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Abstract

Deep ensembles are a popular approach to improve accuracy and calibration over
single model performance [1], either by averaging logits [2–4], or probabilities
[1, 5, 6] of multiple models. Recent theoretical work has shown that logit and
probability ensembles have different effects on the model bias and variance [7, 8],
but to our knowledge these benefits have not yet been used to inform how to create
ensembles. In this work, we show that for balanced datasets, there is no significant
difference between logit and probability ensembles in terms of accuracy and ranked
calibration. In contrast, we show that in long-tailed datasets, there are gains from
logit ensembling when combined with imbalance bias reduction losses. In turn,
our results show that we can have consistent performance improvements using
loss-aware ensembles when dealing with long-tail data.

1 Introduction

Ensembling, i.e. combining predictions of multiple models, is a standard approach to improve over
single model performance [e.g., 1, 9–12]. Previous work has built ensembles by averaging either
logits [2–4], or probabilities [5, 1, 6], selecting whichever approach gives better performance. Recent
work has shown that logit and probability ensembles have different benefits [7, 13, 8]. Tassi et al. [13]
suggests to use logit ensembles over probability ensembles especially if one cares about calibration.
However, these conclusions were evaluated on small-scale models, using limited metrics [14] and
only on balanced datasets. Gupta et al. [7] notes that we might prefer probability ensembling when
there is significant disagreement across models, and that logit ensembling is more sensitive to extreme
predictions. One scenario where we might expect models to disagree more is when there is data
imbalance, where the tail classes have few training labels compared to the head classes. We note
that in the imbalanced training literature, more work uses logit ensembling [15–19] as opposed to
probability ensembling [20], although logit and probability ensembling are not directly compared.

Models deployed on imbalanced datasets typically employ re-weighting and re-sampling strategies
[21–24]. When there is data imbalance at train time, but not at test time, there is an “imbalance"
bias introduced due to the difference in the number of training samples across classes. Many current
state-of-the-art approaches use the balanced softmax (BS) loss [25] and its extensions to address
the imbalance bias [17–19, 26, 27]. For a recent review on long-tail learning, we refer the reader to
Zhang et al. [24].

In this work, we want to answer whether probability and logit ensembling does make a large difference
in practice, thus, our contributions proceed as follows:

• We perform a systematic comparison between logit and probability ensembling for a variety
of models trained on balanced and imbalanced datasets.

Code is available at https://github.com/ekellbuch/longtail_ensembles
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• We show little difference between logit and probability ensembling in balanced datasets,
both in terms of accuracy and ranked calibration.

• We show that logit averaging is better when dealing with imbalanced data when combined
with losses that target the imbalance bias (e.g [25]).

• We show that the data imbalance exacerbates the diversity across ensemble members for all
classes which is higher than the diversity for the true class – and highest for ensembles of
models trained with the balanced softmax loss.

Altogether, our results show that we can leverage the differences between logit and probability
ensembling to improve model performance in the long-tail setting.

2 Setup

We focus on multi-class classification problems with inputs x ∈ RD and targets y ∈ {1, . . . , C}
where D is the number of features and C is the number of classes. The number of training data is
n =

∑C
k=1 nk, with nk denoting the number of samples from class k. Furthermore, π is the vector

of label frequencies, where πk = nk/n is the label frequency of class k. A dataset is considered
imbalanced when nk differs across classes. In practice, the number of samples per class can decrease
exponentially, and the tail classes can be heavy.

Deep Ensembles: A standard deep ensemble consists of M models f1(·), . . . ,fM (·) where each
fi maps x to the probability simplex in RC . Throughout the paper M = 4. We form ensembles by
averaging model logits (z) or probabilities:

f̄logit(x) ≜ softmax
(

1
M

∑M
i=1zi(x)

)
f̄prob(x) ≜ 1

M

∑M
i=1softmax (zi(x))

Experimental details: We form ensembles of models trained independently on balanced data
and imbalanced data. The models trained on balanced data were obtained from [28, 29]. The
models trained on imbalanced data were trained from scratch, following [25] using the loss functions
described below. Then, the ensembles predictions are given by averaging the logits or probabilities of
4 models trained using the same loss and the same data.

Datasets and Models: Our experiments include models trained on balanced datasets (CIFAR10 and
Imagenet), and on heavy-tailed datasets (CIFAR10-LT and CIFAR100 long-tail (LT)). CIFAR10
[30]: We include 137 models from 32 different architectures trained on CIFAR10, each trained for
2-5 seeds [28]. Using these models, we form 207 ensembles which we evaluate on the test set of
CIFAR10, and on the OOD datasets CIFAR 10.1 and CINIC10.

ImageNet [31] We include 78 “standard" models from Taori et al. [29], each corresponding to a
different architecture. Using these models, we form 234 ensembles of the models trained on ImageNet
which we evaluate on the test set of ImageNet, and the OOD datasets ImageNet V2MF, ImageNet-C
Gaussian noise and Fog noise levels 1, 3, and 5.

CIFAR10-LT, and CIFAR100-LT: We train 5 seeds of ResNet 32 and ResNet-110 models on
CIFAR10-LT and CIFAR100-LT datasets [21]. The CIFAR10/100 LT datasets are created following
[23, 21], using a subset of the training set of CIFAR10/CIFAR100, where the number of samples per
class is sampled according to an exponential function ni = nµi. Here i is the class index (0-indexed),
where n is the original number of training images and µi = 0.5.

Losses: Table 1 summarizes the losses used to train models [24]. We include the softmax cross entropy
loss (CE), and common losses to handle imbalanced data by reweighted the loss function [25, 24].
We include the weighted softmax CE and d-weighted softmax CE losses which reweight the softmax
loss by the sample frequencies, and which are set via the weight variable in the cross entropy loss
function in pytorch. Unlike the weighted softmax CE loss, the d-weighted softmax CE ensures that
the head classes are not up-weighted. Furthermore, we also include the balanced softmax loss [25], a
loss which accommodates the label distribution shift, i.e. when the train test is imbalanced and the
test set is balanced.

