
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VERBOSITY ̸= VERACITY: DEMYSTIFY VERBOSITY
COMPENSATION BEHAVIOR OF LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Large Language Models (LLMs) have demonstrated their strong capa-
bilities in various tasks, recent work has revealed LLMs also exhibit undesirable
behaviors, such as hallucination and toxicity, limiting their reliability and broader
adoption. In this paper, we discover an understudied type of undesirable behavior
of LLMs, which we term Verbosity Compensation (VC) — similar to the hesita-
tion behavior of humans under uncertainty — where they respond with excessive
words such as repeating questions, introducing ambiguity, or providing excessive
enumeration. We present the first work that defines and analyzes Verbosity Com-
pensation, explores its causes, and proposes a simple mitigating approach. Our
experiments, conducted on five datasets of knowledge and reasoning-based QA
tasks with 14 newly developed LLMs, reveal three conclusions. 1) We reveal a
pervasive presence of VC across all models and all datasets. Notably, GPT-4 ex-
hibits a VC frequency of 50.40%. 2) We reveal the large performance gap between
verbose and concise responses, with a notable difference of 27.61% on the Qasper
dataset. We also demonstrate that this difference does not naturally diminish as
LLM capability increases. Both 1) and 2) highlight the urgent need to mitigate the
frequency of VC behavior and disentangle verbosity with veracity. We propose a
simple yet effective cascade algorithm that replaces the verbose responses with the
other model-generated responses. The results show that our approach effectively
alleviates the VC of the Mistral model from 63.81% to 16.16% on the Qasper
dataset. 3) We also find that verbose responses exhibit higher uncertainty across
all five datasets, suggesting a strong connection between verbosity and model
uncertainty. We will release our code and dataset upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks,
including reasoning (Hendrycks et al., 2021b; Cobbe et al., 2021), knowledge-based question an-
swering (Dasigi et al., 2021; Yang et al., 2018), and planning (Valmeekam et al., 2023; Zheng et al.,
2024). However, despite these impressive capabilities, numerous studies have highlighted that LLMs
struggle with undesirable behaviors, such as hallucination (Huang et al., 2023), toxicity (Wen et al.,
2023), and ethical bias (Tao et al., 2023), which can pose significant risks to users.

Recently, few studies have studied lengthy responses in LLMs, under chain-of-thought (Chiang &
Lee, 2024; Nayab et al., 2024) and machine translation (Briakou et al., 2024) settings. However,
these studies only analyze the lengthiness of the responses. Singhal et al. (2023) found the correlation
between length and RLHF. However, the mechanism of decoding lengthy responses remains unknown.

In this paper, we discover an understudied undesirable behavior of LLMs. We term it Verbosity
Compensation (VC) behavior. We define VC as generating responses that can be compressed without
information loss when prompted to respond concisely. Instead of focusing merely on the lengthy
issue, VC emphasizes the detailed behavior of generating compressible tokens with a low density of
useful information. We also find VC is closely connected with the uncertainty of LLMs, demystifying
the mechanism of the VC behavior, and improving the understanding of both VC and uncertainty.
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Question: What is the average length of the
sentences? Gold: 15.5

Average sentence length: 16.5 words

Question: What were their accuracy results on
the task? Gold:  97.32 %

 +7 % relative gain

First Token Distribution

Question:  What is the sample size of people
used to measure user satisfaction? Gold: 34,432

34,432

Uncertainty: Low
Performance: High

Verbosity Compensation: Repeating QuestionsConcise Response

Uncertainty: High
Performance: Low

Verbosity Compensation: Ambiguity

First Token DistributionFirst Token Distribution

Uncertainty: High
Performance: Low

Figure 1: An illustration of comparison between concise and verbose responses. In the first response,
LLM generates a concise answer, while in the second and third responses, LLM performs repeating,
and ambiguity, leading to a verbose response with low performance and high uncertainty.

Interestingly, VC is similar to the hesitation behavior of humans under uncertainty (Juola, 2008;
Brookshire & McNeil, 2014). Figure 1 shows a motivating example. In the first response, LLM
generates a concise answer that is correct with low uncertainty. In the second and third responses,
instead of generating an answer concisely, such as “16.5”, LLM repeats the question, and produces
ambiguity, leading to a VC response with low performance and high uncertainty. VC is harmful and
undesired for both users and servers. For the users, VC will lead to confusion and inefficiency (Fowler,
1927; Oppenheimer, 2006). When an LLM enumerates multiple answers, users are unclear which
one is correct. Besides, VC also leads to bias among users of different length preferences if verbose
answers attain higher/lower scores. For the servers, the verbosity leads to unnecessary higher costs
and higher latency by generating useless tokens.

To analyze the VC behavior systematically, we unify four long-context question-answering datasets
and a reasoning-based language understanding dataset. Targeting observing indirect or low density
of the information in the response rather than comparing the lengthiness of the result, we simply
pick the samples with less than three tokens to easily judge VC behavior by counting the tokens in
responses. We benchmark 14 newly proposed LLMs on proposed datasets. Although we find that
different models and datasets exhibit diverse distribution, we can categorize VC into five distinct
types, including repeating questions, enumerating, ambiguity, verbose details, and verbose format.
The result reveals a pervasive presence of verbosity compensation (VC) across all models and
all datasets. Notably, GPT-4 exhibits a VC frequency of 50.40%. Meanwhile, we found that verbose
responses exhibit significantly different recall from concise ones, with a notable drop of 27.61% on
the Qasper dataset, highlighting the urgent need to disentangle verbosity with veracity.

Next, we measure the uncertainty of model responses using perplexity and Laplacian scores for open
and closed-source models. We find that verbose responses exhibit higher uncertainty across all five
datasets, suggesting a strong connection between verbosity and model uncertainty. Finally, we
leverage the connection between performance and VC to develop a routing algorithm that obtains
significant improvements over the random selecting baseline and uncertainty-based routing. To
mitigate VC in LLMs, we propose a simple yet effective cascade algorithm that replaces verbose
responses with responses of larger LLMs. Experiments demonstrate the efficacy of the proposed
algorithm through tests on three model combinations: Gemma to Gemini, Mistral to GPT-4, and
Llama to Claude. The results show that our approach effectively alleviates the VC of the Mistral
model from 63.81% to 16.16% on the Qasper dataset. The insights above can inspire the development
of practical applications and effective mitigation strategies. Future work can mitigate the uncertainty
of the LLMs by alleviating VC behavior due to the proposed connections between them.

To summarize, our contribution is threefold:

• We define VC and propose a comprehensive benchmark to evaluate 14 LLMs, revealing
they suffer significantly from five types of VC.

• We conduct a rigorous analysis and connect VC to 1) model performance and 2) model
uncertainty, shedding light on future applications and mitigation.
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• We propose a simple but effective cascade approach to mitigate verbosity compensation in
LLMs, and our extensive experiments show it is highly effective.

