ENTROPY EFFECT OF
MIX-MAXENT

In Figure 7 we report plots similar to the ones in Section 5.2.2. As already explained, Mixup makes
the network less confident both close and far away from the training data, for this reason it results in
better calibration (as it alleviates the overconfidence of DNN) but worse OOD detection performance
(because both IND and OOD samples have higher entropy, hence are more difficult to distinguish).

An alternative visualization of the phenomenon can be observed with the following method. We
take samples from the first three classes of C10, embed them into the feature space, and visualize
them using the approach used in (Müller et al., 2019) (presented in Appendix H for completeness).
Then, we randomly select two samples x1 and x2 from two different classes (‘purple’ and ‘yellow’)
and create a set of interpolated samples {x̄i = λx1 + (1− λ)x2}, as λ varies from 0 to 1 with an
interval of 0.005. Projecting these samples into the embedding space (Figure 6) shows that DNN
projects most of the samples to either class 1 or class 2, and very few to the region of high uncertainty.
However, Mix-MaxEnt projects most of the interpolated points with λ close to 0.5 in high uncertainty
regions. Therefore, this plot qualitatively verifies that Mix-MaxEnt creates a high entropy barrier
between classes.

G RESULTS OF ABLATIONS IN SECTION 5.2.3

In this Section, we report the results that could not be included in Section 5.2.3 for reason of space.
In particular, we report Tables 14, 13, 11 and 12.

We also discuss why Mix-MaxEnt interpolates input images and not their features. We did experiment
with interpolating IND embeddings from different class clusters and introducing a maximum entropy
regularizer on such samples. However, we observed this approach to be ineffective. A reason could
be that neural classifiers are notoriously not bijective and interpolations in the embedding space do
not necessarily correspond to inputs that even partially resemble data coming from neither XI nor
XO (restricting XO to the manifold of natural images). The interpolated images, instead, are bound
to contain features from both classes, and hence it is reasonable for the network to be unsure about
which of the two classes is represented in them.

25

Under review as a conference paper at ICLR 2022

Methods Accuracy (↑) ECE (↓) AdaECE (↓) C-Accuracy (↑) C-ECE (↓) C-AdaECE (↓) CIFAR SVHN
AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

C10 WRN

α =15 95.88 3.15 2.79 75.13 15.50 15.32 85.88 81.51 87.17 89.97
α =20 95.90 3.26 2.99 73.84 15.91 15.74 85.51 81.60 91.38 91.90
α =30 95.99 2.79 2.05 73.59 16.20 15.9 86.18 82.96 92.55 93.47

C100 WRN

α =15 80.57 7.23 7.02 50.08 18.21 18.18 76.68 69.38 72.96 80.91
α =20 80.24 7.71 7.41 49.99 17.00 16.93 76.69 69.71 75.60 82.09
α =30 80.62 6.99 7.06 50.47 17.56 17.51 77.34 70.46 77.61 84.39

Table 12: WideResNet28-10, loss: CE(pI , y) − H̄(pO) where H̄(pO) is the entropy over all the
labels.

Methods Accuracy (↑) ECE (↓) AdaECE (↓) C-Accuracy (↑) C-ECE (↓) C-AdaECE (↓) CIFAR SVHN
AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

C10 WRN

α =5 97.55 0.90 0.72 83.05 9.58 9.53 87.96 86.40 94.37 96.93
α =10 97.19 1.16 1.07 84.29 7.35 7.28 89.90 89.28 96.58 98.38
α =15 97.32 0.95 0.84 83.79 8.00 7.94 89.39 88.72 96.81 98.44
α =20 97.31 0.87 0.84 83.41 9.89 9.84 88.21 87.54 96.30 98.14
α =30 97.46 1.12 0.85 85.65 7.90 7.85 89.27 88.98 96.89 98.55