Temperature Scaling: We apply the temperature scaling loss [33] to the models trained on im-
balanced data, to learn the temperature parameter T using the validation set. In the case of the
imbalanced datasets, the validation set is created by sampling 10% of the samples in the train set that
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Table 1: Losses used to train models. The loss L depends on the model outputs, where logits z and
probabilities p. πk is the label frequency of class k ∈ [1 . . . C], y is the label and T is the temperature
scaling parameter.

Loss Formulation

Softmax CE (ERM) Lce = − log(py)
Weighted Softmax CE Lwce = − 1

πy
log(py)

d-Weighted Softmax CE Ldwce = − 1
Cπy

log(py)

Balanced Softmax CE [25] Lbs = − log
(

πy exp(zy)∑
j πj exp(zj)

)
Temperature scaling [32] Lts = − log

(
exp(zy/T )∑
j exp(zj/T )

)

are not used in CIFAR10-LT but exist in the train set of CIFAR10. The same process is followed for
the models trained on CIFAR100-LT. Rahaman et al. [34] noted that the order in which we ensemble
and apply temperature scaling can lead to different results, in particular in the low-data regime. Thus,
to calibrate ensembles, we follow the pool-then-calibration approach [34]. In a nutshell, in pool-then
calibrate, we first form the ensemble, and then fit a single temperature parameter T by minimizing a
proper scoring rule (eg. cross-entropy) on the validation set.

Metrics: We compare the model performance using the accuracy, the per-class accuracy and the
F1 score. The per-class accuracy and F1 score are better suited for imbalanced datasets. While
the accuracy (0-1) is the ratio of correct predictions, the F1 score (0-1) is high when the correct
predictions are not tampered by false alarms (high precision) and misses (high recall). We use four
different metrics to compare the model calibration. Model calibration is generally compared using
the negative log likelihood (NLL) or the Brier score (B) [35]:

NLL(f(x), y) ≜ − log
(
f (y)(x)

)
, B(f(x), y) ≜ ∥f(x)− 1y∥22, (1)

where 1y represents a one-hot encoding of y. However, both the NLL and Brier are sensitive to
how the sharpness of the distribution of prediction probabilities of a model and thus can produce
arbitrary rankings of different methods [14]. Thus, we compare the ensemble calibration using the
Calibration area under the curve (AUC) [36], which measures the quality of the uncertainty estimates
across a variety of decision thresholds. We include the calibration AUC of the Receiver Operation
Characteristics (ROC) curve and the Precision Recall (PR) curve. The ROC curve measures the
trade-off between correct predictions and incorrect prediction rates, and the PR curve measures the
trade-off between precision and recall.

3 Experiments
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Figure 1: Logit ensembles of models trained using a balanced softmax loss have the best
performance regardless of the number of models in the ensemble. We compare the performance
of logit (blue) and probability (orange) ensembles of models trained via ERM and using a balanced
softmax loss. Each ensemble is composed of ResNet32 models trained on the CIFAR10-LT dataset.
The average single model (green) performance is included as a reference. The model weights are
initialized using different random seeds.
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Table 2 summarizes the performance of ResNet 32 models and ensembles trained on the imbalanced
dataset CIFAR10-LT, using the losses in Table 1 when we fix the ensemble size to be M = 4. Table 2
shows that ensembling improves over single models across all metrics, regardless of the training
loss (standard versus imbalanced) or the ensembling mechanism (logit versus probability averaging).
However, upon closer inspection, we see a number of deviations.

Indeed, Table 2 shows that for the softmax loss and the re-weighted losses (weighted softmax and
d-weighted softmax), probability or logit ensembling give similar results in terms of accuracy and F1
score (within error, and < 1% difference). In terms of calibration, probability averaging appears to
be superior, as measured by Brier score and NLL, but this gap reduces when calibration is measured
by the Calibration PR AUC.

Table 2: Comparison of ResNet 32 models and ensembles trained on CIFAR10-LT

Acc. F1 Brier Score NLL Cal-PR AUC
Train Loss Ensemble Type

Softmax CE (ERM)
single model 67.684 (± 0.249) 66.167 (± 0.338) 0.528 (± 0.004) 1.33 (± 0.011) 0.839 (± 0.002)
avg. logits 69.928 (± 0.314) 68.332 (± 0.41) 0.471 (± 0.003) 1.119 (± 0.008) 0.874 (± 0.002)
avg. probs 69.924 (± 0.286) 68.319 (± 0.389) 0.446 (± 0.003) 1.037 (± 0.009) 0.878 (± 0.002)

Balanced Softmax CE
single model 74.406 (± 0.178) 74.183 (± 0.185) 0.387 (± 0.002) 0.842 (± 0.004) 0.913 (± 0.0)
avg. logits 79.012 (± 0.186) 78.925 (± 0.206) 0.308 (± 0.002) 0.654 (± 0.003) 0.945 (± 0.0)
avg. probs 78.05 (± 0.085) 77.91 (± 0.087) 0.315 (± 0.002) 0.661 (± 0.003) 0.941 (± 0.0)

Weighted Softmax CE
single model 69.654 (± 0.122) 69.42 (± 0.138) 0.465 (± 0.002) 1.128 (± 0.005) 0.911 (± 0.001)
avg. logits 72.16 (± 0.13) 71.931 (± 0.134) 0.411 (± 0.001) 0.95 (± 0.002) 0.931 (± 0.001)
avg. probs 72.484 (± 0.099) 72.27 (± 0.106) 0.393 (± 0.001) 0.896 (± 0.002) 0.924 (± 0.001)

d-Weighted Softmax CE
single model 69.734 (± 0.239) 69.507 (± 0.27) 0.464 (± 0.003) 1.125 (± 0.009) 0.912 (± 0.001)
avg. logits 72.556 (± 0.187) 72.382 (± 0.226) 0.41 (± 0.003) 0.949 (± 0.008) 0.931 (± 0.001)
avg. probs 72.772 (± 0.181) 72.585 (± 0.222) 0.393 (± 0.003) 0.895 (± 0.006) 0.924 (± 0.001)

However, Table 2 shows that logit ensembling combined with the balanced softmax loss gives the
best performance, across all metrics. Moreover, Fig. 1 shows that logit ensembling is superior to
probability ensembling across increasing ensemble sizes when the ensemble members are trained to
mitigate the bias introduced by data imbalance (i.e. trained with a balanced softmax). In Appx. A
we show that our results give us state-of-the-art performance, not only compared to probability
ensembles, but also when compared to implicit ensembles developed to mimic deep ensembles, and
tailored to handle imbalanced datasets [20, 25, 37, 19]. Furthermore, in Appx. B, we show that these
results hold for better calibrated models and ensembles.