2 RELATED WORK

Verbosity in LLM Responses Recently work has focused on the verbosity of LLM-generated con-
tent and its implications. Concise thoughts (Nayab et al., 2024) use prompts to constraint the length
of Chain-of-thought reasoning and generate more concise responses with better performance. Ivgi
et al. (2024) investigate the fallback behavior of LLM-generated responses when facing uncertainty.
They found that the more advanced an LLM is, its fallback behavior shifts from sequence repeti-
tions to degenerate text to hallucinations. Singhal et al. (2023) investigate the correlation between
generated length and reinforcement learning from human feedback(RLHF) techniques, discovering
that optimizing for response length is a significant factor behind RLHF. Saito et al. (2023) find that
LLMs sometimes prefer more verbose answers even if they have similar qualities. Zheng et al. (2023)
attack this by asking LLMs to evaluate longer and longer responses and observe if the performance
increases. By contrast, Huang et al. (2024) find that GPT-4 prefers short responses in faithfulness and
coverage when it comes to summarization. Unlike these works, we discover the connection between
performance and verbosity compensation behavior in both CoT and general QA settings and connect
verbosity to uncertainty. Besides, we use the cascading model to mitigate verbosity while they use
prompt engineering.

Uncertainty Quantification of LLMs With the thriving of Large Language Models (LLMs),
researchers have begun exploring uncertainty quantification in LLM responses (Geng et al., 2023).
For white-box models, researcher have focused on unsupervised methods including entropy (Malinin
& Gales, 2020), similarity (Fomicheva et al., 2020; Lin et al., 2022), semantic (Kuhn et al., 2023;
Duan et al., 2023), and logits (Kadavath et al., 2022; Chen et al., 2024), whereas for black models, the
uncertainty evaluation is based on multiple sampled output of the LLMs (Malinin & Gales, 2020; Lin
et al., 2023; Manakul et al., 2023) However, these works aim to improve the evaluation metrics for
LLM uncertainty while we focus on connecting uncertainty with verbosity compensation behavior.

Optimisation of LLM API Calls Recently, researchers have proposed to reduce the cost of
leveraging a pool of LLMs (Wang et al., 2024). Some of the works train a model to predict the
success rate of large or small LLMs (Ding et al., 2024) and route to the cheapest one that can
succeed (Šakota et al., 2024; Lu et al., 2024). Different from routing algorithms that only pick one
LLM, FragulGPT (Chen et al., 2023) use a cascade algorithm to visit LLMs from weak to strong and
use an LLM evaluator to judge if the response is good enough to use (Madaan et al., 2023). Ramı́rez
et al. (2024) leverage the uncertainty of the prediction as the evaluator to evaluate both cascading
and routing structures. Similarly, Gupta et al. (2024) inspect the bias of sequential uncertainty and
propose to use token-level uncertainty as criteria. Our work, by contrast, aims at mitigating verbosity
compensation which has not explored before, and our evaluator is the verbosity of the response in the
cascade algorithm.

3 VERBOSITY COMPENSATION

In this section, we first introduce the definition and quantification of verbosity compensation, and
then we propose the metrics for evaluating the correlation between verbosity compensation and
performance, uncertainty, and alleviating it with LLM routing.

3.1 VERBOSITY COMPENSATION OF LLMS

We first formalize the task as follows. A dataset D consists of multiple data samples where each
consists of a source text x, a query q, and a ground truth y. A large language model LLM(∗)
consumes the concatenation of x, q and an instruction I to produce the response r. We use |r| to
represent the tokens in r. For instruction I , we always ask LLM to generate as concisely as possible so
that the model is instructed not to generate verbose responses. We call these tasks Concise Question
Answering (CQA). Since the LLMs have maximum context window sizes Lc, we truncate the source
to accommodate diverse context limits (details in A.3).
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We define a response r to exhibit verbosity if and only if it can be further compressed with fewer tokens
while keeping the same meaning. To detect VC, we define verbosity compensation detector V (x, y, r)
(abbreviated as the verbosity detector). Using this detector, VC behavior for an LLM is defined as a
triple (x, y, r) where V (x, y, r) = 1, describing that the VC occurs in the response r. To quantify the
frequency of VC, we define it as the ratio of VC responses in each dataset

∑
(x,y)∈D V (x, y, r)/|D|.

It is worth noting that although V (x, y, r) contains ground truth answer y, y is usually used to provide
additional information and the verbosity detectors can work reference-free.

3.2 PERFORMANCE AND VERBOSITY COMPENSATION

A key bias of verbosity compensation is that the performance of the verbose responses is different
from the concise ones. To quantify this behavior, we propose two evaluation metrics. One is
performance difference (∆), defined as the average score of the concise responses minus the average
score of the verbose responses.

∆(D) =
∑

(x,y)∈D(1− V (x, y, r))× recall(y, r)∑
(x,y)∈D(1− V (x, y, r))

−
∑

(x,y)∈D V (x, y, r)× recall(y, r)∑
(x,y)∈D V (x, y, r)

Where r is the response generated by LLM and recall(y,r) is defined as |r ∩ y|/|y|. This metric
computes the difference between concise and verbose responses of a model over a dataset. If verbosity
compensation has no influence on the performance, the ∆ should be 0. An LLM should show zero ∆
because verbosity and performance are naturally independent and thus have no relation with each
other. However, if ∆ is positive, then it demonstrates that verbosity responses lead to the performance
drop for this model on the dataset, and vice versa. To remove the influence of the length difference
between verbose and concise responses, we use recall as the scoring function. Compared with
precision or F1 scores, scores are higher for verbose responses (or ∆ will be smaller) because verbose
responses usually contain more tokens than concise ones.

A main problem of ∆ is that the recall difference between verbose and concise responses is twisted by
the absolute performance of the LLMs. According to the definition, a dataset with lower performance
naturally has a smaller space for performance difference. An extreme case is that the performance is
zero on a dataset and the maximum ∆ is zero as well. This impedes the fair comparison between
datasets and models because they have diverse absolute performances. Thus, we propose relative
performance difference

δ(D) = ∆(D)/
∑

(x,y)∈D recall(y, r)∑
(x,y)∈D 1

δ can be seen as the ∆ if the absolute performance of the LLMs is scaled to the same number. We
use this to compare the influence of performance across datasets and LLMs.

3.3 VERBOSITY COMPENSATION AND UNCERTAINTY

Algorithm 1 Cascade Model Selection Algorithm.

Input: A list of LLMs M , A sample (x, y, q), instruc-
tion Iw, a verbosity detector V ().

Output: A response r.
order M by model capability from weak to strong
for LLM in M do

r ← LLM(x
⊕

q
⊕

Iw)
if V (x, y, r) is false then

break
end if

end for
return r

For humans, verbosity compensation usually
happens when we feel uncertain about the an-
swers to questions. Thus, for the LLMs, it is
natural to speculate verbosity compensation of
LLMs is also related to the uncertainty of the
model. To test this hypothesis, we evaluate the
uncertainty of the LLMs with the tool proposed
by Fadeeva et al. (2023). First, we split the
samples according to the detector V (length of
response in our setting). Then, we quantify the
uncertainty of each split. For open-sourced mod-
els, we use perplexity (Fomicheva et al., 2020)
for evaluation, and for the close-sourced model,
we use the sum of eigenvalues (Lin et al., 2023) of the graph laplacian as the metrics.
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3.4 ALLEVIATING VERBOSITY COMPENSATION WITH CASCADE MODEL SELECTION

Although it is difficult to ask a single LLM to generate a concise but correct answer, the verbosity
compensation behavior can be mitigated by a ensemble of multiple models. To this end, we propose a
Cascade Model Selection algorithm (CaSel) to increase the chance of getting concise responses. The
algorithm is simple and straightforward (Algorithm 1). Given a list of LLMs from weak to strong, we
first ask the weak model to generate a response with r token. At any time if we detect V (x, y, r) = 1,
we stop the generation of the current sample and redo the generation by a stronger model and repeat
the process. With the power of diverse LLM, the algorithm can finally obtain a response with less
verbosity and better performance.