α =5,r = 0.9 97.26 0.78 0.72 84.66 8.50 8.43 87.58 85.99 94.00 96.74
α =10,r = 0.9 97.52 0.72 0.54 85.00 8.06 8.00 89.17 87.73 95.75 97.78
α =15,r = 0.9 97.56 0.78 0.59 82.24 10.66 10.61 89.31 88.54 94.30 97.41
α =20,r = 0.9 97.33 1.04 0.97 83.70 8.69 8.64 89.53 89.37 97.13 98.62
α =30,r = 0.9 97.44 0.84 0.87 84.45 8.66 8.61 90.18 89.51 97.81 98.97

C100 WRN

α =5 83.15 3.76 3.69 58.83 12.98 12.96 80.68 76.86 85.68 92.63
α =10 83.22 4.07 3.85 60.55 12.24 12.21 81.02 77.63 90.69 95.08
α =15 82.92 4.08 4.00 59.13 11.48 11.43 81.98 78.09 83.95 90.79
α =20 82.92 4.28 4.13 60.30 12.80 12.77 82.36 78.47 89.48 94.25
α =30 82.92 4.70 4.64 60.09 12.62 12.58 81.46 77.71 90.42 95.04

α =5,r = 0.9 83.81 2.85 2.51 61.46 8.61 8.57 81.07 77.39 88.15 93.17
α =10,r = 0.9 83.89 3.06 2.89 60.72 10.97 10.92 82.04 78.44 93.67 96.88
α =15,r = 0.9 84.11 2.45 2.30 61.12 9.40 9.35 81.74 78.35 89.53 94.77
α =20,r = 0.9 83.81 2.55 2.23 60.77 8.95 8.88 81.55 77.81 90.97 95.42
α =30,r = 0.9 83.82 2.98 2.81 61.28 9.00 8.94 80.49 77.04 88.02 93.30

Table 13: WideResNet28-10, Mix-MaxEnt (+SRN) mixing samples both within and between classes

Methods Accuracy (↑) ECE (↓) AdaECE (↓) C-Accuracy (↑) C-ECE (↓) C-AdaECE (↓) CIFAR SVHN
AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

C10 WRN

α =0.1 96.49 1.88 1.89 78.45 13.57 13.55 89.39 89.64 96.87 98.43
α =0.2 96.21 2.08 2.05 77.63 14.38 14.36 89.76 89.72 96.51 98.11
α =0.3 96.69 1.67 1.63 77.91 13.41 13.39 90.47 90.38 98.26 99.19
α =0.4 96.59 1.74 1.74 78.23 13.14 13.12 90.07 90.03 97.47 98.84
α =15 96.59 1.78 1.76 75.85 16.60 16.58 89.15 89.47 95.96 98.13
α =20 96.51 1.82 1.82 77.33 14.55 14.53 89.64 89.90 94.55 97.37
α =30 96.67 1.78 1.74 76.53 15.79 15.78 89.48 89.80 97.84 98.86

C100 WRN

α =0.3 82.01 5.58 5.48 53.11 19.72 19.68 81.04 77.20 84.51 91.43
α =0.4 82.12 5.73 5.61 54.00 17.08 17.04 80.45 77.14 88.57 93.99
α =5 82.32 4.83 4.79 52.13 18.01 17.97 80.68 76.98 87.11 92.89
α =15 82.06 5.02 4.89 51.97 16.96 16.91 81.85 78.40 82.17 90.41
α =20 81.73 5.54 5.37 52.65 19.96 19.92 82.05 78.29 79.10 86.44
α =30 82.05 5.16 5.09 52.47 18.14 18.09 80.17 76.81 82.91 89.73

Table 14: WideResNet28-10, Mix-MaxEnt with only within-class mixing. The missing α hyperpa-
rameters are still training.