In Appx. C we show that these results hold for additional imbalanced datasets across multiple
architectures. Finally in Appx. D we show that these results hold for a variety of balanced datasets
trained on ERM, where we see that the choice of ensembling mechanism makes little difference.

4 Discussion

We want to understand how ensembling interacts with the losses used for imbalanced data. In this
section we show that we see better results using logit ensembling, as it does not change the imbalance
debiasing effect of the balanced softmax loss, while probability averaging has an arbitrary effect in
the (average single model) bias.

Gupta et al. [7] and Wood et al. [8] showed that the logit and probability ensemble cross entropy (or
negative log likelihood for the true class) can be decomposed as:

−E
D

[
yT · ln q̄

]
logit ensemble NLL

=− 1

M

M∑
i=1

yT · ln qi∗

average bias

+
1

M

M∑
i=1

E
D
[DKL(q

∗
i ||qi)]

average variance

−E
D

[
1

M

M∑
i=1

DKL(q̄||qi)

]
diversity

(2)

−E
D

[
yT · ln q†]

probability ensemble NLL

=− 1

M

M∑
i=1

yT · ln qi∗ +
1

M

M∑
i=1

E
D
[DKL(q

∗
i ||qi)]
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− E
D

[
M∑
i=1

1

M

[
log

1

M
− log

[
q
(y)
i∑M

j=1 q
(y)
j

]]]
dependency

, (3)

where D is a dataset sampled i.i.d. from p(x,y), qi is the probability output of model i ∈ {1 . . .M},
y is a one-hot encoding of y, q† is the probability ensemble (the arithmetic average of the ensemble
member predictions), q̄ is the logit ensemble (the normalized geometric average of the ensemble
member predictions), and q∗

i = 1
Z exp(ED[ln qD]) is the Bregman centroid. Moreover, DKL(q||q′)

is an abuse of notation which represents the KL divergence between two categorical distributions
with weights defined by the vectors q and q′. Note that Eq. (2) is the same as Eq. 18 in [8] and Eq. (3)
is the equation in Proposition 8 in [8] and is equivalent to Eq. 6 in [38].

Thus, the difference between the logit and probability ensemble NLL is the last term. For logit
ensembles, the diversity is target (y) independent but for probability ensembles, the diversity term is
target dependent, so in this case we refer to this diversity term as a “dependency" term [8].

The “dependency" term in the probability ensemble NLL (Eq. (3)) can be interpreted as the KL
divergence between two categorical distributions: the probability of sampling an ensemble member
uniformly at random (1/M ), and sampling an ensemble member proportional to its correct class
prediction. Thus, the dependency will be large when the ensemble members predict different classes
and zero when all ensemble members predict the correct class equally [38]. Meanwhile, the “diversity"
term in the logit ensemble NLL is the average DKL divergence between the ensemble predictions
and the single model predictions across all classes. Thus, the diversity term will be large when the
ensemble predictions are different and zero only if the ensemble members predictions are the same,
for all classes. The qualitative similarity between these two behaviors suggest that the main difference
between the “dependency” term and “diversity” term is the former’s dependence on the true class
label, whereas the latter is agnostic to the label.

We can subtract the logit ensemble NLL (Eq. (2)) from the probability ensemble NLL (Eq. (3)) to
obtain:

E
D

[
y · ln q̄ − y · ln q†] = −E

D

[
1

M

M∑
i=1

DKL(q̄||qi) +
M∑
i=1

1

M

[
log

1

M
− log

[
q
(y)
i∑M

j=1 q
(y)
j

]]]
.

(4)

Eq. (4) tells us that logit ensembling is better than probability ensembling—in terms of the NLL—if
and only if the diversity term is higher than the dependency term, i.e. the ensemble members are
more likely to have different predictions for all classes, than different predictions for the true class
(dependency term).

In the case of imbalanced datasets, we expect models trained via ERM to have high dependency
and high diversity. We expect the diversity to be high, because we expect the models to provide
different predictions across all classes given the imbalance in number of training samples for each
class. Furthermore, we expect the dependency to be high, as we expect models to provide different
predictions for the true classes, in particular for the tail classes, as shown in Fig. 2, which shows the
per class pair-wise model disagreement across ensemble members. As we can see from Fig. 2, the
models disagree more on tail classes, as expected.

Furthermore, Fig. 3 illustrates the logit ensemble diversity and the probability ensemble dependency
term. Fig. 3 shows that ensembles of models trained with ERM have high diversity and dependency,
and when we use any of the re-balancing losses, the dependency term reduces, i.e. the models are
more likely to provide similar predictions for the true class. In turn, only for the balanced softmax
loss is the ensemble diversity greater than the dependency, which, following Eq. (4), is necessary
for logit ensembles to be superior to probability ensembles. To provide a rigorous underpinning for
this observation, we complement our empirical results with a theoretical study in Appx. E, where we
show that whenever we approximately minimize each loss (coupled with mild additional technical
assumptions), it indeed holds that using the balanced softmax loss leads to the superiority of logit
ensembling.