4 EXPERIMENT SETUP

4.1 DATASET CONSTRUCTION

The principles of constructing datasets are twofold. First, the quality of samples needs to be high. The
questions are picked from existing human-annotated datasets, with clear answers. We also filter out
Yes/No, True/False, or multi-choice questions to ensure the answer cannot be simply chosen from a
set of candidate answers. Second, the dataset should be challenging enough for LLMs with moderate
performance levels. Otherwise, if the performance is close to 100 percent, the model is too certain
about the answer and the phenomena is difficult to observe. Noting that most of the benchmark
datasets LLMs already obtain performance higher than 90%, we craft two types of datasets to pose
challenges to the model, including knowledge-based and reasoning-based question answering.

Knowledge-based Question Answering. This category contains the QA datasets which aim at
extracting knowledge from the given source text which is long (Bai et al., 2023) or in particular
position (Liu et al., 2024). Firstly, we use long-context question-answering tasks whose difficulty
resides in picking out useful information across long context and gathering them to answer the
question. The distractor paragraphs will also incorporate the difficulty of recognizing the needed
information. Specifically, we collect the three long-form question-answering datasets as our evaluation
benchmark for long-context QA. These datasets display three levels of lengths, including short
(Qasper), medium (LongBench), and long (NarrativeQA). Qasper (Dasigi et al., 2021) is a question-
answering dataset over NLP papers. It also contains extractive, abstractive, yes/no, and unanswerable
questions. The average length of the source text is 4119.85 words. We also incorporate three datasets
from LongBench (Bai et al., 2023) to form a new dataset. We directly name it LongBench. It include
HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022), and 2WikiMultihopQA (Ho et al.,
2020). The average length of the source text is 9522.36 words. NarrativeQA (Kočiský et al., 2018)
is a QA dataset over entire books or movie transcripts. The answers can be abstract or extractive,
yes/no, and unanswerable, and the average length is 70340.45 words.

LLMs are proven to show difficulties in understanding the information in the middle of the context (Liu
et al., 2024), known as lost-in-the-middle. We pick the most challenging split of the dataset in the
original work, where the gold answer is in the middle of 30 documents for a QA pair in the Natural
Question dataset. We call this NaturalQuestions 30 (NQ30). dataset. The average length of input of
NQ30 is 3602.13. More details for dataset construction can be found in Appendix A.1.

Reasoning-based Question Answering. We modify the multi-choice answering samples in
MMLU (Hendrycks et al., 2021b;a) so that the options work as hints to the question. In this
way, the model needs to generate the answer based on the hint rather than picking out the correct
option, increasing the difficulty because of the flexibility of open-ended question answers.

For all these five datasets, to avoid the influence of gold length y and the easiness of measuring the
verbosity, we only pick the samples where the gold answer contains less than n words. We manually
inspect the samples and find that when n = 4, the answers are concise without descriptive context,
and any answer longer than gold length is verbose. Thus, we set n = 4 for all datasets.

For each dataset, if the number of samples is longer than 500, we randomly pick 500 samples from
them. Otherwise, we keep the entire dataset. Finally, there are 449 samples in LongBench, 410
samples in NQ30, and 500 samples in Qasper, NarrativeQA, and MMLU.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Open-source Models

(b) Closed-source Models

Figure 2: Frequency of Verbosity Compensation. All models exhibit intensive verbosity compensation
behavior. Among them, llama3-70b has the lowest frequency on average.

Metrics. We report recall when measuring verbosity compensation behavior and use F1 score for
evaluation of the cascade model performance (Bai et al., 2023).

4.2 MODELS

We use 14 LLMs in total across all experiments including both open-source and closed-source models
in 6 families: GPT, Claude, Gemini, Llama, Gemma, Mistral. Details can be found in Appendix A.2.
For each model, in addition to the prompt that introduces the task, we also ask them to “generate as
concisely as possible, use a single phrase if possible”. Since we constraint that all samples of the
datasets contain only one to three tokens, we define V (x, y, r) as |r| > 3, meaning the number of the
token in response r is more than three. Also, we select 30 samples from each dataset and conduct
human inspections, finding that any response that is longer can be regarded as verbose.

5 RESULT AND ANALAYSIS

In this section, we analyze verbosity compensation and its connection with performance and uncer-
tainty. Then, we evaluate the proposed cascade algorithm.

5.1 VERBOSITY COMPENSATION

Frequency of Verbosity Compensation Behaviors. Figure 2 shows the frequency of each model
on each dataset. As shown in the table, all the models display verbosity compensation behavior
on all datasets. On average, 74.19% of the responses are verbose for mistral-7b. The best model
is llama3-70b which only contains 13.62% verbose responses. Furthermore, the frequency of VC
averaged on seven open-source models is 39.80% which is significantly higher than closed-source
models 28.96%.

Five Types of Verbosity Compensation Behaviors. After showing verbosity happens frequently
in LLMs, we further conduct a human annotation to inspect verbose response patterns and classify
them into five types. Specifically, we choose six combinations of model and dataset (Table 1) and
pick out the samples with verbose responses that are not fully correct (recall ̸= 1, V (x, y, r) = 1).
By checking all these samples, we classify verbosity compensation behavior into five types (Table 1):
Ambiguity indicates not answering precisely; repeating question indicates repeating the tokens in the
question or providing unrelated information; enumerating shows answering multiple answers in a row
trying to cover the correct answer; verbose detail/format means generating more detailed explanations

6
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Figure 3: Human annotation of five types of verbosity compensation behavior on five datasets.
Different models and datasets show diverse patterns of verbosity types.

Table 1: Examples of five verbosity compensation types.

Dataset Question Gold Model Prediction Type

Qasper What is the size of the dataset? 3029 It is very large Ambiguty
Longbench Which genus has more species, Dracula or Pistacia? Dracula Pistacia has more species Repeat
NarrativeQA What costumes are the teenagers forced to wear? Bunny costumes Pig , donkey , rabbit Enumberate
NQ30 who ran the fastest 40 yard dash in the nfl Jakeem Grant Chris Johnson 4.24 seconds Detail
NarrativeQA What types of activities occur in ...? alleged phenomena “ Disappearances folklore ” Format

Table 2: Overall recall comparison between verbose and concise responses. Bold/Underline indicate
the largest positive/negative performance gap between verbose and concise responses. The verbose
responses obtain a significantly different performance than the concise ones, demonstrating the strong
relationship between verbosity and performance.