26

Under review as a conference paper at ICLR 2022

H ALGORITHMS

In this section, we report the algorithm box for a single iteration of the training procedure of Mix-
MaxEnt (Algorithm 1) and the visualization technique used to project the embeddings in some of the
figures of the paper (Müller et al., 2019) (Algorithm 2)

Mix-MaxEnt iteration Given a batch B, a λ0 is sampled from Beta(α, α) and for each sample
(x1, y1) our algorithm randomly selects another sample (x2, y2) ∈ B such that y1 6= y2 and adds this
sample to a batch B̄. Both batches are passed through the network (with a single forward pass, with
batch size 2|B|). The batch B is passed through the usual cross-entropy loss, the batch B̄ is passed
through our regularizer. The two terms are summed, and one backpropagation pass is performed.

Visualization Projection Procedure Given three classes 1, 2, 3 and their prototypes w1,w2,w3

(e.g. the means of the embeddings of the points of each class), first find an orthonormal basis
of the plane passing through the three prototypes by using the standard Gram-Schmidt procedure.
Build a projection matrix P ∈ R2×h by using the vectors of the orthogonal basis (where h is the
dimensionality of the embeddings). Use the projection matrix to project any embedding φ(x) ∈ Rh
to px ∈ R2.

Algorithm 1: Iteration of the Mix-MaxEnt training procedure on a batch B using the network f

B̄ ← ∅;
λ0 ∼ Beta(α, α);
foreach (x1, y1) ∈ B do

Randomly select (x2, y2) ∈ B|y1 6= y2;
B̄ ← B̄ ∪ (λ0x1 + (1− λ0)x2, λ0y1 + (1− λ0)y2);

end
/* Implemented with a single forward pass with double the batch

size */
p(y|x ∈ B; θ)← f(B);
p(.|x ∈ B̄; θ)← f(B̄);
L = − log p(y|x ∈ B; θ)−Hȳ(p(.|x ∈ B̄; θ));
Update θ backpropagating the gradient of L;

Algorithm 2: Computing the projection of point φ(x) given three class prototypes w1,w2,w3

Result: px ∈ R2 projection of φ(x) ∈ Rh
/* Find an orthonormal basis of the plane passing through the

three prototypes */
p1 ← (w2 −w1)/||w2 −w1||;
p2 ← w3 −w2;
p2 ← p2 − (pT2 p1)p1;
p2 ← p2/||p2||;
/* Compute the projection matrix */
P ← [p1;p2]T ;
/* Project the embeddings in 2D */
px = Pφ(x);

I EMBEDDING SPACE RELIABILITY PLOTS

A typical technique used to analyse the calibration of a model is to inspect the reliability plot (Guo
et al., 2017), i.e. a histogram that shows the relationship between accuracy and confidence. Drawing
inspiration from the visualization technique of (Müller et al., 2019) (that we described in Algorithm
2), we design a new visualization technique to analyse the calibration of a neural network. Indeed,
one of the main disadvantages of the reliability plots is they do not show which are the regions of the

27

Under review as a conference paper at ICLR 2022

embedding space in which the model is overconfident/underconfident. The visualization technique
we develop, that we call Embedding Space Reliability Plots, leverages Algorithm 2 to compute the
2D projections of the embeddings of a test set. For each test point x, we compute the corresponding
accuracyA(x) and confidenceC(x), and for each of them we compute the quantityA(x)−C(x). We
associate to each projected point the corresponding difference between the accuracy and confidence,
and plot a histogram of this difference. The histogram will reveal in which regions of the latent
space covered by the test set the model is overconfident (A(x) − C(x) << 0) or underconfident
(A(x)− C(x) >> 0) or well calibrated (A(x)− C(x) ≈ 0). Interesting insights can be extracted
from these plots.