5



0 1 2 3 4 5 6 7 8 9
Class ID

0.0

0.1

0.2

0.3

A
vg

.
D

is
ag

re
em

en
t

ERM

0 1 2 3 4 5 6 7 8 9
Class ID

Balanced Softmax CE

0 1 2 3 4 5 6 7 8 9
Class ID

Weighted Softmax CE

0 1 2 3 4 5 6 7 8 9
Class ID

d-Weighted Softmax CE

Figure 2: Ensemble members disagree more in tail classes. Per-class average disagreement for
models in Table 2. The class ID is sorted from more to less training samples. Regardless of the
imbalance loss (across columns), that ensembles disagree more for classes 5-9 and less for classes
0-4.
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Figure 3: The diversity is higher than the dependency only for the balanced softmax loss. For
each loss (column), we plot the logit ensemble diversity (from Eq. (2), magenta) and probability
ensemble dependency (from Eq. (3), purple) terms for the models in Table 2.

5 Conclusion

Overall, our results show that for balanced datasets there is no significant difference between logit
and probability ensembles in terms of accuracy and ranked calibration. However, we show that in
imbalanced datasets, we can see gains from logit averaging when combined with bias reduction
approaches. While our results focused on a balanced cross-entropy loss [25], we expect these results
to hold for other losses that correct the bias introduced for ensembling, such as the logit adjustment
loss [39], among others [18].
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A Implicit Ensembles

Given the computational costs of deep ensembles, several approaches have been proposed to form
“implicit ensembles", which mimic ensemble performance with less computational requirements
[40–42].

A variety of implicit ensembles have also been proposed to handle imbalanced datasets [20, 25, 37, 19].
However, as can be seen from Table 3, state-of-the-art implicit ensembles approaches still lag behind
logit and probability ensembles. More importantly, Table 3 shows that logit ensembles of balanced
softmax models give us the best performance.

Table 3: Ensembles outperform most popular methods developed to handle imbalanced data
Comparison of different methods trained on the CIFAR100-LT dataset with an imbalance ratio of
100. ∗ denotes number extracted from [19] and † denotes numbers extracted from Table 7.

Method Accuracy

Softmax 41.4†

BBN [20] 44.7∗

Balanced Softmax [25] 46.1∗

RIDE [37] 48.0∗

SADE [19] 49.8∗

Logit Ensemble + Softmax 44.68†

Probability Ensemble + Softmax 44.208†

Probability Ensemble + Balanced Softmax 51.8†

Logit Ensemble + Balanced Softmax 52†

B Temperature scaling

Table 4 shows the performance from the better calibrated single models and ensembles. As stated
in Sec. 2, the (average) single model performance is calculated after applying temperature scaling
[33] to each model individually, and then averaging the individual model performances. Conversely,
the ensemble performance (avg. logits and avg.probs in Table 4) is calculated after applying the
pool-then-calibration approach from [34].

The results in Table 4 show that our conclusions also apply for ensembles with better calibration.
First, the single model performance in Table 4 shows the calibration improvements achieved for each
model on average. The results of the ensemble models in Table 4 show that even after we apply
pool-then-calibrate, we not only get better performance, but using our proposed combination of logit
ensembling models trained with a balanced softmax loss, we achieve the best performance. We
expect these results to follow as we include other ensembling approaches, i.e. [6].

Table 4: Logit ensembling + Balanced Softmax also gives the best performance after calibration.
Comparison of average single model and ensemble performance of ResNet 32 models trained on
CIFAR10-LT before (Table 2)/after applying temperature scaling [33] to the individual models and
pool-then-calbrate [34] to the ensembles.

Acc. F1 Brier Score NLL Cal-PR auc
Train Loss Ensemble Type

Softmax (ERM)
single model 67.684 66.167 0.528/0.476 1.33/1.099 0.839/0.843
avg. logits (T=0.819) 69.928/74.450 68.332/73.885 0.471/0.374 1.119/0.821 0.874/0.914
avg. probs (T=0.905) 69.924/74.390 68.319/73.797 0.446/0.372 1.037/0.803 0.878/0.914

Balanced Softmax CE
single model 74.406 74.183 0.387/0.372 0.842/0.821 0.913/0.915
avg. logits (T=1.105) 79.012/82.260 78.925/82.225 0.308/0.259 0.654/0.555 0.945/0.962
avg. probs (T=1.221) 78.05/81.550 77.91/81.513 0.315/0.266 0.661/0.558 0.941/0.960
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C Comparing Ensembling Methods on Additional Imbalanced Datasets

Table 5 summarizes the models trained and evaluated on imbalanced datasets,. The results in this
section are in line with conclusions from previous work [21, 25, 24]. In particular, these results show
that models trained with re-weighting losses, such as the weighted softmax and a d-weighted softmax,
have better performance than models trained using the standard cross-entropy when the number
of classes is small (Table 2), but not when the number of classes is large (Table 7). Furthermore,
these results show that models trained using a balanced softmax CE of outperform any other losses,
regardless of the number of classes [24].

Table 5: Ensemble loss comparison table guide

Dataset Data Type Architecture Table Number

CIFAR10-LT InD ResNet32 Table 2
InD ResNet110 Table 6

CIFAR100-LT InD ResNet32 Table 7
InD ResNet110 Table 8

CINIC-10 OOD ResNet32 Table 9
(eval only) OOD ResNet110 Table 10

Table 6: Ensemble comparison of ResNet 110 models trained on CIFAR10-LT

Acc. F1 Brier Score NLL Cal-PR AUC
Train Loss Ensemble Type

Softmax CE (ERM)
single model 71.16 (± 0.179) 70.351 (± 0.222) 0.492 (± 0.003) 1.347 (± 0.008) 0.865 (± 0.002)
avg. logits 72.632 (± 0.165) 71.698 (± 0.196) 0.447 (± 0.003) 1.138 (± 0.009) 0.893 (± 0.002)
avg. probs 72.914 (± 0.165) 72.011 (± 0.183) 0.414 (± 0.003) 1.018 (± 0.007) 0.895 (± 0.001)