Short (Qasper) Medium (LongBench) Long (NarrativeQA)

Lc concise verbose ∆ Avg. concise verbose ∆ Avg. concise verbose ∆ Avg.

mistral-7b 8k 66.29 42.85 + 23.44 51.33 47.78 31.49 +16.29 38.18 26.96 26.09 + 0.88 25.70
mixtral-8x7b 8k 69.60 48.20 + 21.40 55.40 39.79 42.80 -3.01 39.93 37.99 25.20 + 12.79 30.60
llama3-8b 8k 58.99 54.60 + 4.39 55.98 39.71 28.27 +11.44 37.75 33.11 15.20 + 17.91 27.20
llama3-70b 8k 55.79 28.19 + 27.61 51.97 49.46 32.64 +16.82 47.77 37.91 25.00 + 12.91 34.40
gemma-7b 4k 50.70 33.69 + 17.01 43.13 33.28 15.17 +18.11 25.84 15.82 3.40 + 12.42 11.87
gemma-2-27b 8k 61.89 40.76 + 21.12 56.82 52.01 29.69 +22.31 42.91 43.88 22.43 + 21.45 32.60
gemma-2-9b 8k 61.94 49.96 + 11.98 56.38 47.48 41.24 +6.24 45.29 36.61 21.84 + 14.77 28.90

claude-3-haiku 200k 70.70 56.10 + 14.60 61.77 48.86 58.01 -9.15 53.26 55.67 36.25 + 19.42 47.90
claude-3.5-sonnet 200k 63.22 37.05 + 26.17 59.82 59.43 51.97 +7.47 56.76 55.96 56.12 - 0.16 56.00
gemini-flash-1.5 1m 64.73 41.09 + 23.64 56.79 59.15 56.06 +3.09 58.24 36.05 45.48 - 9.43 39.80
gemini-pro-1.0 32k 58.70 35.05 + 23.65 53.87 47.77 43.07 +4.70 46.29 24.31 29.41 - 5.10 25.70
gemini-pro-1.5 2m 62.37 45.16 + 17.20 58.51 62.79 54.07 +8.72 61.12 37.32 39.29 - 1.96 37.88
gpt-3.5-turbo 16k 63.50 37.27 + 26.24 56.68 51.41 42.51 +8.90 49.11 41.34 24.85 + 16.48 36.00
gpt-4o 128k 70.22 43.90 + 26.31 61.85 68.30 59.13 +9.16 66.37 63.51 44.64 + 18.87 54.00

Avg. of Models 62.76 42.42 + 20.34 55.74 50.52 41.87 +8.65 47.77 39.03 29.66 + 9.37 34.90

or format symbols. Then, we annotate the verbosity compensation behaviors and obtain statistics
in diverse settings. As shown in Figure 3, the ratio distribution of five types of behavior varies
across different models and datasets. Furthermore, the main type of Gemini-1.5-flash is repeating
questions on the MMLU dataset (67.86%), and enumerating on the Qasper dataset (47.62%). In
contrast, llama-3-70b mainly produces verbose details on the Qasper dataset (32.87%). This shows
that different datasets or models have a significantly different distribution of the main type of verbosity
behavior.

5.2 VERBOSITY COMPENSATION AND PERFORMANCE

Verbose and concise responses exhibit significantly different performance. As shown in Table 2
and Table 3, the performance difference (∆ ̸= 0) exists on most of the datasets and tasks, including
both knowledge/reasoning-based tasks. This demonstrates that when the model performs verbosity
compensation, the performance also change significantly. Among them, most of the datasets and
models show lower performance on verbose samples (marked in red). For instance, llama3-70b shows
27.61% performance gap on Qasper dataset. As shown in the last column of Table 3, gemini-pro-1.0
exhibits the lowest ∆ on average (7.92), and gemma-2-27b exhibits the highest (19.15). However,
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Table 3: Overall recall comparison between verbose and concise responses. Bold/Underline indicate
the largest positive/negative performance gap between verbose and concise responses. Similar to
Table 2, the verbose responses obtain a significantly different performance than the concise ones.

Lost-in-the-Middle (NQ30) MMLU (Mixed) All

Lc concise verbose ∆ Avg. concise verbose ∆ Avg. ∆

mistral-7b 8k 50.76 39.27 + 11.49 45.41 66.90 45.76 + 21.14 54.77 14.65
mixtral-8x7b 8k 63.74 51.05 + 12.69 55.32 63.74 51.05 + 12.69 55.32 11.31
llama3-8b 8k 50.32 40.18 + 10.14 47.97 58.40 44.82 + 13.57 55.60 11.49
llama3-70b 8k 51.27 47.92 + 3.36 51.08 61.64 55.06 + 6.58 60.90 13.46
gemma-7b 4k 41.24 29.94 + 11.30 39.61 45.60 44.05 + 1.56 45.23 12.08
gemma-2-27b 8k 57.27 43.85 + 13.42 53.90 77.39 59.97 + 17.42 68.85 19.15
gemma-2-9b 8k 56.86 46.10 + 10.76 53.94 68.51 44.49 + 24.02 63.13 13.55

claude-3-haiku 200k 60.43 45.12 + 15.31 52.40 65.64 65.50 + 0.14 65.60 8.06
claude-3.5-sonnet 200k 55.57 59.03 - 3.45 56.59 72.96 56.69 + 16.27 68.67 9.26
gemini-flash-1.5 1m 54.50 48.03 + 6.47 52.76 65.95 45.11 + 20.85 60.70 8.92
gemini-pro-1.0 32k 50.92 45.87 + 5.05 49.43 57.42 46.10 + 11.31 53.93 7.92
gemini-pro-1.5 2m 55.10 43.54 + 11.56 53.72 61.99 55.07 + 6.91 61.35 8.49
gpt-3.5-turbo 16k 53.21 41.33 + 11.88 50.37 73.04 60.69 + 12.35 71.73 15.17
gpt-4o 128k 62.73 52.26 + 10.47 59.72 81.25 68.44 + 12.81 79.33 15.52

Avg 54.57 45.25 + 9.32 51.59 65.75 53.06 + 12.69 61.79 12.07

all models cannot disentangle performance with verbosity (∆ = 0), highlighting the urgent need to
disentangle verbosity with veracity.

Table 4: Correlation between model ca-
pability and δ.

Dataset ELO Log Len

Qasper 0.09 -0.26
LongBench -0.34 -0.53
NarrativeQA -0.33 -0.61

MMLU -0.05 0.13
NQ14 0.06 0.02

Correlation with Model Capability. We investigate the
influence of model capability on the performance differ-
ence between verbose and concise responses δ. We explore
two types of model capabilities. One is general capability,
represented by the arena score of ChatBot Arena (Chi-
ang et al., 2024). We leverage the scores on the leader-
board1(ELO) as the measurement of general capability.
The other one is the capability of consuming lengthy input.
For this, we investigate the influence of the size of the
window context. We define the log context window size
as log(Lc/1000) where Lc is the context window size.