We report a few visualizations of this kind of plots in Figure 8. We apply it to the test points of
CIFAR-10-C for some kinds of corruptions. In the figures, we compare DNN versus our method.
The red regions of the space represent areas of overconfidence (A(x) − C(x) < 0), while green
regions of the space represent areas of underconfidence (A(x)− C(x) > 0). Yellow areas can be
either calibrated or contain no data-point. From these plots we can observe that DNN has wider
over-confidence regions in the space between the three classes, and shows to be underconfident in
some of the regions close to the means of the class clusters. Our method alleviates this issue, making
the network overall more calibrated both close and far away from the cluster centers.

We believe this to be a valuable analysis tool that can be further leveraged by other researchers to
better understand the calibration behaviour of their models and to design new algorithms.

J DETAILED ANALYSIS OF THE CORRUPTION EXPERIMENTS

In this section, we report detailed plots that break down the aggregated metric reported in Table 2 for
CIFAR-10-C and WideResNet28-10. Specifically, in Figures 9, 10 and 11 we show how the Accuracy,
ECE and AdaECE vary across all the corruption types and intensity values (horizontal axis) over 5
seeds. As it can be seen, in most cases our method achieves better Accuracy than any other method.
In terms of calibration, our method is sometimes outperformed by Mixup, but we observe that Mixup
exhibits lower Accuracy whenever this happens. As the intensity of the corruption increases, all the
metrics deteriorate for all the methods (as expected). However, our method still achieves superior
performance in most of the cases also in these circumstances.

To support our claim that better clustering behaviour induces better classification performance, we
report the Fisher criterion, ||SW ||F and ||SB ||F (we defined in Section 5.2.1) plots for all corruptions
and all intensity levels in Figures 12, 13 and 14.

The observed pattern is similar for all considered architectures and corrupted datasets, hence we
report these plots only for WideResNet28-10 on CIFAR-10-C.

28

Under review as a conference paper at ICLR 2022

Elastic corruption, Mix-MaxEnt Elastic corruption, DNN

Fog corruption, Mix-MaxEnt Fog corruption, DNN

Figure 8: Embedding Space Reliability Plots: a simple way to visualize the confidence/overconfidence
regions in the latent space for a specific test set. Red points represent histogram bins on which
the network is overconfident. Green points represent histogram bins on which the network is
underconfident. Yellow histogram bins can either represent well-calibrated histogram bins or areas
of the projection space that contain no embedding. It is clearly visible that Mix-MaxEnt produces
better-calibrated predictions by reducing the overconfidence far away from the centers of the clusters
and by increasing the confidence close to the cluster centers. On the other hand, DNN shows large
and sharp overconfidence/underconfidence regions.

29

Under review as a conference paper at ICLR 2022

Figure 9: (Part 1 of 3) Accuracy, ECE and AdaECE for all corruptions and intensity values of
CIFAR-10-C, architecture WideResNet28-10. A similar pattern can be observed in all other cases.

30

Under review as a conference paper at ICLR 2022

Figure 10: (Part 2 of 3) Accuracy, ECE and AdaECE for all corruptions and intensity values of
CIFAR-10-C, architecture WideResNet28-10.

31

Under review as a conference paper at ICLR 2022

Figure 11: (Part 3 of 3) Accuracy, ECE and AdaECE for all corruptions and intensity values of
CIFAR-10-C, architecture WideResNet28-10.

32

Under review as a conference paper at ICLR 2022

Figure 12: (Part 1 of 3) Fisher criterion, ||SW ||F and ||SB ||F for all corruptions and intensity values
of CIFAR-10-C, architecture WideResNet28-10. A similar pattern can be observed in all other cases.

33

Under review as a conference paper at ICLR 2022

Figure 13: (Part 2 of 3) Fisher criterion, ||SW ||F and ||SB ||F for all corruptions and intensity values
of CIFAR-10-C, architecture WideResNet28-10.

34

Under review as a conference paper at ICLR 2022

Figure 14: (Part 3 of 3) Fisher criterion, ||SW ||F and ||SB ||F for all corruptions and intensity values
of CIFAR-10-C, architecture WideResNet28-10.

35