Balanced Softmax CE
single model 76.004 (± 0.103) 75.837 (± 0.104) 0.381 (± 0.002) 0.871 (± 0.003) 0.928 (± 0.001)
avg. logits 79.652 (± 0.186) 79.611 (± 0.189) 0.31 (± 0.002) 0.677 (± 0.005) 0.951 (± 0.0)
avg. probs 78.876 (± 0.142) 78.786 (± 0.146) 0.31 (± 0.002) 0.661 (± 0.003) 0.947 (± 0.0)

Weighted Softmax CE
single model 70.754 (± 0.216) 70.535 (± 0.241) 0.474 (± 0.003) 1.244 (± 0.009) 0.911 (± 0.001)
avg. logits 73.166 (± 0.259) 72.947 (± 0.286) 0.421 (± 0.003) 1.032 (± 0.01) 0.93 (± 0.001)
avg. probs 73.446 (± 0.273) 73.257 (± 0.295) 0.394 (± 0.004) 0.944 (± 0.011) 0.925 (± 0.001)

d-Weighted Softmax CE
single model 70.348 (± 0.106) 70.114 (± 0.112) 0.481 (± 0.002) 1.268 (± 0.006) 0.908 (± 0.001)
avg. logits 72.578 (± 0.122) 72.339 (± 0.129) 0.43 (± 0.002) 1.06 (± 0.005) 0.928 (± 0.001)
avg. probs 72.802 (± 0.124) 72.569 (± 0.132) 0.402 (± 0.001) 0.968 (± 0.005) 0.923 (± 0.001)

Table 7: Ensemble comparison of ResNet 32 models trained on CIFAR100-LT

Acc. F1 Brier Score NLL Cal-PR au c
Train Loss Ensemble Type

Softmax (ERM)
single model 41.406 (± 0.014) 35.702 (± 0.037) 0.798 (± 0.001) 2.698 (± 0.008) 0.7 76 (± 0.002)
avg. logits 44.68 (± 0.135) 38.814 (± 0.19) 0.746 (± 0.001) 2.41 (± 0.007) 0.805 (± 0.00 1)
avg. probs 44.208 (± 0.107) 38.132 (± 0.107) 0.723 (± 0.001) 2.388 (± 0.006) 0.804 (± 0.001 )

Balanced Softmax CE
single model 47.724 (± 0.171) 46.347 (± 0.233) 0.673 (± 0.002) 2.028 (± 0.004) 0.816 (± 0.001)
avg. logits 52.008 (± 0.159) 50.819 (± 0.197) 0.612 (± 0.002) 1.764 (± 0.004) 0.85 (± 0.002 )
avg. probs 51.8 (± 0.186) 50.167 (± 0.246) 0.61 (± 0.002) 1.767 (± 0.004) 0.849 (± 0.001 )

Weighted Softmax CE
single model 35.58 (± 0.426) 33.726 (± 0.422) 0.815 (± 0.003) 3.098 (± 0.017) 0.687 (± 0.005)
avg. logits 39.682 (± 0.356) 37.432 (± 0.334) 0.761 (± 0.002) 2.786 (± 0.017) 0.734 (± 0.00 4)
avg. probs 39.564 (± 0.413) 37.413 (± 0.393) 0.749 (± 0.002) 2.665 (± 0.015) 0.736 (± 0.004 )

d-Weighted Softmax CE
single model 35.572 (± 0.235) 33.717 (± 0.213) 0.817 (± 0.002) 3.12 (± 0.014) 0.687 (± 0.004)
avg. logits 39.572 (± 0.248) 37.267 (± 0.204) 0.763 (± 0.002) 2.801 (± 0.019) 0.736 (± 0.00 3)
avg. probs 39.746 (± 0.267) 37.545 (± 0.281) 0.75 (± 0.002) 2.673 (± 0.014) 0.738 (± 0.002 )
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Table 8: Ensemble comparison of ResNet 110 models trained on CIFAR100-LT

Acc. F1 Brier Score NLL Cal-PR a uc
Train Loss Ensemble Type

Softmax (ERM)
single model 45.13 (± 0.19) 40.088 (± 0.245) 0.776 (± 0.001) 2.629 (± 0.008) 0. 804 (± 0.002)
avg. logits 48.62 (± 0.154) 43.41 (± 0.203) 0.716 (± 0.001) 2.292 (± 0.006) 0.834 (± 0.001)
avg. probs 48.062 (± 0.156) 42.638 (± 0.196) 0.686 (± 0.001) 2.239 (± 0.008) 0.833 (± 0.00 2)

Balanced Softmax CE
single model 50.09 (± 0.245) 49.006 (± 0.265) 0.665 (± 0.003) 2.039 (± 0.01) 0.832 (± 0.002)
avg. logits 55.548 (± 0.216) 54.602 (± 0.238) 0.586 (± 0.002) 1.692 (± 0.006) 0.868 (± 0.002)
avg. probs 55.308 (± 0.196) 53.929 (± 0.244) 0.58 (± 0.002) 1.681 (± 0.006) 0.866 (± 0.00 2)

Weighted Softmax CE
single model 36.186 (± 0.4) 34.204 (± 0.373) 0.809 (± 0.002) 3.14 (± 0.028) 0.709 (± 0.004)
avg. logits 40.284 (± 0.303) 37.862 (± 0.292) 0.753 (± 0.002) 2.811 (± 0.031) 0.757 (± 0.002)
avg. probs 40.406 (± 0.244) 38.118 (± 0.244) 0.74 (± 0.002) 2.672 (± 0.024) 0.755 (± 0.00 4)

d-Weighted Softmax CE
single model 35.728 (± 0.256) 33.841 (± 0.247) 0.816 (± 0.002) 3.201 (± 0.017) 0.699 (± 0.003)
avg. logits 39.858 (± 0.235) 37.471 (± 0.216) 0.759 (± 0.003) 2.868 (± 0.023) 0.749 (± 0.002)
avg. probs 39.832 (± 0.342) 37.576 (± 0.378) 0.746 (± 0.003) 2.721 (± 0.021) 0.748 (± 0.001)