Table 4 shows the correlation on five datasets. Each num-
ber in the table is computed based on the 14 data points
of 14 LLMs on the corresponding dataset. As shown in the table, for Qasper, LongBench, and
NarrativeQA dataset, a strong negative correlation is observed. This indicates that when modeling
capability increases, the δ decreases accordingly. In contrast, for MMLU and NQ30 datasets, no
obvious correlation is observed. The results show that training a stronger model will help with
avoiding the influence of VC on performance for long context questions answering tasks. However, it
is not helpful for MMLU and NQ30 datasets. In other words, simply training a stronger model or
extending context window cannot successfully disentangle VC and performance.

Verbosity compensation behavior of Chain-of-Thought reasoning. We further conduct an ex-
periment to demonstrate VC also happens in Chain-of-Thought (CoT) settings. To this end, we pick
100 samples from two datasets including MMLU and Qasper, and instruct the models to generate
a Chain-of-thought prompt. Also, we ask the model to generate as concisely as possibility where
each step contains less than 10 tokens. If any step violates this constraint, we regard this response as
verbose. Thus, the verbosity evaluator V is set as 1

(∨
s∈S |s| > 10

)
. Based on the definition, we do

not restrict the number of steps of Chain-of-Thought reasoning, a short response can be verbose as
well if the length of a single step is too long.

Table 5 shows the comparison between the concise and verbose responses of two models on two
datasets. All settings display significant ∆. For gpt-turbo-3.5, the recall gap can be as large as 24.54%
on MMLU dataset. This shows that verbosity compensation can also happen in generating longer
responses, such as Chain-of-Thought reasoning samples.

1https://lmarena.ai/
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Table 5: Recall difference of Chain-of-Thought generation. Both models perform worse when they
generate verbose answers, demonstrating VC also happens on CoT settings.

Qasper MMLU

Lc concise verbose ∆ Avg. concise verbose ∆ Avg.

gemma-2-9b 8k 35.82 22.73 13.09 30.12 60.63 50.00 10.62 58.42
gpt-3.5-turbo 16k 69.05 47.81 21.24 61.06 80.95 56.41 24.54 68.32

mistral-7b mixtral-8x7B llama-3-8b gpt-turbo-3.5

Figure 4: Uncentainty quantification of three open-sourced and one close-sourced models. The scores
are averaged across all five datasets. The uncertainty increases with the increasing length of the
generated output for all models.

Table 6: Frequency of Verbosity Compensation using diverse cascade models. A → B indicates
combining two models using a cascade algorithm. All settings greatly reduce the frequency of VC
compared with both strong and weak models.

Qasper LongB NQA NQ30 MMLU Avg.

mistral-7b 63.81 58.95 41.40 46.59 57.40 74.19
gpt-4o 31.79 20.99 50.40 28.78 15.00 29.39
mistral→ gpt 16.60 14.48 21.00 18.54 10.20 16.16
llama3-8b 68.48 17.16 32.98 23.17 20.60 32.48
claude-3.5-sonnet 13.00 35.86 27.80 29.27 26.40 26.47
lllama→ claude 8.20 11.80 14.60 11.71 7.80 10.82
gemma-2-9b 46.40 35.19 52.20 27.07 22.40 36.65
gemini-pro-1.5 22.40 19.15 28.51 11.95 9.20 18.24
gemma→ gemini 15.80 11.14 18.20 8.29 4.60 11.61

5.3 UNCERTAINTY AND VERBOSITY COMPENSATION

Uncertainty Evaluation. The results are shown in Figure 4. As shown in the figure, all four models
show larger uncertainty when the length of the responses increases. Especially, when the length
is around three tokens, the uncertainty increases shapely. These results demonstrate that 1) when
LLMs generate longer responses, they are more uncertain about the sample, and 2) when verbosity
compensation happens (V (x, y, r) = 1), LLMs usually are more uncertain about the sample than
generating concise results.

Uncertainty and Length of Response r. Next, we further explore the reason why the uncertainty
and verbosity are connected. To achieve this, we conduct a qualitative study and plot the distribution
of the softmax score of the first tokens of confident and uncertain responses in Figure 1. As can be
seen, for the uncertain response, the probability distribution is more flattened, and the tokens carrying
much information do not stand out (ranked high) among the candidates. The model selects the one
without critical information but is safer to generate, repeating the question or being off-topic and
verbose. Besides, these tokens usually cannot end a sentence grammatically, such as “Avergae” or
“+”, the model needs to continue generations making the response longer.

5.4 CASCADE MODEL SELECTION FOR MITIGATING VERBOSITY COMPENSATION

Reducing Frequency of Verbosity Compensation. Table 6 shows the comparison of using the
proposed algorithm. As shown in the table, comparing the cascading algorithm and individual models,
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Figure 5: Routing performance of diverse models and datasets. X-axis (unit 10−3 dollars) is the
average cost of running one sample. The Y-axis is the F-1 score averaged across the samples on
one dataset. Routing performance (green line) is higher than the linear combination of the baseline
models (blue line) with all datasets and models.

the frequency of VC decreases greatly for all settings. For instance, Mistral→ GPT decreases the
frequency from 63.81% (Mistral) and 31.79% (GPT) to 16.60%. It worth noting that, applying the
algorithm greatly reduce the frequency of VC on both weak model and strong models.

Using Cascade Model Selection for LLM Routing. Model routing aims to send the sample to
the proper model among a diverse collection of LLMs to generate the result so that under the same
amount of API cost, the performance is better than other baselines, such as randomly choosing which
model to use. We develop an LLM routing algorithm by modifying the proposed model selection
algorithm. Different from model selection, we define two numbers pc and pv as the possibility of
selecting a stronger model for concise and verbose responses. In this way, the cost is controllable to
fulfill the diverse budget needs of users. Details are in Algorithm 3. Figure 5 shows the performance
of the different datasets with three routing settings: Mistral 7b→ GPT-4o, Gemma2 9b→ Gemini-
1.5-pro, and LLaMA-3-8b→ Claude-3.5-sonnet. We run each pv, pc setting ten times and compute
the average to obtain the green lines and we run ten times that we randomly choose a weaker or
stronger model with different probability to draw the blue line serving as the baseline. Specifically,
for the stars in each figure, pv = 1 and pc = 0, degenerate to the proposed model selection algorithm.
As shown, the performance of routing is better than the baselines for all models, datasets, and
settings. Furthermore, the routing results from Gemma-2 to Gemini-1.5 are better than the individual
performance of both models. This indicates that the routing algorithm improves the performance for
all settings and can surpass the performance of stronger models with less cost.