Table 9: Ensemble comparison of ResNet 32 models trained on CIFAR10-LT and evaluated on
CINIC-10

Acc. F1 Brier Score NLL Cal-PR AUC
Train Loss Ensemble Type

Softmax CE (ERM)
single model 57.94 (± 0.284) 55.225 (± 0.395) 0.689 (± 0.004) 1.797 (± 0.013) 0.757 (± 0.002)
avg. logits 59.87 (± 0.449) 56.91 (± 0.552) 0.624 (± 0.005) 1.528 (± 0.012) 0.806 (± 0.002)
avg. probs 60.01 (± 0.503) 57.14 (± 0.582) 0.587 (± 0.004) 1.431 (± 0.012) 0.811 (± 0.003)

Balanced Softmax CE
single model 63.35 (± 0.247) 62.768 (± 0.273) 0.548 (± 0.004) 1.231 (± 0.011) 0.829 (± 0.003)
avg. logits 68.45 (± 0.232) 67.972 (± 0.239) 0.457 (± 0.004) 0.993 (± 0.011) 0.876 (± 0.003)
avg. probs 67.32 (± 0.47) 66.639 (± 0.528) 0.458 (± 0.004) 0.981 (± 0.01) 0.873 (± 0.003)

Weighted Softmax CE
single model 57.77 (± 0.244) 56.868 (± 0.252) 0.649 (± 0.003) 1.683 (± 0.008) 0.808 (± 0.002)
avg. logits 60.28 (± 0.553) 59.305 (± 0.499) 0.591 (± 0.004) 1.463 (± 0.009) 0.844 (± 0.002)
avg. probs 60.73 (± 0.546) 59.758 (± 0.434) 0.56 (± 0.004) 1.367 (± 0.011) 0.842 (± 0.002)

d-Weighted Softmax CE
single model 57.99 (± 0.275) 57.098 (± 0.264) 0.649 (± 0.005) 1.669 (± 0.013) 0.812 (± 0.002)
avg. logits 60.35 (± 0.389) 59.28 (± 0.396) 0.589 (± 0.004) 1.446 (± 0.011) 0.845 (± 0.001)
avg. probs 60.9 (± 0.478) 59.906 (± 0.54) 0.561 (± 0.003) 1.364 (± 0.009) 0.839 (± 0.001)

Table 10: Ensemble comparison of ResNet 110 models trained on CIFAR10-LT and evaluated
on CINIC-10

Acc. F1 Brier Score NLL Cal-PR AUC
Train Loss Ensemble Type

Softmax CE (ERM)
single model 60.8 (± 0.248) 59.139 (± 0.322) 0.665 (± 0.004) 1.878 (± 0.014) 0.788 (± 0.002)
avg. logits 62.7 (± 0.411) 60.749 (± 0.544) 0.609 (± 0.006) 1.607 (± 0.016) 0.83 (± 0.003)
avg. probs 63.1 (± 0.481) 61.24 (± 0.658) 0.565 (± 0.005) 1.46 (± 0.012) 0.835 (± 0.003)

Balanced Softmax CE
single model 65.2 (± 0.187) 64.542 (± 0.258) 0.554 (± 0.002) 1.301 (± 0.007) 0.85 (± 0.001)
avg. logits 68.56 (± 0.452) 68.118 (± 0.488) 0.468 (± 0.005) 1.04 (± 0.01) 0.887 (± 0.002)
avg. probs 67.52 (± 0.454) 66.866 (± 0.533) 0.459 (± 0.003) 1.006 (± 0.008) 0.882 (± 0.003)

Weighted Softmax CE
single model 58.2 (± 0.167) 57.121 (± 0.189) 0.678 (± 0.003) 1.881 (± 0.015) 0.812 (± 0.002)
avg. logits 60.34 (± 0.219) 59.155 (± 0.237) 0.616 (± 0.005) 1.608 (± 0.016) 0.848 (± 0.002)
avg. probs 60.77 (± 0.277) 59.591 (± 0.302) 0.575 (± 0.004) 1.484 (± 0.014) 0.843 (± 0.003)

d-Weighted Softmax CE
single model 58.78 (± 0.157) 57.808 (± 0.159) 0.674 (± 0.003) 1.885 (± 0.01) 0.818 (± 0.002)
avg. logits 61.21 (± 0.344) 60.124 (± 0.413) 0.617 (± 0.004) 1.624 (± 0.009) 0.851 (± 0.001)
avg. probs 61.32 (± 0.179) 60.311 (± 0.262) 0.574 (± 0.003) 1.487 (± 0.009) 0.847 (± 0.002)
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D Comparison of Logit and Probability Ensembles on Balanced Datasets

Table 11 outlines the figure IDs of the plots comparing the performances of probability and logit
ensembles trained and evaluated on a variety of balanced datasets using multiple metrics. Sec. 2
provides a detailed description of the datasets and metrics. Overall, this section shows that there are
not significant differences between logit and probability ensembles trained and evaluated on balanced
datasets.

Table 11: Balanced Dataset comparisons. Summary with the figure ID of the plots comparing the
performance of probability and logit ensembles.