6 CONCLUSION

In this paper, we systematically analyze the verbosity compensation behavior of LLM responses. We
first classify verbosity into five types and find all the models display high frequency on verbosity
responses. We further explore the reason behind and find uncertainty highly likely connected to
the phenomenon. We also propose a cascade model selection algorithm to mitigate it. Intensive
experiments show that LLMs suffer from verbosity compensation and the proposed simple approach
mitigates the verbosity compensation effectively.
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REPRODUCIBILITY STATEMENT

We will provide a GitHub repository that includes the dataset of five datasets, code for running 14
LLMs, and the predicted results for the use of studies. We also include the prompt, settings, and
implementation details in appendix for the reproduction. The tools for evaluating uncertainty is
open-sourced, thus can be used freely as well.
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A IMPLEMENTATION DETAILS

A.1 DETAILS OF DATASET CONSTRUCTION

Firstly, we use long-context question-answering tasks whose difficulty resides in picking out useful
information across long context and gathering them to answer the question. The distractor paragraphs
will also incorporate the difficulty of recognizing the needed information. Qasper (short) (Dasigi
et al., 2021) is a question answering dataset over NLP papers. It also contains extractive, abstractive,
yes/no, and unanswerable questions. The average length of the source text is 4119.85 words. We
also incorporate three datasets from LongBench (medium) (Bai et al., 2023) to form a new datasets.
HotpotQA (Yang et al., 2018) is a Wikipedia-based multi-hop QA dataset. It requires reasoning
across multiple passages to find the answer. MuSiQue (Trivedi et al., 2022) is a multi-hop QA dataset.
It is much more difficult than HotpotQA as it contains more hops in one sample, unanswerable
questions, and harder distracting content. 2WikiMultihopQA (Ho et al., 2020) It consists of up to
5-hop questions that are synthesized through manually designed templates. The average length of the
source text is 9522.36 words. Different from the previous datasets, NarrativeQA (long) (Kočiský
et al., 2018) is a QA dataset over entire books or movie transcripts. The answers can be abstract
or extractive, yes/no, and unanswerable, and the average length is 70340.45 words. Both Qasper
and NarrativeQA datasets in our benchmark are extracted from SCROLLS dataset (Shaham et al.,
2022). NaturalQuestions 30 (NQ30). LLMs are proven to show difficulties in understanding the
information in the middle of the context (Liu et al., 2024), known as lost-in-the-middle. We pick the
most challenging split of the dataset in the original work, where the gold answer is in the middle of
30 documents for a QA pair in the Natural Question dataset. We call this NQ30 dataset. The average
length of input of NQ30 is 3602.13.

A.2 DETAILS OF LARGE LANGUAGE MODELS

We include 2 models from Mistral AI2, among them, mistral-7b is its first proposed dense model while
mixtral-8x7b enhances the 7b model by incorporating a sparse mixture of experts. Gemini (Team
et al., 2023; Reid et al., 2024) is a family of LLMs proposed by Google from which three versions
of LLMs are selected, including gemini-pro-1.0, gemini-flash-1.5, and gemini-flash-1.5. Built
from the research and technology used to create Gemini models, Gemma (Team et al., 2024a;b) is a
family of lightweight, open models. We include gemma-7b, gemma-2-9b, and gemma-2-27b for
experiments. LlaMA 3 (Dubey et al., 2024) is a family of LLMs with dense Transformer structure.
We include llama-3-8b and llama-3-70b for experiments. Claude (Anthropic, 2024) is a family
of large language models developed by Anthropic. We include two models in ascending order of
capability: claude-3-haiku, claude-3.5-sonnet. We also include two versions of GPT models3,
including gpt-3.5-turbo and gpt-4o in experiments.

During experiments, we use the default parameters of all 14 LLMs. We run gemma, llama, and
mistral models from Huggingface4 on 8 A100 GPUs. For gpt, claude, and gemini models, we run
with the official API from the official website. For all datasets, we use the same prompt shown in
Table 7. We design a reinforced prompt to ensure LLM understands concise responses are required.
Thus, we reinforce the prompt by repetition, and explanation, especially for the weaker models,
making a fairer comparison by avoiding failing to understand instructions. We evaluate the robustness
of VC against diverse prompts in Apendix C.3.

A.3 INPUT CHUNKING ALGORITHM

Before we feed the input into the model, we first chunk the source so that the model can consume
it. As shown in Algorithm 2, we first split the source into sentences and feed as many sentences as
possible to LLMs.

2https://docs.mistral.ai/getting-started/models/
3https://openai.com/
4https://huggingface.co/
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Table 7: Prompt of all models on all datasets.

You are given an article and a question.
Answer the question as concisely as you can, using a single phrase if possible. Article:
{Source Documents}
Question:
{Question q}
Using a single phrase rather than a sentence. Please answer in 3 words.
Do not repeat any question-related information or explain the answer.
The answer is:

Table 8: The full name and the cost of tokens for each model. The unit of input/output cost is dollar
per one million tokens.

Input Cost Output Cost Model Full Name

mistral-7b 0.17 0.2 mistralai/Mistral-7B-Instruct-v0.3
mixtral-8x7b 0.24 0.24 mistralai/Mixtral-8x7B-Instruct-v0.1
llama3-8b 0.05 0.08 meta-llama/Meta-Llama-3-8B-Instruct
llama3-70b 0.59 0.79 meta-llama/Meta-Llama-3-70B-Instruct
gemma-7b 0.07 0.07 google/gemma-7b-it
gemma-2-27b 0.8 0.8 googlegemma-2-27b-it
gemma-2-9b 0.2 0.2 google/gemma-2-9b-it
claude-3-haiku 0.25 1.25 claude-3-haiku-20240307
claude-3.5-sonnet 3 15 claude-3-5-sonnet-20240620
gemini-flash-1.5 0.35 1.05 gemini-1.5-flash
gemini-pro-1.0 0.5 1.5 gemini-1.0-pro
gemini-pro-1.5 3.5 10.5 gemini-1.5-pro
gpt-3.5-turbo 0.5 1.5 gpt-3.5-turbo-0125
gpt-4o 5 15 gpt-4o-2024-05-13

Algorithm 2 Input Chunking Algorithm.

Input: Source input x, query q, LLM window size k, instruction Iw.
Output: A chunk c that LLM can consume.

Split the source x into sentences {s1, s2, · · · , sn}
Initialize c← empty string
Initialize length budgets B ← k − count token(q)− count token(Iw).
for s in s1, s2, · · · , sn do

if count token(c) + count token(s) ¿ B then
break

end if
c← c

⊕
s //

⊕
indicates concatenating two strings with a blank.

end for
return c

A.4 LLM ROUTING ALGORITHM

Algorithm 3 shows the pseudo-code of LLM Routing. Different from the cascade algorithm for
mitigating VC, this algorithm contains two probabilities that are used to control the budget of a single
call. The algorithm mimics the real cost by counting tokens in the input and output, timing by the
cost per token. We collect the cost of each model from website5 and use it collected cost to ensure the
fairness of comparison. The full name of all models and the price we use in LLM routing algorithm
is shown in Table 8.

5https://artificialanalysis.ai/models
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Table 9: Frequency of Verbosity Compensation. All models have verbosity compensation behavior.
Among them, llama3-70b has the lowest frequency on average.