Train Dataset Test Dataset Data Type Metrics Figure

CIFAR10 CIFAR10 InD 0-1 error, F1 score Fig. 4
Brier Score, NLL, Calibration ROC/PR AUC Fig. 5

CIFAR10 CINIC10 OOD 0-1 error, F1 score Fig. 4
Brier Score, NLL, Calibration ROC/PR AUC Fig. 5

CIFAR10 CIFAR10.1 OOD 0-1 Error, F1 score Fig. 6
Brier Score, NLL, Calibration ROC/PR AUC Fig. 7

ImageNet ImageNet InD 0-1 error, F1 score Fig. 4
Brier Score, NLL, Calibration ROC/PR AUC Fig. 5

ImageNet ImageNetV2MF OOD 0-1 error, F1 score Fig. 4
Brier score, NLL, Calibration ROC/PR AUC Fig. 5

ImageNet ImageNet-C OOD 0-1 error Fig. 8
F1 score Fig. 9
Brier Score Fig. 10
NLL Fig. 11
Calibration ROC AUC Fig. 12
Calibration PR AUC Fig. 13

Logit and probability ensembling are no different in terms of model error for models trained
on balanced datasets. Fig. 4 compares the ensemble performance of probability vs logit ensembles
for a variety of balanced datasets trained via ERM. Fig. 4 shows that there is no significant difference
between probability and logit ensembles in terms of the 0-1 error or F1 score for any dataset, and
regardless of the level of model performance, i.e. ensembles with low 0-1 error or high 0-1 error.

Logit and probability ensembling are not significantly different in terms of ranked calibrations
for models trained on balanced datasets. Fig. 5 illustrates the Brier score, NLL, Calibration ROC
AUC and Calibration PR AUC for the same ensembles in Fig. 4. Fig. 5 shows some differences
between the NLL and Brier score of logit and probability ensembles, but we note that comparing
ensembles using the NLL or Brier score can produce an arbitrary rankings [14]. When comparing the
ensemble calibration using the ranked calibration metrics, i.e. in terms of the Calibration ROC AUC
and Calibration PR AUC [11], we see differences in terms of the Calibration ROC AUC in the range
of ≤ 0.01. Meanwhile, when comparing the Calibration PR AUCs in the bottom row of Fig. 5: we
can see that the differences between logit and probability ensembling vanish.

Fig. 7 illustrates the calibration metrics of the ensembles in Fig. 4, for the models trained on CIFAR10
and here evaluated on CIFAR10.1. Fig. 10 to Fig. 13 illustrate the calibration metrics of the ensembles
in Fig. 4, for models trained on ImageNet and here evaluated on ImageNet-C. From these plots we
can see that the differences between logit and probability ensembling reduce/vanish when comparing
models in terms of Calibration PR AUC.
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Figure 4: Logit and probability ensembling have no significant differences for balanced datasets.
In each plot, each marker depicts the performance of an ensemble formed by averaging model
probabilities (x-axis) vs averaging model logits (y-axis). The black line represents (x = y), and the
read line is the linear fit of (x, y). The box shows the mean squared error (MSE) between (x, y). The
first two columns include 205 markers corresponding to ensembles of models trained on CIFAR10
and evaluated on the test set of CIFAR10 and CIFAR10.1 The last two columns include 234 markers
corresponding to ensembles of models trained on ImageNet and evaluated on the test set of ImageNet
and ImageNetV2 MF, as described in Sec. 2.
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Figure 5: Logit and probability ensembles have no major differences in terms of calibration.
Same conventions as Fig. 4 for a variety of calibration metrics.
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Figure 6: Logit and probability ensembling are no different in terms of the 0-1 error. Same
conventions and conclusions as Fig. 4, with the ensembles formed from models trained on CIFAR10
are evaluated on CIFAR10.1.
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Figure 7: Calibration metrics of probability vs logit ensembles of models trained on CIFAR10
and evaluated on CIFAR10.1. Same conventions as Fig. 6 for a variety of calibration metrics.
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Figure 8: Logit and probability ensembling have no significant differences in terms of 0-1 error.
Same conventions and conclusions as Fig. 4, where the ensembles formed from models trained on
ImageNet are evaluated on ImageNet-C.

0.50 0.75

0.4

0.6

0.8

F
1

L
og

it
en

se
m

b
le

s

MSE = 2.695e-05

ImageNet-C
Gaussian 1

0.25 0.50
0.00

0.25

0.50
MSE = 5.592e-04

ImageNet-C
Gaussian 3

0.00 0.25
0.0

0.2

MSE = 5.497e-04

ImageNet-C
Gaussian 5

0.50 0.75
Prob. ensembles

0.4

0.6F
1

L
og

it
en

se
m

b
le

s

MSE = 1.070e-05

ImageNet-C
Fog 1

0.25 0.50
Prob. ensembles

0.2

0.4

0.6
MSE = 4.062e-05

ImageNet-C
Fog 3

0.25 0.50
Prob. ensembles

0.2

0.4
MSE = 8.533e-05

ImageNet-C
Fog 5

Figure 9: Logit and probability averaging have no significant differences in terms of F1 score.
Same conventions and conclusions as Fig. 4, where the ensembles formed from models trained on
ImageNet are evaluated on ImageNet-C.
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Figure 10: Brier score of probability vs logit ensembles of models trained on ImageNet and
evaluated on ImageNet-C.
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Figure 11: NLL of probability vs logits ensembles of models trained on ImageNet and evaluated
on ImageNet-C.
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Figure 12: Calibration ROC AUC of probability vs logit ensembles of models trained on
ImageNet and evaluated on ImageNet-C.
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Figure 13: Calibration PR AUC of probability vs logit ensembles of models trained on ImageNet
and evaluated on ImageNet-C.
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E Theoretical arguments

ϵ-approximate optimal π-balanced loss. To consider the diversity of the ensemble members, we
first consider ϵ-approximate optimal solutions, namely solutions that achieve a loss value at most ϵ
away from the optimal loss values. As one independently optimize each ensemble members according
to their loss, the ensemble members are likely uniform draws from the set of ϵ-approximate optimal
solutions (for some small ϵ).
Lemma E.1 (Impact of balanced softmax on diversity). Denote z∗(x) as the logit predictions that
achieve the optimal K-class π-balanced softmax loss with weights π = (π1, . . . , πK). The logit
predictions z(x) achieve the ϵ-approximate optimal π-balanced loss for all samples must satisfy

K∑
j=1

πj exp(zj(x))

(
exp(zy(x)− z∗y(x))

exp(zj(x)− z∗j (x))
− exp(ϵ)

)
< 0, ∀(x, y). (5)

Proof. We consider z(x) that achieve ϵ-approximate optimal balanced softmax loss, i.e.∣∣∣∣∣∣log πy exp(zy(x))∑K
j=1 πj exp(zj(x)

−
∑
(x,y)

log
πy exp(z

∗
y(x))∑K

j=1 πj exp(z∗j (x)

∣∣∣∣∣∣ < ϵ. (6)

By re-arranging the terms, we have

exp(zy(x)− z∗y(x))∑K
j=1 πj exp(zj(x))/

∑K
j=1 πj exp(z∗j (x))

< exp(ϵ), (7)

K∑
j=1

πj exp(z
∗
j (x))

(
exp(zy(x)− z∗y(x))− exp(zj(x)− z∗j (x) + ϵ)

)
< 0, (8)

K∑
j=1

πj exp(zj(x))

(
exp(zy(x)− z∗y(x))

exp(zj(x)− z∗j (x))
− exp(ϵ)

)
< 0. (9)

How diverse are ϵ-optima of classical and balanced softmax loss? We consider the range of
z(x) solutions that can satisfy Eq. (5) under different π. When π1 = · · · = πK = 1

K , the π-balanced
softmax loss corresponds to the classical softmax loss. When πj = nj/n,∀j, then the π-balanced
softmax loss corresponds to Ren et al. [25].

For any solution ẑ(x) that satisfies Eq. (5) under π1 = · · · = πK = 1
K , then any solution z̃(x) that

satisfies
exp(z̃y(x)− z̃∗y(x))

exp(z̃j(x)− z̃∗j (x))
≤ 1

πj

exp(ẑy(x)− ẑ∗y(x))

exp(ẑj(x)− ẑ∗j (x))
+ (1 +

1

πj
) exp(ϵ) (10)

must also satisfy Eq. (5) under πj = nj/n,∀j. In other words, if the solution to the classical softmax
loss is as diverse as

Ẑ = {ẑ(x) : ẑ(x) satisfies Eq. (5)}, (11)

then the solution to the balanced softmax loss is at least as diverse as

Z̃ = {z̃(x) : there exists ẑ(x) ∈ Ẑ such that z̃(x) satisfies Eq. (10)}, (12)

We note that Eq. (10) is equivalent to

q̃y(x)

q̃j(x)
/
q̃∗y(x)

q̃∗j (x)
≤ 1

πj

q̂y(x)

q̂j(x)
/
q̂∗y(x)

q̂∗j (x)
+ (1 +

1

πj
) exp(ϵ), (13)

where q̂, q̃, q∗ denotes the prediction probabilities (as opposed to logits) that correspond to ẑ, z̃, z∗. It
implies that Z̃ is at least as diverse as

log
q̃∗j (x)

q̃∗y(x)
− log

q̃j(x)

q̃y(x)
≤ log

q̂∗j (x)

q̂∗y(x)
− log

q̂j(x)

q̂y(x)
− C, (14)
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with C = log πj , since (1 + 1
πj
) exp(ϵ) > 0. Thus, when πj < 1/K is small, then q̂ in the balanced

softmax loss is allowed to be much more diverse than in the classical softmax loss. It is because
q̃y(x)
q̃j(x)

/
q̃∗y(x)

q̃∗j (x)
, the deviation of q̂ from the optimal solution q∗ is allowed a much larger range than

q̂y(x)
q̂j(x)

/
q̂∗y(x)

q̂∗j (x)
.

The implications of diversity on ensemble NLLs. We next consider the implications of this
diversity on the ensemble NLLs.

We first further rewrite the logit ensemble NLL and probability ensemble NLL:

−E
D

[
yT · ln q̄

]
logit ensemble NLL

= − 1

M

M∑
i=1

yT · ln qi∗

average bias

+
1

M

M∑
i=1

E
D
[DKL(q

∗
i ||qi)]

average variance

+E
D

 1

M

K∑
j=1

M∑
i=1

q̄(j)[log
q
(j)
i

q̄(j)
])


-diversity

(15)

−E
D

[
yT · ln q†]

probability ensemble NLL

= − 1

M

M∑
i=1

yT · ln qi∗ +
1

M

M∑
i=1

E
D
[DKL(q

∗
i ||qi)]

+ E
D

[
1

M

M∑
i=1

[
log

[
q
(y)
i

1
M

∑M
i=1 q

(y)
i

]]]
-dependency

, (16)

Thus, the difference between logit ensemble NLL and probability ensemble NLL is

Diff =E
D

 1

M

K∑
j=1

M∑
i=1

q̄(j)[log
q
(j)
i

q̄(j)
])

− E
D

[
1

M

M∑
i=1

[
log

[
q
(y)
i

1
M

∑M
i=1 q

(y)
i

]]]
(17)

= E
D

 1

M

K∑
j=1

M∑
i=1

q̄(j)[log
q
(j)
i

q
(y)
i

− log
q̄(j)

1
M

∑M
i=1 q

(y)
i

])

 (18)

Proposition E.2 (NLL of ensemble models under balanced softmax loss). Suppose that the average
probabilities q̄(j) and 1

M

∑M
i=1 q

(y)
i are close to the optimal prediction probabilities q∗,(j) and q

∗,(y)
i

in the sense that | q̄(j)

1
M

∑M
i=1 q

(y)
i

− q∗,(j)

q
∗,(y)
i

| < δ. Further assume that the individual ensemble models

can cover a β-substantial portion of the ϵ-approximate optimal solution set, namely Eq. (14) holds
with C = β log πj . Then the NLL of the balanced softmax can outperform the NLL of the classical
softmax,

Diffbalanced − Diffclassical ≤ β

K∑
j=1

q̄(j) log πj − log δ.

Proposition E.2 is an immediate consequence of Eq. (14) and Eq. (18). It implies that the gain from
logit ensembling is higher when πj’s take smaller values, especially when the data is long-tailed.
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