L Qasper LongB NQA NQ30 MMLU Avg.

mistral-7b 8k 63.81 58.95 14.20 46.59 57.40 74.19
mixtral-8x7b 8k 66.37 4.38 57.80 66.40 66.40 52.27
llama3-8b 8k 68.48 17.16 32.98 23.17 20.60 32.48
llama3-70b 8k 13.84 10.03 27.20 5.85 11.20 13.62
gemma-7b 4k 44.46 41.10 31.82 14.39 23.80 31.11
gemma-2-27b 8k 24.00 40.76 52.60 25.12 49.00 38.30
gemma-2-9b 8k 46.40 35.19 52.20 27.07 22.40 36.65

claude-3-haiku 200k 61.20 48.11 40.00 52.44 28.60 46.07
claude-3.5-sonnet 200k 13.00 35.86 27.80 29.27 26.40 26.47
gemini-flash-1.5 1m 33.60 29.40 39.80 26.83 25.20 30.97
gemini-pro-1.0 32k 20.40 31.42 27.20 29.51 30.80 27.87
gemini-pro-1.5 2m 22.40 19.15 28.51 11.95 9.20 18.24
gpt-3.5-turbo 16k 26.02 25.81 32.38 23.90 10.60 23.74
gpt-4o 128k 31.79 20.99 50.40 28.78 15.00 29.39
Avg 34.53 31.71 44.11 31.98 31.14 34.69

Algorithm 3 Cascade Model Selection Algorithm for LLM Routing.

Input: A list of LLMs M , A sample (x, y, q), instruction Iw, a verbosity detector V (), possibility for routing
on concise responses pc, possibility for routing on verbose responses pv .

Output: A response r.
order M by model capability from weak to strong
Set pc to 1 if pv ̸= 1 {We ensure routing on verbose responses first.}
for LLM in M do

r ← LLM(x
⊕

q
⊕

Iw)
if V (x, y, r) is false then

prob← A random number from 0 to 1
if prob ≥ pc then

break {Do not route for concise responses with 1− pc probability}
end if

else
prob← A random number from 0 to 1
if prob ≥ pv then

break {Do not route for verbose responses with 1− pv probability}
end if

end if
end for
return r

B DETAILS OF EXPERIMENTAL RESULTS

B.1 FREQUENCY OF VERBOSITY COMPENSATION

Table 9 shows the detail numbers of frequency of verbosity compensation behavior.

B.2 UNCERTAINTY VERSES LENGTH

Table 10 shows some examples of verbose and concise responses and the distribution of the first
token.

B.3 MODEL CAPABILITY AND RELATIVE DELTA

Figure 6 plots the Correlation between model window size and δ, visualizing the negative correlation
score in Table 4. The models with the stronger capability to consume lengthy input obtain lower
relative delta, indicating verbosity compensation is better avoided. Also, the decreasing speed of
the tendency line ranks as follows: Long (NarrativeQA), Medium (LongBench), and Short (Qasper).
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Table 10: Distribution of the first token generated by llama-3-8b on Qasper dataset. When generating
the verbose responses, the model is uncertain about the gold answer. Thus, starting with some
commonly seen tokens. In contrast, the concise responses directly start with gold answers with high
confidence.

Three Examples of Verbose Responses

Question What is the average length of the sentences?
Gold 15.5
Vanilla Average sentence length: 16.5 words
Distribution [[’Average’, 0.47828879952430725], [’”’, 0.29009681940078735], [’15’, 0.17595264315605164], [’9’,

0.034647125750780106], [’average’, 0.021014543250203133]]

Question What were their accuracy results on the task?
Gold 97.32 %
Vanilla +7 % relative gain
Distribution [[’+’, 0.39178282022476196], [’”’, 0.20970624685287476], [’7’, 0.1850651204586029], [’96’,

0.1850651204586029], [’97’, 0.028380654752254486]]

Question What’s the size of the previous largest OpenIE dataset?
Gold 3,200 sentences
Vanilla “ 13 times larger ”
Distribution [[’”’, 0.5911211967468262], [’13’, 0.3585331439971924], [’”L’, 0.02022705413401127], [’Three’,

0.01785031333565712], [’3’, 0.012268329039216042]]

Three Examples of Concise Responses

Question What is the sample size of people used to measure user satisfaction?
Gold 34,432
Vanilla 34,432 users
Distribution [[’34’, 0.9797704219818115], [’”’, 0.008476674556732178], [’Thirty’, 0.006601640954613686], [’To-

tal’, 0.004004097543656826], [’Cor’, 0.0011471931356936693]]

Question Which news organisations are the headlines sourced from?
Gold BBC and CNN
Vanilla BBC and CNN
Distribution [[’BBC’, 0.9247239232063293], [’”’, 0.04062953218817711], [’”B’, 0.027924243360757828], [’B’,

0.003779135411605239], [’”C’, 0.0029431935399770737]]

Question which datasets did they experiment with?
Gold Europarl MultiUN
Vanilla Europarl MultiUN
Distribution [[’Eu’, 0.9808066487312317], [’Euro’, 0.009615491144359112], [’ Europ’, 0.0074885510839521885],

[’”’, 0.0014745831722393632], [’European’, 0.000614697695709765]]

This means that the effectiveness of the length capability on disentangling verbosity and performance
is more significant when the task has a longer input.

B.4 TRUNCATION PRINCIPLE

We conducted an experiment on Qasper dataset with llama-3-8b and found that When the response is
verbose, only keep the first 4 tokens, then stop the generation. The recall only drops from 44.93% to
43.13%. In other words, if the gold answer is not in the first 4 tokens, then the model is not likely to
generate it in the rest of the tokens.

C SUPPLEMENTARY EXPERIMENTS

C.1 COMPARISON WITH UNCERTAINTY-BASED ROUTING ALGORITHM

We further conduct an analysis to compare the performance of the proposed routing algorithm with the
uncertainty-based routing algorithm in addition to the random baselines. For the uncertainty-based
routing algorithm, we first use perplexity as the metric to rank the uncertainty of the responses
generated by a small model. We select top K% uncertain samples and replace them with the responses
generated by the larger model. We select K from a set of {0, 10, 20, · · · , 100} and connect them to
draw the curve in Figure 7. As can be seen, although the uncertainty-based routing algorithm can
obtain a better performance than the random baseline, it is still worse than the proposed algorithm
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Figure 6: Correlation between model window size and δ. Results show that the model with a longer
context window shows less δ on Qasper, LongBench, and NarrativeQA dataset.
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Figure 7: Routing performance of Mistral-7b to GPT-4o. X-axis (unit 10−3 dollars) is the average
cost of running one sample. The Y-axis is the F-1 score averaged across the samples on one
dataset. Routing performance (green line) is higher than the random baseline models (blue line) and
uncertainty-based baseline (purple .

by comparing the AUC of the figure (Area Under the Curve), demonstrating the effectiveness of the
proposed algorithm.
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C.2 VERBOSITY COMPENSATION IN TRIP PLANNING DATASET

To further demonstrate that VC generally occurs in diverse open-ended tasks with diverse response
lengths, we run a trip planning dataset from the Natural-Plan benchmark Zheng et al. (2024) using
two Llama-3 models and test VC frequency and performance gaps. The task is to find the itinerary
regarding the order of visiting N cities. We randomly select 500 data points from the dataset to
form our dataset. For the prompt design, we follow the zero-shot prompt in the original paper and
add one sentence “Answer as concisely as possible, each step contains less than 10 words”. For the
verbosity detector follows our CoT setting: V (x, y, r) = 1

(∨
s∈S |s| > 10

)
. The results are shown

in Table 11. VC also occurs frequently in trip planning, demonstrating the general presence of VC in
both short- and long-response open-ended tasks.

Table 11: VC frequency and performance gaps on trip planning dataset.

concise verbose ∆ Avg. VC Freq.

llama-3-8b 15.18 3.62 11.56 9.22 51.49
llama-3-70b 21.81 4.87 16.94 19.63 12.87

C.3 ROBUSTNESS OF VERBOSITY COMPENSATION AGAINST PROMPT CHOICES

As shown in Table 7 We design a reinforced prompt to ensure LLM understands concise responses
are required. Thus, we reinforce the prompt by repetition, explanation, etc., especially for the weaker
models, making a fairer comparison by avoiding failing to understand instructions.

We further experiment with multiple possible prompts to show VC is not overfitting to certain prompt
settings. We aim to show that as long as the model knows to generate as concise as possible, we can
observe significant VC behaviors.

Table 12 shows the performance gap on MMLU and Qasper datasets using Llama-3-8b with different
prompt designs. As can be seen, compared with the original prompt, the variation of the prompt can
also observe a significant ∆ over both datasets. This demonstrates the robustness of VC against the
choice of prompts. It is worth noting that, “Answer as concise as possible” yields the highest scores
on two datasets, as well as the highest ∆, demonstrating a simpler prompt with less constraint might
generate a larger performance gap between concise and verbose responses.

Table 12: Comparison between original and other variations of the prompts. VC consistently occurs,
demonstrating the robustness of the VC against prompts.

MMLU Qasper

concise verbose ∆ Avg. concise verbose ∆ Avg.

Prompt in Table 7
58.4 44.82 13.57 55.6 58.99 54.6 4.39 55.98

Using a single phrase rather than a sentence. Please answer in 3 words.
55.13 43.43 11.71 52.70 54.22 48.11 6.11 51.30

Answer as concise as possible.
68.04 50.26 17.78 61.07 70.17 60.44 9.73 63.63

C.4 EVALUATION OF VERBOSITY AND PERFORMANCE ON SAME TEST INSTANCES

As shown in Table 2, and Table 3, the performance of concise and verbose samples is based on the
split of the dataset. There is no overlap between the samples in the concise and verbose split. To
prevent the influence of bias in different instances, we conduct an analysis that fixes the test instances
and compares different models. Specifically, for each instance, we calculated the ratio of LLMs
exhibiting VC behavior and reported the averaged ratio across datasets in Table 13. This approach
also increases the robustness of our findings, as the support (number of samples) for each dataset is
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14 times higher than when using a single model. As shown in the table, the performance δ is still
pervasive for all five datasets. Specifically, on the Qasper dataset, the ∆ reaches 16.22%

Table 13: Overall recall comparison between verbose and concise responses. Each dataset contains
the prediction from all 14 LLMs.

concise verbose overall

Recall Support Recall Support ∆ VC Freq. Avg. Recall

Qasper 61.85 2272 45.63 389 16.22 32.46 56.59
LongBench 50.31 1912 44.22 375 6.10 30.42 48.46
NarrativeQA 38.09 2540 31.67 355 6.42 36.29 35.76
MMLU 65.09 1694 51.47 475 13.62 24.20 61.79
NQ30 53.34 1516 44.89 362 8.45 26.41 51.10

C.5 LATENCY COMPARISON OF CASEL ALGORITHM AND INDIVIDULE MODELS

We conduct an analysis to compare the useless token generated and the time cost of individual models
and the CaSel algorithm on two datasets using Mistral-7b and GPT-4o. To assess the number of
useless tokens generated, given a response r, we first define the useless tokens as the part with longer
than 3 tokens in response r:

∑N
i=1 max(0, |ri| − 3), where N is the number of samples in a dataset.

As shown in Table 14, with our proposed cascade algorithm, the total inference time might be higher
than using a small model (0.79 vs. 1.21 seconds per sample) and lower than using a large model
(14.86 vs. 5.93 seconds per sample), but the number of useless tokens generated is much less. On the
other hand, by using the proposed algorithm, the useless tokens generated decrease from 596/327 to
93, mitigating the VC rate from 41.40% to 21.00% on the NarrativeQA dataset, demonstrating that
useless tokens greatly decrease by using the proposed algorithm.

C.6 THE INFLUENCE OF THE DIGITS IN RESPONSES

We analyze the performance and VC frequency of the samples with and without numbers using
llama-3-8b on the Qasper and NarrativeQA dataset. The results are shown in Table 15. Although
the model is easier to perform better on the sample without numbers, the VC frequency is relatively
lower for the responses with digits. To understand the reason, we further inspect the Qasper dataset,
we find that the samples with numbers are not as open-ended as the ones without numbers, meaning
that the search space of the answers with numbers is smaller. This leads to a lower VC frequency and
is easier to answer.

C.7 RESPONSE LENGTH OF CHAIN-OF-THOUGHT EXPERIMENTS

Our evaluation is not limited to gold answers with less than 4 words. To demonstrate the generalization
of the proposed VC behavior, we run the experiments on Chain-of-Though settings where the
responses can contain more than 300 words. Table 16 shows the statistics of Chain-of-Thought

Table 14: Comparison of the number of generated useless tokens and inference time. # Mistral/GPT
indicates the number of useless tokens generated by Mistral-7b and GPT-4o on the dataset. # Total is
the sum of # Mistal/GPT, showing the total number of useless tokens. Infer. Time is the running time
of the algorithm per sample (Unit: second). CaSel (Mistral→ GPT) generated the fewest number of
useless tokens and maintained the lowest VC frequency. The inference time is higher than the small
model but still lower than the larger model.

Qasper NarrativeQA

# Mistral # GPT # Total VC Freq. Infer. Time # Mistral # GPT # Total VC Freq. Infer. Time

Mistral-7b 663 N/A 663 63.81 0.80 596 N/A 596 41.40 1.22
GPT-4o N/A 207 207 31.79 1.27 N/A 327 327 50.40 14.86
Mistral→ GPT 0 86 86 16.60 1.21 0 93 93 21.00 5.93
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Table 15: Comparison between responses with digits and without digits. The responses with digits
show lower verbosity compensation frequency.

Qasper NarrativeQA

concise verbose Avg. VC Freq. concise verbose Avg. VC Freq.

w/o digits 58.99 53.66 56.18 52.63 33.39 18.18 27.21 40.66
w/ digits 58.97 57.73 58.40 45.83 56.25 10.00 38.46 38.46

Table 16: Lengths of the generated responses under chain-of-thought setting. The maximum length of
the generated results can reach more than 300 words demonstrating that VC occurs in long response
settings.

MMLU Qasper

VC Freq. Min Len. Max Len. Avg Len. VC Freq. Min Len. Max Len. Avg Len.

gpt-3.5-turbo 51.49 3 90 26.24 37.62 4 81 23.38
gemma-2-9b 20.79 9 107 27.92 43.56 18 103 37.08
llama-3-8b 43.56 15 333 57.14 44.15 20 185 50.15

experiments. The average response length can reach more than 50 words, and the VC behavior is still
pervasive.
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